$RANDOM is an internal Bash function (not a constant) that returns a pseudorandom integer in the range 0 - 32767. $RANDOM should not be used to generate an encryption key.
Example 9-23. Generating random numbers
#!/bin/bash
# $RANDOM returns a different random integer at each invocation.
# Nominal range: 0 - 32767 (signed 16-bit integer).
MAXCOUNT=10
count=1
echo
echo "$MAXCOUNT random numbers:"
echo "-----------------"
while [ "$count" -le $MAXCOUNT ] # Generate 10 ($MAXCOUNT) random integers.
do
number=$RANDOM
echo $number
let "count += 1" # Increment count.
done
echo "-----------------"
# If you need a random int within a certain range, use the 'modulo' operator.
# This returns the remainder of a division operation.
RANGE=500
echo
number=$RANDOM
let "number %= $RANGE"
echo "Random number less than $RANGE --- $number"
echo
# If you need a random int greater than a lower bound,
# then set up a test to discard all numbers below that.
FLOOR=200
number=0 #initialize
while [ "$number" -le $FLOOR ]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR --- $number"
echo
# May combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while [ "$number" -le $FLOOR ]
do
number=$RANDOM
let "number %= $RANGE" # Scales $number down within $RANGE.
done
echo "Random number between $FLOOR and $RANGE --- $number"
echo
# Generate binary choice, that is, "true" or "false" value.
BINARY=2
number=$RANDOM
T=1
let "number %= $BINARY"
# let "number >>= 14" gives a better random distribution
# (right shifts out everything except last binary digit).
if [ "$number" -eq $T ]
then
echo "TRUE"
else
echo "FALSE"
fi
echo
# May generate toss of the dice.
SPOTS=7 # Modulo 7 gives range 0 - 6.
DICE=2
ZERO=0
die1=0
die2=0
# Tosses each die separately, and so gives correct odds.
while [ "$die1" -eq $ZERO ] # Can't have a zero come up.
do
let "die1 = $RANDOM % $SPOTS" # Roll first one.
done
while [ "$die2" -eq $ZERO ]
do
let "die2 = $RANDOM % $SPOTS" # Roll second one.
done
let "throw = $die1 + $die2"
echo "Throw of the dice = $throw"
echo
exit 0 |
Example 9-24. Picking a random card from a deck
#!/bin/bash
# pick-card.sh
# This is an example of choosing a random element of an array.
# Pick a card, any card.
Suites="Clubs
Diamonds
Hearts
Spades"
Denominations="2
3
4
5
6
7
8
9
10
Jack
Queen
King
Ace"
suite=($Suites) # Read into array variable.
denomination=($Denominations)
num_suites=${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}
echo -n "${denomination[$((RANDOM%num_denominations))]} of "
echo ${suite[$((RANDOM%num_suites))]}
# $bozo sh pick-cards.sh
# Jack of Clubs
# Thank you, "jipe," for pointing out this use of $RANDOM.
exit 0 |
![]() | Jipe points out another set of techniques for generating random numbers within a range.
|
Just how random is $RANDOM? The best way to test this is to write a script that tracks the distribution of "random" numbers generated by $RANDOM. Let's roll a $RANDOM die a few times...
Example 9-25. Rolling the die with RANDOM
#!/bin/bash
# How random is RANDOM?
RANDOM=$$ # Reseed the random number generator using script process ID.
PIPS=6 # A die has 6 pips.
MAXTHROWS=600 # Increase this, if you have nothing better to do with your time.
throw=0 # Throw count.
zeroes=0 # Must initialize counts to zero.
ones=0 # since an uninitialized variable is null, not zero.
twos=0
threes=0
fours=0
fives=0
sixes=0
print_result ()
{
echo
echo "ones = $ones"
echo "twos = $twos"
echo "threes = $threes"
echo "fours = $fours"
echo "fives = $fives"
echo "sixes = $sixes"
echo
}
update_count()
{
case "$1" in
0) let "ones += 1";; # Since die has no "zero", this corresponds to 1.
1) let "twos += 1";; # And this to 2, etc.
2) let "threes += 1";;
3) let "fours += 1";;
4) let "fives += 1";;
5) let "sixes += 1";;
esac
}
echo
while [ "$throw" -lt "$MAXTHROWS" ]
do
let "die1 = RANDOM % $PIPS"
update_count $die1
let "throw += 1"
done
print_result
# The scores should distribute fairly evenly, assuming RANDOM is fairly random.
# With $MAXTHROWS at 600, all should cluster around 100, plus-or-minus 20 or so.
#
# Keep in mind that RANDOM is a pseudorandom generator,
# and not a spectacularly good one at that.
# Exercise (easy):
# ---------------
# Rewrite this script to flip a coin 1000 times.
# Choices are "HEADS" or "TAILS".
exit 0 |
As we have seen in the last example, it is best to "reseed" the RANDOM generator each time it is invoked. Using the same seed for RANDOM repeats the same series of numbers. (This mirrors the behavior of the random() function in C.)
Example 9-26. Reseeding RANDOM
#!/bin/bash
# seeding-random.sh: Seeding the RANDOM variable.
MAXCOUNT=25 # How many numbers to generate.
random_numbers ()
{
count=0
while [ "$count" -lt "$MAXCOUNT" ]
do
number=$RANDOM
echo -n "$number "
let "count += 1"
done
}
echo; echo
RANDOM=1 # Setting RANDOM seeds the random number generator.
random_numbers
echo; echo
RANDOM=1 # Same seed for RANDOM...
random_numbers # ...reproduces the exact same number series.
#
# When is it useful to duplicate a "random" number series?
echo; echo
RANDOM=2 # Trying again, but with a different seed...
random_numbers # gives a different number series.
echo; echo
# RANDOM=$$ seeds RANDOM from process id of script.
# It is also possible to seed RANDOM from 'time' or 'date' commands.
# Getting fancy...
SEED=$(head -1 /dev/urandom | od -N 1 | awk '{ print $2 }')
# Pseudo-random output fetched
#+ from /dev/urandom (system pseudo-random device-file),
#+ then converted to line of printable (octal) numbers by "od",
#+ finally "awk" retrieves just one number for SEED.
RANDOM=$SEED
random_numbers
echo; echo
exit 0 |
![]() | The /dev/urandom device-file provides a means of generating much more "random" pseudorandom numbers than the $RANDOM variable. dd if=/dev/urandom of=targetfile bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these numbers to a variable in a script requires a workaround, such as filtering through od (as in above example) or using dd (see Example 12-42). There are also other means of generating pseudorandom numbers in a script. Awk provides a convenient means of doing this. Example 9-27. Pseudorandom numbers, using awk
|