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Chapter 1

Cyclic Inequalities

1.1 Applications

1.1. If a, b, ¢ are nonnegative real numbers such that a + b+ ¢ = 3, then

ab® + bé? + ca® < 4.

1.2. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

(ab + be + ca)(ab® + be® + ca®) < 9.

1.3. If a, b, c are nonnegative real numbers such that a® 4 b* + ¢? = 3, then
(a) ab® + bc* + ca® < abe + 2;

a b c
b <1
(b) b2 er2 ar2=

1.4. If a,b,c > 1, then
(a) 2(ab® + bc* + ca*) 4+ 3 > 3(ab + be + ca);

(b) ab® +bc* + ca®+6 > 3(a+b+c).
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1.5. If a, b, c are nonnegative real numbers such that

a+b+c=3, a>b>c,

then
(a) a?b + b*c+ c*a > ab + be + ca;
(b) 8(ab? + bc? + ca?) + 3abe < 27;
18 1
(c) < — +5.

a?b + b%c + c2a — abe

1.6. If a, b, c are nonnegative real numbers such that
a2+b2—|—02:3, a>b>c,

then
(ab+ bc+ ca +1).

o

ab® + bc® + ca® <

1.7. If a, b, c are nonnegative real numbers such that a? 4 b* + ¢? = 3, then

a’b® + b2 + 2a® < 3.

1.8. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

a*b? + b + ta? + 4> 30+ vPE + Sdd.

1.9. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

(a) ab® + bc? + ca® + abe < 4;
a b c
b <1
(b) 4—b+4—c+4—a_ ’
(c) ab® + bc® + ca® + (ab + be + ca)? < 12;
ab? bc? ca®

<1
1+a+b+1+b+c+1+c+a_

1.10. If a, b, c are positive real numbers, then

1 1 1 3
> .
a(a + 2b) i b(b+ 2c) +c(c+2a) ~ab+bc+ca
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1.11. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

a n b n c > 1
2+2c 2+2a a2+2b

1.12. If a, b, ¢ are positive real numbers such that a + b+ ¢ > 3, then

a—1+b—1+c—1>
b+1 c+1 a+1—" 7

1.13. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

() 1 . 1 L 1 S
a
a’b+2  b2c+2 cEa+2

1 1 1
>
a3b+2+b3c+2+c3a+2 -

1.

Y

1.

(b)

1.14. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

ab . be . ca
9—4bc 9 —4ca 9 —4ab

3
< -.
)

1.15. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

(a) a? N b? N c? .-
a )
20+b2  2b+c2  2c+a? T

a? b2 2

> 1
a2 br2 Tetoa =

(b)

1.16. Let a, b, c be positive real numbers such that a + b+ ¢ = 3. Then,

1 1 1

+ + <1
a+b?+c b+ +ad c+a?+0 T

1.17. If a, b, c are positive real numbers, then

1+ a? 1+ b2 1+c?
1+b4+c¢2 1+c+a® 14+a+b—
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1.18. If a, b, ¢ are nonnegative real numbers, then

b 1
. < i
da+4b+c 4b+4c+a  4dec+4a+b T 3

1.19. If a, b, c are positive real numbers, then

a+b . b+c n c+a
at+Tb+c b+T7c+a c+Ta+b

2
> —.
-3

1.20. If a, b, c are positive real numbers, then

a+b N b+c . c+a
a+3b+c b+3c+a c+3a+b

6
> —.
)

1.21. If a, b, ¢ are positive real numbers, then

20+b 2b+c¢ 20+a>3
2a+c 2b4+a 2c+b

1.22. If a, b, ¢ are positive real numbers, then

a(a+b) bb+c) clc+a)  3(a*+1*+ )
+ + < :
a+c b+a c+b a+b+c

1.23. If a, b, ¢ are real numbers, then

a? — be b? — ca  —ab
+ + > 0.
4a2 + b2 4+ 4c2 A2 + 24+ 4a?2  4c?2 4 a? 4 4b?

1.24. If a, b, ¢ are real numbers, then

(a) ala + )3 +b(b+c)® + c(c+ a)® > 0;

(b) a(a+0)°+b(b+c)’+clc+a)’ > 0.

1.25. If a, b, ¢ are real numbers, then

3(a* + b+ ct) + 4(a’b + bPc + c*a) > 0.
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1.26.

1.27.

1.28.

1.29.

1.30.

1.31.

1.32.

1.33.

If a, b, c are positive real numbers, then

(a=b)(2a+b) (b—c)(2b+¢) (c—a)(2c+ a)

> 0.
(a+0)> (b+c)? (c+a)? —
If a, b, c are positive real numbers, then
(a=b)(2a+b) (b—c)(2b+¢) (c—a)(2c+ a) -0
a? + ab+ b? b% + be + 2 4+ca+a® T
If a,b, c are positive real numbers, then
(a—b)Ba+b) (b—c)Bb+c¢) (c—a)(3c+a) >0
a2+b2 b?+c2 02+CL2 -
Let a, b, ¢ be positive real numbers such that abc = 1. Then,
1 n 1 n 1 <1
l+a+b0 140+ 14+c+a® ™
Let a, b, ¢ be positive real numbers such that abc = 1. Then,
a n b n c S 1
(a+1)(b+2) (b+1)(c+2) (c+1)(a+2) ~ 2

If a, b, c are positive real numbers such that ab + bc 4+ ca = 3, then

(a4 20)(b+ 2¢)(c + 2a) > 27.

If a,b, c are positive real numbers such that ab + bc + ca = 3, then

a . b L c
a+ad+b b+ +c c+cE+a

If a, b, c are positive real numbers such that a > b > ¢ and ab + bc + ca = 3, then

1 n 1 . 1
a+2b b+2¢c cH+2a

> 1.
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1.34. If a,b,c € [0, 1], then

a n b . c S 1

402 +5  4c2+5  4a?+5 7 3
1
1.35. If a,b,c € {5,3], then
a n b n c < 7

a+b b+c c+a 5

1.36. If a, b e[l \/5} th
.36. If a,b,c e |—, , then
V2
3 3 3 2 2 2
+ + > .
a+2b b+2c c¢c+2a a+b b+c cHa
1.37. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then
4abc a’ + b + 2 S
ab® + bc? + ca? + abe  ab+ bc+ ca

1.38. If a, b, ¢ are nonnegative real numbers such that a + b+ ¢ = 3, then

1 N 1 n 1 S 1

ab>+8  bc2+8  ca?+8 7 3

1.39. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

1.40. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

(a)
(b)

ab

be

ca

<
bc+3+ca+3+ab—|—3 -

a

b

C

b2+3+02+3 a?+3
a n b N c
BP+1 A+1 ad3+1

AV
PO o W o

v

3

1
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1.41. Let a, b, c be positive real numbers, and let

1 1 1
r=a+-—-1, y=b+--1, z=c+ - —1.
b c a

Prove that
ry +yz +zx > 3.

1.42. Let a, b, c be positive real numbers such that abc = 1. Prove that

(a—%—ﬂ)QnL<b—%—\/§)2+(c—2—\/§)226.

1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

1 1
l+a—-|+|1+b—— > 2.

b c

‘ 1
+|l+tc——
a

1.44. If a, b, ¢ are different positive real numbers, then

'1+L‘+'1+
b—c

+’1+L‘>2.
c—a a—>b

1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that
0y L1 2 O 2 e L1 2 .3
“Tb 2 c 2 “Ta 2) 7w

1 1 5 1 5
c

1.46. Let
= —_— = :b —_ — —_— =
x a+b , Y + 1 z c+a 1
where a > b > ¢ > 0. Prove that

vt DT
T z zZX —.
vty > 15

1.47. Let a, b, c be positive real numbers, and let

E=(a+%—\/§> <b+%—¢§) (c+%—\/§);

F:<a+%_¢§) (b+%—\/§> <+1_¢§>

Prove that £ > F.
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b
1.48. If a, b, c are positive real numbers such that % + -+ - 5, then
c a

b+c+a>17
a b ¢ 4

1.49. If a, b, c are positive real numbers, then

a b ¢ b ¢ a
T+ -+ -+ =>2%/1+ =+ +—;
(a) +b+c+a_\/+a+b+c,
b b
(b) 1+2(9+—+fv;z¢y+m<—+f+9);
b ¢ a a b ¢
b 1 1 1
(c) 3+%+E+§22¢m+b+@<5+5+2>.

1.50. If a, b, ¢ are positive real numbers, then

a C

b2 b b

1.51. If a, b, ¢ are positive real numbers such that abc = 1, then

a b ¢
4> .
(a) Pt ot - Zatbte
a b c_3
b —d -4+ ->(a+b+c—1);
(b) pHoto2glatbte—1);
a b c 5
—4+-+-+2>-(atb+o).
(c) p ot o +222(atbto)

1.52. If a, b, ¢ are positive real numbers such that a? + b + ¢ = 3, then

(a) N S
b ¢ a ab + be + ca’
a b ¢ 9
b B E )
(b) b+c+a_a+b+c

1.53. If a, b, ¢ are positive real numbers such that a? + b + ¢ = 3, then

b
6<9+—+f)+5mb+m+an233
b ¢ «a

2 2 b ¢ a a b ¢
2 a a c ¢ a
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1.54. If a, b, c are positive real numbers such that a + b+ ¢ = 3, then

b
(a) 6(%+E+§>+327m?+¥+§x
b
(b) ik e
b ¢ «a

1.55. If a, b, c are positive real numbers, then

a b ¢ 14(a* + b* + ¢2)
LT P
b e a7 (a+ b+ c)?

1.56. Let a,b, c be positive real numbers such that a + b+ ¢ = 3, and let

1 1 1
T =3a+ —, =3b+—-, z=3c+ —.
b c a

Prove that
Yy +yz+ zx > 48.

1.57. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

1 b+1 1
a++—|—+c+>2

2 . - (a® 4+ b* + ).

1.58. If a, b, c are positive real numbers such that a + b+ ¢ = 3, then

2 b2 2
Ll D132+ P+ ),
b c a

1.59. If a, b, c are positive real numbers, then

ad b3
?+—+—+2(ab—|—bc+ca)23(a2+b2—|—02).
C a

1.60. If a, b, c are positive real numbers such that a* + b* 4 ¢* = 3, then

a> b P
LA
(2) b+c+a_’
2 2 2
(b) a b c >§

b+c+c—|—a+a+b_ 2
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1.61. If a, b, c are positive real numbers, then

1.62. If a, b, c are positive real numbers, then

2 b2 2 b
ST S harbtez2f(@rrrrd) (1240
b c a b ¢ «a

1.63. If a, b, c are positive real numbers, then

LRI "Y L
b ¢ a a+b b+c c+a

1.64. Find the largest positive real number K such that the inequalities below hold for any
positive real numbers a, b, c:

a b ¢ a b & 3
—4+-4+--3>K —=;
(a) b7 a - <b—|—c+c—|—a+a+b 2)’
a b ¢ a b c
b —+-+--3+K —1)>0.
(b) b+c+a * <2a+b+2b+c+20+a >_

1.65. If a,b,c € [%, 2] , then
a
a b ¢ b ¢ a
b 20(-+-+—-|>17(-+-+-]).
(b) (b+c+a)_ (a+b+c)

1.66. If a, b, c are positive real numbers such that a < b < ¢, then

a b ¢ 2a 2b 2¢
— -4 - > + + .
b ¢ a b+c c+a a+bd
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1.67. Let a, b, c be positive real numbers such that abc = 1.

(a) If a < b < ¢, then
%+Z+§ > a®? 4+ 6% 4 A

(b) If a <1 <b<c, then

1.68. If k£ and a, b, ¢ are positive real numbers, then

1 1 1 1

1 1
+ +
(k+1la+b (k+1b+c (

> + + :
k+1)c+a = ka+b+c kb+c+a kect+a+bd

1.69. If a, b, ¢ are positive real numbers, then

a b c
+ + <Vatbte
(a) V2a+b V2b4+c V2c+a ~ ¢ ¢

a b c
b + + >+va+b+ec.
(b) Va+2b Vb+2c e+2a T

1.70. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that
a+ 2b \/b+20 \/c+2a
b < 3.
a\/ 3 + 3 +c 3 S

1.71. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

aVvV1+ B +0V1+B+cev1+ a3 <5b.

1.72. If a, b, c are positive real numbers such that abc = 1, then

(a) a N b . c >3‘
b+ 3 c+3 a+3 2

.| a 4/ b c 3
(v) 2.
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1.73. If a, b, c are positive real numbers, then
4a \? 4 \? 4e \?
T —— ) + (14— ) +(1+——) >2%.
a-+b b+c c+a
1.74. If a, b, c are positive real numbers, then

VoV o
<3
a—l—b b+c c+a

1.75. If a, b, c are nonnegative real numbers, then
a . [ b N c_ .
4da + 5b 4b + 5¢ 4dc+da —

1.76. If a, b, c are positive real numbers, then

b
¢ + + ‘ <1
V4a? +ab+ 402 VA2 +be+ 42 /A + ca + 4a?

1.77. If a, b, c are positive real numbers, then

\/ a+b+7c \/ b+c+7a \/ c+a+7b -
1.78. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

8 Vo Jeet F
® N R e

1.79. If a, b, c are positive real numbers such that ab + bc + ca = 3, then

l\.'JIOJ

(a) 1 n 1 n 1 >§
e (@t 0)Batb)  (broBbte  (cta)Bcta) =8
1 1 1 1

(b) (2a +b)? i (2b+¢)? * (2¢+a)? = 3
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1.80. If a, b, ¢ are nonnegative real numbers, then

47

a* + bt +ct +15(a®b + bPc + c*a) > T

1.81. If a, b, ¢ are nonnegative real numbers such that a + b+ ¢ = 4, then

a®b + bc+ a < 27.

1.82. Let a, b, ¢ be nonnegative real numbers such that
2 2, 2 10
a”+b"+c" = g(ab~|—bc+ca).

Prove that 89
a#+w+m4z§#fb+wc+&@.

1.83. If a, b, c are positive real numbers, then

a® b 3 a+b+c
+ + > .
202 + b2 202 +c2 2¢2 4 qa? 3

1.84. If a, b, c are positive real numbers, then

a* N b* N c* at+b+c
a4+ B+S AB+ad T 2 )

1.85. If a, b, ¢ are positive real numbers such that abc = 1, then

2 b2 2 b
(a) 3(%+;+%)+4< +@+ )znﬁ+w+§%
3 bd 3 b
(b) 8(%+—+C—)+5( o )213(a3+b3+c3).
Cc a

1.86. If a, b, c are positive real numbers, then

ab be ca a®+b> + 2

b2+bc+02+02+ca+a2+a2+ab+62 ~ ab+bc+ca

(a®b® + b*c* + c*a?).
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1.87. If a, b, c are positive real numbers, then

a—> n b—rc n c—a >0
b(2b+¢)  c(2c+a)  a(2a+b) T

1.88. If a, b, c are positive real numbers, then

(a) a2+6bc+b2+60a+02+6ab>7
a )
ab+2bc  bc+2ca  ca+2ab T

a?+7bc V>4 Tca *+ Tab
b > 12.
(b) ab+bc+bc+ca+ca+ab_

1.89. If a, b, c are positive real numbers, then

ab bc ca a?+ 0%+ 2
+ + < ;
2b+c  2c+a  2a+0b a+b+c
ab be ca 3(a* +b* + )
+ + < ;
b+c c+a a-+b 2(a+b+c)

ab be ca a? 4+ b* + 2
+ + < .
4b+5¢  4c+5a  4a+5b ~ 3(a+b+c)

1.90. If a, b, c are positive real numbers, then

(a) av/b? + 8¢ + bv/c? +8a2 + cva2 + 82 < (a+ b+ ¢)?;

(b)  avb?+3c2+ bV + 3a2 + cva? + 3b2 < a® + b* + ¢ + ab + be + ca.

1.91. If a, b, c are positive real numbers, then

1 1 1 3
+ + >\
ava+2b bvb+2c cve+2a — V abe

(a)

(b) 1 n 1 L 1 S 1
ava+8b byb+8 e+  \ abc

1.92. If a, b, c are positive real numbers, then

a b c a+b+c
- - <y
Vha+4b  /B5b+4c  He+4da 3
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1.93. If a, b, c are positive real numbers, then

a b ¢ >\/5+\/5+\/E

+ + :
(a) Va+b Vb+c Vet+a V2

a b c 4/27(ab + be + ca)
b + + >\/ .
(b) Va+b Vb+ec et+a o 4

1.94. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

V3a+ b +V3b+ 2 +V3c+a? > 6.

1.95. If a, b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

Va2 + b2 + 2bc + Vb2 + 2 + 2ca + Ve 4 a2 + 2ab > 2(a + b+ c).

1.96. If a, b, c are nonnegative real numbers, then

Va2 + 02+ Tbe + V2 + 2+ Tea + V2 + a® + Tab > 3+/3(ab + be + ca).

1.97. If a, b, ¢ are positive real numbers, then

a?+3ab B> +3bc A+ 3ca
+ + > 3.
(b+c)?  (c+a)*  (a+b)?

1.98. If a, b, c are positive real numbers, then

a’b+1 b’c+1 ca+1
+ + > 3.
alb+1)  blc+1) cla+1)

1.99. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

Vad +3b+ Vb3 + 3¢+ Ve + 3a > 6.

1.100. If a, b, ¢ are positive real numbers such that abc = 1, then

/ a / b / c
_ > 1.
a—|—6b+21)c+ b—|—6c—|—20a+ c+6a+2ab_1
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1.101. If a, b, ¢ are positive real numbers such that abc = 1, then
1\? 1\? 1\’
(a+5) + (b+—) - (c+—> >6(a+b+c—1).
c a

1.102. If a, b, ¢ are positive real numbers, then

a b c a+b+c
a+b b+c c+a a+b+c— vVabe

1.103. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

VP +b+ 140V +c+1+eva?+a+1<3V3,

1.104. If a, b, ¢ are positive real numbers, then

1 1 1 1
< .
b(a + 2b+ 3¢)? * c(b+ 2¢+ 3a)? * a(c+2a + 3b)?2 ~ 12abe

1.105. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that
2 2 2
(a) a*+9b b+ 9c c+9a215;
b+ c c+a a+b

a?+3b V43¢ A+3a
+ + > 6
a+b b+ ¢ c+a

(b)

1.106. If a,b,c € [0, 1], then

be ca ab

<1
2ab+1+2()c+1+20a+1 -

(a)

a b c

(b) ab+1+bc+1+ca—|—1

IN

3
-

1.107. If a, b, ¢ are nonnegative real numbers, then

a* + bt + 4+ 5(aPb + bPc + a) > 6(a’b® + b’ + Fa?).
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1.108. If a, b, c are positive real numbers, then

a® +0° + & — a'b — b'c — c*a > 2abc(a® + b* + 2 — ab — be — ca).

1.109. If a, b, c are positive real numbers such that a? + b? + ¢ = 3, then

a n b n c >3
1+ 14c¢c 14a 2

1.110. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

ava+b+bVb+c+ceve+a>3V2

1.111. If a, b, ¢ are positive real numbers such that a 4+ b+ ¢ = 3, then

a N b N c 1
2024+c¢  2¢24a  2a2+b

1.112. If a, b, ¢ are positive real numbers such that a + b+ ¢ = ab + bc + ca, then

1 1 1
<
a2+b+1+b2+c+1+02+a+1 -

1.113. If a, b, ¢ are positive real numbers, then

1 1 1 1
< .
(@+20+302  (b+2c+3a)7  (c+2a+30)2 = dab+be+ ca)

1.114. If a,b, ¢ are positive real numbers, then
a b c 3
— + + <z
a+b+2c b+c+2a c+a+2b~ 2

1.115. If a, b, ¢ are positive real numbers, then

\/5a +\/ 5b +\/ 5¢ <3
a+b+ 3¢ b+ c+ 3a c+a+3b—
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1.116. If a, b, c € [0, 1], then

5
abZ—I—bCQ—i—caQ—l—Z—lZa%—b—l—c.

1.117. If a, b, ¢ are nonnegative real numbers such that
a+b+c=3 a<b<1<g,

then
a’b + b2+ a < 3.

1.118. Let a, b, ¢ be nonnegative real numbers such that

a+b+c=3, a<l<b<e.

Prove that
(a) a’b+ b*c+ c*a > ab + be + ca;
(b) a’b+ b’c+ c*a > abe + 2
1 9
49> :
(c) abc ez a?b + bc + c2a’
(d) ab® + bc* + ca® > 3.

1.119. If a, b, ¢ are nonnegative real numbers such that

a+b+c=3a<1<b<cg,

5—2a+5—2b+5—20 9'
1+5b 1+¢ 1+a 2’
3
2

3—26+3—20+3—2a
1+a 1+0b 14+c¢

1.120. If a, b, ¢ are nonnegative real numbers such that

ab + bc + ca = 3, a<l1<b<ec,

(a) a’b+ b*c + a > 3;

(b) ab?® + bc? + ca® + 3(v/3 — 1)abe > 3v/3.
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1.121. If a, b, ¢ are nonnegative real numbers such that

a2+b2—|—62:3, a<1<b<ec,

(a) a’b + b%c + c?a > 2abe + 1;

(b) 2(ab* + bc? + ca*) > 3abe + 3.

1.122. If a, b, ¢ are nonnegative real numbers such that
ab + bc + ca = 3, a<b<1<c,

then
ab® + bc? + ca® + 3abe > 6.

1.123. If a, b, ¢ are nonnegative real numbers such that
a+ b2+ =3, a<b<1<eg,

then
2(a®b + b*c + c*a) < 3abc + 3.

1.124. If a, b, ¢ are nonnegative real numbers such that
a2+b2+62:3, a<b<1<ec,

then
2(a®b + bc + c*a) < abe + 5.

1.125. If a, b, ¢ are real numbers, then

(@® +0° + ?)* > 3(a’b + b’c + c*a).

1.126. If a, b, c are real numbers, then

at +b* + 4+ ab® 4+ be? + ca® > 2(a’b + bPc + cPa).
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1.127. If a, b, c are positive real numbers, then

02 b2 2
> 1
ab + 2¢? + be + 2a? + ca+2b% — 7

(a)

a’ b3 c3
> 1.
a?b + 2¢3 + b%c + 2a? + cza + 263 —

(b)

1.128. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

a n b N c
ab+1 be+1 ca+1

v

3
5

1.129. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

a N b n c <3
3a+b2 3b+c2 3c+a? 2

1.130. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

a n b n c >3
2+c c24+a a?+b 2

1.131. If a, b, ¢ are positive real numbers such that abc = 1, then

a n b n c S
B+2 A4+2 ad3+2

1.

1.132. Let a,b, ¢ be positive real numbers such that
am 0"+ " =3,

where m > 0. Prove that

1.133. If a, b, c are positive real numbers, then

() 1 n 1+ 1+ 1 n 1 n 1 >3 1 n 1 . 1
a JE— R R .
4a  4b  4c a+b b+c c+a 3a+b 3b+c 3c+a)’

(b) 1+1+1+ 1 n 1 n 1 > 9 1 n 1 n 1
4da  4b  4c a+3b b+3¢ c+3a 3a+b 3b+c 3c+a)’
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1.134. If a, b, ¢ are positive real numbers such that a® + % 4 ¢® = 3, then

> 3.

+—+

a® b P
b c a

1.135. If a, b, ¢ are positive real numbers such that a? + % 4 ¢ = 3, then
3 b3 3

a N N c
a+bb b+ c+ad

3
> —.
-2

1.136. If a, b, c are real numbers such that a? 4 % + ¢ = 3, then

b+ vc+cPa+3>a+b+c+ ab+ be+ ca.

1.137. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

12
<34+ —.
a?b + b%c + c?a — abe

1.138. If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then

a? b P
—+—+—>d+ b+
b c a

1.139. If a, b, c are positive real numbers such that a + b+ ¢ = 3, then

24
— >0,
a2b + b%c + c2a + abc —

1.140. Let a, b, ¢ be nonnegative real numbers such that
2(a% + b* + ) = 5(ab + be + ca).
Prove that
(a) 8(a* + bt + ¢*) > 17(a*b + be + cPa);

(b) 16(a* + b* + ¢*) > 34(a®b + b3c + *a) + 8labc(a + b+ ).
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1.141. Let a, b, ¢ be nonnegative real numbers such that

2(a® +b* + ¢*) = 5(ab + be + ca).

Prove that
(a) 2(a*b + bPc + 3a) > a*b? + b?c* + *a® + abe(a + b + ¢);
(b) 11(a* +0* + ¢*) > 17(a®b + b3c + c3a) + 129abc(a + b + ¢);
(c) a®b+b3c+ Pa < %(a%ﬁ + b%c? + *a?).

1.142. If a,b, ¢ are real numbers such that

b+ e+ ca <0,

then
a® +b* + ¢ > k(ab + be + ca),
where
1 21
p— ot 2+8¢7zamw.

1.143. If a, b, ¢ are real numbers such that
b+ b+ ta >0,

then
a® +b* + c + k(ab+ be + ca) > 0,

=14 V214 8V7
B 2

where

k R 2.7468.

1.144. If a,b, c are real numbers such that

—1
k(a* +b* + ¢*) = ab + bc + ca, ke(—,l),

2
then 35 4 g X
a’o—+b°c+c
< <
= (a2 + 0% +c2)2 — B
where
7(1—k)
2Tay = 1+ 13k — 5k* — 2(1 — k) (1 + 2k
Tay, + 13k -5 ( V(1 + 2k) T
7(1—k)

276, =1+ 13k — 5k*> +2(1 — k)(1 + 2 .
70k + 13k — 5k +2(1 — k) (1 + 2k) sy
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1.145. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

a? N b2 N 2 >3
da+0b2  4b+c?2  4dc+a? T 5

1.146. If a, b, c are positive real numbers, then

a2+bc+62+ca c2+ab< (a+b+c)
a+b b+c c+a ~ 3(ab+ bc+ ca)

1.147. If a, b, ¢ are positive real numbers such that a + b+ ¢ = 3, then

Vab? + b + Vb2 + ca? + Vea? + ab? < 3v/2.

1.148. If a, b, ¢ are positive real numbers such that a® + b® + ¢® = 3, then

b 2
+—+

— > 3.
c a

a2
b

1.149. Let P(a,b,c) be a cyclic homogeneous polynomial of degree three. The inequality

P(a,b,c) >0

holds for all a,b,c > 0 if and only if the following two conditions are fulfilled:

(a) P(1,1,1) > 0;
(b) P(0,b,¢) >0 forall b,c>0.

1.150. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

8(a®b + b*c + ca) +9 > 11(ab + be + ca).

1.151. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 6, then

a® + b + ¢ + 8(a’b + b*c + a) > 166.

1.152. If a, b, ¢ are positive real numbers such that abc > 1, then

a_ b c
abbeca > 1.
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1.153. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

a+b+c+7>17a+b+c
b+c¢c c¢c+a a-+b — 3 \a+b b4+c cH+a)’

1.154. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If 0 < k < 5, then

ka+b kb+c¢ kc+a _ 3
> —(k+1).
a+c+b~|—a c+b _2( +1)

1.155. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If k < 3 then

ka+b kb+c kc+a
>k+1.
2a+c 2b+a 2c+Db

1.156. Let a, b, ¢ be nonnegative real numbers. Prove that

2
(a) if k <1— ——=, then

5vb
QGkinrj - —/ib;gi ~ - icb++a20 > Z(IH— 1).
@)ﬁk21+g%?tmﬂ
2aki;ri - _/‘ib;;i ~+ - icb++a26 < Z(k +1).

1.157. If a, b, c are positive real numbers such that a < b < ¢, then

a

b

b
+—+5+322<
C a

a+b b+c cHa
+ + )
b+c c+a a+b

1.158. If a > b > ¢ > 0, then

3a+b+3b+c+3c~|—a>4
20 +c¢c 2b+a 2c+0b
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1.159. If a>b>c>0 and ab+ bc+ ca =2, then

Va+ab+ Vb +be+ e+ ca> 3.

1.160. If a > b > ¢ are nonnegative numbers such that ab+ bc+ ca = 3 , then

Va+ 2ab+ Vb + 2bc + Ve + 2ca > 4.

1.161. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

Va+3b+Vb+3c+ vVe+3a>6

1.162. If a, b, c are the lengths of the sides of a triangle, then
b b
0(5+2+5)>09(2+54+2).
b ¢ a a b ¢

1.163. If a, b, c are the lengths of the sides of a triangle, then

a . b n c 1
3a+b—c 3b+c—a 3c+a—0b"

1.164. If a, b, c are the lengths of the sides of a triangle, then

a2—v - A—-d
< 0.
a2+bc+62~|—ca+02+ab_

1.165. If a,b, c are the lengths of the sides of a triangle, then

a*(a+b)(b—c)+b*(b+c)(c—a)+cE(c+a)(a—1b)>0.

1.166. If a, b, c are the lengths of the sides of a triangle, then

a?b+ bic + c*a > \/abe(a + b+ c)(a? + b2 + ).



26 Vasile Cirtoaje

1.167. If a, b, c are the lengths of the sides of a triangle, then
2 (0 2 (€ 2 (@
?(Z-1)+0(S-1)+(5-1) 20
c a b

1.168. If a,b, c are the lengths of the sides of a triangle, then
(a) a*b+bic+ da > a®V? + V2 + Fa?;

(b) 3(a®b+ bPc+ Aa) > (ab+ be + ca)(a® + b* + 2);

a*b + b3c + 2 S <a+b+c>4
3 - 3 '

1.169. If a,b, c are the lengths of the sides of a triangle, then

a> b A B 2 a?
(L 2 ) 0T s
(w+§+@)—a+ 5+

1.170. If a, b, c are the lengths of the sides of a triangle such that a < b < ¢, then

a? b? c?
a2—1)2+b2—02+02—a2 <0

1.171. If a,b, c are the lengths of the sides of a triangle, then

a

b

+§+E+322<a+b b+c c+a>‘
c a

b—l—c+c+a+a+b

1.172. Let a, b, c be the lengths of the sides of a triangle. If k > 2, then

a"b(a — b) + b¥c(b — ¢) + cFa(c —a) > 0.

1.173. Let a, b, c be the lengths of the sides of a triangle. If £ > 1, then

3(a"b + 0" e+ FHa) > (a+ b+ ) (a"b + Ve + Fa).
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1.174. Let a, b, c,d be positive real numbers such that a + b + ¢ + d = 4. Prove that

a+b+c+d>1
3+b 34+c¢ 34d 3+a

1.175. Let a, b, ¢, d be positive real numbers such that a + b+ ¢+ d = 4. Prove that

a n b n c n d S 9
1402 14c¢2 1+d®> 14+a2 7

1.176. If a,b, ¢, d are nonnegative real numbers such that a + b + ¢ + d = 4, then

a’be + b?ed + Ada + d*ab < 4.

1.177. If a,b, ¢, d are nonnegative real numbers such that a + b+ ¢+ d = 4, then

a(b+c)? +b(c+d)? +c(d+ a)? + d(a +b)?* < 16.

1.178. If a, b, ¢, d are positive real numbers, then

a—b b—c c¢c—d d—a

> 0.
b+c+c+d+d~|—a+a~l—b -
1.179. If a,b, ¢, d are positive real numbers, then
(a) a—>b . b—rc . c—d . d—a >0
a )
a+2b+c b+2c+d c+2d+a d+2a+b
a b c d

(b)

<1
%t bitc Shtctd 2etrdia  2diatps

1.180. If a,b, ¢, d are positive real numbers such that abcd = 1, then
1 1 1 1

> 2.
aatd) bbto) cetrd dd+a) -
1.181. If a, b, ¢, d are positive real numbers, then
1 1 1 1 16

+ + + = :
a(l+b) bl4+c) c(l4+d) d(l+a) ~ 1+ 8Vabed
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1.182. If a, b, ¢, d are nonnegative real numbers such that a? + b? + ¢ + d* = 4, then
(a) 3(a+b+c+d) >2(ab+ bc+ cd + da) + 4;

(b) a+bd+c+d—4>(2—2)(ab+bc+ cd+ da—4).

1.183. Let a, b, ¢, d be positive real numbers.

(a) If a,b,¢,d > 1, then

1 1 1 1 1 1 1 1
— - _ Z ) > _ _ - B
(a+b) (b+c> (c+d> (d+a) >(a+b+c+d) <a+b+c+d)’

(b) If abed = 1, then
1 1 1 1 11 1 1
— )b+ - - ld+-)> b dl-+-+-+-=].
(a+b)(+c)(0+d>(+a)_(a+ +c+)<a+b+c+d)
1.184. If a,b, ¢, d are positive real numbers, then

a 2 b 2 c 2 d 2
1 1y 2 1 1 .
( +a+b> +( +b+c) +< +c+d) +< +d+a> >

1.185. If a, b, ¢, d are positive real numbers, then

a? — bd N b2 — ca N 2 —db N d? — ac
b+2c+d c+2d+a d+2a+b a+2b+c

1.186. If a, b, ¢, d are positive real numbers such that a < b < ¢ < d, then

\/a—l—b \/b—l—c \/c—l—d \/d—l—a_

1.187. Let a, b, c,d be nonnegative real numbers, and let

a b c ; d
€Tr = fr—y ey — .
b+c 4 c+d d+a’ a-+b
Prove that
(a) Vrz 4yt < 1;

(b) r+y+z+t+4(xz+yt) >4
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1.188. If a, b, ¢, d are nonnegative real numbers, then
2a 2b 2c 2d
1 1+——) (1 1 > 0.
( +b+c> ( +c+d) ( +d+a) < +a+b> -
1.189. Let a, b, ¢, d be nonnegative real numbers. If k£ > 0, then

ka kb ke kd
1 1 1 1 > (1 2,
< +b+c>< +c%—d)( +d+a)( +a+b)_( +k>

1.190. If a,b, ¢, d are positive real numbers such that a + b+ ¢+ d = 4, then

1 1 1 1
_ - _ = > 2 b2 2 d2.
ab+bc+cd+da_a+ +c° +

1.191. If a,b, ¢, d are positive real numbers, then

a? b? c? d?
@10+  (bretrd’ (crd+a?  @ratip?

4
> —.
-9

1.192. If a, b, ¢, d are positive real numbers such that a + b+ ¢+ d = 3, then

ab(b+ ¢) + be(c+ d) + cd(d + a) + da(a + b) < 4.

1.193. fa>b>c>d>0and a+ b+ c+d =2, then
ab(b+ c¢) + be(c+d) + cd(d + a) + da(a +b) < 1.

37
1.194. Let a,b,c,d be nonnegative real numbers such that a +b+c+d=4. If k > —

27
then
ab(b+ kc) + be(c + kd) + cd(d + ka) + da(a + kb) < 4(1 + k).

1.195. If a, b, ¢, d are nonnegative real numbers such that a + b + ¢+ d = 4, then

%3a+¢36+¢3c+¢3d<4
b+2 c+2 d+2 a+2
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1.196. Let a,b, ¢, d be positive real numbers such that a < b < ¢ < d. Prove that

2 a+b+c+d >4+a+c+b+d
b ¢ d a) c a d b

1.197. Let a,b, ¢, d be positive real numbers such that

a<b<c<d, abed = 1.
Prove that ; .
g—l———i—E—l——Zab—i—bcﬁLcal—i-da.
b ¢ d a

1.198. Let a, b, c,d be positive real numbers such that

a<b<c<d, abed = 1.
Prove that ) ;
142424 54 > 20+ bt eta).
b ¢ d a

1.199. Let A = {ay,as,as,as} be a set of real numbers such that
CL1+CL2+(I3+CL4:0.

Prove that there exists a permutation {a, b, ¢, d} of A such that

a’> +b* +c +d* + 3(ab+ be + ed + da) > 0.

1.200. If a,b, ¢, d, e are positive real numbers, then

a b c d

> 1
-2+ T bt2etod ct2dtoe dt2et2 et2ata =

1.201. Let a, b, c,d, e be positive real numbers such that a + b+ ¢+ d + e = 5. Prove that

a b ¢ d e
S+ -+ -<1+
b ¢ d e «a

abede”

1.202. If a,b, ¢, d, e are real numbers such that a +b+ c+d+ e = 0, then

—5-1 - ab+bc—|—cd—|—de—|—ea< V5 —1

4 T a2+ d2E e T 4
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1.203. Let a, b, ¢, d, e be positive real numbers such that
a’+ b+ +d*+ e =5.
Prove that

a? b? c? d? e2

b+c+d+c+d+e+d+e+a+e+a+b+a+b+c

)
> —.
-3

1.204. Let a,b,c,d, e be nonnegative real numbers such that a + b+ ¢+ d + e = 5. Prove
that

729
(a® +0*)(b* + A)( + &) (d* + ) (e* + a?) < TR
1.205. If a,b,¢,d, e € [1,5], then
a—b b—c c—d d—e e—a
>0

b+c+c—|—d+d+e+e~l—a a+b

1.206. If a,b,c,d, e, f € [1, 3], then

a—b+b—c+c—d d—e+e—f f—a>0
b+c c+d d+e e+f fH+a at+b

1.207. If aq, ao, ..., a, (n > 3) are positive real numbers, then

n
a;

a;i—1 + 2a; + aiq1

n
S Z?
i=1

where ag = a, and a,11 = a;.

1.208. Let ay, ag, ..., a, (n > 3) be positive real numbers such that ajas - - - a, = 1. Prove

that
1 1 1

+ + e+ <1
n—24+a+a, n—24ay+as n—2+4+a,+ a;

1.209. If ay, a9, ...,a,, > 1, then

1 L 11 1
1T at—+n=2) =" at oyt tan) (— 4 — et — )
2

ay a9 Ay,
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1.210. If aq, a9, ...,a, > 1, then
1 1 1 n
(a1+—> <a2+—) (an—l——) +2“22(1+ﬂ) (1+@> (1+a—).
ay az Qn a2 as ay

1.211. Let k and n be positive integers with k& < n, and let aq,ao,...,a, be real numbers
such that a1 < ag < --- <aq,. Then

(ay +ag + -+ ap)?* > n(a1ap1 + a2po + -+ Gplnir)
(where a,,; = a; for any positive integer i) in the following cases:
(a) n =2k
(b) n=4k.

1.212. If aq, ag, ..., a, € [1, 2], then

n

- a; + 26LH_1 Z a; + az—l—l

=1

where a,11 = a;.

1.213. If ay, a9, ...,a, (n > 3) are real numbers such that a; > ay > -+ > a, and
aias + azxas + - - -+ apa; = n,

then
B—a)’+B—a)’+ -+ (3—a,?>4n.

1.214. Let a, b, ¢, d be positive real numbers such that ab + bc + c¢d + da = 4.
(a) Ifa>b>1>c>d, then
1 1 1 1
S+ -+ -+ -+8>3(a+b+c+d).
a b ¢ d

(b) Ifa>b>c>12>d, then the inequality above holds true.

1.215. If a,b, ¢, d are nonnegative real numbers such that
ab + bc + cd + da = 4, a>b>c>d,

then
4< 1 N 1 N 1 N 1 <3
3" a+2 b+2 c+2 d+2 2
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1.216. If n>6and a; > 1> ay > --- > a, such that ajas + asaz + -+ + a,a; = n, then

Ly o
CL1+3 CL2+3 an—|—3

>

=3

1.217. If x1, x9, x3, x4, T5 are nonnegative real numbers such that

T1T2 + ToX3 + T3y + TaTs + T5T1 = O,

then
1 N 1 n 1 N 1 N 1 S 5
1.218. If a,b, ¢, d, e are nonnegative real numbers such that
ab+ bc+ cd + de + ea = 5,
then
1 n 1 n 1 n 1 n 1 S 5
a+1 b+1 c+1 d+1 e+1—2
1.219. If ay, as,. .., ag are nonnegative real numbers such that ayas + asas+-- -+ aga; = 8,
then

1 1
> 1
5a1—|—3+5a2+3+ +5CL8+3_

1.220. If a,b, ¢, d, e are nonnegative real numbers such that
ab+ bc+ cd+ de + ea = 5, a>b>c>1>d>e,
then

1+1+1+1+1
a+3 b+3 c¢c+3 d+3 e+3

5
> —.
4

1.221. Prove that 3 is the largest positive value of the constant k£ such that

1+1+1+1+1 S D
a+k b+k c+k d+k e+k T 1+k

forany a >b>c>d>12>e >0 satisfying ab + bc + cd + de + ea = 5.



34

Vasile Cirtoaje

1.222.

then

1.223.

then

1.224.

then

1.225.

then

1.226.

then

1.227.

then

If a, b, c, d are nonnegative real numbers such that

ab + ac + ad + be + bd + c¢d = 6,

1 1 1 1
> 1.
ab+3+bc—|—3+cd+3+da+3_
If a, b, c,d are nonnegative real numbers such that
ab+ ac+ ad + bc+ bd + cd = 6, a>b>c>d,
1 N 1 N 1 N 1 >2
ab+5 bc+5 ecd+5 da+b T3
If a, b, c,d are nonnegative real numbers such that
ab + bc + cd + da = 4, a>b>c>d,
1 N 1 n 1 n 1 N 1 N 1 >6
ab+4 ac+4 ad+4 be+4 bd+4  cd+4 75
If a, b, c,d are nonnegative real numbers such that
ab + bc + cd + da = 4, a>b>c>d,
1 1 1 1 1 1 3

> —,
b7 T acrT Tads7 Thert Tt T

If a,b, ¢, d are nonnegative real numbers such that

ab+ bc+ cd + da = 4,

4\/§< 1 1 1 1

< 3.
3 _a2+1+b2—|—1+02+1+d2+1

If a,b, ¢, d are nonnegative real numbers such that

ab+ bc+ cd + da = 4, a>b>1>c>d,

1 L 1 . 1 . 1 S 9
a?+1 b2+1 241 d>+1
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1.228. If a, b, ¢, d are nonnegative real numbers such that
ab+ bc + cd + da = 4,

then
1 n 1 n 1 n 1 <3
~“a+1 b+1 c+1 d+1—

1.229. If a, b, ¢, d, e are nonnegative real numbers such that ab+ bc+ cd 4 de + ea = 1, then

1 1 1 1 1

3 < <4
atl b+l el dtlteris

1.230. If a,b,c,d, e, f are nonnegative real numbers such that
ab+bc+ cd+ de+ef + fa =6,
then

20+ 1)+ (26 4+ 1) + (2c+ 1) + (2d + 1> + (2 + 1)? + (2f +1)* > 54.

1.231. Prove that 4 is the largest positive value of the constant & such that
al+a3+--+a:-n>klag+ay+---+a,—n)

for all odd integers n > 3 and nonnegative real numbers a; which satisfy aas + asas +-- -+
ana1 = N.

1.232. If a,b, ¢, d, e are positive real numbers such that
ab + bc+ cd + de + ea = 5,
then

1 1 1 1 1
S5|-+-+-+-+-)>4(a+b+c+d+e)+5.
a b ¢ d e

1.233. If a,b, ¢, d, e are positive real numbers such that

ab+ bc+ cd + de + ea = 5, a>b>c>1>d>e,

then 1 1 1 1 1
—+-+-+-+-+10>3(a+b+c+d+e).
a b ¢ d e
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1.234. For given n > 3, prove that 3 is the largest positive value of the constant k such that

1 1 1
—+— -+ +——n>klag+ay+--+a, —n)
aq a9 Qp,

forany a; > as > --- > a,_1 > 1> a, >0 with ayas + asaz + - - + a,_1a, + a,a; = n.

1.235. If a,b, c,d, e, f are nonnegative real numbers such that

ab+ bc+ cd+ de +ef + fa =6, a>b>c>d>e>f,

then
1+1+1+1+1+1>3
a+3 b+3 c¢+3 d+3 e+3 [f+37 2
1.236. Let aq,as,...,a, be positive real numbers such that
aiag + asaz + - -+ apap =N, ay > Qg 2> -+ 2 Q.
Prove that:
1 1 1
—+—+-t—2ata+ -+ a,
aq a9 Ay,

1.237. If n >3 and a; > ay > -+ > a, > 0, then

1
— ajag > nf— 5 10 - Qp1-
n n

cyclic cyclic

1.238. Let a,b, c,d, e be nonnegative real numbers satisfying ab + bc + c¢d + de + ea = 5.
Prove that:

(a) (a+2)2+(b+2)%+ (c+2)2+ (d+2)?+ (e +2)? > 45.
(b) a3/2 4 p3/2 4 (B3/2 4 (B/2 4 ¢3/2 > 5.

1.239. If a, b, ¢, d are nonnegative real numbers such that ab + bc 4 c¢d + da > 4, then

(@®+ 1)+ 1)(P+1)(d>+1) > (a+ b+ c+d)>.
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1.240. Let a, b, c,d, e be real numbers such that a >b>c¢>d > e > 0 and ab + bc + cd +
de + ea = 5. Prove that
a4 0 S P P > B,

1.241. If a4 >1>ay > --- > a, > 0 such that a; + as + --- + a,, = n, then

ajay + azas + - - -+ apa; < n.

1.242. If 0<a; <1<ay<---<a, such that a; +as +---+ a, = n, then

a1ag + asasg + - -+ + ana; < n.

1.243. Suppose n >4 and a1 > ay > --- > a, > 0. If a; = ay and a,,_1 = a,, then

n(aias + asaz + -+ + anar) > (ag +ag + -+ + a,)>.

1.244. If a,b, c,d, e are positive real numbers such that a > b > ¢ > d > e and ab + bc +
cd + de + ea = 5, then

A+ ++ P+ +5a+b+c+d+e) > 30.

1.245. Ifa>b>1>c>d>e > f >0 such that ab+ bc+ cd + de + ef + fa = 6, then

(2a + 3)* 4+ (2b 4+ 3)* + (2¢ + 3)% + (2d + 3)* + (2 + 3)* + (2f + 3)* > 150.

1.246. If a>b>c>d > e > 0, then

\/ab+bc+cd+de+ea S i/abc+bcd+cde+dea+eab
5 - 5 '
1.247. Let a, b, c,d be nonnegative real numbers such that

1 N 1 N 1 N I
a+3 b+3 c¢c+3 d+3

1.

Prove that there is a permutation (x1, 22, x3, x4) of the sequence (a,b, ¢, d) such that

T1T2 + ToX3 + T3xq + T4T1 Z 4.



38 Vasile Cirtoaje

1.248. Let a; > ay > -+ > ag > 0 such that a; +as + - -+ + ag = 2. Prove that

aijas + asas + - -+ + aga; < 1.

1.249. Let n be a natural number, n > 3. Prove that there is a real number g, > 1 such
that

ai asg Qp n
+ oot > =
az + as as + aq ai + as 2
for any real numbers aq, as, ..., a, € [1/qn, ¢n)-

1.250. If a, b, ¢, d are positive real numbers and 0 < z < 1, then

a
>1
Z a+ (3—x)b+xc —

cyclic

1.251. Prove that 18 is the largest positive value of the constant k such that

1 n 1 n 1 S 3
ab? +k bc24+k ca?l+k 14k

foralla >b>c> 0such that a +b+c = 3.

1.252. Let a = b > ¢ > d > 0 such that ab + bc + ¢d + da = 4. Prove that

>+ b0+ +d*+28>8(a+b+c+d).

1.253. If x1, 29, 3, 14, 5 are positive real numbers such that
T1T9 + ToX3 + T3Ly + T4y + T5X1 = 5,

then
1 1 1 1 1 25
e — =+ —+—+ > 10.
Ty T2 T3 Ty Tz X1+ T2+ T3+ Ty+ s

7
1.254. Prove that 6 is the least positive value of the power exponent k such that

af +ab + b + 2k + 2k >5

for any nonnegative real numbers x; with at most one z; < 1 and xyx 4+ xox3 + 2314 + 1425+
T5T1 = 5.
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1.255. Let a,b,c,d be nonnegative real numbers such that at most one of them is larger
than 1 and ab + be + ¢d + da < 4. Prove that

>+ b0+ +d*+16 > 5(a+b+c+d).

1.256. Prove that [—32,17] is the range of values of the real constant k such that
(a+b+c+d)?*+4k(a+b+c+d) > (16 +k)(a+b)*(c+d)?

for all nonnegative real numbers a, b, ¢, d with a > b > ¢ > d and abc + bed + cda + dab = 4.
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1.2 Solutions

P 1.1. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then
ab® + bc? + ca® < 4.
(Canada, 1999)

First Solution. Assume that a = max{a,b,c}. Since

a(a+0)(b+ 2c)
2 Y

+b
ab2+bc2~|—ca2gab-aT+abc+ca2:

it suffices to show that
a(a+b)(b+2c) < 8.

By the AM-GM inequality, we have

a(a+b)(b+2¢c) <

a+(a+b)+(b+20)]3:8(%b—'—cf):&

The equality holds for a =2, b =0, ¢ =1 (and any cyclic permutation).
Second Solution. Let (x,y,z) be a permutation of (a,b,c) such that

x>y 2>z

Since
TY > Z2r > Yz,

by the rearrangement inequality, we have
ab®> +bc* +ca’* =b-ab+c-bc+a-ca
<z-zy+y-zr+z-yz
= y(2® + 22 + 2°).
Using this result and the AM-GM inequality, we get

r+z x+z2
2 2

T+z z+z \ 3
<4<y+T+T)
- 3

:4(%)3:4,

Thaird Solution. Without loss of generality, assume that b is between a and c; that is,

ab® 4+ bc* + ca® < y(x +2)* =4y -

(b—a)(b—c) <0, b*+ac<bla+c).
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Since

ab® + bc* + ca® = a(b* + ac) + bc* < ab(a + ¢) + bc* = b(a® + ac + ¢?)
<bla+c)*=b(3—1b)?

it suffices to show that
b(3 —b)* < 4.

Indeed,
b(3—0)? —4=(0b—-1)2b—-4)<(b—-172*b-3)=—0b—-1)*(a+c)<0.
Fourth Solution. Write the inequality in the homogeneous form
4(a+b+c)® > 27(ab® + bc® + ca?),
which is equivalent to

4a@® + b + ) +12(a + b)(b + ¢)(c + a) > 27(ab® + bc® + ca®),

42@3 + 12 (Za%—l— Zab2 + 2abc> > 27Zab2,
4Za3 + IZZaQb—i— 24abc > 15Zab2.

On the other hand, the obvious inequality
Za(Qa —pb—qc)* >0
is equivalent to
42 a® + (¢* — 4p) Z a®b + 6pgabe > (4q — p?) Z ab®.
Setting p = 1 and ¢ = 4 leads to the desired inequality; in addition,

4(a+b+c)® —27(ab® + be® + ca®) = Z a(2a — b —4c)* > 0.

P 1.2. Ifa,b, c are positive real numbers such that a +b+ c = 3, then

(ab + be + ca)(ab® + be® + ca®) < 9.



Cyclic Inequalities 43

Solution. Let (z,y, z) be a permutation of (a,b,c) such that x > y > z. As shown in the
second solution of P 1.1,

ab® + bc® + ca® < y(z? + vz + 27).
Consequently, it suffices to show that
y(oy +yz + 2z) (2 + vz + 2%) < 9.
By the AM-GM inequality, we get
Yoy +yz + za)(2® + 22+ 2°) < (2y +yz + 20 + 2% + 22 + 27)?

=(r+2)}(z+y+2)?=90x+2)>

Thus, we still have to show that
y(z + 2)? < 4.

This follows from the AM-GM inequality, as follows:

22U+ (z+2) + (x + 2) 3

= 8.
3

2y(z + 2)? <

The equality holds for a =b=c=1.

P 1.3. If a,b,c are nonnegative real numbers such that a*> + b*> + ¢ = 3, then

(a) ab® + bc* + ca® < abe + 2

a b c
b <1
(b) b2 T ex2 ar2=

(Vasile Cirtoaje, 2005)

Solution. (a) First Solution. Without loss of generality, assume that b is between a and
c; that is,
(b—a)(b—c) <0, b*+ac<bla+c).

Since
ab® + bc® + ca® = a(b® + ac) + bc® < ab(a + ¢) + bc® = b(a® + ¢*) + abe,
it suffices to show that
b(a® + c*) < 2.
We have
2—-bla*+c*)=2-0b3—-b)=(b-1>2*0b+2)>0.

The equality holds for a = b =c¢ =1, and also for a = 0, b = 1, ¢ = /2 (or any cyclic
permutation).
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Second Solution. Let (z,y, z) be a permutation of (a, b, ¢) such that x >y > 2. As shown

in the second solution of P 1.1,
ab® + bc® + ca® < y(z? + vz + 27).
Therefore, it suffices to show that
y(2® + xz + 2% < wyz + 2,

which can be written as
y(z® + 2%) < 2.

Indeed,

2—y@@®+2")=2-yB-y}) =(y—1)*(y+2) >0.

(b) Write the inequality as follows:
D ala+2)(c+2) < (a+2)(b+2)(c+2),

ab® + bc* + ca® 4 2(a® 4+ b? + ¢?) < abe + 8,
ab® + bc? + ca® < abe + 2.
The last inequality is just the inequality in (a).

P 1.4. Ifa,b,c > 1, then
(a) 2(ab* + bc® 4 ca?) + 3 > 3(ab + be + ca);
(b) ab® +bc* + ca® +6 > 3(a+ b+ c).
Solution. (a) First Solution. From
a(b—1?+blc—1)*+c(a—1)*>>0,

we get
ab® + bc® + ca® > 2(ab + be + ca) — (a+ b+ c).

Using this inequality gives

2(ab® + bc* + ca®) + 3 — 3(ab + bc + ca) > (ab+be+ ca) —2(a+b+c) +3

— (=)= +b—=1)(c—1)+(c—1)(a—1) >0.

The equality holds for a =b=c = 1.

Second Solution. From

> bla—1)(b—1) >0,
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we get
ab® +bc* + ca® > a®> + b+ +ab+be+ca— (a+b+c).

Thus, it suffices to show that
2(a® +b* + ) + 2(ab+ be + ca) — 2(a + b+ c) + 3 > 3(ab + be + ca),
which is equivalent to
2(a®> +b* +c*) —2(a+b+c)+3 > ab+ be + ca,
(a—1)*+(b-1)*+(c—=1)*+ (a®* +b* +  — ab—bc — ca) >
2

20a — 12 4+2b—1)*+2(c—1*+(a—b)*+(b—c)*+ (c—a)

(b) The inequality in (b) follows by summing the inequality in (a) and the obvious
inequality

0,
> 0.

3a—1)b—-1)+3b—-1)(c=1)+3(c—=1)(a—1)>0.
The equality holds for a =b=c=1.

P 1.5. If a,b, c are nonnegative real numbers such that

a+b+c=3, a>b>c,

then
(a) a’b+ b*c+ cfa > ab + be + ca;
(b) 8(ab* + bc? + ca*) + 3abe < 27;
18 1
(c) < — +5.

a?b + b%c + c2a ~ abc

Solution. (a) Write the inequality in the homogeneous form
3(a®b + b*c + cta) > (a + b+ c¢)(ab + be + ca),
which is equivalent to
a’b + b*c + ?a — 3abe > ab® + bc? + ca® — a*b — b*c — Pa.
This inequality is true because
a’b+ b*c + ?a — 3abe > 0
(by the AM-GM inequality) and

ab® + bc* + ca® — a’b — b’c — c*a = (a — b)(b— ¢)(c —a) < 0.
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The equality holds for a =b=c =1, and also for a =3 and b = c = 0.

(b) Write the inequality in the homogeneous form

(a+b+c)® > 8(ab* + bc® + ca®) + 3abe,
> a®+3abe+3> a’h>5) ab’,
3" a® + 3abe — (Zab2+za2b> 24(Zab2—za2b>,
> a® +3abe — Y abla+b) > 4(a—b)(b—c)(c — a).

The inequality is true since

(a—b)(b—c)(c—a)<0
and, by Schur’s inequality of degree three,
Za?’ + 3abc — Zab(a+b) > 0.
The equality holds for a = b= c¢ =1, and also for a = b = 3/2 and ¢ = 0.
(c) Since
ab® + bc* + ca® — a*b — b’c — *a = (a — b)(b—c)(c —a) <0,

it suffices to prove the symmetric inequality

36 1
< —+5
(a?b 4 b?c + c%a) + (ab? + be? + ca?) ~ abe T

which is equivalent to

36 1
(a+b+c)(ab+ bc + ca) — 3abe = %+5’
PRI
ab+bc+ ca —abe ~ abc
12 < 1 e
a(b+c)—(a—1bec ~ a-bec
12 1

< D.
a(3—a)—(a—1)bc ~ a~bc+

Since a — 1 > 0 and
4bc < (b+¢)* = (3 —a)?,
it suffices to show that

48 < 4
4a(3 —a) — (a—1)(3—a)®> ~ a(3 —a)?
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which is equivalent to

48 - 4
(3—a)(3+a?) ~ a(3—a)?
5a° — 30a* + 60a® — 38a* — 9a + 12 > 0,
(a —1)*(5a® — 20a* + 15a + 12) > 9.

We need to show that 1 < ¢ < 3 involves

+5,

5a° — 20a® + 15a + 12 > 0.
If1<a<2, then
5a® — 20a* + 15a + 12 = 5a(a — 2)* + (12 — 5a) > 0.
If 2 <a <3, then
5a® — 20a* + 15a + 12 = 5(a — 2)* + 10a* — 45a + 52 > 10a® — 45a + 52 > 0

10 ) 2+11>O
= a— — — .
4 8

The equality holds for a =b=c = 1.

P 1.6. If a,b, c are nonnegative real numbers such that

a2—|—62+02:3, a>b>c,
then
2 2 9 _ 3
ab® + bc” + ca gz(ab—kbc—i-ca—f—l).

Solution. Let us denote
p=a-+b+ec, q = ab+ bc + ca.
From a® 4+ b? + ¢ = 3, it follows that
2q = p2 - 3.
In addition, from the known inequalities
(a+b+c)?>a®+b +¢

and
3(@*+ 0>+ %) > (a+b+c)
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we get

V3<p<3.

Since
ab® + bc* + ca® — a*b — b’c — c*a = (a — b)(b—¢)(c —a) <0,

it suffices to show that

ab® + bc® + ca® + (a*b + b*c + *a) < =(ab+ be + ca + 1).

N W

which is equivalent to

3
pq < 3abc + E(q +1),
6abc + 3(q+ 1) > 2pq.
2

12 1
Consider two cases: v/3 < p < 5 and = <p<3.
12 .
Case 1: V3 < p < = Since
1
Gabe +3(q +1) =2pg > 3(q +1) = 2pg =3 = (2p = 3)g = 5[6 — (2 = 3)(»" - 3)],

it suffices to show that
(2p —3)(p° —3) <6.

2p—3)(p°—3) < (%—3) <%—3> —%<6.

Indeed, we have

12
Case 2: = < p < 3. According to Schur’s inequality of degree three, we have

P> 4 9abe > 4pq.
Thus, it suffices to prove that
2(4pq — p°) +9(q + 1) = 6pg,

which is equivalent to

(2p +9)g —2p° +9 >0,

(2p +9)(p* —3) — 4p® + 18 > 0,

—2p* + 9p* — 6p—9 > 0,

(3—p)(2p* —3p—3)>0.
This inequality is true since 3 —p > 0 and

2 24 9
2p —3p—32€p—3p—3: p—325-€—3>0.

ol ©

The equality holds for a =b=c=1.
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P 1.7. If a,b,c are nonnegative real numbers such that a*> + b*> + ¢ = 3, then

a’b® + b2 + Pa® < 3.

Solution. Let (x,y, z) be a permutation of (a,b,c) such that
x>y >z

Since

the rearrangement inequality yields

(Vasile Cirtoaje, 2005)

a?b® + b’ + a® =b-a?b* +c- VP +a- P < a2ty 4y 2t 4z yPeR

:)32—|-y2

= y(2y + 222 +y2?) <y <x2 .

+ z2x2 —+ 22

2 2

Thus, it suffices to show that
y(o? +2%) <2

for 2 + y? + 22 = 3. By the AM-GM inequality, we get

Y2+ 22
2

6 = 2y% + (2% + 22) + (2% + 2%) > 33/292(22 + 22)2.

The equality holds for a =b=c=1.

P 1.8. Ifa,b,c are nonnegative real numbers such that a + b+ ¢ = 3, then

a*b? + b + ta? + 4> 30+ 03 + Sdd.

Solution. Write the inequality as

a?(a®b* + c* — ab® — ac®) + 4 > b*c*(be — b?).

Since

2 Z(a2b2 +ct —ab® —ac®) = Z[a4 + bt + 2a2b* — 2ab(a® + b?)]

=> (@®+ ") (a—1b)*>0,
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we may assume (without loss of generality) that
a’t? + ¢t — ab® — ac® > 0.
Thus, it suffices to show that
4 > b*c*(be — b?).

Since
2

C
be — b < —
C _4,

it is enough to prove that
16 > b*c*.

c c 3 c\ 2
3 a+b+c_b+2+2_3wbg),

the conclusion follows. The equality holds for a = 0, b = 1, ¢ = 2 (or any cyclic permutation).
O

From

P 1.9. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

(a) ab? + be? + ca® + abe < 4;
a b c
<1:
(b) 4—b+4—c+4—a_ ’
(c) ab® + bc® + ca® + (ab + be + ca)? < 12;
ab? bc? ca®

<1
1+a+b+1+b+c+1+c+a_

(d)

Solution. (a) First Solution. Without loss of generality, assume that b is between a and
c; that is,
(b—a)(b—c) <0, b*+ca<blc+a).

Using this result and the AM-GM inequality, we have
ab® + bc® + ca® + abe = a(b® + ca) + be* + abe < ab(c + a) + bc? + abe

1 [2b ’
20 (a+c)-(atc) <= tlato+(ato — 4.

2 3
The equality holds for a = b = ¢ = 1, and also for a = 0, b = 1, ¢ = 2 (or any cyclic
permutation).

=bla+c)=

N | —

Second Solution. Let (z,y,z) be a permutation of (a, b, c) such that

x>y >z
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As shown in the second solution of P 1.1,

ab® + bc* + ca® < y(2® + 2z + 2%);
hence

ab® + bc* + ca® + abe < y(x + 2)*.
Thus, it suffices to show that = + y + z = 3 involves

y(z + 2)? < 4.

According to the AM-GM inequality, we have

T+ z T+ z

Y+ +
.:B—I—Z'$+z< 92 D) 1

2 2 - 3

1
Y+ 2=y

Third Solution. Write the inequality in the homogeneous form
4(a+ b+ c)® > 27(ab* + be® + ca® + abe).

Without loss of generality, suppose that a = min{a, b, c}. Putting b =a + 2z and ¢ = a + y,
where x,y > 0, the inequality can be restated as

9(a? —zy +y*)a + (2x — y)*(z +4y) > 0,

which is obviously true.

(b) First Solution. Write the inequality in the homogeneous form

a 1
e
da+b+4c — 3
Multiplying by a + b + ¢, the inequality becomes as follows:

Za2+ab+ac - a+b+c
4a+b+4c — 3

Z a’+ab+ac a <a+b+c
4da + b+ 4c 4 ) — 12 ’

9ab
Z—Sa—f—b—i—a

Y

da 4+ b+ 4c
Since
9 9 1 1 1
= < + +
da+b+4c (2a+c¢)+ (2a+c¢c)+(2c+b) ~ 2a+c 2a+c  2c+b
2 1

- 2a+c+20+b’
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we have

9ab 2ab ab 2ab be
Z4a+b+4c§Z2G+C+ZQC—|—():Z2CL+C+ZQCL—|—C
:ZQSSiiC:Zb:aerJrc.

The equality holds for a = b = ¢ = 1, and also for a = 0, b = 1, ¢ = 2 (or any cyclic
permutation).

Second Solution. Write the inequality as follows:

S ald—a)(d—c) < (4 — )4~ b)(4 o),
32+Zab2+abc§4(2a2+22ab>,
32+Zab2+abc§4<2a)2,

ab?® + bc? + ca® + abe < 4.

The last inequality is just the inequality in (a).
(c) Using the inequality in (a), we get

(a+ b+ c)(ab® + bc® + ca® + abe) < 12,
which is equivalent to the desired inequality
ab® + bc® + ca® + (ab + be + ca)? < 12.
(d) Let ¢ = ab+ bc + ca. Since
Y ablP(l+b+c)(l+cta)=) ab’(d+q+c+c®)=(4+q)> ab’+ 3+ qabe
and
[[a+a+0)=1+> (@+b)+> (b+c)(c+a)+[[(a+b)
:7+3q+202+(3q—abc) =16 + 4q — abc,
the inequality is equivalent to

(44 q) Zab2 + (3 + q)abc < 16 + 4q — abe,

(4+q) (Zab2+abc—4> <0.
According to (a), the desired inequality is clearly true.

Remark. The following statement is also valid:
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e [fa,b,c are nonnegative real numbers such that a + b+ ¢ = 3, then
ab® + bc® + ca® + abe + (a — 1)*(b — 1)*(c — 1)* < 4,

with equality fora =b=c=1, and also fora =0,b=1, c =2 (or any cyclic permutation).

Having in view the second solution of (a), it is enough to show that
(a=1)(b=1)*(c—1)* < (4= b)(1-b)
where b is between a and c. This is true if
l(a—1)(c—1)| < V44—
Assuming that a < ¢ (hence a < b < ¢, a < 1, ¢ > 1), the inequality can be written as

follows:
(1—G)(C—1>S V4_ba
a+c—1<ac++V4—0b,

2—-b<ac++v4-0.
This is true if
2—b<+v4-—0b.
Indeed,
4—b—(2—0)? b(3 =)
Vi—b—(2—-0b) = =
( ) Vi—-b+2—-b V4—-b+2-0b
bla +c)
= >0
\/4—b—|—2—b)_

P 1.10. If a, b, c are positive real numbers, then

1 1 1 3
> .
a(a + 2b) i b(b+ 2c) +c(c+2a) “ab+bc+ca

First Solution. Write the inequality as

Za(b+c)+bc>3
ala+2b) — 7

b+c bc
" >3
Za—l—2b+za(a+2b) 23

a+2b

It suffices to show that




54 Vasile Cirtoaje

and
Z _be > 1
ala+2b) =

By the Cauchy-Schwarz inequality, we have

b+c Do+ 4 (3 a)”
Za+2b St @t IS @ ASab

and

a+2b) ~ abed (a+2b)  3abcda Gabcd a
The equality holds for a = b = c.

Z be - > bc)2 > be)® 14 S a?(b - c)? .-
a( '

Second Solution. We apply the Cauchy-Schwarz inequality in the following way

1 o (> a)
Z a(a + 2b) = SacX(a+20) > a?b? +2abcd a’

Thus, it suffices to show that

T’ 3
ST a?h? +2abeda T > ab’

which is equivalent to

(Zab) (Z a’ + QZab> > 32&2192 + Gacha,
Z ab(a® + b*) > Z a’b® + abcz a.

The latter inequality follows by summing the obvious inequalities

Z ab(a® +b*) > 2 Z a’b?
Z a’b? > abcz a.

and

P 1.11. If a, b, c are positive real numbers such that a + b+ c = 3, then

a n b N c 1
b2+2c c2+2a a?+2b
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Solution. Using the Cauchy-Schwarz inequality, we get

a > a)2 B Sta? =Y ab?
2> Sa+20) TSR t2S b

Thus, it suffices to show that
Z a’ — Z ab® > 0.

Write this inequality in the homogeneous form
(a+b+c)(a® +b* + ) > 3(ab”® + bc® + ca?),
which is equivalent to the obvious inequality
ala —c)* +b(b—a)’>+c(c—b)* > 0.

The equality holds for a =b=c=1.

P 1.12. If a, b, c are positive real numbers such that a + b+ ¢ > 3, then

a—1+b—1+c—1>
b+1 c+1 a+1—" 7

Solution. Write the inequality as
(@®—=1D(c+1)+ @ -D(a+1)+ (2 =1)(b+1) >0,

ab® + b+l +a+ P+ >a+b+c+3.

From
alb—1)2+blc—1)2+cla—1)*2>0,

we get
ab® + bc® + ca® > 2(ab+ be + ca) — (a + b+ c).

Using this inequality yields

ab® +bc* +ca’+a®+ v+ —a—-b—c—3>(a+b+c)’—2a+b+c)—3

=(a+b+c—3)(a+b+c+1)>0.
The equality holds for a =b=c=1.
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P 1.13. If a,b,c are positive real numbers such that a + b+ c = 3, then
1 1 1

> 1:

(a) a21)+2+bzc+2+c2a+2_ ’
1 1 1

b > 1.

(v) a3b+2+b3c+2+c3a—l—2_

Solution. By the AM-GM inequality, we have

3
1= (%b—i—c) > abe.

On the other hand, according to the inequality in P 1.9-(a):
ab® + bc® + ca® < 4 — abe.
(a) By expanding, the inequality can be restated as
a*b>c® + abe(ab? + be® + ca®) < 4.

It is true if
a*b*c® + abc(4 — abe) < 4,

which is equivalent to
(abc — 1)(a*b*c* +4) > 0.

The equality occurs for a =b=c = 1.

(b) By expanding, the inequality becomes

a'bt'e + abe(a®h’ + b’ + *a®) < 4.

Let p=a+b+c, ¢ =ab+bc+ ca and r = abc. Using the inequality from P 1.9-(a), we have

a’b® + 0’ + *a® = (ab® + bc® + ca®)(ab + be + ca) — abe(a® + b* + ¢ + ab + be + ca)

<@-r)g—r(9—q) =49 —9r.

Thus, it suffices to show that
r* +r(dq — 9r) < 4.

By Schur’s inequality, we have

p3 4 9r
p

4q < =94 3r.

Therefore,

4 r(dg—9r) =4 <1t +r(9—6r) —d=1'—6r"+9r —4=(r —1)(r* + 1> —5r +4)
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=(r—-DFr*+1-r)(4-r)<0.

The equality occurs for a = b =c = 1.
Remark 1. We can generalize the inequality in (a) as follows (see P 1.38)
e [fa,b,c are nonnegative real numbers such that a + b+ c = 3, then the inequality
1 n 1 n 1 S 3
a’b+k  bc+k  Acat+k T 1+k

holds for 0 < k <8, with equality fora=0=c=1. If k =8, then the equality occurs again
fora=0,b=1, ¢c=2 (or any cyclic permutation).
Remark 2. We claim that the following open generalization of the inequality in (b) is true
e [fa,b,c are nonnegative real numbers such that a + b+ ¢ = 3, then the inequality
1 N 1 n 1 N 3
atb+k  bc+k  ABat+k T 1+k

1458
holds for 0 < k < ko, where ky = T3 3.08245. For k = kg, the equality occurs when

0

a=0b=c=1, and also when a = 1 and ¢ =0 (or any cyclic permutation,).

Sl R

P 1.14. If a,b, c are positive real numbers such that a + b+ ¢ = 3, then

ab . be . ca <3
9—4b¢ 9 —4ca 9 —4ab — 5

Solution. We have
ab ab b b
< _— = _— D ———
P D Bl ey s LD DE e el Dirarns
1 a+ 2c a+ 2c
- 1— — 7 | =2_Z
22[ a—i-Zb—l—QC} Za—l—%—i-ZC
Thus, it suffices to show that
Z a—+ 2c > 9
a+2b+2c 5
Using the Cauchy-Schwarz inequality, we get
a+2c > (a+ 2¢)) ~9a+b+e)? 9
=<

Za+2b+2c— S(a+2c)(a+2b+2¢)  5la+b+c)?

The equality holds for a =b=c=1.
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P 1.15. If a,b, c are positive real numbers such that a + b+ c =3, then

a? b? c?

> 1:

(a) 2a+b2+2b+02+20+a2_ ’
a? b2 c?

(b) > 1.

a+262+b+262+c+2a2

Solution. (a) By the Cauchy-Schwarz inequality, we have

Z a? - (XCa®)? Yadtr2Y
20+ 02 7 S a2(2a +0?) 2> a3+ > a2b?

Thus, it suffices to prove that

Za4+2a2b2 > 22@3,

which is equivalent to the homogeneous inequalities
S 0t s Y e =2 (Ya) ().

Za4 +3Za2b2 — ZZtJLb(a2 +b%) >0,
Y (a—b)*>0.
The equality holds for a =b=c=1.
(b) By the Cauchy-Schwarz inequality, we get

3 @ Xa®)? Yadtr2Y e
a+202 7 S a2(a+202) Y. ad+2 a2b?

Thus, it suffices to prove that

Za422a3.

We have

Za4—2a322(a4—a3—a+1):Z(a—l)(a?’—l)20.

The equality holds for a = b =c = 1.

P 1.16. Let a,b, c be positive real numbers such that a + b+ c = 3. Then,

1 1 1
a+bQ+c3+b+02+a3+c—|—a2+b3 -

(Vasile Cirtoaje, 2009)
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Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

34 12 3 2
Z 1 <Z(a+b+c >y a’+ Y a’+3

a+b2 L3~ a2+b2+62)2_ (a2 + b2 +c2)?
Therefore, it suffices to show that
(@ + 0>+ ) >a® + 02+ + (a® + 0> + %) + 3,
or, equivalently,
(@ +b*+ )+ a*(3—a) > 4(a® + b’ + %) + 3.
Let us denote t = a? + b* + ¢?. Applying again the Cauchy-Schwarz inequality, we get

2 DoaB—a  (9—a®—b" =)’
Za(3—a)2 S5 a) 5 :

Thus, it is enough to show that

> 4t + 3.

This inequality reduces to (t — 3)*> > 0. The equality occurs for a = b=c = 1.

P 1.17. If a,b, c are positive real numbers, then

1+ a? 1+ b? 14 2
+ + > 2.
1+b+c¢2 14+c+a®> 1+a+b?

Solution. From
1+
+ c”,

l+b4+2 <1+

we have
1+ a? 2(1 + a?)
L+b+c2 = 1402 +2(1+4¢?)

Thus, it suffices to show that

SEEE
y+2z z+2x x+2y

where
r=1+ad* y=1+V, z=1+c



60 Vasile Cirtoaje

Using the Cauchy-Schwarz inequality gives

x Y z (x+y+2)?
+ + >
y+2z z+4+2r x+2y  z(y+2z)+ylz+22) + z2(x + 2y)
2
_ (x+y+2) > 1
3(xy +yz + 2x)

The equality occurs for a =b=c = 1.

P 1.18. If a, b, c are nonnegative real numbers, then

a b c 1

latdb+c dbtdeta dotdatd 3
(Pham Kim Hung, 2007)

Solution. If two of a, b, ¢ are zero, then the inequality is trivial. Otherwise, multiplying by
4(a+ b+ ¢), the inequality becomes as follows:

< = b
4da+4b+c — 3(a+ te

Z4a(a+b+c) 4 )

4a(a+ b+ c) 1
B S < Z
Z{4a+4b+c a]_g(a+b~|—c),

ZL<1(a+b+c)
da+4b+c 9 '

By the AM-HM inequality, we get

9 9 1 2
= < .
da +4b+c (2b+c)+2(2a+b)_2b+c+2a+b

Yarareo e meet o
da+4b+c — 2b+c  2a+b

1 ca 2ab 1
5 (ot o) g e
as desired. The equality occurs for a = b = ¢, and also for a = 2b and ¢ = 0 (or any cyclic
permutation).

Therefore,

O

P 1.19. If a, b, c are positive real numbers, then

a-+b b+c c+a
a+7+c b+T7c+a c+Ta+b

2
> —.
-3
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Solution. Write the inequality as
a+b 1 2 3
-7 _Z)>Z_Z
Z<a+7b+c k;)—3 k’ k>0,
Z(k—l)a+(k—7)b—c>2k—9
a+Th+c -3

Consider that all fractions in the left hand side are nonnegative and apply the Cauchy-
Schwarz inequality, as follows:

Z(k—l)a+(k—7)b—c> (k—1D)Ya+k-=7)>b—>
a+Tb+c "> (a+Tb+)[(k—1a+ (k—T)b— ]

(2k —9)* (X a)’
(8k —51) S a? +2(5k — 15) S ab’

We choose k£ = 12 to have 8k — 51 = 5k — 15, hence

(8k—51) 3" a® +2(5k —15) Y ab =45 (Za)Q.

For this value of k, the desired inequality

Z(k—l)a+(k—7)b—c> 2k —9
a+7b+c - 3

can be restated as 11a 4 5b
St
a+Tb+c
Without loss of generality, assume that a = max{a, b, c}. Consider further two cases.

Case 1: 11b+ 5¢ — a > 0. By the Cauchy-Schwarz inequality, we have

Z lla+5b—c > (11a +5b — ¢)]? 2253 a)?
at+Tbte — S(a+Tb+e)(llatsb—c)  45(3a)

Case 2: 11b+ 5¢c — a < 0. We have

Z a+b a+b 2 a—11b — 2¢

2
> =S4 =5
a+T7b+c a+Th+c 3+3(a—|—7b—|—0) 3

Thus, the proof is completed. The equality holds for a = b = c.

P 1.20. If a,b, c are positive real numbers, then

a+b b+c c+a 6
+ + > —.
a+3b+c b+3¢c+a c+3a+b 5

(Vasile Cirtoaje, 2007)
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Solution. Due to homogeneity, we may assume that
a+b+c=1,

when the inequality becomes

DEes EH
53 (1—¢)(1+2¢)(1+2a) > 6(2a + 1)(2b + 1)(2c + 1),
5<4+6Zab—42a2b> :6(3+4Zab+8abc),
143 ab>10_ a’b+ 24abe,
(a+b+c)*+3(a+b+c)lab+ be+ ca) > 10(a’b + b*c + ¢*) + 24abe,
> a®+6) ab® >4 a’b+ 9abe,
[2Za3 ~ 3 abla + b)} +3 [Zab(a—l—b) - 6abc] 410 (Zmﬁ - Za2b> >0,
S a+b)(a—b)2+33 cla—b)?+10 <Zab2—2a2b> >0,

> (a+b+3c)(a—b)*+10(a - b)(b—c)(c — a) > 0.

Assume that
a = min{a, b, c},

and use the substitution
b=a+2x, c=a+y, x,y > 0.
The inequality becomes
(5a +x + 3y)r* + (5a+z +y)(z — y)* + (5a + 3z + y)y* — 102y(z — y) > 0.
Clearly, it suffices to consider the case a = 0, when the inequality becomes
23 — 42y + 62y +1° > 0.
Indeed, we have
2 — 42y + 6xy® + P = x(x — 2y)? + 22y° + 4 > 0.

The equality holds for a = b = c.
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P 1.21. If a,b,c are positive real numbers, then

2a+b 2b+c 20—1—a>3
20 +c 2b+a 2c+b

(Pham Kim Hung, 2007)

Solution. Without loss of generality, assume that a = max{a, b, c}. There are two cases to
consider.

Case 1: a < 2b+ 2c. Write the inequality as
Z 2(l+b_1 Z §’
2a4+c¢ 2 2
22a+26—c 23
2a + ¢

20 +2b—c>0, 206+2c—a>0, 2c+4+2a—0b>0,

Since

we may apply the Cauchy-Schwarz inequality to get

Z2a+2b—c> > (2a 4 2b — ¢))? _9@@)2_3
2a+c  ~ Y (a+20-c)2a+c)  3(Ya)?
Case 2: a > 2b+ 2c¢. Since
2a+c—(2b+a) = (a—2b—2¢c)+3c >0,
we have
2a—i—b+2b+c>26L+b+26—i—c_1Jr 3b o1
2a+c¢ 2b4+a  2a+c 2a+c 2a + ¢ '
Therefore, it suffices to show that
2c+a
> 2.
2c+b —

Indeed,
2c+a _ 2c+2b+2c

2c+D ~ 2¢+D
Thus, the proof is completed. The equality holds for a = b = c.

P 1.22. If a,b,c are positive real numbers, then
a(a+b) bb+c) clc+a)  3(a*+1*+ )
+ + < .
a+c b+a c+b a+b+c
(Pham Huw Duc, 2007)
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Solution. Write the inequality as

Za(a+b)(a+b—|—0)

a—+c

< 3(a® +b° + ),

Z ab(a+b) + a(a+b)(a+ c)

<3(a® + b+ ),
a—+c

ZM < 2(a® +b* +¢*) — (ab + be + ca).
a+tc

Let (z,y,z) be a permutation of (a,b,c) such that z > y > z. Since
r+yzz+r>y+z

and
vy(r +y) > ze(z +x) > yz(y + 2),

by the rearrangement inequality, we have

Z ab(a + b) < zy(r +y) N zx(z + x) N yz(y + 2)
atc —  y+=z z4+x Tty

Consequently, it suffices to show that

zy(z +y) +3/Z(Z/+Z) <2a? 44?4 20—y — yr — 2z
y+z r+y

Write this inequality as follows:

Tty yt+z 2, 2, 2
— =1 )4yz | — =1 ) <2z +y " + 2" —2y —yz — 2x),
y(y+z ) Y (w+y )_ (" +y y—y )
:Ey(x—z)+yz(z—:v)
Y+ 2z r+y
y(x+y+z)(z—x)2<
(z+y)(y+2)

<(@—y)’+y—2)7°+(z—2)

Since
y(r+y+2) <(xz+y)(y+2),

the last inequality is clearly true. The equality holds for a = b = c.

P 1.23. If a,b,c are real numbers, then

a? — be b2 — ca —ab
+ -+ > 0.
4a? + b2 +4c2  4b2 4+ 2 +4a? 42 + a? + 4b?

(Vasile Cirtoaje, 20006)
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Solution. Since
4(a®* —be) (b+ 2¢)?

4a2 4+ 02 + 4 4a + b2 + 42
we may rewrite the inequality as

(b+ 2c¢)? (c+ 2a)? (a+20)? <3
4a2 + b2 +4c?2  4b?2 + 2 +4a? 42+ a2+ 402 T

Using the Cauchy-Schwarz inequality gives

(b+2¢)* (b + 2c¢)? < b N 2¢2
4a2 + b2 +4c2 (202 4+ b2) +2(2c2 +a2?) T 22+ 02 2c2 +a?’

Therefore,

2 2 2 2 2
The equality occurs when
a(2b® + %) = b(2¢* + a®) = c(2a* + b?);
that is, when a = b = ¢, and also when a = 2b = 4¢ (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

o Let a,b,c be real numbers. If k > 0, then

a’ — be b? — ca 2 —ab
+ + >0,
2ka? + b2 + k2¢2  2kb2 + 2 + k20?2  2kc? + a? + k2b?

with equality for a = b = c, and also for a = kb = k*c (or any cyclic permutation).

P 1.24. If a,b,c are real numbers, then
(a) ala + )3 +b(b+c)® + c(c+ a)® > 0;

(b) a(a+b)° +b(b+c)® + c(c+a)® > 0.
(Vasile Cirtoaje, 1989)

Solution. (a) Using the substitution
b+c=2x, c+a=2y, a+0b=2z,
which are equivalent to

a=y+z—z, b=z4+x—y, c=x+y-—z,
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the inequality becomes in succession
ot oyt 2t a4y o2 > By oyt + P
Z(x4 + 2z — 2%y + ) >0,
Z(l,z oy — )+ Zx2y2 >0,
the last being clearly true. The equality occurs for a = b= ¢ = 0.

(b) Using the same substitution, the inequality turns into
28+ 45 4+ 20+ ay® +y® 4 22’ > Py 4yt + 2P,

which is equivalent to
D 2%+ 4 = 2zy(at — y*) > 0,

Z[(a:2 + 2) (z* — 2% + o) — 2ey(a? + 7)) (2 — y?)] > 0,

d (@ +y?)a® —zy—y?)? > 0.

The equality occurs for a =b=c = 0.

P 1.25. If a,b,c are real numbers, then
3(a* + b+ c*) + 4(a®b + bPc + c*a) > 0.
(Vasile Cirtoaje, 2005)

Solution. If a,b,c are nonnegative, then the inequality is trivial. Since the inequality
remains unchanged by replacing a, b, ¢ with —a, —b, —c, respectively, it suffices to consider
the case when only one of a,b, ¢ is negative; let ¢ < 0. Replacing now ¢ with —¢, the
inequality can be restated as

3(a* + b+ c*) + 4a’h > 4(bPc + Pa),
where a,b,c > 0. It is enough to prove that
3(a* + b + ¢t + a®b) > 4(bPc + a).
Case 1: a <b. Since a®b > a*, it suffices to show that
6a* + 3b* + 3¢* > 4(b%c + ac®).
Using the AM-GM inequality yields

30+t > 4vVbh2ct = 4bPc.
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Therefore, it suffices to show that
6a* + 2¢* > dac’.
Indeed, we have

1 1 1 4c12 4
3a4—|—c4:3a4+—c4+—c4+—c4244 ae = —ac® > 2ac’.

37 73" 73 9 3

Case 2: a > b. Since 3a3b > 3b*, it suffices to show that

3a* + 6b* + 3c¢* > 4(b%c + ac?).
By the AM-GM inequality, we get
ct ct 4
6b" + 3= 2b* + 2b* + 2b* + 32 4Vb12ct = 4b’c.
Thus, we still have to show that
23
3a* + gc‘l > dac’.
We will prove the sharper inequality

5
3a* + 504 > dac’.

5 5 5 5 [125a4c12
424 g4, 2424245 44 > dac®.
3a +20 3a —|—6c +6c +60_ — 2 ac

The equality occurs for a = b= c = 0.

Indeed, we have

P 1.26. If a,b,c are positive real numbers, then

(a—0b)(2a+b) (b—c)(2b+¢c) (c—a)(2c+a)

(@ +b) b+ crap ="

(Vasile Cirtoaje, 2006)

Solution. Since

(a—0)(2a+b) 2a*—bla+b)  2a? b
(a+02  (a+02  (a+b? a+b
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we can write the inequality as

a 2 b
22(@—1—6) _Za+b20'

According to P 1.1 in Volume 2, we have

2Z<aib>2:z(aib>2+z<bi0)2
:Z{u;b/a)? 1+c/b]
S S .

Therefore,

a \’ b b b
QZ(aer) _Zaer2 b+a_za+b:

The equality holds for a = b = c.

P 1.27. If a,b, c are positive real numbers, then

(a—0)(2a+b) (b—c)(2b+c¢c) (c—a)(2c+a) _

a? + ab + b? b? + be + 2 2+ ca + a?
(Vasile Cirtoaje, 2006)
Solution. Since
(a—b)(2a+0b) 3a®>—(a®>+ab+b*) 3a? B
a?+ ab + b? a’?+ ab + b? a?+ab+0?

we can write the inequality as
2

S L
a? + ab + b?

1
2 T et a2

Clearly, this inequality follows immediately from P 1.45 in Volume 2. The equality holds for
a=b=c.

O
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P 1.28. If a,b,c are positive real numbers, then

(a—=b)Ba+b) (b—c)Bb+c¢) (c—a)3c+a)

> 0.
a? + b? b? + 2 c? + a?

(Vasile Cirtoaje, 2006)

Solution. Since
(a—b)(3a+b) = (a—b)?+2(a® — b?),

we can write the inequality as

(a — b)? a’ —b?
> 0.
Za2+b2 +22a2+b2—0

Using the identity
a? —bv? a’? — b?
Za2+b2+Ha2+b2 :0’
(a — b)? a’ —b?
Z a2_|_b? ZQ]i[a2_|_l)2'
By the AM-GM inequality, we have

(@a=0)?*_ s/ (a—0)?
Za2+b223 Ha2_|_b2'

the inequality becomes

Thus, it suffices to show that

s/ (@ — b)? a’ —v?

a?+b* a? + b’

a_bQ a2_b23
27H(a2+b>2 Z8HEa2+—bQ;3'

which is equivalent to

This inequality is true if

27 [(a® +0°)° = [ (a — b)(a+b)*.

Assume that a = max{a, b, c}. For the nontrivial case a > ¢ > b, we can get this inequality
by multiplying the inequalities

3(a® + b*)* > 2(a — b)(a + b)?,
3(c® + %2 > 2(c — b)(c + b)?,
3(a® + c*)? > 2(a — ¢)(a + ¢)®.

These inequalities are true because
3(a® +b*)? — 2(a — b)(a + b)* = a*(a — 2b)* + b*(2a® + 4ab + 5b*) > 0.

The equality holds for a = b = c.
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P 1.29. Let a,b, c be positive real numbers such that abc = 1. Then,

1 1 1
< 1.
1+a+1)2+1+b+02+1+c+a2 -

(Vasile Cirtoaje, 2005)

Solution. Using the substitution

we have to show that xyz = 1 involves

1 1 1
+ + <1l
T+ad 495 14y +20 1423 +2°5 7

By the Cauchy-Schwarz inequality, we have

z2+x2—|—y2)2 o (x2+y2—|—22)2

Z 1 < Z 24 x+y? ST (2 + 2Pyz + a:2z2)'
14+ 2% +4° (

So, it remains to show that
(22 + 2+ 252 > Zm4 + xysz + Zw2y2,
which is equivalent to the known inequality
Z x2y2 > TYz Z T.
The equality occurs for a = b =c = 1.
Remark. Actually, the following generalization holds:

e Leta,b,c be positive real numbers such that abc = 1. If k > 0, then

1 1 1
<1.
1+a+bk+1+b+ck+1+c+ak -

P 1.30. Let a,b, c be positive real numbers such that abc = 1. Then,
a L b N c S 1
(a+1)(b+2) (b+1)(c+2) (c+1)(a+2) ~ 2
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Solution. Using the substitution

where x,y, z are positive real numbers, the inequality can be restated as

2x Ty Yz
Cr 0w+ wroro)  Fro)@+2y)

1
> —.
-2

By the Cauchy-Schwarz inequality, we have

zx (3 zz)? 1
2 ( +y)(y +22) S Yozx(r+y)(y+22) 2

The equality occurs for a =b=c = 1.

P 1.31. If a,b,c are positive real numbers such that ab + bc 4+ ca = 3, then
(a4 20)(b+ 2¢)(c+ 2a) > 27.

(Michael Rozenberg, 2007)

Solution. Write the inequality in the homogeneous form

A+B>0,
where
A= (a+2b)(b+2¢c)(c+2a) —3(a+ b+ c)(ab+ bc + ca)
= (a=b)(b—c)(c—a)
and
B = 3(ab + bc+ ca)ja+ b+ ¢ — \/3(ab + be + ca)].
Since

3(ab+ be + ca)[(a —b)* + (b —¢)* + (¢ — a)?
2(a+b+c+ +/3(ab + be + ca)
- 3(ab + be + ca)[(a —b)* + (b—¢)?* + (¢ — a)?]
- 4(a+b+c)

Y

it suffices to show that

4(a+b+c)(a—0b)(b—c)(c—a)+3(ab+bc+ca)[(a—1b)*+ (b—c)*+ (c —a)?] > 0.
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Consider ¢ = min{a, b, ¢}, and use the substitution
a=c+x, b=c+y, x,y > 0.
The inequality becomes
—day(z —y)(Be +x +y) + 6(a* — zy +y*)[3¢” + 2(x + y)c +ay] > 0,

which is equivalent to
9(z? — 2y +y*) +6Cc+ D >0,

where
C=2°—2%y+ay’+9° > a2 —zy +y?),

D = zy(x? + 5y* — 3xy) > (2V5 — 3)a?y?.

Since C' > 0 and D > 0, the inequality is obvious. The equality holds for a = b =c = 1.
O

P 1.32. If a,b,c are positive real numbers such that ab + bc 4+ ca = 3, then

a b c

< 1.
a+a3+b+b+b3+c+c—|—c3+a -

(Andrei Ciupan, 2005)

Solution. Write the inequality as

1 1 1
<1.
1+a2+b/a+1+b2+c/b+1—l—c?—l—a/c_

By the Cauchy-Schwarz inequality, we have
1 A+1+ab
- - < L B e |
Z 1+a2+b/a — Z (c—l—a—l—b)Q

The equality holds for a =b=c=1.

P 1.33. If a,b,c are positive real numbers such that a > b > ¢ and ab + bc + ca = 3, then

1 n 1 . 1
a+2b b+2¢c c+2a
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Solution. According to the well known inequality

T4y + 2> \/3(xy +yz + 2x),

where x,y, z are positive real numbers, it suffices to prove that

1 1 1
>

1
(@120)(b120)  (b120)(c+2a)  (ct2a)at2n) — 3

This is equivalent to the following inequalities
9Ya+b+c)> (a+2b)(b+2c)(c+2a),
3(a+b+c)(ab+ bc+ ca) > (a+ 2b)(b+ 2¢)(c+ 2a),
a’b + b*c+ ?a > ab® + b + ca?,
(a—=b)(b—c)(a—c)>0.

The last inequality is clearly true for a > b > ¢. The equality occurs for a = b =c = 1.

P 1.34. Ifa,b,c € [0,1], then
a . b n c <
42 +5 42 +5  4a?+5 T

W =

Solution. Let
a b c

W15 4245 12 +5

E(a,b,c) =
We have

a—1 1 1
Bla,b.c) = E(Lbe) = s + (4a2+5 _5)

1+a 1
4a2—|-5 4b2+5
<( 4(1+a) 1
4a2+5
1—a 1—2a
<0
9(4&2—1—5) -

and, similarly,
E(a,b,c) — E(a,1,¢) <0, FE(a,b,c)— E(a,b,1) <0
Therefore,
E(a,b,c) < E(1,b,c) < E(1,1,¢) < E(1,1,1) = =

]

1
The equality occurs for a« = b = ¢ = 1, and also for a = 5 and b = ¢ = 1 (or any cyclic

permutation).

O
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1
P 1.35. Ifa,b,c € {5,31, then

a b c
+ -
a+b b+c cHa

7
> .
)

Solution. Assume that a = max{a,b, ¢} and show that

E(a,b,c)zE(a,b,\/%)zg,
where a b c
E(a,b,c) = &+b+b+c+c+a'
We have
b c 2vb
R =
NURUICE
N (b+c)(c+a) <\/5+\/5) =0

1 1
Substituting x = \/%, the hypothesis a, b, c € [g, 3] involves = € [g, 3] . Then,

2
Blabap) Lo 0 Wb T
5 a+b Ja+vb 5
B x? n 2 _7
24+1 zz4+1 5

3 —Tr+ 8z — 227
5@+ 1) (22 +1)

B (3 —2)[z*+ (1 —z)?]

= e+ n@Er) =V

1
The equality holds for a = 3, b = 3 and ¢ =1 (or any cyclic permutation).

1
P 1.36. Ifa,b,c e {ﬁ,ﬂ}, then

3 + 3 n 3 S 2 n 2 L 2
a+2b b+2c c+2a  a+b b+c cH+a
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Solution. Write the inequality as

3 2 1 1
— =) >
Z(a—i—% atb " Fa k:b>_0’ k>0,

—(a —b)[a* — (k — 3)ab + 2b?]
2T ity 2

Choosing k = 6, the inequality becomes

(a — b)*(2b — a)
2 Gabar oyt >

Since 5
W—a>——2=0,

V2

the conclusion follows. The equality holds for a = b = c.

P 1.37. If a,b,c are nonnegative real numbers, no two of which are zero, then

4abe a? + b + 2 S
ab? +bc?2 4+ ca? +abc  ab+bc+ca —

(Vo Quoc Ba Can, 2009)
First Solution. Without loss of generality, assume that b is between a and c¢; that is,
b’ + ca < b(c+a).
Then,

ab? + bc® + ca® 4 abe = a(b? + ca) + bc® + abe
< ab(c+ a) + bc* + abe
= b(a + c)?,

and it suffices to prove that

dac N a’ +b* +
(a+c¢)?> ab+bc+ca —

This inequality is equivalent to
[a® + ¢* — b(a+ ¢)]* > 0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic permutation).
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Second Solution. Let (z,y,z) be a permutation of (a,b, c) such that x > y > 2. As we
have shown in the second solution of P 1.1,

ab?® + be? + ca® < y(m2 + x2 + 2%);

hence
ab® + bc* + ca® + abe < y(x + 2)*.

Thus, it suffices to prove that

A 2,2, .2
TYZ +x +y +z >0
ylr+2)?2  zy+yz+zx

which is equivalent to
2?4y + 22 - 2(z% + 2?)
ry+yz+zr — x4+ 2)?
(2% +2%)% = 2y(a + 2)(2® + 2%) + y* (2 +2)* > 0,
(22 4+ 2% —zy —y2)? > 0.

Y

P 1.38. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

1 n 1 n 1 >1
ab? +8  bci2+8 ca?+8 3

(Vasile Cirtoaje, 2007)
Solution. By expanding, we can write the inequality as
64 > 13 4+ 16A + 51 B,

64 > r® 4+ (16 — 5r)A + 5r(A + B),

where
r=abc, A=ab®+bc*+ca®, B=a*b+bc+ ta.

By the AM-GM inequality, we have

3
S(%“C) _q

On the other hand, by the inequality (a) in P 1.9, we get
A<4-—r,
and by Schur’s inequality, we have

(a+b+c)®+ 9abc > 4(a+ b+ c)(ab + be + ca),
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which is equivalent to

2 _
A+B< 74?”.

Therefore, it suffices to prove that

27 —
64> 1% 1 (16 — 5r)(4 — r) 4 LT =37) 74 3).

We can write this inequality in the obvious form
r(1—r)(944r) > 0.

The equality holds for a = b = ¢ = 1, and also for a = 0, b = 1, ¢ = 2 (or any cyclic
permutation).
O

P 1.39. If a,b,c are nonnegative real numbers such that a + b+ c =3, then

ab N be N ca <3
bc+3 ca+3 ab+3 4

(Vasile Cirtoaje, 2008)

Solution. Using the inequality (a) in P 1.9, namely
a’b + b*c + ?a < 4 — ab,
we have
Z ab(ca + 3)(ab + 3) = abcz ab + 9abc + 3 Z a’b* +9 Z ab
< 13abc — a*b*c? + 3 Z a’b* +9 Z ab.
On the other hand,
(ab+ 3)(be + 3)(ca + 3) = ab*c® + 9abc + 9> _ ab+ 27.
Therefore, it suffices to prove that
4 (13abc —a®b** +3 Z a’b® +9 Z ab) <3 <a2b202 + 9abc + 9 Z ab + 27) ,
which is equivalent to
Ta’V’c® + 81 > 25abc + 12 a’b’ + 9> ab,

Tr® 4+ 47r > 3(q + 3)(4q — 9),
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where
g=ab+bc+ca, r=abc, ¢q<3, r<l1.

Since
7r? 4+ 47r > 9r? + 45r,

it suffices to show that
3r? +15r > (¢ + 3)(4g — 9).
Consider the non-trivial case

9
-<qg<3
4 Q—7

and apply the fourth degree Schur’s inequality

o> PP —9la—p?) _ (9-a)(4g-9)
6p 18 |

It remains to show that

(9 —q)*(4q — 9)? N 59 —q)(4g —9)

> 4q —

which is equivalent to
(4 — 9)(3 — ¢q)(69¢ — 4¢* — 81) > 0.

This is true because

69q — 4¢* — 81 = (3 —q)(4¢ — 9) + 6(8¢ — 9) > 0.

NN GV

The equality holds for a = b = ¢ = 1, and also for ¢« = 0 and b = ¢ = = (or any cyclic

permutation).

]

P 1.40. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

(a) a N b n c >§'
2+3 c2+3 a?24+3 4

a b c 3

b > .
(%) b3—|—1+c3—|—1+a3—|—1_2

(Vasile Cirtoaje and Bin Zhao, 2005)
Solution. (a) By the AM-GM inequality, we have
P 43=0b"+1+1+1>4Vp? 13 =4Vb.

Therefore,

3a ab? ab? 1
=4¢— ——>a— —— =a— —-abVb.
713 a b2+3_a NG a 4a\/_
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Taking account of this inequality and the similar ones, it suffices to prove that
abVb + bey/c + cav/a < 3.

This inequality follows immediately by replacing a, b, ¢ with 1/a, Vb, \/c in the inequality in
P 1.7. The equality holds for a = b =c = 1.

(b) Using the AM-GM Inequality gives

b3 b3 1
a = Q @ > “ =a — §ab\/l_)7

b+ 1 _b3+1—a_25\/5
and, similarly,
b 1 c 1
T > b—ébc\/z, P zc—ﬁca\/a.

Thus, it suffices to show that
abV'b + bey/e + cav/a < 3,

which follows from the inequality in P 1.7. The equality holds for a = b =c = 1.

Open problem. Let a,b,c be nonnegative real numbers such that a +b+c=3. If
0<k<3+2V3,

then
a n b n c_ S 3
V+k A+k a®+k T 14k
For k = 3+2V/3, the equality occurs when a = b= ¢ = 1, and again when a =0, b=3—+/3
and ¢ = \/3 (or any cyclic permutation thereof).

]

P 1.41. Let a,b, c be positive real numbers, and let

1 1 1
r=a+-—-1, y=0+--1, z=c+—-—1.
b c a

Prove that
Yy +yz +zx > 3.

(Vasile Cirtoaje, 1991)

First Solution. Among z,y, z, there are two numbers either less than or equal to 1, or
larger than or equal to 1. Let y and z be these numbers; that is,

(y—1)(z=1) >0.

Since
ry+yz+ze—3=(y—-1)(z—-1)+(x+1)(y+2) — 4,
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it suffices to show that
(z+1)(y+2) >4

Since

1 1 1
Yy+tz=b+-—+c+-—-2>2b+—,
a c a

we have

1 1
(x+1)(y+2)—4>(x+1) (b+5) —4:ab+%—220.
The equality holds for a =b=c=1.

Second Solution. Without loss of generality, assume that © = max{z,y, z}. Then,

T > 1(x+y+z):%[(a—i—%)jL(b—l—%)—l—(c—l—%) —3}

3
1
2§(2+2+2—3):1.
On the other hand, from
(z+1)(y+1)(z+1) = abc+ L atbreriqply]
x z =abc+ — +a c+—+-+-
Y abc a b ¢
1 1 1
>24+a+b+ect+—+-+-
a b ¢
=5+x+y+z,
we get
ryz +xy +yz + zx > 4.
Since . e
y+z:——|—b+(c_ ) >0,
a

two cases are possible: yz < 0 and y,z > 0.
Case 1: yz < 0. Since zyz < 0, it follows that

xy+yz+zer>4—xyz>4>3.

Case 2: y,z > 0. We need to show that d > 1, where

J— lzy +yz + zx

By the AM-GM inequality, we have d® > xyz. Thus, from xyz + xy + yz + za > 4, we get
4’ + 3d* > 4,

(d—1)(d+2)* >0,
hence d > 1.
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P 1.42. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that
1 ? 1 2 1 ?
(a—g—\/é) +(b———\/§) +(c———\/§) > 6.
c a

Solution (by Nguyen Van Quy). Using the substitution
a=—, b:§7 CZE? z,y,z >0,
z

the inequality becomes as follows:

(y‘z—ﬂ)2+(zf—¢§)2+(x‘y-@zz@,

X z

() (57) + (5) (e m st
()« (557« (5] o etz

x Y z TYz

Assume that * = max{z,y,z}. For z > z > y, the inequality is clearly true. Consider
further that x > y > 2z and write the desired inequality as

u? 4+ 02+ w? > 22 uvw,

where

In addition, we have

uvz(l—f) (1—5)<1-1:1.
y X

According to the AM-GM inequality, we get
u? + v 4+ w? > 2uv + w? > 200 +w? > 2\/5 uVW.

This completes the proof. The equality holds for a = b = c.

P 1.43. Let a,b, ¢ be positive real numbers such that abc = 1. Prove that

1 1 1
l+a——|+|1+b——|+|1+c——| >2.
c

b a
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Solution. Using the substitution
x z
a=—, b:—’ c=—, $7y72>0,
z

the inequality can be restated as

y—z
€T

r—y
z

‘1+ ‘+‘1+ ’+‘1+—Z_x‘>2.
y

Without loss of generality, assume that © = max{z,y, z}. We have

’1+u +‘1+ﬂ Jr'lJrQ’—zz‘lJrB +‘1+x_y'—2
x z Y x z
— _l’_ — — — — — —

_ Tty z+z ToY 5 _Y z+x yzy z+x y_z 220.
Xz z T z T T x

P 1.44. If a,b,c are different positive real numbers, then

c

a
'1+—’+'1+
b—rc

1 > 2.
|5

c—a a—
(Vasile Cirtoaje, 2012)
Solution. Without loss of generality, assume that a = max{a, b, c¢}. It suffices to show that

a

> 2,

1
o

c
14—
—c +' +a—b
which is equivalent to
a+b—c+a—b+c
b — | a—1b

For b > ¢, this inequality is true since

> 2.

a+b—c+a—b+c>a—|—b—c_ a
|b— ¢ a—>b b—¢c — b—

+1>1+1=2.
c

Also, for b < ¢, we have

a+b—c+a—b+c_a—|—b—c+a—b—|—c
|b— ¢ a—b  c—b a—>b

_a+c>a+c—b>2a
¢c—b a—-b c¢c—b a—b" a—b

> 2.
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P 1.45. Let a,b, c be positive real numbers such that abc = 1. Prove that

1 1\’ 11\’ 1 1\*_ 3

2 — - — = 2— = —— 2e—=—-| >°,

<“b2>+( 02)+(0a2>_4
(Vasile Cirtoaje, 2012)

Solution. Using the substitution

1 1 1
r=2a——-, y=2b——-, z=2c——,
b c a

we can write the inequality as
i+ +y+ oz

From
and

it follows that
2 +y+z2) +ayz="1.

In addition, from

T+ |yl + |2
2(Je] + gl + <) + (' -+ ") > 2(Ja] + [yl + |2]) + oy

>2x4y+z)tayz =71,
we get
|z + |y| + [2] > 3.

Therefore, we have

1
T4y + 2 2 ol + 4 2] = e+l 2 2 2 4y o+
The equality holds for a =b=c=1.
O
P 1.46. Let

+1 5 b+1 5 +1 5
T =aQ —_— — _— _—— - zZz =2C PR —
b Y c 4 a 4’

where a > b > ¢ > 0. Prove that

s X
T z zZT —
yry 16

(Vasile Cirtoaje, 2011)
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Solution. Write the inequality as

Z<ab+$)+zg—22(a+2)+620.

Since

b a a—>b)(b—c)la—c
sy ehi-de=d

Y2 (S0 (20) -+

Thus, it suffices to prove the symmetric inequality

22(ab+$> +<Za> (Z%) —5Z(a+é) +9>0.

we have

Setting
p=a+b+c, qg=ab+bc+ca, r=abc,

we need to show that
(2¢—5p+9)r+pg—5¢+2p>0

for all a,b,c > 0. For fixed p and ¢, the linear function
f(r)=(2¢—5p+9)r+pg—5q+2p

is minimum when r is either minimum or maximum. Thus, according to P 3.57 in Volume
1, it suffices to prove that f(r) > 0 for a = 0 and for b = c.
For a = 0, we need to show that

(b4 ¢)bc — bbc+2(b+¢) > 0.
Indeed, putting = = v/be, we have
(b+ ¢)bc — 5be + 2(b+ ¢) > 22 — 5a® + 4z > 0.

For b = ¢, since
p=a+ 2b, q:2ab—i—b2, r:ab2,

the inequality f(r) > 0 becomes
(4ab + 2b* — 5a — 10b + 9)ab® + (a + 2b)(2ab + b*) — 10ab — 5b% + 2a + 4b > 0;

that is,
Aa* 4+ 2Ba+ C >0,

where

A=b4b*—5b+2) >0, B=0b"—50"+70"—5b+1, C =0b(2b"—5b+4)>0.



Cyclic Inequalities 85

Let

The inequality B > 0 is equivalent to

1 1
b2+b—2—5<b+5)+720,

22 =5 +5>0,

. 5+2\/3'

Consider two cases.
5+5

Case 1: x > . Since A >0, B >0, C > 0, we have Aa® + 2Ba + C > 0.

5 5
Case 2: 2<z < V5

. Since A >0, B<0,C >0 and

Aa® +2Ba + C = (Aa* + C) + 2Ba > 2a(VAC + B),

we need to show that AC' > B2, which is equivalent to

8<b2+l)—30<b+1>+45> {b2+1—5(b+1)+7r
b b = b2 b ’

82% — 302 + 29 > (2° — 5z + 5)?,
(x —2)*(2* — 62— 1) <0.

This inequality is true for < 3 + /10, therefore for < (5 4+ v/5)/2. Thus, the proof is
completed. The equality holds for a =b=c=1.
[

P 1.47. Let a,b, c be positive real numbers, and let

E:(a+é—\/§> (m%—ﬁ) (c+§_¢§);
F:<a+ —\/§) (b+%—\/§> <c+%—\/§>.

Prove that E > F.
(Vasile Cirtoaje, 2011)

S =
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Solution. By expanding, the inequality becomes

D (@ =be) +> be(be —a®) = V3D ab(b — ).

Za—bc Za —Zab>0
Zbc(bc—aQ) = Za2b2 —acha >0,

by the AM-GM inequality, we have

Z(aQ—bc)—l—Zbc(bc—az)ZQ\/[Z —bc} [Zbc (bc — a?) }

Thus, it suffices to show that

2\/[2 —bc} [Zbc c—a2}>\/_2abb—c

which is equivalent to

2\/[3@2_@6)} S (E-1)|zva(ieletoe),

-8+ (-39
>2f( +- +——0

Applying the Cauchy-Schwarz inequality, it suffices to show that

(a+c—2b) (%—%>+(c—a) (2_%_3 >z<b+b+——3>

which is an identity. Thus, the proof is completed. The equality holds when the following
two equations are satisfied:

Since

and

J [(a+c—2b)2+3(c—a)?

a® + b+ ¢ — ab — be — ca = a’b* + b’ + *a® — abe(a + b+ ¢)
and

a b ¢ b ¢ «a
34— +-+-=2(-4+-+-).
c  a a b ¢
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b
P 1.48. If a,b,c are positive real numbers such that & + - + — =25, then

b

c a _ 17

a b ¢ 4

(Vasile Cirtoaje, 2007)
Solution. Making the substitution

a b c
xr = — = — z = —
b ) y c’ a Y

we need to show that if x,y, 2z are positive real numbers satisfying

ryz =1, r+y+z=05,

then
1 1 17
-+ —-+->—.
r Yy z 4
From (y + 2)? > 4yz, we get
4
5—x)? > —:
62?2
therefore,
x x
(5—:1:)—|—(5—:c)+1233(5—x)2123,
which involves 2 < 4. We have
11 1 17T 1 y4z 17 1 17
BT T - 5— 1) — —
r y z 4 x+ yz 4 :L’+x( ?) 4
4—17x +202% — 42® (4 —2)(1 —2x)° -4
4x B 4x -

1
The equality holds when one of x,y, z is 4 and the others are 5; that is, when

a=4b=2c

(or any cyclic permutation).

P 1.49. If a,b, c are positive real numbers, then

(a) 1+b+b+ >2\/1+§+C+9
a b c
b 1+2(-+-+- 1+1
(b) + (b . a \/+ 6( + 7 + )
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a b ¢ 1 1 1
3424245509 b L I

(c) tototo 2 \/(a—l— +c)(a+b+c)
(Vasile Cirtoaje, 2007)

Solution. Let

and
p=r+y+z q=zy+yz+zT.

By the AM-GM inequality, we have

p > 3Jryz = 3.

(a) We need to show that zyz = 1 involves

1+x+y+222\/1+xy+yz~l—zx,

which is equivalent to
(1+p)*>4+4q

or
p+32>2y/p+q+3.

First Solution. By Schur’s inequality of degree three, we have
p> 49 > 4pqg.

Thus,

9 —-3)(2p+3
(1+p)2—4—4q21+p)2—4—(p2+5):(p );H)EO-

The equality holds for a = b = c.

Second Solution. Without loss of generality, assume that b is between a and c¢. By the
AM-GM inequality, we have

1 1 1 +b+ 1 1 1

Therefore,

b +o+ 111
p+3—2/p+q+3> 4443 L0 (o4
b ¢ a b a b c

_ (a—b;[()b—c) >0.
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(b) We have to show that zyz = 1 involves

14224y +2) > /14 16(zy + yz + 21),

which is equivalent to
P’ +p>4q.

By Schur’s inequality of degree three, we have
p®+9 > 4dpq.
Thus,
PAp—dg>p?+p— (p2+%) _ (p—3)p+3)
The equality holds for a = b = c.
(c) Write the inequality as follows:

B+z4+y+2)°>4B+r+y+2z+ay+yz+ 2z),

(@ +y+2)° +2(@ +y+2) >3+ 4(zy +yz + 22),
(I+z+y+2)° > 41+ zy +yz + 22),

1+x+y+222\/l+xy+yz+zx,

a c
b b
Thus, the inequality is equivalent to the inequality in (a).

b ¢ b a
1+ +—+—22\/1+—+ + —.
c a a c

P 1.50. If a,b,c are positive real numbers, then

LGRS (SR BNy (G
b2 2 a? a b «c¢) b ¢ a)’

Solution. Making the substitution

we have to show that xyz = 1 involves
22+ 1?4 22+ 15(xy +yz + 22) > 16(z +y + 2),
which is equivalent to

(z+y+2)?—16(x +y+ 2) + 13(zy + yz + zx) > 0.
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According to P 3.58 in Volume 1, for fixed z + y + z and xyz = 1, the expression
Yy +yz + zx

is minimum when two of x,y, z are equal. Therefore, due to symmetry, it suffices to consider
that x = y. We need to show that

(22 4+ 2)* — 16(22 + 2) + 13(2* + 222) > 0
for 2z = 1. Write this inequality as
172% — 3225 4+ 302® — 1622 +1 > 0,

or
(z—1)%g(z) >0, g(z)=172* + 22° — 1322 + 22 + 1.
Since
g(z) = (2z — 1)* + z(2® + 342 — 37z + 10),

it suffices to show that
2 + 342% — 37z 4+ 10 > 0.

There are two cases to consider.

1 10
Case 1: x € (0, 5] U {ﬁ,oo) We have

2?4 342° — 37z + 10 > 342? — 37z + 10 = (22 — 1)(17z — 10) > 0.

1 10
2: = =
Case 2: x € (2,17

> . We have

1
2(x% + 342% — 37z +10) > 2 <§$2 + 342% — 37x + 10) = 6922 — T4z + 20.

Since 6922 — 74z + 20 > 0 for all real x, the proof is completed. The equality holds for
a=b=c
O

P 1.51. If a,b, c are positive real numbers such that abc = 1, then

a b ¢
42> .
(a) b+c—l—a_a+b+c,
a b ¢ 3
b - -4+ = > b —1
(b) b+c+a_2(a+ +c—1);
(c) 9-I—Z—)-|—£7L2>§(6L+b—|—c)
b ¢ «a -3
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Solution. (a) We write the inequality as

a b b ¢ c a
b a4z T S _
(2b+c) + (2C+a) +<2a+b> > 3(a+b+c)

In virtue of the AM-GM inequality, we get

a b b ¢ c a 5/ a? 5/ b2 e
2— 4+ - 2- 4+ — 2—4+ =) >3\ —+3{/—+3y/— =3 b .
(b+c)+(c+a)+<a+b)_ bc+ cajL ab (atb+c)

The equality holds for a =b=c=1.
(b) Using the substitution

a:y, b=
x

where x,y, z > 0, the inequality can be restated as
2023 + 4y + 23) + 3zyz > 3(2%y + vPz + 222).

First Solution. We get the desired inequality by summing Schur’s inequality of degree
three

2+ y° + 22+ 3wyz > (2%y + yPr 4+ 222) + (v 4yt + 2a?)

and
22+ P 4+ 2+ ay? oy 422 > 202y + P + 2.

The latter inequality is equivalent to
v(x—y)? +yly — 2+ 2(z —2)* > 0.

The equality holds for a =b=c=1.

Second Solution. Multiplying by = + y + z, the desired inequality in x,y, z turns into

22:104 — Zx?’y— 323:23/2 +22xy3 > 0.
Write this inequality as
Z[(l + k)2t — 2Py — 322y + 229° + (1 — k)y'] >0,
Z(:L’ —)[z® = 3zy® — i + k(2® + 2%y + 2y + *)] > 0.

Choosing k = —, we get the obvious inequality

=1 w

Z(m —4)*(72* + 102y + y*) > 0.
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(c) Making the substitution

) Cc= ) x7y7z>07

we need to show that
3(x + P + 23) + 6xyz > 5(2y + yPz + 2).
Assuming that z = min{z, y, z} and substituting
y=x+p, z=v+q, pq=0,
the inequality turns into
(p* —pg + ¢*)x +3p® + 3¢° — 5p’q > 0.
This is true since, by the AM-GM inequality, we get
6p° + 64> = 3p* + 3p° + 6¢° > 3{/3p% - 3p3 - 6¢% = 9V/2 p*q > 10p%q.
The equality holds for a =b=c=1.

Remark. The following stronger inequality holds for abc = 1:

a b ¢
— — _> 2 2 2.
b+c+a_\/3(a + 0% + ¢2)

By squaring, the inequality becomes

a> b2 a b ¢
—+—2+—2+2<——|——+—>23(a2+b2+c2).
C a C

b? a b
By the AM-GM inequality, we have

2

a a s/ at 5
T2 e T
b2
— +2- > 307,
c
A e )

Summing this inequalities, the conclusion follows.

P 1.52. If a,b,c are positive real numbers such that a®> + b* + c® = 3, then

(a) N S
b ¢ a ab + be + ca’
a b ¢ 9
b B —
(b) b+c+a_a—|—b+c
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Solution. (a) By the Cauchy-Schwarz inequality, we have

a b ¢ _ (a+b+c)? 3
-—+-+-2—= —
b ¢ a  ab+bcH+ca ab 4+ bc + ca

The equality holds for a =b=c=1.
(b) Using the inequality in (a), it suffices to show that
3 9
+ > ,
ab+bc+ca — a+b+c

Let
o ttbhe oy
3
Since
2(ab+bc+ca) = (a+b+c)® — (a* +b* + %) = 9* — 3,

the inequality becomes
2

2+ >

3
32 —1 7"t
(t—1)%(2t+1) >

0.

The equality holds for a = b =c = 1.

P 1.53. If a,b,c are positive real numbers such that a®> + b* + c? = 3, then

b
6<g+—+f)+5(ab+bc+ca)233.
b ¢ a

Solution. Write the inequality in the homogeneous form

a b ¢ 5 ab 4+ bc + ca
-4+ -4+-—=—3>-(1——|.
b a _2< a2+b2—|—c2)

We will prove the sharper inequality

a b ¢ ab 4+ bc + ca
ST ) (i
b a _m( a2—|—b2+62>’

where 5

Write this inequality as follows:

(Z a2) <Z ab2) + machab — (m+ 3)acha2 >0,
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Z ab* + Za3b2 + (m + 1)abcz ab — (m + ?))abcza2 >0,
> ab'+ Y a’b? +2(2V2 — Labe Y ab—4v2 abe Y " a® > 0,
On the other hand, from
> ala—b)’(b - ke)® >0,

we get

> ab' +) d* + (K —2)> a®V + k(4 - k)abe ) ab—dkabey  a® > 0.

Choosing k = v/2, we get the desired inequality. The equality holds for a = b= ¢ = 1.
]

P 1.54. If a,b,c are positive real numbers such that a + b+ c =3, then

b
(a) 6(%4—54—2)—}—327(@2—1—62—{—02);
a b ¢
b L
(b) o tozaH bt

Solution. (a) Write the inequality in the homogeneous form

2 (Z a)2 (Z ab2> + abc (Z a)2 > 21acha27

which is equivalent to

Zab4 + Za3b2 + QZaQbS + 4achab - 8acha2 > (.
On the other hand, from
> a(a—b)*(b— ke)* >0,

we get

Z ab* + Z a’b* + (k* = 2) Z a’b® + k(4 — k)abcz ab — 4kabcz a® > 0.

Choosing k = 2, we get the desired inequality. The equality holds for a = b =c = 1.

(b) We get the desired inequality by adding the inequality in (a) and the obvious in-
equality
a? + b2+ 2 > 3.

The equality holds for a =b=c=1.
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P 1.55. If a,b,c are positive real numbers, then

a b ¢ 14(a® + b* + 2)
2>
b—i_c—{—a+ ~ (a+b+c)?

(Vo Quoc Ba Can, 2010)

Solution. By expanding, the inequality becomes as follows:

(3°7) (Doat+2dab) +4d ab=12) a2

Z%3+Za72b+2za7b2+72ab2 10) "o’
A+ B> 1()2@2—102@5,

where ; 2 ;
a a a a
A=) w+) —-2) — B=4) —-3) ab
Since . 2, 2 ba— b)?
a 2a a—
A: _ _— —
(F+7-10) -2
and dca? (2a — 3b)2
ca c(2a —
B3 (S -tz one) - 30 L2
we get
AT _ a7)2
A+ B {b(a b) +c(Qab?)b)}
c

>2) (a—b)(2a—30)=10> a*—10) ab.

Thus, the proof is completed. For a > b > ¢, the equality holds for
b(a —b) = c(2a —3b), c(b—c)=a(2b—3c), a(c—a)=>b(2c—3a),
which are equivalent to

a B b B c

T o :
ﬁ—tan? \/7—taur177T V7 — tan —

Notice that the equality conditions involve
2,12, 2
a“ 4+ b° + ¢ = 2ab + 2bc + 2ca,

hence

Va=vb+ e
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Remark. Using the inequality in P 1.55, we can prove the weaker inequality

a b ¢  T(ab+bc+ca) _ 17
—+-+- > =
b ¢ a a? + b2 + 2 2

with equality for the same conditions. It suffices to show that

14(a* + b* + ¢2) PR 17 7(ab+ bc + ca)
(a+b+c)? -2 a? 4+ b + ¢?

which is equivalent to
(a® +b* + ¢* — 2ab — 2bc — 2ca)® > 0.

Actually, the following statement is valid.
If a,b, c are positive real numbers, then

b ¢ S 19(a® + b* + ¢*) + 2(ab + bc + ca)

b ¢ a— a®+b+c2+6(ab+ be+ca)

)

with equality for a = b = ¢, and also for
a B b B c

T o
\/7—tan7 ﬁ—tan% V7 — tan —

(or any cyclic permutation,).

This inequality is stronger than the inequality in P 1.55.
P 1.56. Let a,b, c be positive real numbers such that a +b+ c =3, and let

Prove that
Ty +yz + zx > 48.

(Vasile Cirtoaje, 2007)

Solution. Write the inequality as follows:

1 b
3(ab + bc+ ca) + — + S k]
abc a b ¢

We get this inequality by adding the inequality P 1.54-(a), namely

b
6(—+9+9>+327(a2+52+c2),
a b c
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and the inequality
1&m+bo+my+€;+7m?+¥+c%281
abc

Since
a® 4+ b+ =9 —2(ab+ be + ca),

the latter inequality is equivalent to

2(ab + bc + ca) + 3 > 9.
abc

By the known inequality
(ab+ bc + ca)?* > 3abc(a + b+ c),

we get
1 9
abc — (ab+ be + ca)?

Thus, it suffices to show that

27
q

where ¢ = ab + bc + ca. Indeed, by the AM-GM inequality, we have

27 27 27
m+———q+mw—>3wqq;;=9

The equality holds for a =b=c=1.

P 1.57. If a,b,c are positive real numbers such that a +b+ c = 3, then

at+l b+l e+l
+ +

2
2 . - (a +b +c)

Solution. We get the desired inequality by summing the inequality in P 1.54-(a), namely

b
6(9+—+5>+327@?+w+&y
b ¢ a

o2+

Write the latter inequality as F'(a

and the inequality
—) 5(a +b° + *) + 3.

c) > 0, where

L1,
b
, b,
F(a,b,c) < )—5(@ +b% +¢?) -3,
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then assume that
a =max{a,b,c}, b+c<2

F(a,b,c)ZF(a,b+c b+c) > 0.

and show that

2 72

Indeed, we have

Also,

_ _ _1\2(19 _ 2
7 a,b+c’b—|—c _ 5 a,3 a’3 a :3(a 1)%(12 15a—|—5a)20.
2 2 2 2 2a(3 — a)

The equality holds for a =b=c=1.

P 1.58. If a,b,c are positive real numbers such that a + b+ c = 3, then

2 b2 2
Ll 1432+ 0+ ).
b c a

(Pham Huw Duc, 2007)

First Solution. Assume that
a = max{a, b, c},

then homogenize the inequality and write it as follows:

a v 6(a® + b* + ?)
— 4+ —+—tatbtc>
c a a+b+c

b
2 2 2 2
Z b——2b—i—c > 6 a® + b +c _a+b+c |
c a+b+c 3

(b—c)? 2 2
Z c Za—l—b—l—cz(b_c)’
(b—c)?A+ (c—a)’B+ (a—1b)*C >0,

Y

where ; ;
b _yo0 B2ty oot
c a b

A= —-1>0.
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By the Cauchy-Schwarz inequality, we have

b—c)+ (a—10)? AC

2 2 [( + _ 2
(b—c)*A+ (a—b)*C > l+l —A+C(a—c).
A C
Therefore, it suffices to show that
AC
B > 0.
Arc U=

Indeed, by the third degree Schur’s inequality, we get

a® +b® + ¢ + 3abc — ab(a + b) — be(b+ ¢) — ca(c+ a)

AB+ BC+CA =3+
abe

> 3.

The equality holds for a =b=c=1.

Second Solution (by Michael Rozenberg). Write the inequality in the homogeneous form
2
<Z a) (Z abs> + abc (Z a> > 6abce Z a’.

Z(ab4 + a?b® + 2ab*c* — 4a’be) > 0,

By expanding, we get

which is equivalent to
Zoz(b2 — 2bc + ac)® > 0.

P 1.59. If a, b, c are positive real numbers, then

ad b3
z—l——+—+2(ab+bc—l—ca)23(a2~|—b2+02).
c  a

(Michael Rozenberg, 2010)

Solution. Write the inequality as

3

Z(%—i—ab—?cﬂ) > a2+ b2+ —ab—be — ca,

a(a —b)? N b(b —c)? N c(c—a)?
b c
Assume that a = max{a, b, c}.

>a?+ b2+ —ab—be — ca.

Case 1: a > b > c. By the Cauchy-Schwarz inequality, we have
a(a — b)? N b(b — c)? S [(a—b)+(b—c)* abla—c)?

b c - §+§ b2 +ac
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On the other hand,
A+ +cf—ab—bc—ca=(a—c)*+(b—a)b—c)<(a—c)
Therefore, it suffice to show that

abla —c)?  cla— c)?

b? + ac a

which is true if

ab

C
S5
b2 +ac a —

This inequality is equivalent to
a’b + b*c+ fa — ab® — ca® > 0,
bc? — (a—b)(b—c)(c—a) > 0.
Case 2: a > ¢ > b. By the Cauchy-Schwarz inequality, we have

b(b ; c)? N c(c ; a)? > [(b— c)gi(gc —a))? _ bcc(2a—'_—a122.

On the other hand,
a? +b* 4+ —ab—bc—ca=(a—0b)*+(c—a)(c—b) < (a—b)>
Therefore, it suffice to show that

ala —b)? N be(a — b)?

> _ 2
b c + ab > (a—b)’,

which is equivalent to
(a —b)*(a*b + b*c + a — ab® — bc?) > 0,

(a —b)*[ab(a — b) + b*c + *(a — b)] > 0.
The equality holds for a = b = c.

P 1.60. If a,b,c are positive real numbers such that a* + b* + ¢* = 3, then

a? b A
— 1 - >3
(a) b+c+a_ ’
a? b? c? 3
b > .
(v) b+c+c+a+a+b_2

(Alexey Gladkich, 2005)
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Solution. (a) By Holder’s inequality, we have

(%) (%) (£) = (£

Therefore, it suffices to show that

(Z a2>3 > 92@2192,

which has the homogeneous form

(Za2)3 >3 <Za2b2) \/SZa‘l.
$:Za2, y:Za%Q,

the inequality can be restated as

Using the notation

z? > 3y\/m .
By squaring, the inequality becomes
2% — 272%y* + 54y* > 0,
which is true because
2% — 272%y* + 54y = (2* — 3y)*(2* + 6y) > 0.
The equality holds for a =b=c=1.
(b) By Holder’s inequality, we have

(T (Zs

Thus, it suffices to prove that

) S abrer] = (D).

(Z a2>3 > %Zaz(b +¢)%

Using the inequality from the proof of (a), namely
(Z a2>3 > 92@21)2,
Z a’h? > 1 Z a2(b +¢)2.
4
ZaQ(b —¢)?>0.

The equality holds for a =b=c=1.

we still have to show that

This inequality is equivalent to
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P 1.61. If a,b,c are positive real numbers, then

a® b 3(aP+ b+ )
=t =2
b c a a? + b? + 2

(Vo Quoc Ba Can, 2010)

Solution (by Ta Minh Hoang). Assume that
a = max{a,b, c},

and write the inequality as follows:

where
AZCLQ—I—Z)2—I)C>O7 B:bQ+02—ca _02+a2—ab>

c a b
Consider the nontrivial case B < 0; that is,

ac—b>—c* > 0.
From
ac —b* — ¢ = c(a — 2b) — (b —c)?,

it follows that
cla—2b) > (b—c)* >0,

hence
a > 2b.

By the Cauchy-Schwarz inequality, we have

(b—c)2A + (a — b)2C > Kb‘?”‘i_bﬂ :AAfC (a—c).
itc

1 1 1
+ B >0; that is, — + — + —= <0, or

Therefore, it suffices to show that 1+ C Attt s

c n b a
a?4+b—bc c24a?2—ab” ca—0b2—c?
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Case 1: a > b > ¢. Since

a®+b* —bc— (ca—b*—c*) > a®>+b* —bc— ca
=ala—c)+bb—c) >0,

and

A +a*—ab— (ca—b*—c*)>a’+b*—alb+c)
> a® + be —a(b+ c)
=(a—"b)(a—rc) >0,

it suffices to show that ¢ 4+ b < a. Indeed, we have a > 2b > b+ c.

Case 2: a > ¢ > b. Replacing b and ¢ by ¢ and b, respectively, we need to show that
a > b > c involves
a? & b 3P+ b+ )
—t+ =+ —2=
c b a a? + b + ¢?

According to the previous case, we have

a> b P 3(aP+ b+ )
=2
b c a a? + b? + 2

Therefore, it suffices to show that

This inequality is equivalent to
(a+b+c)a—0b)(b—c)la—c) >0,

which is clearly true for a > b > c.
The proof is completed. The equality holds for a =b=c=1.

Remark. A similar inequality is the following:

CL2

a? 2 _(a+b+c)(a®+ b+ ?)
; :

P ¢
+—+—2>
c a ab + be + ca

By expending, the inequality becomes

b3 b3 3
a——i—i—i-g > a’b + b + a.
c a b

a?(b* — ca)® + b*(c* — ab)® + ¢*(a® — bc)* > 0.
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P 1.62. If a,b,c are positive real numbers, then

2 62 2 b
i S qatbrezf@rrre) (S04
b c a b ¢ «a

(Pham Huu Duc, 2006)

Solution. Without loss of generality, we may assume that b is between a and c; that is,

(b—a)(b—c) <0.

b 24+ 02 2 b2 b
2@+t ) (L4204 8) mg [T (2
b ¢ «a b c a

Since

a? + b + 2 b2 be
< a+—+—
b c a
22 c
—— 4+ ha = 4=
St tatht—+ o
it suffices to prove that
2 be
—+c2—+—
a a b
This is true because ) )
b —b)(b—
¢ b @ _ca-hb-d
a a b ab

The proof is completed. The equality holds for a = b = c.

P 1.63. If a, b, c are positive real numbers, then

LRI "Y LA
b ¢ a a+b b+c cHa

(Vasile Cirtoaje, 2009)

Solution. Write the inequality as

b b
T T
b ¢ «a a+b b+c cHa
Using the substitution
a b c
Tr = — = — Zz = —
b? y c’ a[?



Cyclic Inequalities 105

which involves xyz = 1, the inequality becomes

1 1 1
45 — 32 > 0.
T+y+z+ (I+1+y+1+z+1)_
We get this inequality by summing the inequalities
2
— 5 +15>9Ilnz,
r+1
32
— ———+15>9Iny,
Yoo >9lny
2
2—3—+15291nz.
z4+1
Let 5
flz)=x— +15—-9lnz, x>0.
z+1
From the derivative
32 9 x—1)(x —3)?
fio) =14 9 _(@-D-3?
(x+1)2 = x(r+1)2

it follows that f(x) is decreasing for 0 < x < 1 and increasing for > 1. Therefore, we have
f(z) > f(1) = 0. The equality holds for a = b = c.
O

P 1.64. Find the largest positive real number K such that the inequalities below hold for any
positive real numbers a,b, c:

a b ¢ a b c 3
-4+ -+ -=3>K ——1;
(a) b e a 32 <b+c+c+a+a+b 2>7
a b ¢ a b c
b —+-+--3+K —1)>0.
v b+c+a * (2a+b+2b+c+20+a )_

(Vasile Cirtoaje, 2008)

Solution. (a) For

the inequality becomes

1 z3 x 1 3
2

S _3>K _2
S - (x+1+1+x3+x3+x 2)’
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For x — oo, we get the necessary condition 1 — K > 0. We will show that the original
inequality is true for K = 1; that is,

b

Cc

a b c

+ + + .
b+c c¢c+a a—+bd

c_ 3
> 2
+a_2+

Sl

Write the inequality as

Co e N (e e N (b b )3
a a+b b b+c ¢c c4+a) 2
be ca ab 3

> —.
a(a+b) * b(b+c) - cle+a) 2
By the Cauchy-Schwarz inequality, we have

be L ab (be + ca + ab)?
ala+b)  bb+c) clc+a) ~ abe(a+ b) + abe(b+ ¢) + abe(c + a)
_ (be+ ca+ ab)? .3
2abc(a+b+c) — 2

The equality holds for a = b = c.

(b) For b =1 and ¢ = a?, the inequality becomes

1 2a 1
- _ — >
2a+a2 3+K(2a—|—1+a2—|—2 1>_0’

(a—1)*(2a + 1) K(a—1)?
22 T et D@12 =Y

This inequality holds for any positive a if and only if

20 +1 K >0
a? (2a+1)(a®+2) —

For a = 1, this inequality involves K < 27. We will show that the original inequality is true
for K = 27. Using the substitution
a b
Tr = — et -, z =
b’ Y

)
& a

which involves xyz = 1, the inequality can be restated as

P S ) (A R S
x z2—3—— - :
Y 2 \2z+1 " 2y+1 2241 =

First Solution. We get the desired inequality by summing the inequalities

x—L+Z>4lnx
22z +1) 2~ ’
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27 . 7 -4l
— — n
4 22y +1) 2~ 4
27 7
_ - > 41
22z11) 2- 7
Let 27
— — —41
f(z) 2or+1) fa T vy
From the derivative ( )
27 4 4(x — 1
! — 1 _——_— = —
/ (m) =+ (2x_|_ 1)2 T l‘(2x—|— 1)2?

it follows that f(x) is decreasing for 0 < z < 1 and increasing for > 1. Therefore, we have
f(z) > f(1) = 0. The equality holds for a = b = c.

Second Solution. Replacing x,y, z by e, €Y, e*, respectively, we need to show that

T4y+z2=0
involves
)+ 1)+ 1) 2 37 ().
where -
o) = ' = g

If f is convex on R, then this inequality is just Jensen’s inequality. Indeed, f is convex

because ( ) ( )2( )
27(1 — 2¢e% 4(e* — 1) (2e* + 7

—u £l — 1 — > .

) = 1+ oy Gz =0

1
P 1.65. Ifa,b,ce [5,2}, then
(a) 8 (%+

a b ¢ b ¢ a
b 0(S+2+8) > (2454 2).
v 0<b+c+a)_ 7<a+b+c>
(Vasile Cirtoaje, 2008)

Solution. Without loss of generality, assume that

a = max{a, b, c}.
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Let

(a) Let
b ¢ b ¢ «a
E(a,b,c) =8 b+ +-) =5 (o) -0

We will show that

E(a,b,c) > E(a,/ac,c) > 0.

We have
Ea,b,c) — Ba,vac,e) =8 (242 -2, /%) —5 b+c—2\f
a,b,c a,/ac,c o . s -
_ 2 _
:(b Vac)*(8a 5c)>0'
abc -
Also,

t2

The equality holds for a = b = ¢, and also for a = 2, b = 1 and ¢ =

permutation).

(b) Let

1 :
3 (or any cyclic

b b
E(a,b,c) > E(a,Vac,c) > 0.

b b
E(a,b,c) — E(a,v/ac,c) =20 2—i———Q\/E — 17 ——1-5—2\/E
b ¢ c a b a

_ (- Vvac)*(20a — 17¢) >0

abe

We will show that

We have
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Also, we have

+

%

ol

Emmﬁaqzzo@v€+§)—17@ )

1 2
:20@t+ﬁ)—d7( +t)

20 — 34t + 403 — 17t

(2 — £)(174 — 612 — 12t + 10)

p— t2 .
212t 4+10 >0 for 1 <t < 2. Indeed, we have

We need to show that 173 — 6t
17t — 61 — 126 +10 > 114> — 12t + 10 > 4> — 12t + 9= (2t — 3)*> > 0

1
The equality holds for a =2, b=1 and ¢ = 3 (or any cyclic permutation).

P 1.66. If a,b, c are positive real numbers such that a < b < ¢, then

b ¢ 2a 2b 2c

+-4 - > + + .
¢c a b+c ct+a a+b

a
b
First Solution. Since
b b b
Selalo (2424 d) = (F-1) (2-1) (B-1) 20,
a a b ¢ b c a
it suffices to show that
a b ¢ b 4a 4b 4e
TRahbl Rl e + > - + .
b ¢ «a b b—l—c c+a a-+b
This inequality is equivalent to
1 1 4 1 1 4 1 1 4
al-+-- +o(-+-— tel-+-— >0,
b ¢ bitec c a c+a a b a+b
2 bh— 2 bQ _ 2 2 —b 2
PP  Ple—af  la=b

b+c c+a a+b
The equality holds for a = b = c.

Second Solution. The inequality is equivalent to

a(c—>b) blc—a) c(b—a)
b(b+¢) clc+a)  ala+Db) = 0.
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Taking account of

b(c—a) =c(b—a)+a(c—0b),

we may rewrite the inequality as

1 1 1 1
cb—a) ala+b) c(c+a)] +ale—b) {b(b—l—c)  clc+a) 20
Since
I 202—a2—|—a(c—b)> c—b
ala+b) clc+a) acla+b)(c+a) ~ cla+b)(c+a)
and

1 1 02—b2+c(a—b)> a—1>b

b(b+¢c) clcta)  be(b+e)c+a) T bb+c)(c+ta)

it suffices to show that

This inequality is true if

Indeed,
1 a 1 1 c—a
>

_ — - >
a+b blb+c) " a+b b+c (a+b)(b+c)—0

P 1.67. Let a,b, c be positive real numbers such that abc = 1.

(a) If a < b < c, then

%+l£+§ > a2 4+ 32 4 P

(b) If a <1<b<c¢, then

a

P es s
b ¢ a

(Vasile Cirtoaje, 2008)
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Solution. (a) Since

a b (boc, @ ~ (&) by CEE
b ¢ «a a b ¢ b c a
it suffices to show that

aybie)y (byeye > 2(a®? + 132 4 /2.
b ¢ «a a b ¢

Indeed, by the AM-GM inequality, we have

a b 1 1 2a 3/2
ISP NI (ERIEDIE OO
The equality holds for a =b=c=1.
(b) Let k = +/3 and

b
E(a,b,c) S R L
b ¢ «a
We will show that
E(a,b,¢) > E(a,Vbe,Vbe) > 0;
that is,

B~

1
> FE(— > 0.
—0,0) 2 By Ve Vi) 2 0

Substituting

we rewrite the right inequality as f(¢) > 0, where

1
_ 3 k
J#) = 5+ 141 — 5 — 2",

We have the derivative

f'(t) -3 2k 2%

=9(t), 9t) =5 +3+ 5m — 5o

Since

1
SEEG(t) = 95 — k(2k 4 3) + k(3 — k)™

>9—k(2k+3)+k(3—k)=9-3k*=0,

g(t) is increasing for t > 1. Therefore, g(t) > g(1) =0, f'(t) > 0, f(t) is increasing for t > 1,
hence f(t) > f(1) =0.

Substituting b = 22 and ¢ = y?, where 1 < z < y, the left inequality becomes

1 9 9 1
E($2_y27x 7y> Z E<x2_y27xy7$y)7
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or, equi\/alent].y,
1 $2 2,4 1 3,3 k k\2

We write this inequality as

and then show that

) (244

1 r+y
x4y3 y2

The left inequality (*) is true if f(z,y) > 0, where

1 T+y
f(‘rvy>:x2y3+x4y3— y2 — 3—|—g;3
We will show that
flx,y) > f(1,y) > 0.
Since 1 <z <y, we have
_ .3 30,2 1 1 ] 1
fy) =1y =a* —14y°@* — 1)~ 5le— 1)~ 5 {1-5
1
>a -1t — -1 - (1- )
= (a2 - 1) r— =)+ (1=2)] >0
— > -
" 1 1 (1+y)d—y)?
Y +y)d -y
f(LZ/)ZE—Y—l—l: " > 0.

In order to prove the right inequality (*), we will prove that

3
(v —2)(y* = 2%) = T = 2%)* = (v = 2")".
We have
Ay —2)(y° —2%) = 3(y* —2°)* = (y —2)* 2 0.
To complete the proof, we only need to show that

k
S0 =) =y —ak k=3

For fixed y, let
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Since

g (z) = ka(z"2 - 1) <0,
g(x) is decreasing, hence g(x) > g(y) = 0. The equality in (b) is an equality if and only if
a=b=c=1.

O

P 1.68. If k and a,b, c are positive real numbers, then

1 1 1 1 1 1
> .
(k’+1)a+b+(k+1)b+c+(k+1)c+a - l{:a+b+c+kb+c+a+kzc—|—a+b

(Vasile Cirtoaje, 2011)

First Solution. For k = 1, we need to show that
1 n 1 n 1 S 3
2a+b 2b+c¢c 2c4+a " a+b+c

This follows immediately from the AM-HM inequality, as follows:

1 1 1 9
>
2a+b+2b+c+20+a ~ (2a4+0b)+ (20 +¢)+ (2¢+a)
3
S atb+c

Further, consider two cases: £ > 1and 0 < k < 1.

Case 1: k > 1. By the Cauchy-Schwarz inequality, we have

k=1 1 . [(k—1)+1]?
(k+1Da+b ke+a+b— (k=1[(k+1a+b+ (kc+a+Db)
k
ka+b+c

Adding this inequality and the similar ones yields the desired inequality.
Case 2: 0 < k < 1. By the Cauchy-Schwarz inequality, we have

1—k N k - [(1—k)+ k]2
(k+1Da+b ka+b+c— (1—-k)[(k+1)a+b+k(ka+b+c)
1
~keta+b

Adding this inequality and the similar ones yields the desired inequality.
The equality holds for a = b = c.

Second Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

1 n k n k? S
(k+Da+b (k+1)b+c (k+1lc+a —
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S (1+k+ k?)?
~ [(k+1Da+0b] + E[(k+1)b+c] + k2[(k + 1)c+ a
1+k+ K2
T keta+b

Therefore, we get in succession
1 k k 1+ k+ k?
Z(k;+1)a+b+z(k+1)b+c+z(k+1)c+a— ke+a+0b’

1 1
1 2 — > (1 2 —_—
( +k+k)z(k+1)a+b—( +k+k>2ka+b+c’

1 1
Z(k;+1)a+bzzlm+b+c'

Third Solution. We have

1 1 c—a
(k+1Da+b ka+b+c (ka+a+b)(ka+b+c)

S c—a 1 1 _ 1
“(kc+a+b(ka+bt+c) k—1\ka+b+c kct+at+b)’

hence

1 1 1 1 1
Z(k‘+1)a+b_zk‘a—l—b+cz k—1 <Zka+b+c_zkc+a+b> =0

P 1.69. If a, b, c are positive real numbers, then

a b c
+ + <Va+b+g
(a) V2a+b V2b+c V2c+a ~ ¢ :
b
(b) S t——>Vatbte

va+2b Vb+2c e+2a

Solution. (a) By the Cauchy-Schwarz inequality, we have

S s = X (e ) (29 (Sa%)

Therefore, it suffices to show that

a
ZQa—i—bSl'
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This inequality is equivalent to

b
ZQa—{—bZl

Applying the Cauchy-Schwarz inequality, we get

b (20
ZQa—{—b = S b(2a+b)

The equality holds for a = b = c.
(b) By Holder’s inequality, we have

(Z¢a%b)22 > af a+2b 3

From this, the desired inequality follows. The equality holds for a = b = c.

P 1.70. Let a,b,c be nonnegative real numbers such that a + b+ c = 3. Prove that

a+2b \/6—1—20 \/c+2a
b < 3.
a\/ 3 + 3 +c 3 <3

First Solution. By the Cauchy-Schwarz inequality, we have

S \/ﬁ \/ <a§2b>] STI

The equality holds for a = b = ¢ = 1, and also for a = 3 and b = ¢ = 0 (or any cyclic
permutation).

Second Solution. Applying Jensen’s inequality to the concave function f(z) = \/z, z > 0,
we have

ava+ 20+ Vb + 2c+ cve + 2a <

a(a +2b) +b(b+ 2¢) + c(c+ 2a)
S(a+b+c)\/ P

= (a+b+c)Va+b+c=3V3.

P 1.71. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then
aV1+ B +bvV1+e+cev1+ad <5

(Pham Kim Hung, 2007)
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Solution. Using the AM-GM inequality yields

1+b 1—b+b° b?
Q0 +Q=brd) 5

VI+03 =/ (1+b)(1-b+b?) <

Therefore,

b? ab?® + bc? + ca®
1+ < 3 .
SaViEF < a1+ ) —a e Y
To complete the proof, it remains to show that
ab® + bc® + ca® < 4.

But this is just the inequality in P 1.1. The equality occurs for a = 0, b = 1 and ¢ = 2 (or
any cyclic permutation).

]

P 1.72. If a, b, c are positive real numbers such that abc = 1, then

a b
(@) b +\/c—|—3
c 3
b ’ 3 > —.
() Vo 7+ c+7+ 172

Solution. (a) Putting

+
w

+
ﬁ
(@V)
[V
l\D“I.oo

the inequality can be restated as
x Yy z
- -
VyBr+2)  V2By+z)  Vx(Bz+vy)

By Holder’s inequality, we have

v
N o

[ny 3x+z} > (Zx)3

[Z VyBz + 2)
Therefore, it suffices to show that
4(.1' +vy+ 2)3 > 27(1‘2]./ + yQZ —+ 22,1' + xyz).

This is just the inequality (a) in P 1.9. The equality holds for a = b= c = 1.
(b) Putting
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the inequality becomes

3
> —.
Z 7x4+z4)_2

By Holder’s inequality, we have
3

[Z 7x4 n Z4) [Z(?x‘l 4 Z4)] > (Z %2>4

Since > (7z* + 2%) =8> 2, it is enough to show that

22 y2 52 4
(— + =+ —) >27(a* + y* + 27),
Y z T

which is just the inequality in P 1.60-(a). The equality holds for a = b =c = 1.

P 1.73. If a,b,c are positive real numbers, then

4a \? 4b \ 2 4e \?
T+ —2 ) 1+ =) (1425 >o7
a+b b+c c+a

(Vasile Cirtoage, 2012)

Solution. Let

a—>b b—c c—a
T = = z = )
a+b’ y b+c’ c+a
We have
—-1l<zy2<1
and
r+y+z+ayz=0.
Since

2a Ly 2 1
= _—
a+b " bxe YTV tha

we can write the inequality as follows:
(27 +3)% + (2y + 3)* + (22 + 3)% > 27,
>+ P+ 22+ 34y +2) >0,
2?22 > 3ayz.
By the AM-GM inequality, we have
2+ P + 22 > 3/ ay222.

Thus, it suffices to show that |ryz| < 1, which is clearly true. The equality holds for
a=0b=c.

=z+1,

O
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P 1.74. If a,b,c are positive real numbers, then

2a 2b 2¢
+ + < 3.
a+b b+c c+a

(Vasile Cirtoaje, 1992)

First Solution. By the Cauchy-Schwarz inequality, we have

zmsﬂszﬁ] [Ztaro)]

Thus, it suffices to show that

a 9
Z(a+b)(a—|—c) = 4(a+b+c)

which is equivalent to
a(b—c)* +b(c—a)* + c(a —b)* > 0.

The equality occurs for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

Z\/Es \/{Zm] [ZQ@(()—FC)]

Thus, it suffices to show that

1 9
Z(a+b)(b+0) = 4(ab+ be + ca)’

which is equivalent to
a(b—c)* +b(c—a)*+ c(a—b)* > 0.

P 1.75. If a,b, c are nonnegative real numbers, then

a n /b n c <1
4a + 5b 4b + b5c 4c+ dba —

(Vasile Cirtoaje, 2004)
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Solution. If one of a, b, c is zero, then the inequality is clearly true. Otherwise, using the
substitution

b c a
u = — v = — w = —
a’ b’ c’
we need to show that wvw = 1 involves
1 N 1 N 1 <1
V4d+5bu VA+5v  VA+5w T

Using the contradiction method, it suffices to show that

1 1 1

+ + > 1
V4d+5u  VA+5v 4+ 5w

involves uwvw < 1. Let

1 1 1

) - T z T
V4 + bu J V4 4+ bv V4 + dbw

1
where x,y, z € (O, 5) Since

1 — 422
u =

1 — 492 1 — 422
v = w =
S5x2 5y2 522 7

we have to prove that x +y + 2z > 1 involves
(1 —42?)(1 — 49°)(1 — 42°) < 1252%y%2%

Since
1—da® < (z+y+2)°—42’ = (—z+y+2)Br+y+2),

it suffices to prove the homogeneous inequality
Br+y+2)By+z+a)Bz+z+y)(—z+y+2)(—y+z+2z)(—2+z+y) < 125272
By the AM-GM inequality, we have

x+y—|—z)3

(3x+y+z)(3y+z+x)(32+x+y)§125( 3

Therefore, it is enough to show that

r+y+z
3

3
) (—r+y+2)(~y+z+a)(—2+x+y) <2?y2>

Using the substitution

a=-r+y+z b=—-y+z4+z, c=-2+2+4Y,
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where a, b, c > 0, the inequality can be restated as
64abc(a 4+ b+ c)® < 27(b + ¢)*(c + a)?*(a + b)*.
The known inequality
9b+c)(c+a)a+b)>8(a+b+c)(ab+ be+ ca),

equivalent to
a(b—c)* +b(c—a)*+ c(a—b)* >0,

involves
81(b + ¢)*(c + a)*(a + b)* > 64(a + b + ¢)*(ab + be + ca)?.

Thus, it suffices to show that
3abc(a + b+ ¢) < (ab+ be + ca)’.
which is also a known inequality, equivalent to
a’(b—c)?* +b*(c—a)* +c*(a—1b)*>0.

Thus, the proof is completed. The equality occurs for a = b = c.

P 1.76. If a,b, c are positive real numbers, then

b
¢ n n ¢ <1.
V4a? +ab+ 402 A2 +be+ 42 /A2 + ca + 4a?

(Bin Zhao, 2006)

Solution. By the AM-GM inequality, we have
ab + 4b* > 5vab - b8 = 5V al?,

a < a ad/>
VA2 Fab+ 402 ~ \/402 1 59/qpd \ 40?5 + 5095

Therefore, it suffices to show that

a9/5 b9/ /5 .
4a9/% 4 5b9/5 4p9/5 4 569/5 4c9/5 + 5a9/5 — L

Replacing a”®,b%%,¢°/5 by a, b, ¢, respectively, we get the inequality in P 1.75. The equality
holds for a = b = c.

O
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P 1.77. If a,b, c are positive real numbers, then

a / b c
> 1
\/a+b+7c+ b+c+7a+\/c+a—i—7b_

(Vasile Cirtoaje, 20006)

Solution. Substituting

\/a+b+7c y_\/b—l—c—l—?a \/c+a+7b

(22— Da+ 2?0+ T2%c=0

we have

(v> — Db+ y*c+ Tya =0

(22 =D+ 22a+72%0=0
\

which involves

2 —-1 2 Tx?
oy -1 oy | =0;
22 722 22— 1
that is,
F(z,y,2) =0,
where

F(r,y,2) = 32422 + 6 Y %y’ + > 2’ — 1.

We need to show that F(z,y,z) = 0 involves x + y + z > 1, where z,y,z > 0. To do this,
we use the contradiction method. Assume that 4+ y + z < 1 and show that F(z,y,2) < 0.
Since F'(z,y,z) is strictly increasing in each of its arguments, it is enough to prove that
x+y+z=1involves F(z,y,2) < 0. We have

2 2
Fla,y,2) = 32402722 4.6 (D wy) = 120p2 Y a+ (Y2) —2) ay—1
2
= 3242%y%2* 4+ 6 (Z xy) — 12zyz — 2 Z Ty

= 122yz(27zyz — 1) + 2 (Z my) <3ny — 1> :

2Txyz < (Zx)d =1
Bny < <Zx>2 =1,

the conclusion follows. The equality occurs for a = b = c.

Because

and
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P 1.78. If a,b,c are nonnegative real numbers, no two of which are zero, then

(o) a n b n c >3.
“ 3b+c V3c+a 3a+b 2
(b) Y R SR

2b + ¢ 2c+a 20+b—

(Vasile Cirtoaje and Pham Kim Hung, 2006)

Solution. Consider the inequality

\/(k+1)a+\/(k+1)b+\/(/€+—1)c>Ak’ k>0,

kb+c kc+a ka+b —

and use the substitution
. (k+1)a B+ 1D L (k+1)c
“Nwre VTV kera TN Raro

(kb+ c)(kc+ a)(ka + b) = (k* 4+ 1)abc + kbe(kb + ¢) + kea(ke + a) + kab(ka + b),

From the identity

written as
kb+c kc+a ka-+b _k;2—k—|—1+ k kb+c N kc+a N ka +b
(k+1Da (E+1)b (k+1)c  (k+1)2 (k+1)?2 | (k+1a (E+1)b (k+1)c]’

we get

L _ R —k+l k(1 1 1
2222 (k+1)2 (k+1)2 \22 y2 22)°

which is equivalent to F'(x,y, z) = 0, where
F(z,y,2) = k(2" +y°2° + 2%2°) + (K — k + 1)a%y?2? — (k + 1)

So, we need to show that F(z,y,z) = 0 yields z + y + z > Ai. To do this, we use the
contradiction method. Assume that z + y + 2z < A and show that F(z,y,2) < 0. Since
F(z,y, 2) is strictly increasing in each of its variables, it suffices to prove that z+y+2 = Ay
involves F(z,y,z) < 0. Let
49 4+ 917
32
(a) We need to show that F'(z,y,z) < 0for x+y+2z = Ay = 3 and k = 3. We will show
a more general inequality, namely F'(z,y,z) < 0 for £ > k; and all nonnegative numbers
x,y, z satisfying z +y + 2 = 3. The AM-GM inequality z +y+ 2 > 3¢/xyz involves zyz < 1.
On the other hand, by Schur’s inequality

ky = ~ 2.691.

(x+y+2) +92yz > 4z +y + 2)(zy + yz + 22)
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we get
dxy +yz + zx) <9+ 3zyz,
hence 0.3 ) 0
(zy +yz +22)* =9 < % -9= E(myz — )(xyz + 7).
Therefore,
F(x,y,2) = k[(vy +yz + 20)* — 62yz] + (k* — k + 1)ay®2* — (K + 1)

[(
=k[(zy +yz + 22)* = 9] + (K* — k + 1)(2*y*2* — 1) — 6k(2yz — 1)
9k

< (wyz — D(wyz +7) + (B — k+ 1)(2%y*2* — 1) — 6k(zyz — 1)

,_.P—‘|

= —(zyz — 1) [(16k* — Tk + 16)2yz + 16k — 49k + 16] < 0.

—_
(=}

Since xyz — 1 < 0 and 16k* — 7k + 16 > 0, it suffices to show that 16k? — 49k + 16 > 0;
indeed, this inequality is true for k > k.

The equality occurs for a = b = c¢. In addition, when k = ki, the equality also occurs for
a =0 and b/c = vk (or any cyclic permutation).

(b) We need to show that F(z,y,z) < 0 for Ay = /72 and k = 2. We will show a more
general inequality, that F(z,y,z) < 0 for 1 < k < ky and all nonnegative numbers x,y, z

satisfying
o (k+1)2
I+y+Z:Ak:2 ( —; ) .

F(x,y,2) = k(2% + 22> + 2208 + (B — k + 1)2*y?2* — (k+1)?
= k(zy +yz + 22)? — 2k Apwyz + (K* — k + Day?2? — (b +1)%,

From

it follows that for fixed zyz, F(x,y, z) is maximum when zy + yz + zz is maximum; that is,
according to P 3.58 in Volume 1, when two of x,y, z are equal. Due to symmetry, we only
need to show that F(z,y,z) <0 for y = z. Write the inequality F(z,y,z) < 0 as follows:

4
k(ay? +y2" + 2%0%) + (K — ke + Day"2" — & (#) <0,

! (:c—l—y—i—z

2

4
) —2%y? — P — 22x2] > (K — k+ Day’z

Wk (v 4+y+2)° [(x+y+2)" = 16(%y? + y?2% + 2227 > 64(k> + 1)a?y?z?.

Due to homogeneity, we may only consider the cases y = 2z = 0 and y = z = 1. In the
non-trivial case y = z = 1, the inequality becomes

kVE x(z +2)% (2% 4 822 — 8z + 32) > 64(k* + 1)2>.
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This is true because

207kvVk > 64(k° + 1)

for 1 <k < kq, and
w(z +2)* (2 + 82 — 8x + 32) > 2972°.

Notice that
o(z +2)*(2° + 82 — 8x + 32) — 2972 = z(x — 1)*(2° + 142® + 55z + 128) > 0.

If 1 < k < ki, then the equality occurs only for ¢ = 0 and b/c = vk (or any cyclic
permutation). Therefore, if k = 2, then the equality holds for a = 0 and b/c = v/2 (or any
cyclic permutation).

Remark. From the proof above, it follows that the following more general statement holds:

e Let a,b,c be nonnegative real numbers, no two of which are zero. If k > 0, then

a b c 3 2
- >mnd —_ = LU
Vivte Viera YV ka+b_mm{\/k+1’\4/%}

For k =1, we get the known inequality

a b c
\/ +4/ +4/ > 2,
b+c c+a a+

with equality for a = 0 and b = ¢ (or any cyclic permutation). We can get this inequality by
summing the inequalities

a 2a b 2b c 2¢
> SRY. > ; > .
b+c " a+b+c c+a " a+b+c a+b " a+b+c

P 1.79. If a,b, c are positive real numbers such that ab + bc 4 ca = 3, then

- 1 . 1 . 1 23

¢ (@a+b)(3a+b)  (b+o)Bbte)  (cta)Beta) =8

(b) NN I S
(2a+b)2  (2b4+c¢)?  (2¢+a)®> — 3

(Vasile Cirtoaje and Pham Kim Hung, 2007)
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Solution. (a) Using the Cauchy-Schwarz inequality and the inequality in P 1.78-(a) gives

1 1
2. (a+b)(3a+b) 2 (b+c)(3b+ c)

(Z 3bcj,—c
> a(b+c)
9 3

> .
~ 8(ab+bc+ca) 8

The equality holds for a = b = c.
(b) We consider two cases (Vo Quoc Ba Can).
Case 1: 4(ab + bc + ca > a® + b* + ¢*. By the Cauchy-Schwarz inequality, we get

| 9(Y a)?
2 a1 b7 = S (2a 1 b (b1 207

Thus, it suffices to show that
9p%q > Y (2a+b)*(b+ 2c)?,
where p=a+ b+ ¢, ¢ = ab+ bc+ ca. Since
(2a 4+ b)(b + 2¢) = pb+ q + 3ac,
we have
Z(Za +b)%(b + 2¢)? = p? Z a>+3¢°+9 Z a*b? + 2p*q + 18abep + 64°

= p*(p* — 2¢) + 9¢° + 9(¢* — 2abep) + 2p*q + 18abep = p* + 1842,

and the inequality becomes
9’q > p' +18¢%,

(p* = 3¢)(6¢ — p*) > 0.
The latter inequality is true since p? — 3¢ > 0 and

6q — p* = 4(ab+ bc+ ca) —a* —b* — * > 0.

Case 2: 4(ab+ bc + ca < a® + b* + . Assume that a = max{a, b, c}. From
a® —4(b+c)a+ (b+c)* > 6bc > 0,

we get

a>(24+V3)(b+c)>20b+c).
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Since

1 1 1 1 1 2
>
(2a + b)? i (2b+ c)? * (2c¢+ a)? ~ (2b+ c)? i (2¢4+a)? — (2b+¢)(2¢+a)’

it suffices to show that 5 ]

> .
(2b+¢)(2c+a) — ab+bc+ ca

This is equivalent to the obvious inequality
c(la—2b—2c) > 0.
The proof is completed. The equality holds for a = b = c.

Open problem. Let a,b, c be nonnegative real numbers, no two of which are zero. If k > 0,

then
(a) 1 N 1 N 1 - 9 '
a (a+b)(ka+b)  (b+c)kb+c) (c+a)lke+a) ~ 2(k+1)(ab+ bc+ ca)’
1 1 1 9
(b) (ha 102 T (Wbt 2 (heta)? ~ (kt D2(ab+betca)

For k =1, from (a) and (b), we get the well-known inequality (Iran 96):

1 1 1 9
> :
(a+b)? i (b+c)? * (c+a)? = 4(ab+ be+ ca)

P 1.80. If a,b, c are nonnegative real numbers, then

47

a' +b* + ' + 15(a’b + bPc + Pa) > Z(aQb2 +b*c® + a?).

(Vasile Cirtoaje, 2011)

Solution. Without loss of generality, assume that a = min{a, b, c}. There are two cases to
consider: a < b<cand a <c<hb.

Case 1: a < b < c. For a = 0, the inequality is true because is equivalent to
47
b+ ¢t + 1563 — Zb%Q >0,
o 2
(b - 5) (b + 16bc + 4¢2) > 0.
Based on this result, it suffices to prove that

47
a* +15(a’b + c*a) > Zcﬂ(b2 + ).
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This inequality is true if
a’b+ ’a > a®(b* + ).

Indeed,

a’b+c* —a(b® + ) = *(c—a) — ab(b —a) > *(b—a) — ab(b — a)
= (¢ —ab)(b—a) > 0.

Case 2: a < ¢ <b. It suffices to show that
@b+ e+ Aa > a®b? + b2 + A
Since
ab® +bc® + ca® — (a*b+b*c+ a) = (a+b+c)(a—b)(b—c)(c—a) <0,

we have
> ah > - Z a’b+ ) ab®) = Zab(a +0%) > ah

The equality holds for a = 0 and 2b = ¢ (or any cyclic permutation).

P 1.81. If a,b,c are nonnegative real numbers such that a + b+ c = 4, then
a®b+ bPc+ Pa < 27.

Solution. Assume that a = max{a,b,c}. There are two possible cases: a > b > ¢ and
a>c>b.
Case 1: a > b > c. Using the AM-GM inequality gives

3(a®b + b*c + c*a) < 3ab(a® + ac + ¢*) < 3ab(a + c)?
a+3b+(a+c)+(a+c)r
4

4 4
_ <3a+?;b+20> < <3a+?;b+3c> g1

=a-3b-(a+c)-(a+c) < [

Case 2: a > ¢ > b. Since
ab® +bc® + ca® — (a*b + b*c+ a) = (a+ b+ c)(a—b)(b—c)(c—a) >0,
it suffices to prove that

a*b + b*c+ Ea + (ab® + be® + ca®) < 54.
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Indeed,
Z a®b + Z ab® < (a® + b* + ¢*)(ab + be + ca)

<

[a® + b% 4 ¢* + 2(ab + bc + ca))?

(a+b+c)t =32 < 54.

1
8
1
8
The equality holds for a = 3, b =1 and ¢ = 0 (or any cyclic permutation).
Remark. The following sharper inequality holds (Michael Rozenberg).
e I[fa,b,c are nonnegative real numbers such that a + b+ c =4, then

473
a*b+ b3c + Ca + o abe < 27,

with equality for a = b = ¢ = 4/3, and also for a = 3, b = 1 and ¢ = 0 (or any cyclic
permutation,).

Write the inequality in the homogeneous form
27(a + b+ ¢)* > 256(a®b + bPc + ca) + 473abc(a + b + c).
Assuming that ¢ = min{a, b, ¢} and using the substitution
a=c+p, b=c+q, p,qg=>0,
this inequality can be restated as
A + Be+C >0,

where
A=217(p" — pg + ¢°) > 0,
B = 68p® — 269p*q + 499pq® + 68¢> > 60p(p* — 5pgq + 8¢*) > 0,
C=({p- 3(_1)2(27]32 + 14pq + 3q2) > 0.

P 1.82. Let a,b, c be nonnegative real numbers such that
2 g2, 2_ 10
a”+b"+c" = g(ab+bc+ca).

Prove that

82
at + b+t > 2—7(agb +b’c + cta).

(Vasile Cirtoaje, 2011)
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Solution (by Vo Quoc Ba Can). We see that the equality holds for a = 3, b = 1, ¢ = 0.
From
at +b* + c* +2(ab + be + ca)® = (a® + b + )? + dabe(a + b + ),

we get
a' + b+t > (a® + b + *)? — 2(ab + be + ca)?
= %(ab + be + ca)?.
Therefore, it suffices to show that
3(ab+ be + ca)?* > a’b + bPc + ca.

In addition, since

2 2 2 )
ab+bc+ca:3(a +b +C)IL66(ab+bc+ca) _3(%(%) |

it suffices to show that

b 4
27 (%) > a3b+ b3c+ Ca,

which is the inequality from the previous P 1.81. The equality holds for a = 3b and ¢ = 0
(or any cyclic permutation).
O

P 1.83. If a,b,c are positive real numbers, then

a’ b3 3 a+b+c
+ + > .
202 + b2 202 +c2 2¢2 4 qa? 3

(Vasile Cirtoage, 2005)

Solution. We write the inequality as

a’ _a N b3 b N c? sy
202+ b2 3 202 +¢2 3 22 4+a2 3) 7

a(a®> =0v*)  b? —c*)  c(c?—a?)
2a% + b? 202 + 2 2c2 4 a?

Taking into account that

a(@® =%)  b(a® =)  (a+b)(a—Db)*(a® —ab+1?) =0
SV R BN R O PC R ) T SR S

it suffices to show that
b(a? —v*)  b(b* —c*)  c(c? —a?)

> 0.
202 + a? 202 + 2 + 2¢2 +a?
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Since

b(a? — b?) N bb> —c)  3b*(a® — )
20% + a? 202 + 2 (202 + a2)(202 + c2)’

the last inequality is equivalent to

(¢ — a*)(c — b)[a®(3b* + be + ¢*) + 2b%c(c — 2b)] > 0. (*)
Similarly, the desired inequality is true if

(a®> = b*)(a — ¢)[b*(3c* + ca + a*) + 2c%ala — 2¢)] > 0. (**)
Without loss of generality, assume that

¢ = max{a,b, c}.
According to (*), the desired inequality is true if
a*(3b” + be + ¢*) + 2b%c(c — 2b) > 0.

We claim that this inequality holds for a > b, and also for 2ac > V3 b2 If a > b, then

a?(30* + be + c2) + 2b%c(c — 2b) > b*(3b* + be + ) + 2b%c(c — 2b)
= 3b%[b* + c(c — b)] > 0;

also, if 2ac > /3 b2, then

b4
a®(3b” + be + ) + 2b%c(c — 2b) > i_c2(3b2 + be + ¢®) + 2b%c(c — 2b)
2

b
= E<8C4 — 16bc® + 3b%c? 4 3bc + 9b*)
b2
= 1z12¢(c+b)(2c = 3b)" + 9b*(c = b)” + 36 > 0.

Consequently, we only need to consider that a < b < ¢ and v/3 b> > 2ac. According to (*¥),
the desired inequality is true if

b?(3¢* + ca + a*) + 2c*a(a — 2¢) > 0.
We have

4
b?(3¢® 4 ca + a*) + 2c%a(a — 2¢) > %(362 + ca + a®) + 2c%a(a — 2c)

 2ad%c(2a + 5¢)

> 0.
3

This completes the proof. The equality occurs for a = b = c.
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P 1.84. If a,b,c are positive real numbers, then

at b ct a+b+c
+ + > :
ad+b P+ At add 2

(Vasile Cirtoaje, 2005)

Solution (by Vo Quoc Ba Can). Multiplying by a® + b + ¢*, the inequality becomes

2 +Za3+b3 25 () ().

By the Cauchy-Schwarz inequality, we have

d (T (S
Z a® + b = Soe(ad+63)  Ya®d+c3)

According to the inequality

IQ

v
2},2)2
—Z(agg +)C3> > Z a’b? — Z a(b® + c*)
Therefore, it suffices to show that
Za4+2a2b2 - }LZa(b?’ +c&) > % (Za) <Za3> :

which is equivalent to

> T —

RS

Y x7y>07

we have

23 a'+4) a® >3 ab(a® +1?),
Z[a4 + b* + 4a®b® — 3ab(a® + b*)] > 0,

> (a—b)*(a® —ab+1?) > 0.

This completes the proof. The equality occurs for a =b = c.

P 1.85. If a,b,c are positive real numbers such that abc = 1, then
a? b b
(a) 3<?+?+;)+4( +b2+ )27(a2+b2+02);
at ¥l b
b — — — > 1] 3 b3 3 '
(b) 8(b+c+a)+5< +b3+ >_3(a+ +c?)

(Vasile Cirtoaje, 1992)
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Solution. (a) We use the AM-GM inequality, as follows:
2\ 3 3
a > ¢ I )
S Ly (s eet) = (5) ()

:72\7/17?—; :72&

The equality holds for a =b=c=1.
(b) By the AM-GM inequality, we have

82 +5Za3 Z(8—+ +4c3)>13zl3( ) —~<%)4

— 132 kY —bfjll — 132@3.

The equality holds for a =b=c=1.

P 1.86. If a,b,c are positive real numbers, then
ab be ca a® + b + 2
+ + < .
b2+bc+c2 A+ca+a? a?+ab+0* ~ ab+be+ca
(Tran Quoc Anh, 2007)

Solution. Write the inequality as follows:

a? ab
S . -
ab+bc+ca b2+ bec+ 2

ac(ac — b?)

b2+ bc+ ¢
ac(ac — b?)
Z {—b2+bc+cz —|—ac} Zac

a+b+c
b2—i-bc+c2 Zac
c? ab 4+ be + ca

Z624—bc+c2 ~ a+bt+c
By the Cauchy-Schwarz inequality, we have

Y

Z ac? S (3 ac)? _ab+bc+ca
b2+bec+c2 ~ Y ab®+be+c2) a+btc

The equality holds for a = b = c.
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P 1.87. If a,b,c are positive real numbers, then

a—b n b—c n c—a
b(2b+¢)  c¢(2c+a)  a(2a+b) T

Solution. Write the inequality as follows:
Z ac(a —b) >0,
2b+c
—b
Z {M_'_GC} > ab + bc + ca,

2b+c

Z ac_ ab + bec + ca
20+c¢~ a+b+c
By the Cauchy-Schwarz inequality, we have

ac > ac)2 (X ab)2
Z 2b+ ¢ = Sac(2b+¢)  6abe+ > a2b’

Thus, it suffices to prove that

> ab - 1
Gabc + > a?b — > a’
which is equivalent to

Z ab? > 3abe.

Clearly, the latter inequality follows immediately from the AM-GM inequality. The equality
holds for a = b = c.
[

P 1.88. If a,b,c are positive real numbers, then

a’>+6bc  b>+6ca 4+ 6ab

> 7
(@) ab+ch+bc+20a+ca+2ab_ ’

a?+Tbe b2 +Tca &+ Tab

(b) + + > 12

ab + be be + ca ca+ab —

(Vasile Cirtoage, 2012)

Solution. (a) Write the inequality as follows:

> " ac(a® + 6be) (b + 2a) (¢ + 2b) > Tabe(a + 2¢)(b+ 2a)(c + 2b),

2Za2b4+abc (72abc+42a3+26Za2b+72ab2> >



134 Vasile Cirtoaje

> Tabe <9abc +4 Z a’b+2 Z ab2> ,
2 (Z a’bt — abcz a2b) + abc <4 Z a® + 9abe — 7 Z ab2> > 0.
2 <Z a’b* — abcz a2b> = Z(ab2 —bc?)? >0,

it suffices to show that
4) "a®+9abe — 7Y ab® > 0.

Assume that a = min{a, b, c}. Using the substitution

Since

b:a+$7 C:a+y7 'T7y207
we have
4Za3+9abc—72a62 =5(2® —zy + y*)a + 42° + 4y — Twy? > 0,

since
42° + 4y® = 42° + 2% + 297 > 343 - 243 - 243 = 6V/2 ay? > Ty’

The equality holds for a =b = c.
(b) Write the inequality as follows:

Z ac(a® 4 7be)(b + a)(c + b) > 12abc(a + ¢)(b+ a)(c + b),

Z a’b* + abe (21abc + Z a®+15 Z a’b+8 Z ab2> >
> 12abc <2abc + Z a’b + Z ab2> ,
(Z a’bt — abcz aQb> + abc (Z a® — 3abe + 42 a’b — 4 Z abQ) > 0.

Za2b4 - achazb = %z:(ab2 —bc?)? >0,

Since

it suffices to show that

Za3—3abc+42a2b—42abz >0,

which is equivalent to
1
§(a+b+c)2<a — b2 —4(a—b)(b—c)(c—a) > 0.

Assume that ¢ = min{a, b, c}. Making the substitution

b=a+2xz, c=a+vy, x,y>0,
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we have )
5(@—1—()—}—0)2(@— b)? —4(a—b)(b—c)(c—a) =
= (2 — 2y +y*)(3a +x + y) + 4ay(z — y)
= 3(2* — 2y + y*)a+ 2° + 3 + day(z — y)
=32 —zy+y’)a+2° +y(2r —y)* > 0.
b

The equality holds for a = b = c.

P 1.89. If a,b,c are positive real numbers, then

(a) ab N be N ca <a2—|—b2+c2
4 )
20+c 2c+a 2a+b~ a+b+4c’
ab be ca 3(a? + b* + )
b < :
®) brc cta atbs 2a+b+c) ’
ab be ca a® 4+ b> +
(c) + + < :
4b+5¢c  4c+ba  4a+5b ~ 3(a+b+c)

(Vasile Cirtoaje, 2012)
Solution. (a) First Solution. Since

2ab ac

%Wrec O 2btc

we can write the inequality as

2Na2 + b2+ 2
ac N (a® + +C)Za+b+c.
Z21)—|—c a+b+c

By the Cauchy-Schwarz inequality,

P L (2@’ (Vab+ Ve + ea)?
20+c = > (2b+¢) 3la+b+c) '

Then, it suffices to show that

(Vab + Vbe + /ca)? + 6(a® + b* + ¢2)
3(a+b+c)

>a+b+c,

which is equivalent to

3(a2+bz+c2)+2@<\/6+\/5+\/6> > 5(ab + be + ca).
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Using the substitution

the inequality can be restated as
3z + yt + 2Y) + 2zyz(x +y + 2) > 5(2%y? + P2 + 2P2?).
We can get it by summing Schur’s inequality of degree four
2t +yt + 2N F 2wyz(w +y+2) 22y’ +y7)

and
oyt 2 Z zy(a® +y?) > 5(ay? + 2% + 22a2?),

the latter being equivalent to the obvious inequality
(2 +yt 4+ 2t — 2%y — P2 — 22 + 2 Z zy(z —y)> > 0.
The equality holds for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

1L _ v _afbtbte a’+b+be
2b+c b+bt+c” (a+b+c)2  bla+b+c)?

ab < a(a* + b* + be)
20+c¢ = (a+b+c¢)?
Z ab_ _ S a® + 3" ab? + 3abe
20 +c — (a+ b+ c)? '
Since 3abc < >~ a?b (by the AM-GM inequality), we get

Z ab <Za3+2a62+2a2b_a2+b2+c2
20 +c ~ (a+b+c)?  atbtc

bl

Third Solution. Write the inequality as

< a’+ b+ A

Zab(a+b+c)
2b+c

Since
2ab(a + b+ c) = (a* + 2ab)(2b + ¢) — 2ab* — d’c,

we can write the inequality as

2ab? a’c
R > 9
226+c+22b+c+p_ e
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where
p=a’+b*+c* q=ab+bctca, p>q.

By the Cauchy-Schwarz inequality, we have

b (Cab)® g
Zzb+c = Sa2b+c) 3

and

Z a’c - (3 ac)? G
2b+c = Y ce(2b+c) p+2q
Thus, it suffices to show that

2, @

+
3 P+ 2q

which is equivalent to the obvious inequality

+p > 2q,

(p—q)(3p+5g9) > 0.

(b) Write the inequality as

3. 5 o o ab(a+ b+ c)
— b > _
2(@ * +C)_Z b+c
Since ; ) 2 )
abla+b+c¢)  a ab—a?+ab— ac’
b+c b+c b+c
the inequality can be written as
2
1
ba+c +§(a2+b2+c2) > ab + be + ca.
c

By the Cauchy-Schwarz inequality;,

a’c S (Zac)2 ¢
btc™ Yelb+e) ptq

where
p=a’+b*+c* q=ab+bctca, p>q.

Therefore, we have

atc 1,
+ —(a®>+ 0>+ A) — (ab+be + ca) >
b+c 2( )= )_p+q

The equality holds for a = b = c.

(c) Since
4ab dac

Ht5e T W+5e
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we can write the inequality as

Z ac 4(a* + b* + 2)

>a+b+c.
W+be | Blatbre —OTUTC

By the Cauchy-Schwarz inequality,

Z ac__ (3 ac)? B (ab+ bc + ca)?
4b+5¢ ~ Y ac(4b+5c)  12abe + 5(a2b + b2c + c2a)’

Therefore, it suffices to show that

5(ab + be + ca)? 4(a® +b* + *)

> b+c.
12abc + 5(a?b + b%c + c2a) 3la+b+c) — @ rote

Due to homogeneity, we may assume that a + b + ¢ = 3. Using the notation
g=ab+bc+ca, q<3,
this inequality becomes

5¢> 4(9 —
q LA0—2) 4
5(a?b + b*c + c2a + abe) + Tabe 9

According to the inequality (a) in P 1.9, we have
a’b + b*c + ?a + abe < 4.
On the other hand, from

(ab + be + ca)?® > 3abe(a + b+ c),

we get
e
abc < —.
-9
Thus, it suffices to prove that
5¢> 4(9 — 2¢)

>3
017429 9

which is equivalent to
(g —3)(14¢® — T5q + 135) < 0.

This is true since ¢ — 3 < 0 and
14¢ — 75q + 135 > 3(4¢% — 25¢ + 39) = 3(3 — ¢)(13 — 4¢) > 0.

The equality holds for a = b = c.
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P 1.90. If a,b,c are positive real numbers, then
(a) avVb? + 8¢2 + bv/c? + 8a% + cva? + 8v* < (a+ b+ ¢)%

(b)  avb? + 32+ bV + 3a% + cva? + 302 < a? + b2+ ¢ + ab + be + ca.

(Vo Quoc Ba Can, 2007)

Solution. (a) By the AM-GM inequality, we have

Vb2 1 82 — V(0% + 8¢%)(b + 2¢)? < (b% + 8¢?) + (b + 2¢)?

b+ 2c 2(b+2c)
_b2—|—2bc+602_b+30_ 3bc
N b+ 2c N b+ 2¢’
hence 3ab
av'b? + 8c2 < ab+ 3ac — ac’
b+ 2¢
1
Za\/b2+802 < 4Zab—3abczb+2c.

Therefore, it suffices to show that

Since
1 9 3
> =

b+2c Y (b+2c) >a’

it is enough to prove that

<Za)3 +9abe > 4 (Y a) (Y ab).

This is Shur’s inequality of degree three. The equality holds for a = b = c.
(b) Similarly, we have

VT3 - YO H3A)(b ) L P43 + (040

b+c 2(b+¢)
b% + be + 2¢2 2bc
:—:b+20_ 9
b+c b+c
hence
2abc

aVvb? + 3c2 < ab+ 2ac — P

c

Za\/b2+302 §3Zab—2abczb L

+c
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Thus, it suffices to show that

Since

it is enough to prove that

(Za)3 4 9abe > 4 (Za) <Zab> ,

which is just Shur’s inequality of degree three. The equality holds for a = b = c.

P 1.91. If a, b, c are positive real numbers, then

1 1 1 3
+ + >\ —;
(@) ava+2b bvb+2c cve+2a N abe
1 1 1 1
b + + >/ —.
v ava+8b byvb+8 cve+8a ~ V abc

(Vasile Cirtoaje, 2007)

Solution. (a) Write the inequality as

Z a+2b 2 L

111
Replacing a, b, c by —, —, —, respectively, the inequality can be restated as
'y 2
DI
3z(2z +y)
Since 5 5

it suffices to show that .
St
2v+y+3z 2

Indeed, using the Cauchy-Schwarz inequality gives

x (> x)? 1
Z2x—i—y+3z Zzzx(2x+y+32) )
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The equality holds for a = b = c.
(b) Write the inequality as

Z a—|—8b

1 1 1
Replacing a, b, ¢ by —, —, —, respectively, the inequality becomes
x? y? 2

72
- >1
Z 24/81% + 2

Applying the Cauchy-Schwarz inequality yields

Z z > (237)2 ‘
2822+ 1y > 2822 +y?

Therefore, it suffices to show that

ZZ\/8x2—|—y2 <(z+y+2)?

which is just the inequality in P 1.90-(a). The equality holds for a = b = c.

P 1.92. If a,b,c are positive real numbers, then

a b c a+b+c
+ + <\ —
Vha+4b  bb+4c  /bec+4a 3

(Vasile Cirtoaje, 2012)

Solution. By the Cauchy-Schwarz inequality, we have

(Y rs) = (St (e,

It suffices to show that

a 1
pIpresTEr
4a+4b+c — 3

and

Z a(4a +4b+c)
5a + 4b

The first is just the inequality in P 1.18, while the second is equivalent to

4a+4b+c
5 - >
a(l 5a+4b ) 07

<a+b+ec
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a(a — c)
Z 5a + 4b 20,
> a(a — c)(5b+ 4c)(5¢ + 4a) > 0,

Z a’b® + 42 ab® > 5abcz a.

The last inequality follows from the well-known inequality

z:aQb2 > acha
Zab3 > acha,

which follows from the Cauchy-Schwarz inequality, as follows:

(Se) () = (X Vare) = ave ()

The equality holds for a = b = c.

and the known inequality

P 1.93. If a,b,c are positive real numbers, then

a b ¢ >\/6+\fb+ﬁ

+ + :
(@ Va+b Vb+c Veta o V2

a b c 4/ 27(ab+ bc + ca)
b e |
v Va+b Vb+c eta o 4

(Lev Buchovsky - 1995, Pham Huu Duc - 2007)

Solution. (a) By squaring, the inequality becomes

The sequences

and
{ ab be ca }
Va+b NOE veta
are always reversely ordered; therefore, according to the rearrangement inequality, we have

1 ab n 1 be N 1 ca <
Va+b Va+b Vb+c Vb+c¢ Veta Jeta T
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< 1 ca n 1 ab n 1 bc
“Va+b Veta Vote Vatb Veta Vb+c

ZcH—b Z\/m

Thus, it suffices to show that

2 b1
Zaib+22aib_2 a+ Vab.

Since

a2
Yt e

the inequality becomes as follows:

Yotz e Ve
Za;—b*'z 2ab >22\/—

(50 2) =

The equality holds for a = b = c.

(b) By Holder’s inequality, we have

(¥ ) Soesn=(Ta)

Thus, it suffices to show that

(Za)g > g (Za2 —i—Zab) V/3(ab + be + ca),

which is equivalent to

2p° + ¢* > 3pq,
where p=a+0b+cand g = \/B(ab + bc + ca). By the AM-GM inequality, we have

2p° + ¢ > 3v/p5¢® = 3p*q.

The equality holds for a = b = c.

P 1.94. If a,b,c are nonnegative real numbers such that a + b+ c = 3, then

V3a+ b2+ V3b+ 2 +V3c+a?>6.
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First Solution. Assume that a = max{a,b,c}. We can get the desired inequality by
summing the inequalities

V3b+2+V3c+a2>V3a+R+b+e

and

V3a+ 02 +V3a+c2>2a+b+ec.

By squaring two times, the first inequality becomes in succession

V(3b 4 c2) (3¢ +a2) > (b + ¢)V3a + 2,

[b(a+b+c)+ccla+b+ec)+a*] > (b+c)lala+b+c)+c?,
bla—b)(a—c)la+b+c)>0.

Similarly, the second inequality becomes

Vv (3a+02)(3a + ) > (a +b)(a + ¢),

la(a+b+c)+b[ala+b+c)+ ] > (a+b)*(a+c),
ala+b+c)(b—c)?*>0.

The original inequality becomes an equality when a = b = ¢, and also when two of a, b, ¢ are
ZEro.

Second Solution. Write the inequality as

VX +VY +VZ <VA+VB+VC,

where
X = (b+c)2, Y = (c+a)2, 7 = (a+b)2,

A=3a+V, B=3b+c* C=3c+d

According to Lemma from the proof of P 2.11 in Volume 2, since
X+Y+Z=A+B+C,
it suffices to show that
max{X,Y,Z} > max{A, B,C}, min{X,Y,Z} <min{A, B,C}.
To show that max{X,Y, Z} > max{A, B,C}, we assume that
a =min{a,b,c}, max{X,Y,7}=X.

From
X—-A=(—-a*)+blc—a)+cb—a)>0,

X—-B=bc—a)>0,
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X—-C=1—a*)+cb—a)>0,

the conclusion follows. Similarly, to show that min{X Y, Z} < min{A, B,C}, we assume
that
a =max{a,b,c}, min{X,Y, 7} =X,

when
A—-X=(a*-c*)+bla—rc)+cla—b) >0,

B—-X=bla—c) >0,
C—X=(a*-b*)+cla—0b)>0.

P 1.95. If a,b, c are nonnegative real numbers, then

VaZ + b2+ 2bc + Vb2 + 2 + 2ca + V2 + a? + 2ab > 2(a + b+ c).
(Vasile Cirtoaje, 2012)

First Solution (by Nguyen Van Quy). Assume that a = max{a,b,c}. We can get the
desired inequality by summing the inequalities

Va2 + b2+ 2bc+ Vb2 + 2 +2ca>Va2+b2+2ca+b+c

and

Ve + a2+ 2ab+ Va2 + b2 +2ca > 2a+ b+ c.

By squaring two times, the first inequality becomes
V(a2 + b2 4 2bc) (b2 + ¢ + 2ca) > (b + )V a? + b2 + 2ca,
c(a —b)(a* —c*) > 0.

Similarly, the second inequality becomes

V(2 + a2 + 2ab) (a2 + b2 + 2ca) > (a + b)(a + ¢),

a(b+c)(b—c)*>0.

The original inequality becomes an equality when a = b = ¢, and also when two of a, b, ¢ are
ZETO.

Second Solution. Let {x,y, z} be a permutation of {ab, bc, ca}. We will prove that

20a+b+c) < V2 +E+2x+ /2 +a2+2y+ Va2 + 02+ 2z
Due to symmetry, assume that a > b > c. Using the substitution

X=a*>+b0*+2ab, Y =c*+a’>+2ca, Z=0"+c"+2bc,
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A= +c*+22, B=c+d*+2y, C=da>+b+2z,

we can write the inequality as

VX +VY +VZ <VA+VB+VC.
Since X +Y +Z=A+B+C, X >Y > 7 and
X >max{A,B,C}, Z<min{A,B,C},

the conclusion follow by Lemma from the proof of P 2.11 in Volume 2.

P 1.96. If a,b, c are nonnegative real numbers, then

Va2 + 02+ Tbe + V2 + 2+ Tea + V2 + a? + Tab > 3+/3(ab + be + ca).
(Vasile Cirtoaje, 2012)

Solution. Assume that a = max{a,b,c}. We can get the desired inequality by summing
the inequalities

Va2 + b2+ Tbe+ Vb2 + 2+ Tea > Va2 + b2 + Tca + Vb2 + ¢ + The

and

Va2 + 2+ Tab + Va2 + b + Tac > 3+/3(ab + be + ca) — Vb2 + ¢ + The.

By squaring, the first inequality becomes

(a? + b* + 7b)(b* 4 * 4 Tca) > (a® + b + Tca)(b? + ¢* + The),

c(a —b)(a® —c*) > 0.
Similarly, the second inequality becomes
a* +VE + 3V3F > 10a(b + ¢) + 17be,

where

E = (a® + ¢ + 7ab)(a® + b* + Tac)

=a' +7(b+c)a® + (b* + ¢® + 49bc)a® + T(b* + ¢*)a + b*c?

and
F = (ab+ bc+ ca)(b* + ¢ + The).

Due to homogeneity, we may assume that b+ c = 1. Let us denote x = bc. We need to show

1 1
that f(z) > 0for 0 <z < 1 and a > 2 where

f(z) =a® — 10a — 172 + \/g(x) + 31/3h(z),
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with

g(x) = a* + 7a® + (1 + 47x)a* + 7(1 — 3x)a + 2*
22+ a(47a — 21)z + a* + 7a® + a* + 7a,

h(z) = (a + x)(1 + 5z) = 52° + (5a + 1)z + a.
We have the derivatives

/

o) = —17 4 2 4 V3

2V 2vh
2r + a(47a — 21)  3v/3(10x + 5a + 1)
=17+ NG + N :
f”((E) _ 29”9 — (g/>2 3\/§[2h”h — (h/)z]
49./9 4hvh
_a(28—45a)(7Ta—1)>  3v/3(5a — 1)
a 49\/9 AV

1 1
We will show that g > 3h. Since 0 < z < 1 and a > —, we have

g — 3h = —142” + (47a* — 36a — 3)z + a* + 7a® + a* + 4a
7
> g+ (47a* — 36a — 3)x + a* + 7a® + a® + 4a.
For the non-trivial case 47a? — 36a — 3 < 0, we get

7 47a* — 36a — 3
g—3h2—§+ ¢ 4a +a* 4+ 7a® + a® + 4a

_ (2a —1)(4a® + 304 + 66a + 13) >0
= < > 0.

28 1
We will prove now that f”(z) < 0. This is clearly true for a > —. Otherwise, for — < a <
28

= we have

Y a(28 — 45a)(7a — 1)? — 27(5a — 1)?
fi@) < Yy

< 0,

since

a(28 — 45a)(7a — 1)? — 27(5a — 1)* < (28 - %) (7a — 1)* — 27(5a — 1)?

< 217(7a 12— 27(5a— 1) = 211 Z30)Ta = 3)

< 0.
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1
Since f is concave, it suffices to show that f(0) > 0 and f (Z) > 0.

From

f(O):\/E(a a—lO\/a+3\/§+\/a3+7a2+a+7>,

1
it follows that f(0) > 0 for all a > 5 if and only if

Vad +7a2 + a+7 > —av/a + 10v/a — 3V3.

This is true if
a®+ 70> +a+7> (—ava+10v/a — 3vV3)?,

which is equivalent to

(V3a — 2)%(9a 4 10/a — 5) > 0.

1
Clearly, this inequality holds for a > 7

Since
1\ [4a®+14a+1)°
IN\1)~ 1
and
p (L) _9Ma+1)
4) 16
we get

4 4

[4 1
T = a; , x>1,

/ (1) 9z — 4522 4+ 5da — 18 (z — 1)?(92% + 18z — 18) -0
N 8 N 8 =

s (1) _ 8a? — 26a — 16 + 94/3(4a + 1)

Using the substitution

we find

Thus, the proof is completed. The equality holds for a = b = ¢, and also for 3a = 4b and
¢ =0 (or any cyclic permutation).
m

P 1.97. If a,b, c are positive real numbers, then

a?+3ab b +3bc A+ 3ca
+ + > 3.
(b+c)?  (c+a)*  (a+D)?
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Solution. Write the inequality as

a(a +b) ab
Z (b+c)? +22(b+c)2 =3

The sequences

{be, ca, ab}

and

{(bic)y (c+1a)2’ (aib)2}

are reversely ordered. Thus, by the rearrangement inequality, we have

bc ab
2 S 2o

Therefore, it suffices to show that

a(a +b) b(c+ a)
Z (b+c)? +Z (b+c)? =3,

which is equivalent to
a+b b+c
—_— — | > 3.
Selgr S i) 2
By the AM-GM inequality, we have

a+b n b+c S 2 S 4
(b+c)? (a+b)?* " JSla+b)(b+c)  (a+b)+(b+c)

Thus, it is enough to prove that

a 3
E - >
a+2b+c 4
Indeed, by the Cauchy-Schwarz inequality, we get

a (S a)? > a*+2%ab 3
Za+2b+c = Sala+2b+c) Y. a2+3 . ab 24_1‘

The equality holds for a = b = c.

P 1.98. Ifa,b,c are positive real numbers, then

a’b+1 b?c+1 ca+1
+ + > 3.
alb+1)  blc+1) cla+1)
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Solution. By the Cauchy-Schwarz inequality, we have
2 1 2
(a*b+1) <5+1> > (a+1)%,
hence

a’b+1 - bla+ 1)
alb+1) T aldb+1)*

Therefore, it suffices to prove that
2
yobet sy
a(b+1)2
This inequality follows immediately from the AM-GM inequality:
bla +1)? f b(a+1)?
—= >3/ — =3
Z a(b+1)2 — H a(b+1)?

The equality holds for a =b=c=1.

P 1.99. If a,b,c are positive real numbers such that a + b+ c =3, then

Va3 4+ 3b+ Vb3 + 3¢+ Ve + 3a > 6.

Solution. By the Cauchy-Schwarz inequality, we have
(a® + 3b)(a + 3b) > (a® + 3b)*.

Thus, it suffices to show that

a® + 3b
Z\/a—l—?) -

By Holder’s inequality, we have

(X o2 [+ an)] = [t +am)] = (S o)

Therefore, it is enough to show that

(Z a® + 9)3 > 36 Z(a2 + 3b)(a + 3b).

Let
p=a+b+c=3, q=ab+bc+ca, q<3.
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We have
Y @’ +9=p"—2¢+9=2(9—q),

Y (@ +3b)(a+3b)=> a*+3) a’h+9) a’+3) ab

= (p® — 3pq + 3abc) + 3 Z a®b+9(p* — 2q) + 3¢
— 108 — 24g + 3 (abc n Za%) .

Since abc + >~ a?b < 4 (see the inequality (a) in P 1.9), we get
> (a® +3b)(a +3b) < 24(5 — q).

Thus, it suffices to show that
(9—q)° > 108(5 - q),

which is equivalent to
(3—¢q)*(21 —q) > 0.

The equality holds for a =b=c=1.

P 1.100. If a,b, c are positive real numbers such that abc = 1, then

a b c
N / > 1
Varovr2be  Voroerzea  \etbat2ab

(Nguyen Van Quy and Vasile Cirtoaje, 2013)

Solution. By Holder’s inequality, we have

5 ) )= (5

Therefore, it suffices to show that
3
(Za2/3) > Zag +6Zab+6,

3) (ab)*(a*® +6*%) > 6) ab.

which is equivalent to

Since
a2/3 + b2/3 > Q(Gb)l/g,

the desired conclusion follows. The equality holds for a =b=c=1.
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P 1.101. If a,b, c are positive real numbers such that abc = 1, then

1\’ 1\’ 1\’
(a+—> +(b+—> +(c+—) >6(a+b+c—1).
b c a
(Marius Stanean, 2014)

Solution (by Michael Rozenberg). By the AM-GM inequality, we have

Z(a+%)2+6:2(a—l—ac)2+6
= Z(QQ + a’c® + 2a%c) + 6
= (> +aV + 2a°c + 2)
ZGZ\V@Q-QQb?-an-aQC-l-l:6Za.

The equality holds for a =b=c = 1.

P 1.102. If a,b,c are positive real numbers, then

a . b n c S a+b+c
a+b b+c c+a a+b+c— Jabe

(Michael Rozenberg, 2014)

Solution. There are two cases to consider.

Case 1: ab+ bc + ca > vabe (a + b+ ¢). By the Cauchy-Schwarz inequality, we have

> :
a+b = Y ala+b) (a+b+c)?—(ab+bc+ ca)

Z a (Y a)? B (a+0b+c)?

Therefore, it suffices to show that

(a+b+c)? S a+b+ec
(a+b+c)?2—(ab+bc+ca) ~ a+b+c— Vabe

which is equivalent to
ab + be 4 ca — Vabe (a +b+c¢) > 0.

Case 2: Vabc (a+ b+ c) > ab + be + ca. By the Cauchy-Schwarz inequality, we have

a+b ™ Y ac*(a+b) (ab+bc+ca)?—abe(a+b+c)

Z a Cac)? (ab+ bc + ca)?
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Thus, it suffices to show that

(ab + bc + ca)? - a+b+c
(ab+ b+ ca)? —abc(a+b+¢) ~ a+b+c— Jabe

which is equivalent to
2

Vabe (a+b+c)| > (ab+ be+ ca)?,

v abc (a+b+c) > ab+ be+ ca.
The proof is completed. The equality does not hold.

P 1.103. If a,b,c are positive real numbers such that a + b+ ¢ = 3, then

aVR2+b+1+bVE+c+1+cva2+a+1<3V3.

(Nguyen Van Quy, 2014)

Solution. From
A0 +b+1) =20+ 1) +2(b> + 1) > 3(b+ 1)?,

we get

V2 4+b+1>

MI%

t+1),

hence

a(B* +b+1) 2a(b> +b+1)
V+b+1= :
>_av Pl EEsn D Dy T

Therefore, it suffices to prove that

which is equivalent to
ab? 3
< —.
b+1 7~ 2
In addition, since b+ 1 > 2/b, it is enough to show that

Zab3/2 < 3.

Replacing a,b, ¢ by a?,b?, c2, respectively, we need to show that a? + b + ¢* = 3 involves
a’b® +b?c® + c2a® < 3, which is just the inequality in P 1.7. The equality holds for a = b = c.
L]
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P 1.104. If a,b, c are positive real numbers, then

1 1 1 1
< .
b(a + 2b+ 3¢)? * c(b+ 2c¢+ 3a)? * a(c+2a+ 3b)? ~ 12abe

(Vo Quoc Ba Can, 2012)
Solution. Assume that a = max{a,b, c}, and write the inequality as

ca N ab be < 1
(a4 20+ 3c)? -

(b+ 2c + 3a)? N (c+2a+3b)? — 12
Case 1: a > b > c. By the AM-GM inequality, we have
(a4 2b+3c)? > 4(2b + ¢)(2¢ + a);

thus, it suffices to show that

ca 1
Z (2b+ ¢)(2¢ + a) = 3’

which is equivalent to
3) ca(2a+b) < (2a+b)(2b + ¢)(2c + a),
ab® 4+ bc? + ca® < a’b+ b*c + Pa,
(a—0b)(b—c)(c—a) <0.
Clearly, the last inequality is true.
Case 2: a > ¢ > b. Since, by the AM-GM inequality,
(a+2b+3c)? > 12¢(a + 2b),

(b4 2c+3a)? > 4(2a + b)(2¢ + a),
(c+2a+3b)? > 4(a + 2b)(a + b+ c),
it suffices to show that

a ab be
3a+20)  (atb)2cta) (@t 2)(atbto)

1
< o)
-3
which is equivalent to

ab i bc < 2b
(2a+b)(2c+a)  (a+2b)(a+b+c) = 3(a+20)

a c 2
2atb)(2cta)  (atratbte) = 3(at2)
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a(a + 2b) N c < g’
(2a+b)(2c+a) a+b+c ™ 3
a(a+2b)  c(2c+a) < 2(2c¢+a)
2a +b a+b+c 3 7
2
c(2c+a)  2(2c+a) < 3a® 2.
a+b+c 3 2a + b
fle) < fa),
where 0 ) a0 )
r(2r +a r+a
flz) = a+tb+z 3 '
We have
3a® + dac+b(3a+2c) 4
fla) = fle)=(a=c) (a+b+c)(2a+b) 3
_(a—c)[a® — 3ab— 4b* + 2¢(2a + b)]
B 3la+b+c)(2a+0)
because
a? — 3ab — 4b* 4 2¢(2a + b) > a* — 3ab — 4b* + 2b(2a + b) = (a — b)(a + 2b) > 0.
The equality holds for a = b = c.
0

P 1.105. Let a,b, c be positive real numbers such that a + b+ ¢ = 3. Prove that

a>+9 bV’4+9c 2 +9a

> 15;

(0) b+c c+a a+b — 7
243 bv*+3 243

(b) a® + n —|—c+c+a26
a+b b+c c+a

Solution. (a) Write the inequality as follows:

2+ 3b b
Za + 3b(a + +C)25(a+b+c),
b+c
2
Z{a +36(a+b+c)_3b] > 2atbte),
b+c
a® + 3ab
2
I (a+b+c),
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Za(a—i—b—%) >0

b+c -

ala —c alb—c
o P sl

ala —c¢ blc—a
Z (b+c)+z <c—|—a) 20,

( )>o,
c+a -

(a—=b)la—c)
b—l—c )(c+a)

(a+b+c) > 0.

Therefore, we need to show that
> (> =) (a—c) >0,
which is equivalent to the obvious inequality

Za(a —c)?>0.

The equality holds for a = b = c.
(b) Write the inequality as follows:

Za2+b(a+b+c)
a+b

24b
ZCL+ CZa+b+C,
a+b

2
Z(a +bc_a> >0,
a+b
yoblezal sy
a+b
be ab
> .
Za—l—b_za—l—b
{ab, be, ca}

1 1 1
a+b b+c c+a

Since the sequences

and

>2(a+b+c),

are reversely ordered, the inequality follows from the rearrangement inequality. The equality

holds for a = b = c.

]
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P 1.106. Ifa,b,c € [0,1], then

(o) be . ca N ab <1
a

2ab+1  2bc+1  2ca+1 —

a b & 3

< —.

(v) ab+1+bc—|—1+ca+1_2

(Vasile Cirtoaje, 2010)
Solution. (a) First Solution. It suffices to prove that

be N ca n ab <1
2abc+1  2abc+1  2abc+1 — 7

that is,
2abc +1 > ab + be + ca,

1 —bc > a(b+ c— 2bc).

Since a < 1 and
b+c—2bc=b(1—-c)+c(1—0b)>0,

it suffices to show that
1 —bc>b+ c—2bc,

which is equivalent to

(1-b)(1—c)>0.

The equality holds for a = b = ¢ = 1, and for a« = 0 and b = ¢ = 1 (or any cyclic
permutation).

Second Solution. Assume that a = max{a, b, c}. It suffices to show that

be n ca n ab <1
2oc+1  2bc+1  2bc+1 7

that is,
a(b+c) <1+ be.

We have
l+bc—alb+c)>1+bc—(b+c)=(1-0)(1—c)>0.

(b) We will show that
3
E(a.b¢) < B(Lb.¢) < B(11,0) = o,

where
a b c

El(a.b,c) = .
(a,6,¢) ab+1+bc~|—1+ca+1
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Write the inequality E(a,b,c) < E(1,b,c) as follows:

a N c < 1 . c
ab+1 ca+1 " b+1 c+1’

1 ?
G_a)(h+mmh+U_Kc+U@a+U
(1—a)[(c+1D(ca+1)— (b+1)(ab+1)c?] > 0.

Since 1 —a > 0 and ¢ < 1, it suffices to show that

v

0,

(c+1)(ca+1)—(b+1)(ab+ 1)c >0,
which is true because

(c+1)(ca+1)—(b+1)(ab+1)c > (c+1)(ca+ 1) —2(a+ 1)c
(1—-¢)(1—=ac)>0.

Setting a = 1 in the similar inequality
E(a,b,c) < E(a,1,¢),

it follows that
E(1,b,c) < E(1,1,¢).

Finally,
1 c 3

1
E(1.1 = — = —.
(1,1,¢) 2+c—|—1+c+1 2

The equality holds for a = b =1 (or any cyclic permutation).

P 1.107. If a,b, ¢ are nonnegative real numbers, then

a* + bt + ¢+ 5(a’b + bPc + a) > 6(a’b® + b + Fa?).

Solution. Assume that a = min{a,b,c} and use the substitution
b=a+p, c=a+q, pqg20.

The inequality becomes
94a* +3Ba+ C > 0,

where
A=p’—pg+q¢*, B=3p’"+p°q—4pq + 3¢’

C =p*+5p°q¢ — 6p°¢* + ¢*.
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Since

A>0,
B =3p(p—q)* + q(7p> — Tpq + 3¢°) > 0,
C=(p—q)*+pq(3p—2q)* >0,

the inequality is obviously true. The equality occurs for a = b = c.

P 1.108. If a,b, c are positive real numbers, then
a® 4+ b 4 — a'*b — b'c — c*a > 2abc(a® + b* + & — ab — be — ca).
(Vasile Cirtoaje, 2006)

Solution. Since

5 (Z a® — Za4b> =3 (4a® + 7 — 5a'b) = 3 (a — b)*(4d® + 3a%b + 2 + )

2 (Z(IQ - Zab) = Z(a —b)?,

we can write the inequality in the form

and

Ala—b)?*+B(b—c)*+Clc—a)* >0,

where

A = 4a® + 3a®b + 2ab* + b — 5abc,

B = 4b® + 3b%c + 2bc* + ¢* — babe,

C = 4¢3 + 3c%a + 2ca® + a® — babe.
Without loss of generality, assume that a = max{a,b,c}. We have

A > a(4a® + 3ab — 5bc) > a(4c® + 3b* — 5bc) > 0,

C > a(3¢ + 2ca + a* — 5be) > a(3c¢® — 3ca + a®) > 0,

A+ B> 4a® +5b% + 3 + 3a%b + 2bc® — 10abc
> 3v/4a3 - 503 - ¢3 + 2v/3a2b - 2bc2 — 10abe
= (3v/20 + 2v/6 — 10)abc > 0,

B+ C > a® + 4b® + 5¢% + 3b%c + 2ca® — 10abe
> 3va3 - 403 - 53 + 2V 3b2¢ - 2ca? — 10abe
= (3v/20 + 2v/6 — 10)abe > 0.
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If a > b > ¢, then
Y Ala—b=Bb—c+Cla—c)* > (B+C)(b—c)*>0.
If a > ¢ > b, then
> A(a—1b)* > Ala—b)’+ B(c—b)* > (A+ B)(c —b)* > 0.

The equality holds for a =b = c.

P 1.109. If a,b, c are positive real numbers such that a® + b* + ¢* = 3, then

a N b n c
1+5b 1+c¢ 1+a

3

> —.

-2
(Vasile Cirtoaje, 2005)

Solution. Let
p=a+b+c, qg=ab+bc+ca, p°=3+2.

First Solution. By the Cauchy-Schwarz inequality, we have

a (Za)2 3+ 2¢q
Zl+b2 Sa(l+b) p+q’

Thus, it suffices to prove that
6+ q > 3p.

Indeed,
206+q—3p) =12+ (p* =3) —6p=(p—3)> >0,

The equality holds for a =b=c=1.
Second Solution. By the AM-GM inequality, we have
a ala +c) 4a(a + c)
= —_ >
Z 1+b Z (1+0b)(a+c) ~ Z [(1+0)+ (a+0)]?
A ad*+>ac)  4(3+q) 6+ 2p?

(1+p)? (1+p)? (1+p)?*
Therefore, it suffices to show that
6+2p% _ 3
> 5
(I+p)? — 2

which is equivalent to (p — 3)? > 0.
Open problem. If a,b,c are positive real numbers such that a®> + b* + ¢® = 3, then

a n b N c >1
54+4b 544c 5S5+4a — 3
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P 1.110. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

ava+b+bVb+c+cve+a > 3V2.
(Hong Ge Chen, 2011)

First Solution. Denote

.= /ab—l—bgc—l—ca’ (<1

By squaring, the inequality turns into

Za3+2a2b+22a0\/a2+3q2 > 18.

Since
2v/a? + 3¢%> > a + 3q,

QZCLC\/GZ + 3¢% > Zac(a +3q) = Z ab® + 9¢°.

Thus, it suffices to show that

Za3+2ab(a+b)+9q3 > 18,

we have

which is equivalent to
(a+0b+c)(a®+b* +c*) +9¢° > 18,

3(9 = 64°) +9¢° > 0,
1-2¢°+¢* >0,
(1-¢*)°+¢*(1—q)>0.
Clearly, the last inequality is true. The equality holds for a =b=c = 1.

Second Solution. Using the substitution

a+b Tty b+c y+z cta z+x
2 27 2 2 V2T

a+b a+c \/b+c
_ _ >
. \/ 5 TV 2 7 20

W (Y 2+ T+ 2z 2_ y+z 2_x(x+y+z)—yz
N 2 2 2 N 2 '

In addition, a + b+ ¢ = 3 involves

gives

2+ 4+ 2+ ay+yz+ 2 =6,
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which is equivalent to
p"—q=6,

where
p=x+y-+z, q=2xy+yz+ zx.

From

18 —2p” =3(a® + > + 22+ ay +yz + 22) — 2z + y + 2)°
:a:2+y2+22—xy—yz—w20,

it follows that
p < 3.

The desired inequality is equivalent to
> (ap—y2)(z+y) =12,
pZ(:U2 + xy) > 3zyz + Zsz + 12,
6p > 3xyz + Z vz + 12,
6p + z:yz2 > pq + 12.

(20) (0) = ()

(by the Cauchy-Schwarz inequality), it suffices to show that

Since

q2
6p+§ > pqg + 12.

Indeed,
2 2(6 — 2 (6+q)(6— 236
6p+q__pqu( Ote _6+96-a+q 36,
p p p p

Open problem. If a,b, c are nonnegative real numbers such that a + b+ c = 3, then

av4a + 5b 4+ bvV/4b + 5¢ + ev4e + ba > 9.

P 1.111. If a,b,c are positive real numbers such that a + b+ ¢ = 3, then

a n b n c -4
202 +c  2¢2+a  2a2+b
(Vasile Cirtoaje and Nguyen Van Quy, 2007)
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Solution. By the Cauchy-Schwarz inequality, we have

a (Za\/a—i—c)2
Z 20% + ¢ = Stala+ce) (20?2 +¢)

Since " av/a + ¢ > 3v/2 (see the previous P 1.110), it suffices to prove that
> ala+c)(26” +c) < 18,

which is equivalent to
2 Z a®b* + 6abc + Z ac(a + ¢) < 18,

2 Z a*b?® + 3abe + <Z a) (Z ab) < 18.

q = ab+ bc + ca,

Denoting

the inequality becomes
9abc + 18 > 2¢* + 3q.

This inequality is true for ¢ < 2 because 18 > 2¢* + 3¢. Since ¢ < p?/3 = 3, consider further
the case 2 < ¢ < 3. By Schur’s inequality of degree three, we have

9abe > 4pq — p® = 12¢ — 27.
Therefore,

9abe + 18 — (2¢” + 3¢) > (12¢ — 27) + 18 — (2¢° + 3¢)
= 242 +9¢-9=(3—-q)(2¢—3)>0.

This completes the proof. The equality holds for a = b =c = 1.

P 1.112. If a,b, c are positive real numbers such that a + b+ ¢ = ab + bc + ca, then

1 1 1
<1
a2+b+1+b2+c+1+02+a+1 -

Solution. By the Cauchy-Schwarz inequality, we have

1 < 1+b+¢?
a?+b+17 (a+b+c)?

hence

> 1 <y 1+b+c  34+a+btct+a®+0*+¢
a2+b+1~ 4~ (a+b+c)? (a+b+c)? '
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It suffices to show that
34+a+b+c<2(ab+ be+ ca),

which is equivalent to
a+b+c>3.

We can get this inequality from the known inequality
(a+b+c)* > 3(ab+ be+ ca).
The equality holds for a =b=c = 1.

P 1.113. If a,b, c are positive real numbers, then

1 1 1 1
< .
(@ +2b+ 3c)? o (b+ 2c + 3a)? i (¢c+2a+3b)? ~ 4(ab+ bc + ca)

Solution. By the AM-GM inequality, we have

(a+20+3c)=[(a+c)+20+c)) =(a+ ) +4(b+c)?+4(a+c)(b+c)
>3(b+c)*+6(a+c)b+c)=3(b+c)(2a+b+3c).

Thus, it suffices to show that

1 3
< .
Z (b+c¢)(2a+ b+ 3c) ~ 4(ab+ be+ ca)

Write this inequality as follows:

3 ab + bc+ ca
o 0
4 Z(b—l—c)(Za—i-b—i—30)_ ’

2(ab+ be + ca) 3
Z {1_ (b+c)(2a+b+3c)} = 2’

Z (b+c)* +2¢2 >3
(b+¢)(2a+b+3c) — 2

v

b+c 2c 3
ISR :
2a+ b+ 3c (b+c)(2a+ b+ 3c) — 2
Applying the Cauchy-Schwarz inequality, we get

b+c Db+ o) 4 (
22a+b+3c = S (b+c)(2a+b+3c) 4

o’
> a)’
and ,

c (3 ¢)? 1
Z(b+c)(2a+b+3c) = SS(b+¢)(2a+b+3¢) 4

from where the conclusion follows. The equality holds for a = b = c.
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P 1.114. If a,b, c are positive real numbers, then
a b c 3
—_—+ + < -.
a+b+2c b+ c+ 2a c+a+2b 7 2

Solution. Apply the Cauchy-Schwarz inequality as follows:

(i ) < [Serer20) [ groramarira]

40> a) > alc+ a+ 2b)]
(b+c+2a)(c+a+2b)(a+b+2c)

Thus, it suffices to show that
16 (Za) [Za(c+ a+ 2b)] <9b+c+2a)(c+a+2b)(a+b+2c).

Denoting
p=a-+b+c, q = ab + bc + ca,

the inequality becomes
16p(p* +q) < 9(p + a)(p + b)(p + ©),

16p(p* + q) < 9(2p® + pq + abe),
2p® — Tpg + 9abe > 0.
Using Schur’s inequality of degree three

P> 4 9abe > 4pq,

we have
2p* — Tpq + 9abc = (p® + 9abc — 4pq) + p(p* — 3¢) > 0.

The equality holds for a =b = c.

P 1.115. If a,b, c are positive real numbers, then

\/5@ +\/ 5b +\/ 5¢ <3
a+b+3c b+ c+ 3a c+a+3b
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Solution. Substituting

Ha 5b 518
xr = _— = _— z = _—
Va+b+3c 4 Vbo+c+3a’ Veta+3b

( (2 —B)a+ 2%b+ 32%c =0

we have

3y%a+ (2 = 5)b+y*c=0 ,

\\

Za+32*b+ (22 = 5)c=0
\

which involves

x> —5 x? 312
3y Yy -5 ¢yt |=0;
22 322 22-5
that is,
F(x,y,z) =0,
where

F(a,y,2) = 422" +2) a’y* +5) o’ — 2.

We need to show that F'(z,y,2) = 0 involves  + y + z < 3, where z,y, z > 0. According to
the contradiction method, assume that  + y + z > 3 and show that F'(z,y,z) > 0. Since
F(z,y, z) is strictly increasing in each of its arguments, it is enough to prove that

r+y+z=3
involves

F(z,y,2z) > 0.
Denote

q=xy+yz—+ zz, = IYZz.
Since
Z$2y2:q2—6r, Zx2:9—2q,

we have

F(z,y,2) = 4r* + 2(¢* — 6r) + 5(9 — 2¢q) — 25 = 2(2r* — 6r + ¢° — 5q + 10),

1
§F(:E,y,z) =2(r—1*+¢>—5¢+8 —2r.

It suffices to show that
@ —5q+8>2r

From the known inequality

(zy +yz + 2z2)* > Bwyz(z +y + 2),
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it follows that ¢ > 9r. Therefore, it suffices to prove that

22
q2—5q+82%7

which is equivalent to
(B—q)(24—7q) > 0.

Since

1
q§§<x+y+z)2=3,

the conclusion follows. The original inequality is an equality for a = b = c.

P 1.116. Ifa, b, c € [0, 1], then
ab2+bc2—|—ca2—|—§ >a+b+ec
(Ji Chen, 2007)
Solution. We use the substitution
a=1—2, b=1—-y, c=1-z
where x,y, z € [0, 1]. Since

da(l=v)=> y(l—-2)2-y) =) y(2— 2z —y+ay)
:2295— (Zx) +Zmy2,

the inequality can be written as

ZZQZ:E— <Zx>2+zxy2.

According to the known inequality in P 1.1, we have

4 3
2
Yotz (Xa)
Thus, it suffices to prove the following inequality

)
4

4
>t — 24 —¢3
> + o7t
where

t=x+y+2<3.

This inequality is equivalent to
(15 — 4t)(3 — 2t)* > 0,
which is obviously true for ¢ < 3. The proof is completed. The equality occurs for a = 0,

1
b=1and c= 5 (or any cyclic permutation thereof).
0



168 Vasile Cirtoaje

P 1.117. If a, b, ¢ are nonnegative real numbers such that
a+b+c=3, a<b<1<eg,

then
a’b + b’c + Pa < 3.

Solution. Since
ab® +bc* + ca® — (a*b+ b*c+ ) = (a —b)(b—¢)(c —a) > 0,
it suffices to prove that
a?b + b%c + A + (ab® 4 bc? + ca®) < 6;

that is,
(a+ b+ c)(ab+ be+ ca) — 3abe < 6,

ab + bc + ca — abc < 2,
1—(a+b+c)+ab+bc+ ca—abc <0,
(I1—a)(1-=0)(1—c)<0.

The equality occurs for a =b=c = 1.

P 1.118. Let a, b, ¢ be nonnegative real numbers such that

a+b+c=3, a<l<b<e.

Prove that
(a) a?b + b?c+ c*a > ab + be + cq;
(b) a’b+ b*c + c*a > abc + 2;
9
il > :
(c) abc ez a?b + bc + c2a’
(d) ab® + bc? + ca® > 3.

(Vasile Cirtoaje, 2008)
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Solution. (a) We have

a®b+ b*c+ c*a — ab — bc — ca = ab(a — 1) + be(b — 1) + ca(c — 1)
=—ab[(b—1)+ (¢ —1)] + be(b— 1) + ca(c — 1)
=bb—1)(c—a)+a(c—1)(c—b) > 0.

The equality holds for a =b=c =1, and also fora =0, b=1 and c = 2.

(b) Since
a(b—a)(b—c) <0,

we have

a’b+ b’c+ Fa > a*b + b*c + fa+alb—a)(b —c)
= b*(a + c) + ac(a + ¢ — b).

Thus, it suffices to prove that
b (a+c)+ac(a+c—b) > abc+ 2.

This inequality is equivalent to

V(a+c)—2>ac(2b—a —c),

b?(3 —b) —2 > ac(3b — 3).

From (b —a)(b — ¢) <0, it follows that

ac < b(a+c—b) = b(3 —2b).
Thus, it suffices to show that

b?(3 —b) —2 > b(3 —2b)(3b — 3),
which is equivalent to the obvious inequality
(50 —2)(b—1)* > 0.

The equality holds for a = b =c¢ =1, and also for a =0, b =1 and ¢ = 2.
(¢) According to the inequality in (a), it suffices to show that

RIS

abc+ — abc+2’

which is equivalent to
(abc —1)* > 0.

The equality holds for a =b=c=1.
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(d) Since
ab® + bc* + ca® — (a*b + b*c+*) = (a —b)(b— ¢)(c —a) > 0,
it suffices to prove that
ab® + bc* + ca® + (a*b + b’c + ¢?) > 6;
that is,
(a4 b+ c)(ab+ bc + ca) — 3abc > 6,
ab + bc + ca — abc > 2,
1—(a+b+c)+ab+bc+ ca—abc >0,
(I1—-a)(1=0)(1—¢c)>0.

The equality holds for a =b=c=1.

Remark 1. For
a+b+c=3, 0<a<1<b<eg,
the following open inequality holds
21
— 46>
abe th= a?b + b%c + c%a’

which is sharper than the inequality in (c).

Remark 2. From the proof of the inequality in (d), the following identity follows for
a+b+c=3:

2(ab® 4+ bc* +ca® —3) =3(1 —a)(1 = b)(1 —¢) + (a —b)(b—c)(c — a).

P 1.119. If a, b, c are nonnegative real numbers such that
a+b+c=3, a<1<b<ec,
then

5—2a 5H5—-2b 5—2c_ 9
(a) + + > =5
2
3
2

1+b 1+c 14+a

32 3-2 3-2
(b) p2o =ty 2o

1+a 1+0 14+¢

(Vasile Cirtoaje, 2008)
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Solution. (a) Write the inequality as follows:

23 (5—2a)(1+c)(1+a) > 9(1+a)(l+Db)(1+c),

2(21+7Zab—2zab2) 29(4+Zab+abc),
645> ab>9abc+4» ab’.

By P 1.9-(a), we have
Z ab® < 4 — abe.

Therefore, it suffices to prove that
645 ab > 9abc + 4(4 — abe),

which is equivalent to
Z ab > 2 + abe,

(I—a)(1=0)(1—c)>0.
The equality holds for a =b=c=1, and also fora=0,b=1, ¢ = 2.
(b) Write the inequality as follows:

23 " (3-20)(1+b)(1+¢) <3(1+a)(1+b)(1+0),

2(3+5Zab—2za2b) §3<4+Zab+abc),
6+3abc+4za2bz 7Zab,

6+3abc+42ab(a+b) > 7Zab+42ab2,

6 + 3abc + 4 <Za) (Zab) — 12abe > 7Zab+42a62,

645> ab>9abc+4» ab’.

Zab2 < 4 — abe.

By P 1.9-(a), we have

Therefore, it suffices to prove that
6 + 5Zab > 9abc + 4(4 — abc),

which is equivalent to
Z ab > 2 + abc,
(I1—a)(1=0)(1—-c)>0.
The equality holds for a =b=c¢=1, and also fora=0,b=1, ¢ = 2.
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P 1.120. If a, b, ¢ are nonnegative real numbers such that
ab + bc + ca = 3, a<1<b<ec,

then
(a) a?b+ b*c+ ca > 3;

(b) ab?® + bc? + ca® + 3(v/3 — 1)abc > 3v/3.
(Vasile Cirtoaje, 2008)

Solution. (a) Since
alb—a)(b—c) <0,

we have

a’b+b*c+ ca > a’b+ b’c+ a+alb—a)(b—c)
= b*(a+c) +ac(a +c — b).

Thus, it suffices to prove that
b*(a+ ¢) + acla + ¢ —b) > 3.
Denote
r=a-+c.

From ab + bc + ca = 3, we get
ac =3 —bx
and
3 —ac
b

<

S W

<

w

xr =

Thus, we need to show that
b’z + (3 — bx)(z — b) >

3,
20°r — (2% + 3)b+ 3z — 3 > 0.
Since
0%z — (22 +3)b+3x —3 =2(b* — 2b+ 1)z +2(20 — 1)z — (2® +3)b + 3z — 3

=2b—-1)z+B—2)(bx —b—1)

>3 —xz)(bxr —b—1),
it is enough to prove that

br—b—12>0.

From the inequality (b — a)(b — ¢) < 0, we get

b2 +3
br > b +ac=0"+3—bx, br> ;—
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Therefore,

b?+3_b_1:(b—1)2
2

The proof is completed. The equality holds for a = b =c¢ =1, and for a = 0, b = 1 and
c=3.

(b) Since

br —b—12>

> 0.

ab® + bc* + ca® — (a*b +b*c+ ) = (a —b)(b— c)(c —a) > 0,
it suffices to prove that

ab® + b + ca® + (a®b 4 b + 2) + 6(V/3 — 1)abe > 6v/3;

that is,
(a+ b+ c)(ab+ be + ca) + 3(2v/3 — 3)abe > 6v/3,
a+b+4c+ (2v3 = 3)abe > 2V/3,
a[l + (2V3 = 3)bc] + b+ ¢ > 2V/3,
a[l + (2V3 = 3)p] + 2(s — V/3) > 0,
where

_b+e

S =

From ab + bc + ca = 3, we get

a =~
2s '

Therefore, we need to show that F(s,p) > 0, where
F(s,p) = (3 —p)[1 4 (2V3 — 3)p] + 4s(s — V/3).
Since the inequality F(s,p) > 0 is true for s — /3 > 0, consider further the case

SS\/g.

We will show that
F(s,p) > F(s,5%) > 0.

We have

F(s,p) = F(s,5%) = (2V3 = 3)(s* = p*) = (6v3 = 10)(s* — p)
— (s> = p)[(2v3 = 3)(s* + p) — 6V3 + 10].

Since s2 —p > 0 and

(2V3 = 3)(s> +p) —6V3+10> (2V3 - 3)(1+1) —6V3+10 =4 —2V3 > 0,
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the left inequality is true. The right inequality is also true because

F(s,5%) = (3—s%)[1+ (23 — 3)s?] + 4s(s — V/3)
= (V3= 9)[(V3+5)(1+ (2V3 - 3)s”) — 4]
= (V3= $)[V3(1 = 5)%(1 + 25) — 3s(1 — 5)?]
= (V3 —3s)(1—s)?[V3+(2V3—3)s] >0

The equality holds for a = b= ¢ =1, and also for a = 0 and b = ¢ = /3.

P 1.121. If a, b, ¢ are nonnegative real numbers such that
a+ b2+ 2 =3, a<1<b<ec,
then
(a) a®b + b*c + c*a > 2abe + 1;
(b) 2(ab® + bc? + ca®) > 3abe + 3.
(Vasile Cirtoaje, 2008)

Solution. (a) Let
r=a+c, x>0

From a? + b? + ¢ = 3, we get

ac_b2+x2—3
-
and from (b —a)(b—c) <0, we get
br > b% + ac,
2 12 _
b > P 2+ b 3’
2
2 2 3
x <b+d, d =3 —2b°.
Since
a(b—a)(b—c) <0,
we have

a’b+b*c+ ca > a’b+ b’c+ ta+alb —a)(b— )

= b*r — ac(b — ).
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Thus, it suffices to prove that
b’z — ac(3b — z) > 1,

which is equivalent to f(x,b) > 0, where

f(z,b) = 20*x — (2> +b* — 3)(3b — ) — 2
= 2% — 3bx?® + 3(b* — 1)z — 3b® + 9b — 2.

We will show that
f(z,b) > f(b+d,b) > 0.
Since x < b+ d and

flz,b) — f(b+d,b)=(x—b—d)[z* +x(b+d)+ (b+d)?* —3b(x +b+d) + 3b* — 3]
= (x —b—d)[z* — (2b — d)x — b* — bd],

we need to show that g(z) < 0, where
g(z) = 2% — (2b — d)x — b* — bd = (z — 2b)(z + d) + b(d — b).
Since d — b < 0, it suffices to show that  — 2b < 0. Indeed, we have
2? = (a+c)? <2(a® + ) =2(3-b%) <4,
hence

r <2< 2.

To prove the right inequality f(b+ d,b) > 0, we have
f(b+d,b) =2b*(b+d) —2bd(2b — d) — 2 =2(3b — b* — 1 — b*d).

We need to show that
30— —1>0b*V/3— 202

for

1<b< §
- T V2

We have ” 3 — 9
33— —1>3h— = —1="—
- 2 2

> 0.
By squaring, the inequality becomes
(3b —b° — 1) > b*(3 — 2v?),
30% — 9" +26% + 90 —6b+1 >0,

(b—1)*(3b"* + 60> —4b+ 1) > 0.

The original inequality is an equality for a =b=c = 1.
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(b) Denote
p=a+b+c, q = ab+ bc + ca.

Since
ab® + bc* + ca® — (a*b+ b*c+ ) = (a —b)(b—c)(c —a) > 0,

it suffices to prove that

ab® + bc* + ca® + (a*b + b*c + ¢*) > 3abe + 3;

that is,
pq > 6abc + 3.
From
(a=1)(b—-1)(c—1) >0,
we get
abc > 1—p+gq,
therefore

pq — 6abc — 3 > pq—6(1 —p+q) — 3
=(p—6)g+6p—9

_(p—6)(p* -3
= 5 +6p—9
:p(P;3) > 0.

The equality holds for a =b=c=1.

P 1.122. Ifa, b, ¢ are nonnegative real numbers such that
ab + bc + ca = 3, a<b<1<ec,

then
ab?® + bc? + ca® + 3abe > 6.

(Vasile Cirtoaje, 2008)

Solution. Denote
p=a+b+c

Since
ab® + bc* + ca® — (a*b + b*c+ ) = (a —b)(b— c)(c —a) > 0,

it suffices to prove that

ab® + bc® + ca® + (a*b + b*c + ¢*) + 6abe > 12;
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that is,
(a4 b+ c)(ab+ bc + ca) + 3abe > 12,

a+b+c+abc >4,

which is equivalent to
(a—1)(b—=1)(c—1)>0.

The equality holds for a =b=c=1.

P 1.123. If a, b, ¢ are nonnegative real numbers such that
a2+ b0+ 2 =3, a<b<1<eg,
then
2(a®b + b*c + c*a) < 3abc + 3.
(Vasile Cirtoaje, 2008)
Solution. Consider two cases.

Case 1: a + ¢ > 2b. Denote
r=a+c, x> 2b.

From a? + b* + ¢ =3 and (b —a)(b— ¢) < 0, we get in succession
b’ +a% -3
ac=———
2 )
bxr > b% + ac,
2240 -3
2 Y
(x —b)* < 3 — 2%
r<b+d  d=+/3—202

bx > b% +

Since
ab® + bc® + ca® — (a*b + b*c+ ) = (a = b)(b—¢)(c — a) >0,

it suffices to prove that
a®b + b*c + a + (ab* + bc® + ca®) < 3abe + 3;

that is,
(a+ b+ c)(ab+ be+ ca) < 6abe + 3,
(x 4+ b)(bx + ac) < 6abe + 3,

ac(x — 5b) + bx(x +b) — 3 < 0.
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Thus, we need to show that f(x,b) <0, where

f(z,b) = (2* +b* — 3)(x — 5b) + 2bx(x +b) — 6
= 2% — 3ba? + 3(b* — 1)x — 5b° + 15b — 6.

We will show that
f(z,b) < f(b+d,b) <0.

Since x < b+ d and

f(x,0) — f(b+d,b)=(x—b—d)[z> +2(b+d)+ (b+d)*—3b(x+b+d) + 3b* — 3]
= (x —b—d)[z* - (2b — d)x — b* — bd],

we need to show that g(z) > 0, where
g(z) = 2* — (2b — d)z — b* — bd.
Since x — 2b > 0 and d — b > 0, we have
g(x) = (z —2b)(zr+d)+b(d—0b) > 0.
To prove the right inequality f(b+ d,b) < 0, from
f(b+d,b) = 2bd(d — 4b) + 2b(b+ d)(2b + d) — 6 = 2(6b — 2b> — 3 — b*d),
it follows that we need to show that
6b — 20> — 3 < b*V/3 — 262

1
for 0 < b < 1. This inequality is true for b < 3 because

6b — 26> —3 < 3(2b—1) <0.
So, it suffices to prove the inequality for 1/2 < b < 1. By squaring, the inequality becomes
(6b — 2b° — 3)* < b*(3 — 2b?),
2% — 9b* + 4b° + 120> — 120 + 3 < 0,
(b —1)%(20° + 6b> + 3b — 3) < 0.

We only need to show that
2b° + 6b> + 3b — 3 > 0.

Indeed,
20° +6b° +3b—3 > 3(26> +b—1) =3(2b — 1)(b+ 1) > 0.

Case 2: a + ¢ < 2b. Consider the nontrivial case a < ¢, denote

a-+c a? + c2
by = by =
1 2 ) 2 2

(bl < bg),
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and write the inequality in the homogeneous form E(a, b, c) < 0, where

a2+b2+02>3/2

E(a,b,c) = 2(a*b + b*c + c*a) — 3abc — 3 ( 3

From a? + b* 4+ ¢ = 3 and b < 1, it follows that b < by. For fixed a and ¢, consider the
function

f(b) :E(aabac)a be [blabZ]'
We will show that
f(b) < f(b2)) 0.
The left inequality is true if f(b) > 0 for b € [by, bs]. Since

a4+ b2+ 2\ ?
)
= 2a* + 4bc — 3ac — 3b = 2a* — 3ac + b(4c — 3)
(a+c)(4c — 3)

f(b) = 2a* + 4bc — 3ac — 3b (

> 2a% — 3ac + 5
(a—c)?+3(a*+c*—a—-c)

B 2

> 3(@2—1-022—@—0)’

it suffices to show that
a’ + 2 >a-+ec.

From a? + b® + ¢ = 3 and b < 1, it follows that a®> + ¢ > 2. If a + ¢ < 2, then
A+ >2>a+ec
Also, if a + ¢ > 2, then

>+ >-(a+c)>a+ec

N | —

To prove the right inequality f(be) < 0, we see that

a’ + ¢
2

f(ba) = 2a%by + (a® + c)c + 2c%a — 3abyc — 3by

3c? + 6ac — a?
:c(a+c)2—(c+2ac a)b2

= c(a+c)* — (3C2+62ac_a2)\/a2;r62.

Thus, we need to show that

(3¢% + 6ac — a?)*(c* + a?)
8 )

Ale+a)t <
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which is equivalent to
A+ dac® — 9a*c* — 8aPc® + 23a*c? — 12d°c + a® > 0,
(c—a)*(c® +7cta+ 9ca® — a*) < 0.
The proof is completed. The equality holds fora =b=c=1.

P 1.124. If a, b, ¢ are nonnegative real numbers such that
ad+ b+ =3, a<b<l1<eg,
then
2(a®b + b*c + c*a) < abe + 5.
(Vasile Cirtoage, 2008)

Solution. Let
p=a+0b+c, q = ab + bc + ca.

Since
ab® +bc® + ca® — (a®b+b’c+ ) = (a+b+c)(a—b)(b—c)(c—a) >0,

it suffices to prove that
(a®b + bPc + a) + (ab® + bc® + ca®) < abe + 5,
which is equivalent to
(a® +b* + c*)(ab+ be + ca) < abe(a+b+c+ 1)+ 5,
3¢ < abe(p+1)+5.

From

(a—1)(b—1)(c—1) >0,

we get
abc > q—p+1.

Therefore, it suffices to show that
3¢<(g—p+1)(p+1)+5,
which is equivalent to
6 —p”> > q(2—p),
12 -2p* > (p* = 3)(2—p),
p3—4p2—3p+1820,
(p—3)*(p+2)>0.
The proof is completed. The equality holds for a =b=c=1.
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P 1.125. If a,b, c are real numbers, then
(@® +b* + ) > 3(a’b + bPc + a).
(Vasile Cirtoaje, 1992)
First Solution. Write the inequality as
E1—2FE, >0,

where
By =d*(a—0b)+b*(b—c)+c*(c—a),
Ey = a*b(a —b) + b*c(b — ¢) + ta(c — a).

Using the substitution
b=a+p, c=a+q,

we have
By =a*(a—0b)+b[(b—a)+ (a—c)]+(c—a)
= (a —b)*(a®*+ ab+b*) + (a — ¢)(b — ¢)(b* + be + ¢?)
= p*(a® + ab+b*) — q(p — ¢)(V* + be + )
=3(p” — pa + ¢*)a’ +3(0° = PP+ ¢’)a+p' — PP + ¢’
and

Ey = a*b(a — b) + b*c[(b — a) + (a — ¢)] + c*a(c — a)
= (a —b)b(a® — bc) + (a — ¢)e(b* — ca)
= pb(bc — a*) + qc(ca — b?)
= (0* —pa+ *)a® + (0° + v°q = 2p4® + ¢*)a + P — PP¢’.
Thus, the inequality can be rewritten as
Aa® + Ba+C >0,
where
A=p*—pg+¢,
B =p’ —5p°q+4pg® + ¢,
C =p' =3¢+ 2p°¢ + ¢
For the non-trivial case A > 0, it is enough to show that § < 0, where § = B? — 4AC is the
discriminant of the quadratic function Aa? + Ba + C. Indeed, we have
§ = =3(p° = 2p°q — 3p"¢* + 6p°¢” + 2p°¢" — 4pg® + ¢°)
= =3(p° - p*q — 2p4° + ¢°)* < 0.
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The equality holds for a = b = ¢, and also for

(or any cyclic permutation).
Second Solution. Let us denote
r = a® — ab + be,

y = b? — be + ca,

2 =¢c?—ca+ ab.

a:2+y2—|—22:Za4+22a2b2—22a3b

a:y+yz—|—za::Za3b.

We have
and

From the known inequality
2?4yt 422 > wy +yz + 2,
the desired inequality follows.
Third Solution. Let us denote
x=ala—2b—c),

y =b(b—2c—a),
z=c(c—2a—-0).
We have

x2+y2+22:Za4+52a2b2—I—4acha—4Za3b—QZab3
:vy~|—yz+z:v:3Za2b2+4acha—Za3b—22ab3.

The known inequality

and

4+ yP 422 > ay +yz+ 2w
leads to the desired inequality.

Remark 1. Let
E=(a"+V+c)?=3(a’b+bc+ Pa).

Using the notations from the first solution, the formula

4A(Aa® + Ba+ C) = (24a + B)* — ¢,
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leads to the following identity
AE\E = (A; — 5B, +4C)* + 3(A, — By — 2C, +2D)?,
where
A =a®+b0+c* By =a*b+bc+cta, C)=ab®+bc®+ca®, Dy = 3abc,

Ey=a®>+ b+ —ab— be — ca.

Remark 2. Let
E=(a®>+b+c*)? —3(a’b+b’c + ca),

The identity
P4yt -y —yr— 2 = %Z(x—y)g,
where z,y, z are defined in the second or third solution, leads to the identity
2F = Z:(a2 —b* — ab + 2bc — ca)®.
In addition, the following similar identities hold:

6E = (20 —b* — ¢* — 3ab + 3bc)”,

4E = (2a* — b* — ¢ — 3ab + 3bc)® + 3(b* — ¢ — ab — be + 2ca)’.

Remark 3. The inequality in P 1.125 is known as Vasc’s inequality, after the author’s
username on the Art of Problem Solving website.

]

P 1.126. If a,b, c are real numbers, then
a* 4+ b* + ¢t + ab® + bc® + ca® > 2(aPb + b + Pa).
(Vasile Cirtoaje, 1992)
First Solution. Making the substitution
b=a+p, c=a+yq,

the inequality turns into
Aa® + Ba+C >0,

where

A=30p*—pg+q*), B=30"-20q+p*+q¢°), C=p"'—20°¢+ps®+q"
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Since the discriminant of the quadratic trinomial Aa? + Ba + C is nonpositive,

§ = B2 — 4AC = —3(p® — 6p’q + 20°¢® + 92q* — 6pg° + ¢°)
= -3(p* — 3pg® + ¢*)* <0,

the conclusion follows. The equality holds for a = b = ¢, and also for

a b  c
sin § B sin%7T B sinl%7r

(or any cyclic permutation).
Second Solution. Let us denote

r=a(a—D),

y=b(b—o),

=c(c—a)
We have
2?4y’ 42 = Za4+2a262 — 22a3b

and

:cy+yz+zx:Zasz—Zab3.

Applying the known inequality
2+ 7+ 2% > ay+yz + 2,
the desired inequality follows.

Third Solution. Let
x = a’®+ bc+ ca,

y = b® + ca + ab,
2z =c*+ ab + be.

2?4y + 22 :Za4+22a2b2+4ab02a+22ab3
xy+yz+zx:2Za2b2+4acha+22a3b+Zab3.

The known inequality

We have

and

x2+y2+z2 >xy+yz+zx
leads to the desired inequality.

Remark 1. The inequality is more interesting in the case abc < 0. If a,b, ¢ are positive,
then the inequality is less sharp than Vasc’s inequality in P 1.125 because it can be obtained
by adding Vasc’s inequality and

ab(a — b)* + be(b — ¢)* + calc — a)* > 0.
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On the other hand, if a, b, ¢ are positive, then the inequality
3(a* + bt + c*) + 4(ab® + b + ca®) > T(a®b + bPc + c*a)
is a refinement of the inequality in P 1.126. To prove this inequality, we write it as
3(a* + b + ¢t — @b — bPc — Pa) + 4(ab® + be® + ca® — a’b — bPc — c*a) > 0,
consider a = min{a, b, ¢} and use the substitution
b=a-+0p, c=a+q, a>0,p>0, ¢g>0.

Since
Za4 — Za3b = Za?’(a —b)
=30p* —pg+¢*)a® +3(0* — g+ ¢*)a+p* —pPg+ ¢’
and
> ab® = a’b=(a+b+c)(a—b)(b—c)(c—a)
=pq(q—p)(Ba+p+q),

the inequality becomes
Aa* + Ba+C >0,

where
A=90p"—pg+4q*), B=3(3p"—"1p*q+ 4pq* + 3¢°),

C = 3p* — Tp*q + 4pg® + 3¢*.
The inequality Aa? + Ba + C > 0 is true for a > 0 and p, ¢ > 0 because

A >0,

B =p(3p —49)* +q(p — 39)* + 2pq(p + q) > 0,
13¢\* 11
3C = p(p+q)3p —59)° +5¢ (p— — ) +==¢" > 0.
10 20
Remark 2. Let
E=a*+b* 4+ + ab® + b + ca® — 2(a®b + bPc + Pa).
Using the notations from the first solution, the formula
4A(Aa® + Ba+ C) = (2Aa+ B)* = ¢
leads to the following identity

4E\E = (A, —3C, +2D;)* +3(A, — 2B, + C})?,
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where
A=+ +¢3, By =d*b+bc+cca, C)=ab®>+b®+ca®, Dy = 3abe,
E,=a’>+b*+ % —ab—be — ca.
Remark 3. Let
E=a*+b* 4+ + ab® + b + ca® — 2(a®b + bPc + Pa).
The identity

1
2 2 2 — —_ )2
Ty +z —xy—yz—zx—QE (x — )7,

where x,y, z are defined in the second or third solution, leads to the identity
2F = 2:((12 —b* —ab + bc)?
In addition, the following similar identities hold:
6F = 2:(2a2 —b* — ¢® — 2ab + be + ca)?,

4E = (2a* — b* — & — 2ab + bc + ca)? + 3(b* — 2 — be + ca)®.

Remark 4. The inequalities in P 1.125 and P 1.126 are particular cases of the following
more general statement (Vasile Cirtoaje, 2007).

o Let
fala,b,c) = Za4+AZa262+Bacha+C’Za3b~l—DZab3,
where A, B,C, D are real constants such that
1+A+B+C+D=0, 3(1+A)>C*+CD+ D

If a,b, c are real numbers, then
fa(a,b,¢) > 0.

Note that the following identity holds:

2
4S fi(a,b,c) = [U+V +(C+D)S)*+3 (U -V + ¢ ; DS) +§(3+3A—C2—CD—D2)SQ,

where

S = Z a’b? — Z a’be,
U= Za3b — Zach,
V= Zab3 — Za2bc.
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For the main case

3(1+A)=C?*+CD + D?,

the inequality fi(a,b,c) > 0 is equivalent to each of the following two inequalities
Z[2a2 — b —c®+ Cab— (C + D)bc + Dca)® > 0,

> [36° = 3¢* + (C + 2D)ab + (C — D)be — (2C + D)cal® > 0.

P 1.127. If a,b, c are positive real numbers, then

a? b? c?
> 1:
ab + 2c2 + be + 2a? + ca+2b% — 7

(a)

a’ b3 c3
b > 1.
(v) a2b + 2¢3 +b2c+2a3+02a—|—263 -

Solution. (a) By the Cauchy-Schwarz inequality, we have

s ¢ L (e (S

ab+2c¢ 7 Y a?(ab+2¢?) Y aPb+2) ] a?b?

Therefore, it suffices to show that

(Z a2>2 > ZZasz + Zagb.

We get this inequality by summing the known inequality

§ (Za2>2 > 22&2192
% (Z a2>2 > Za3b.

and Vasc’s inequality

The equality holds for a =b=c =
(b) By the Cauchy-Schwarz inequality, we have

v ey (Za) _(Za)’

a?b+2c¢ — > a(a?b + 2¢3) a Sadb+2> acd 3> a3’

Therefore, it suffices to show that

(Z a2>2 >3 Z a3b,

which is just Vasc’s inequality. The equality holds for a = b =c = 1.
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P 1.128. If a,b, c are positive real numbers such that a + b+ ¢ = 3, then

a . b i c S 3
ab+1 bc+1 ca+1— 2
Solution. We use the following hint
a a’b b b’c c a

_— — = b — = —
ab+1 " ab+ 1 betd betr 1l catl © catl
which transforms the desired inequality into

ab e a

ab—|—1+bc—|—1+ca+1

3
< —.
2
By the AM-GM inequality, we have

ab+1>2vVab, bc+1 22\/%, ca+ 1> 2y/ca.

Consequently, it suffices to show that

a’b N bc N 2a 3
2Wab  2vbe 2y/ca T 2

which is equivalent to

avab + bWbe + ev/ca < 3,
3(aVab + bVbe + ev/ea) < (a+ b+ ¢)%.

Replacing +/a, Vb, Ve by a,b,c, respectively, we get Vasc’s inequality in P 1.125. The

equality holds fora =b=c=1.

P 1.129. If a,b,c are positive real numbers such that a + b+ ¢ = 3, then

a n b n c <3
3a+b2 3b+c2 3c+a? 2

(Vasile Cirtoaje, 2007)

Solution. Since

a 1 b? b 1 c? c 1 a?

3a+b2 3 3(Ba+b) 3+ 3 3Bb+2) 3¢+a®> 3 3Bc+a)

the desired inequality can be rewritten as

b? c? a?

3a+62+3b+02+3c+a2

3
> —.
-2

]
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By the Cauchy-Schwarz inequality, we have

b’ (=) (3 a?)’
Y B B ISR S a0 (S
_ (> a?)’ . ey
Sat+ > ah?+abeYy a+ Y ab® T (Y a2)? + 3 abd

Thus, it is enough to show that

<Z a2>2 > SZabs,

which is Vasc’s inequality. The equality holds for a = b =c = 1.

P 1.130. If a,b,c are positive real numbers such that a + b+ ¢ = 3, then

a . b L c >3
b24c¢c c24+a a?+b 2

(Pham Kim Hung, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

St (L o)’ Sab 250
b2 +c '

— > a?(b? +¢) Yo a?h? + ) ab?
Thus, it is enough to show that
2Za3 +4Za3/2b3/2 > 32:a2b2 + SZabQ,
which is equivalent to the homogeneous inequality
2 <Z a) (Z a3> +4 (Z a> (Z a3/263/2> > 92 a’h® +3 (Z a) <Z ab2> .
In order to get a symmetric inequality, we use Vasc’s inequality. We have
3 (Za) (Za62> = 32a21)2 + SachaJr 32@63
< 32:&2[)2 + 3@602@ + (Za2>
= Za4 + 52@21)2 + 3@602@.

Therefore, it suffices to prove the symmetric inequality

2 (Za) (Za?’) +4 (Za) (Za3/2b3/2) > 9Za262+2a4+52a2b2+3acha,

2
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which is equivalent to
Za4 + 22&[)(&2 +b?) + 4abcz Vab +4A > 142&2192 + 3acha,

where

A= (ab)**(a +D).
A>2> a’t’,

Since

it suffices to prove that

Za4+22ab(a2+62) —1—4(1602\/%2 62@2172 —|—3acha.

According to Schur’s inequality of degree four

Za4 > Zab(aQ +b%) — acha,

it is enough to show that
3 Z ab(a® + b*) + 4abcz Vab > 6 Z a’b® + 4abcz a.

Write this inequality as

3Zab(a— b)? > 2abcz <\/5— \/5)2,
oo (va-va)'[s(va+ vB) 2| 2o

We will prove the stronger inequality
2 2
S (va-va)*|(va+vB) - 20

which is equivalent to

\/E
Substituting = = v/a, y = Vb, z = /¢, the inequality becomes

Z<x;y)2(:p+y—z)20.

Without loss of generality, assume that x > y > 2. It suffices to show that

(y—z)g(erZ_x)Jr(H)Q(Hx_y)zo.

Z Y

Z(M>2(\/a+\/5—ﬁ) >0,
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Since

we have

The equality holds for a =b=c=1.

P 1.131. If a,b, c are positive real numbers such that abc = 1, then

a N b . c 51
B+2 3+2 a3+2 7

Solution. Using the substitution

) ',’U7y72>07

the inequality turns into

x
——>1
S i 2

By the Cauchy-Schwarz inequality, we have

o (Za (e
2y ) C Sy P) Iy S

Thus, it is enough to show that

(Zx2>2 > 22x3y+2xy3.

According to Vasc’s inequality, we have

(Zx2>2 > Bngy
(Z IL‘2>2 > 3ny3.

Thus, the conclusion follows. The equality holds for a = b =c¢ = 1.

and



192 Vasile Cirtoaje

P 1.132. Let a,b, c be positive real numbers such that
a4+ b" 4" =3,

where m > 0. Prove that

Solution. Making the substitution
T ::a%7 Y ::b%, z ::C%’

where

2-k 2—k 2-k
x z
T : Pt 23
Y z x
which is equivalent to
72 y? 52

@t T G o

1
Applying Jensen’s inequality to the convex function f(u) = we get

==
2 Y 2 2?4y 4 22
()t (w2)*  (zx)F = /a2y y?oyz+ 22 22\"
x2+y? 422
3k+1

(%Y +y3z + 252)F

Thus, it suffices to show that 23y + 332 + 232 < 3. This is just Vasc’s inequality in P 1.125.
The equality holds for a =b=c=1.
O

P 1.133. If a,b,c are positive real numbers, then

() 1+1+1+ 1 L 1 L+ 1 >3 1 . 1 n 1 ‘
“ 4a  4b  4c a+b b+c c+a 3a+b 3b+c 3c+a)’

(b) 1+1+1+ 1 n 1 n 1 > 9 1 n 1 n 1
4da  4b  4¢ a+3b b+3¢c c+3a 3a+b 3b+c 3c+a)’

(Gabriel Dospinescu and Vasile Cirtoaje, 2004)
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Solution. We will prove that the following more general inequalities hold for ¢ > 0:

t4(l t4b t4c t2a+2b t2b+20 t26+2a t3a+b t3b+c t3c+a
£+4_b+4_c+a+b+b+c+c+a_ (3a+b+3b+c+3c+a)20’
t4a t4b t4c ta+3b tb+3c tC+3a t3a+b t36+c t3C+a
Do "W T ac Tar3 T bi3e ci3a <3a+b+ te 3c+a) 2 0.

For t = 1, we get the desired inequalities.

(a) Denoting the left hand side of the former inequality by f(t), the inequality becomes
f(t) > f(0). This is true if f'(¢) > 0 for t > 0. We have the derivative

EFI(E) = 10 4 4 4 e 4 (2020 | 22 | y2ea2ay  g(gBath g b | yiera)
Using the substitution x = t¢, y = t*, z = t¢, the inequality f’(¢) > 0 turns into
Pyt 2t 2(aP? 2R 4 22a?) > 3Py 4 ot 2,
which is Vasc’s inequality in P 1.125. The equality holds for a = b = c.
(b) Similarly, we have the derivative
£F(8) = $19 4 ¢1b 4 gle 4 gat3b | ybiBe 4 yetBa  gglath y yBbre | yletay
Denoting z = t*, y = t*, z = t°, the inequality f/(¢) > 0 turns into
ot oyt 4 2t ayd oyt 422 > 2008y e + 2P,

which is the the inequality in P 1.126. The equality holds for a = b = c.

P 1.134. If a,b, c are positive real numbers such that a® 4 b® + ¢ = 3, then

(Tran Quoc Anh, 2007)

Solution. By Holder’s inequality, we have

(a5 v 05)3> (a® + 0% + 5)* 81

a%b3 4+ b9¢3 4+ 9g3 - a%bh3 4 b9¢3 +c9a3’

b c a
Therefore, it suffices to show that
b + 03 + Pa® < 3.
This is equivalent to
3(a’b® + b7 + Pa®) < (a® + 8% + ),
which is Vasc’s inequality (see P 1.125). The equality holds for a = b = c.
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P 1.135. If a,b,c are positive real numbers such that a® + b* + ¢ = 3, then

a’ b3 ?

- -
a+b b+cd  c+ad

3
> —.
-2

(Marin Bancos, 2010)

Solution. Write the inequality as

a 9 3
E — - >
(a+w a>+2—Q

a’b® 3
ORI
a -+ bd 2

a+ b >2vabd,

Since

it suffices to show that

Z ab®>vab < 3.

In addition, since 2vab < a + b, it suffices to prove that

Za%z + Z:ab3 < 6.

This is true since

1
Za2b2 < g(a2 +0* + %)% =3,
and, according to Vasc’s inequality,
s _ L 9 12 2
Zab < g(a +b° +¢*)* = 3.

The equality holds for a =b=c=1.

P 1.136. If a,b, c are real numbers such that a® + b* + ¢® = 3, then
a?b+bc+cPa+3>a+b+c+ab+ be+ ca.
(Vasile Cirtoaje, 2007)

Solution. Write the inequality as follows:

Z(l —ab) — Za(l —ab) > 0,

Z(a2+b2 + ¢* — 3ab) — Za(a2+b2 +¢? — 3ab) > 0,
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3<Za2—2ab> —Z@(a—b)z—Za(CQ—ab) >0,

3

5 (a—b)Q—Za(a—b)220,

Assume that
a = max{a, b, c}.

For 3 — 2a > 0, the inequality is clearly true. Consider now that 3 — 2a < 0. Since
(a=b)*=[(a—c)+(c=b* <2[(a—0)*+(c—b),
it suffices to show that
2[(@a—c)*+ (c = b)?](3 —2a) + (b —¢)*(3 = 2b) + (¢ — a)*(3 — 2¢) > 0,
which can be rewritten as
(a—¢c)*(9—4a—2¢) + (b—¢)*(9 — 4a — 2b) > 0.

This inequality is true because 9 > 4a+ 2c and 9 > 4a + 2b. For instance, the last inequality
is true if 81 > 4(2a + b)?; indeed, we have

1
%—(2a+b)2>15—(2a+b)2:5(a2+b2+c2)—(2a+b)2:(a—26)2+50220.

The equality holds for a =b=c=1.
Remark. From (a+ b+ c— 3)? > 0, we get

ab+bc+ca+6>3(a+b+c),

hence
a+b+c+ab+bc+ca—3>4(a+b+c)—09.

So, the following statement is true:

e Ifa,b,c are real numbers such that a* + b* + c* = 3, then

a’b+b*c+ca+9>4(a+b+c).

P 1.137. If a,b, c are positive real numbers such that a + b+ ¢ = 3, then
12 <3+
a?b + b%c + c2a abc’
(Vasile Cirtoaje and Sheng Li Chen, 2009)
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Solution. Let
p=a+b+c=3 qgq=ab+bc+ca, r=abc<1.

Write the inequality as

24r
2(a®b + b*c + c*a) > :
(a“b+b°c+ c*a) > i1
From
(a —b)*(b—c)*(c — a)®* = =27r* + 2(9pq — 2p°)r + p*¢* — 4¢°
= —27r? 4+ 54(q — 2)r + 9¢* — 4¢°,
we get
(a—Db)(b—c)(c—a) < +/—27r2 +54(q — 2)r + 9¢ — 4¢3,
hence

2(ab + b*c + cta) = Z ab(a +b) — (a —b)(b—c¢)(c—a)

=pq—3r—(a—"b)(b—c)(c—a)
> 3q — 3r — /=272 + 54(q — 2)r + 9¢% — 4¢3.

Therefore, it suffices to show that

24r
3r+1

3¢ — 3r — \/=27r2 + 54(q — 2)r + 9¢2 — 4¢3 >

which is equivalent to

3[(3r 4 1)q — 3r% — 9r] > (3r 4+ 1)\/—27r2 + 54(q — 2)r + 9¢2 — 4¢>.

Before squaring this inequality, we need to show that (3r + 1)q — 3r*> — 9r > 0. Using the
known inequality ¢? > 3pr, we have

(3r+1)g—3r* —9r > 3(3r + 1)/r — 3r* — 9r
=3vr (1-+r)’ >0.

By squaring, the desired inequality can be restated as
A¢® 4+ C > 3Bg,
where
A=43r+1)%, B=72r(r+1)3r+1), C=108r(r+1)(3r* +12r + 1).
By the AM-GM inequality,

2
Aq3+C:Aq3+%+§z33Aq3<g> :
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S0, it is enough to show that

AC? > 4B3,
which is equivalent to
(3r? +12r +1)2 > 32r(r + 1)(3r + 1)).

Indeed,
(3r* 4+ 12r +1)? =32r(r + 1)(3r +1) = (r — 1)*(3r — 1) >0,

or, by the AM-GM inequality,

32 412r +1=8r+ (r+1)(Br+1) > 24/8r(r + 1)(3r +1).

1 e
The equality holds for a = b = ¢ = 1, and also for r = 3 and ¢ = ¢ A= 2; that is, when

a, b, c are the roots of the equation

1
x3—3x2+2x—520

such that a < b<corb<c<aorc<a<hb.

P 1.138. If a,b,c are positive real numbers such that ab + bc 4+ ca = 3, then

2 b2 2
- X s
b c a

(Nguyen Viet Hung, 2024)
First Solution (by Le Thu). By the Cauchy-Schwarz inequality, we have

a2+b2+c2_ a* N b* N ct - (a® + b* + ¢?)?
b ¢ a a%b  bc  c2a T a?b+ b2c+ 2a’

So, it suffices to show that

a? + b2+ 2 > a®b + bPe + .

According to Vasc’s inequality (P 1.125), we only need to show that

V/3(adb + b3c + c3a) > a®b + b + Pa,
which is equivalent to
(ab + be + ca)(a’b + bPc + c*a) > (a®b + b*c + c*a)?.

Clearly, this inequality follows from the Cauchy-Schwarz inequality.
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The equality occurs for a =b=c = 1.

Second Solution (by Hai Duong). From
(a+0b+c)® > 3(ab+ be + ca) = (ab + be + ca)?,
we get
a+b+c>ab+ be+ ca.
So, it suffices to prove the homogeneous inequality
22 2

(ab 4+ bc + ca) <%+?+E> > (a+b+c)(a® +b* 4 2),

which is equivalent to

alc  ba b

— + — 4+ — > ad’b+ b+ Pa,
b c a

3 3
Z<H+b_a_2a2()> >0,
b c

Z a(b® — ac)? -
be -

P 1.139. If a,b,c are positive real numbers such that a + b+ ¢ = 3, then

24
— >0,
a2b + b%c + c2a + abec —

(Vasile Cirtoaje, 2009)
Solution (by Vo Quoc Ba Can). Let us denote
p=a+b+c=3 g=ab+bc+ca, r=abc.

Write the inequality as
24r > (9r — 1)(a*b + b*c + *a),

and consider further the nontrivial case

NoR =

From

(a — b)z(b — 0)2(0 - a)2 = 27?4+ 2(9pq — 2p3)r + p?¢® — 44°
= —27r? 4+ 54(q — 2)r + 9¢* — 4¢°,
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we get

—(a—=b)(b—c)(c—a) < /—2Tr2 4 54(q — 2)r + 9¢% — 4¢3,
hence
2(a®b + b*c + cta) = Z ab(a +b) — (a —b)(b—c)(c—a)

=pq—3r—(a—">0)(b—c)(c—a)
<3¢ —3r+ /=272 + 54(q — 2)r + 9¢2 — 4g3.

Therefore, it suffices to show that

481 > (9r — 1) [3q 34 /=272 4 54(q — 2)r + 9¢° — g |

which is true if

3[9r% 4+ 151 — (97 — 1)q] > (9r — 1)/ 2772 4 54(q — 2)r + 9¢% — 4¢3.

We need first to show that 972 + 157 — (97 — 1)¢ > 0. From Schur’s inequality

p* +9r > 4pg,
we get
qg?)(rﬂL?))7
4
hence )
3 3)(9r —1 9(r —1
9r? + 157 — (9r — 1)g > 9r* + 157 — (r+ L(r ): (T4 ) > 0.

By squaring the desired inequality, we get
A¢® 4+ C > 3Bg,
where
A=Or—1)?% B=189r—-1)Br+1), C=27r(27r* +99r* + 1+ 1).

Using the AM-GM inequality, we have

/ 2
Aq3+C’:Aq3+g+g233Aq3(g> :

thus, it is enough to show that
AC? > 4B3,

which is equivalent to

(2712 4+ 99r% + 7 + 1)2 > 32r(9r — 1) (3r + 1)3,
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729r% — 243075 4 294371 — 147613 4+ 199r% + 34r +1 > 0,
(r—1)%(27r* — 18 — 1) > 0.

3+2v3

The equality holds for a = b = ¢ = 1, and also for r = and ¢ = 1 + +/3; that is,

when a, b, ¢ are the roots of the equation

x3—3x2+(1+\/§)x—3+T2\/§:0
such that a >b>corb>c>aorc>a>b.
[
P 1.140. Let a,b, c be nonnegative real numbers such that
2(a® +b* + ¢*) = 5(ab + be + ca).

Prove that

(a) 8(a + bt + ') > 17(ab + bPc + ca);

(b) 16(a* + b* + ¢*) > 34(a®b + b3c + 2a) + 8labc(a + b+ ).

(Vasile Cirtoaje, 2011)
Solution. (a) Let
r=a’+b*+c* y=ab+bc+ca, 2z = by.
Since the equality holds for a =2, b =1, ¢ = 0 (when abc = 0), we will use the inequality
a’b® + b + fa® < y?
to get
at + bt + ¢t =27 = 2(a®0 + b’ + Fa?) > 2 — 27,
hence

17
AL A S 2 92 = 9 2
Attt > — 2y 144(:E+y)

Therefore, it suffices to prove that
(27 +y)? > 18(a’b + b’c + c’a).

We will show that this inequality holds for all nonnegative real numbers a, b, c. Assume that
a = max{a,b,c}. There are two possible cases: a > b > cand a > ¢ > b.
Case 1: a > b > c. Using the AM-GM inequality gives

2ab + (a® + be + )17

2(a®b + b’c + c*a) < 2ab(a® + be + ) < 5
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Therefore, it suffices to show that
3
2 +y > 5(2@6 +a® + be + ¢?),

which is equivalent to the obvious inequality
(a —2b)? +c(2a — b+ ¢) > 0.
Case 2: a > ¢ > b. Since
ab® +bc® + ca® — (a®b+b*c+ a) = (a+ b+ c)(a—b)(b—c)(c—a) >0,

we have
2(a’b + bPc + c*a) < (a®b + bc+ *a) + (ab® + be® + ca®) < zy.

Thus, it suffices to prove that
2z +y)* > 9xy.

Since x > y, we get
(22 +y)? — 92y = (v — y) (4 — y) > 0.

Thus, the proof is completed. The equality holds for @ = 2b and ¢ = 0 (or any cyclic
permutation).

(b) For a = b = ¢ = 0, the inequality is trivial. Otherwise, let us denote
p=a+b+c, q=ab+bc+ca, r=abc,
and write the inequality as
163" a* > 173 ab(a® +17) + 17 (Z Y ab3) +8labe Y .

Due to homogeneity, we may assume that p = 3, which involves ¢ = 2. Since

achazBr,
Za4 = (Za2>2 —22&2[)2

= (p* —2¢)* — 2¢* +4pr = 17+ 12r,

X:ab(a2 +b%) = (Z ab> (Z a2> — acha
= q(p* — 2q) — pr = 10 — 3r,
S~ 3 b = —pla— B (e —a)
< /@ =D = (e = a?
= pV/P?@® — 4¢® + 2p(9q — 2p*)r — 2717

= 3v4 —27r?,
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it suffices to prove that
16(17 + 12r) > 17(10 — 3r) 4 51v/4 — 27r2 4 243,
which is equivalent to the obvious inequality
2 >4 272,

The equality holds for a = 2b and ¢ = 0 (or any cyclic permutation).

P 1.141. Let a,b, c be nonnegative real numbers such that

2(a® + b* + ¢*) = 5(ab + be + ca).

Prove that
(a) 2(a®b + b3c + Pa) > a®b* + b + 2a® + abe(a + b + ¢);
(b) 11(a* +0* + ¢*) > 17(ab + b3c + c3a) + 129abc(a + b + ¢);
14 4+ +1/102
(c) a®b+b3c+ Pa < +T0(a262 + b%c? 4 *a?).

Solution. For a = b = ¢ = 0, the inequalities are trivial. Otherwise, let us denote
p=a+b+c, q=ab+bc+ca, r=abc.

Due to homogeneity, we may assume that p = 3, which involves ¢ = 2. From

‘Za%— Zazﬁ‘ — | = pla—b)(b—¢&)(c—a)
= pV/(a—0)*(b—c)*(c — a)?
= pVPPG? — 4¢° + 2p(9q — 2p%)r — 27

= 3V4 —27r2,

it follows that

—3V4 —-27r2 < Z a’h — Z ab® < 3v4 — 27r2.
In addition, we have
abc Z a = 3r,

Za2b2:q2—2p7’:4—6r,

Zab(a2 +b%) = q(p® — 2q) — pr = 10 — 3r,



Cyclic Inequalities 203

Za4 :p4 —4pPq +2¢* +4pr = 17 + 12r.

(a) Write the inequality as

Z ab(a® + b*) + (Z a’h — Z ab3> > Z a’b* + abcz a.
It suffices to prove that
10 — 3r — 3v/4 — 27r2 > 4 — 67 + 3r,
which is equivalent to the obvious inequality
2> V4 —27r2

The equality holds for a = 0 and 2b = ¢ (or any cyclic permutation).
(b) Write the inequality as

222 at > 17Zab(a2 +b%) + 17 (Z a*h — Zab3> + 258acha.

It suffices to prove that

22(17 + 12r) > 17(10 — 3r) + 51v/4 — 2772 + T74r

2
for 0 < r < ——. Write this inequality as
STrs 3\/§ q y

4—9r > V4272
We have 4 — 9r > 4 — 24/3 > 0. By squaring, the inequality becomes
(4 —9r) >4 —27r%
(3r —1)2 > 0.

1
For p = 3, the equality holds when ¢ =2, r = 3 and (a — b)(b—c¢)(c —a) < 0. In general,
the equality holds when a, b, ¢ are proportional to the roots of the equation

322 — 922+ 62 —1=0

and satisfy
(a—b)(b—c)(c—a)<0.

This occurs when (Wolfgang Berndt)
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(c) Write the inequality as

Z ab(a® + b*) + (Z a*b — Z ab3) < k(a®V? 4 b*c* + *a?),

14+ /102
===

where

k
It suffices to prove that

10 — 3r + 3v/4 — 2712 < k(4 — 6r),

2
where r < ——. Write this inequality as

3v/3
3vV4 —27r2 < 4k — 10 — 3(2k — 1)r.
We have
2(2k - 1)

1 2
4k — 10 — 3(2k — 1)r > 4k — 10 — =4(1——=)k—-10+— > 0.
( e V3 ( \/5) V3
By squaring, the inequality becomes
9(4 — 27r%) < [4k — 10 — 3(2k — 1)r]?,

which is equivalent to
(T - k1)2 Z 07

where

2 787 + 724/102
129 3

For p = 3, the equality holds when ¢ = 2, r = ky and (a — b)(b — ¢)(¢ —a) < 0. In general,
the equality holds when a, b, ¢ are proportional to the roots of the equation

~ (0.3483.

1

2 =32 4+20— k=0

and satisfy
(a—b)(b—c)(c—a)<0.

P 1.142. If a,b,c are real numbers such that
a’b+b3c+ cta <0,

then
a+ 024+ 2> k(ab + bc + ca),
where
1 21
= : T8VT g 746,

(Vasile Cirtoage, 2012)
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Solution. Let us denote
p=a+b+c, q=ab+bc+ca, r=abc.
If p=0, then
3(ab+bc+ca) < (a+b+c)? =0,

hence
a® 4+ b+ > 0> k(ab+ be + ca).

Consider now that p # 0 and use the contradiction method. It suffices to prove that
a® +b* + ¢ < k(ab+ be + ca)

involves
a®b+ e+ ta > 0.

Since the statement remains unchanged by replacing a, b, ¢ with —a, —b, —c, respectively, we
may consider that p > 0. In addition, due to homogeneity, we may assume that p = 1. From
the hypothesis a® + b* + ¢* < k(ab + bc + ca), we get

- 1
d kE+2

Write the desired inequality as

Zab(a2 +b%) + Za?’b - z:ab3 > 0.

D ab(a® +b7) = q(p® —2q) —pr =q—2¢* —r

Since

and

Z a*h — Zab3 = —pla—"0)(b—c)(c—a) > —py/(a—Db)2(b—c)%(c—a)?
= —pV/P?¢* — 4¢° + 2p(9g — 2p*)r — 27r% = —\/¢* — 4¢® + 2(9q — 2)r — 2712,

it suffices to prove that

q—2¢° — 1> /¢*— 4¢3 +2(9q — 2)r — 27r2.

From p? > 3¢, we get

and from ¢ > 3pr, we get 7 < ¢*/3; therefore,
2

q—2q2—r2q—2q2—q§=q(1—%) > 0.

By squaring, the desired inequality can be restated as

(g —2¢* —7)* > ¢* — 4¢> +2(9¢ — 2)r — 27r?,
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r? + (1 —5q + ¢*)r +¢* > 0.

This is true if the discriminant
D=(1-5¢+¢*)*—28¢" = [1—5¢+ (1 +2V7)@][1 — 5q + (1 — 2vV7)¢*]

is negative. Since

5¢\% 87 —21

1—5q+(1+2\/7)q?:(1—7 ;

we only need to show that f(g) > 0, where
fla) = (2VT = 1)¢* +5¢ - 1.

1
Since g > T we have

W7 —1 5

_1—o.
k22 kt2

f(q) >

For p = 1, the equality holds when (a — b)(b — ¢)(c — a) > 0 and

1 —q? 1
G=7—5 T =

k2 VT Vi + 22

In general, the equality holds when a, b, ¢ are proportional to the roots of the equation

1

w® — w? + w + =0
k+2  V(k+2)?

and satisfy (a — b)(b — ¢)(c —a) > 0.

P 1.143. If a,b,c are real numbers such that
b+ e+ ca >0,

then
a? +b* + & + k(ab+ bc+ ca) > 0,

14 V214 8VT
B 2

where

k ~ 2.7468.

(Vasile Cirtoaje, 2012)
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Solution. Let us denote
p=a+b+c, q=ab+bc+ca, r=abc.

At least two of a, b, c have the same sign; let b and ¢ be these numbers. If p = 0, then the
hypothesis a®b + b*c + c¢a > 0 can be written as

—(b+ )b+ bc—c*(b+e) > 0.

Clearly, this inequality is satisfied only for a = b = ¢ = 0, when the desired inequality is
trivial. Consider further that p # 0 and use the contradiction method. It suffices to prove
that

a? +b* +c + k(ab+ b+ ca) < 0

involves
a*b+ e+ Pa < 0.

Since the statement remains unchanged by replacing a, b, ¢ with —a, —b, —c, respectively, we
may consider p > 0. In addition, due to homogeneity, we may assume p = 1. From the
hypothesis a® + b* + ¢ + k(ab + bc + ca) < 0, we get

-1
< —— &~ —1.339.
15 %2
Write the desired inequality as

Zab(a2 +b%) + Za3b — Zab?’ <0,

D ab(a® + %) = q(p® —2q) —pr=q—2¢" —r

Since

and

Zagb - ZabS = —p(a—Db)(b—c)(c—a) < py/(a—b)2b—c)2(c—a)?
= VP2 — 44> + 2p(9q — 2p*)r — 2Tr2 = \/q? — 4> +2(9q — 2)r — 2712,

it suffices to prove that

V@ =43 + 209 — 2)r — 2Tr2 < r +2¢° — q.
Since ¢ < —1, we have
1—2q
3

2 2 2\ 3 3 4
9 2,9 2 a®+b*+¢ 1—2¢q 1—2q
" ave ( 3 ) ( 3 < 3 ’

> 1,

hence

which implies
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Therefore,

— > 0.
3 q

1-2¢\° 2 — 1 1
q) Lo (2¢ —1)(Tg+1)
9
By squaring, the desired inequality becomes

r—|—2q2—q>—(

@ —4¢° +2(9q — 2)r — 27r? < (r +2¢* — q)?,
2+ (1—=5¢+¢@)r+q¢t>0.
This is true if the discriminant
D=(1-5¢+¢)?—28¢" =[1-5¢+ (1+2V)F|[1 — 5¢+ (1 — 2V7)¢¥

is negative. Since
1—5¢+ (1+2V7)g* >0,

we only need to show that f(¢q) > 0, where
f(@) = (V7 = 1)¢* +5¢ — 1.
Since the derivative
FllQ) =202VT—1)g+5 < 22VT—1)(=1) +5=T7—4/7 <0,
f(q) is strictly decreasing, hence

—1

fa)> (m) 0.

For p = 1, the equality holds when (a — b)(b — ¢)(c — a) < 0 and

~1 — ~1
= —, r = = .
Ry ;) VT Vik—2)

In general, the equality holds when a, b, ¢ are proportional to the roots of the equation

1 1
3 2 w + =0
k—2 VT(k —2)2

and satisfy (a —b)(b—¢)(c—a) <0.

P 1.144. If a,b, c are real numbers such that

—1
k(a* +b* + c¢*) = ab + be + ca, ke(7,1>,
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then 3 4 g X
a“o—+b°c+c
<
= (a? 4+ b2+ 2)? — B
where
7(1—k)
_ - _
270, = 1+ 13k — 5k 2(1 —k)(1+ 2k) T
7(1—k)
270, = 1+ 13k — 5k +2(1 — k) (1 + 2 —
75k + 13k — 5k* 4+ 2(1 — k)(1 + 2k) Ty

(Vasile Cirtoaje, 2012)
Solution. Let us denote
p=a+b+c, q=ab+bc+ca, r=abc.
The case p = 0 is not possible because p = 0 and k(a® + b* + ) = ab + bc + ca lead to
ab+ bc+ ca =0,
a(b+c)+bc=0,
—(b+¢)* +bc =0,
b 4+ be+ 2 =0,

which involves a = b = ¢ = 0. Consider further that p # 0. Since the statement remains
unchanged by replacing a, b, ¢ with —a, —b, —c, respectively, it suffices to consider the case
p > 0. In addition, due to homogeneity, we may assume p = 1, which implies

(a) Write the desired left inequality as

20 (a® + b2+ *)? < Z ab(a® + b*) + (Z a’b — Z ab3> :

Since
Y oat=p—2q=1-2

> ab(a® +b%) = q(p® — 2q) —pr =q—2¢* — 1,
Za3b - Zab3 = —pla—b)(b—c)(c—a) > —py/(a—b)2(b—c)%(c —a)?

4(p? — 3q)® — (2p® — 9pq + 27r)? 4(1—3q)? — (2 —9q + 27r)?
- 27 - 27 ’

it suffices to prove that

4(1—3¢)® — (2= 9q + 27r)?
27 '

s 0 02—
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Applying Lemma below for

1 —1
a=—, f=—, z=2(1-39)\/1—-3q, y=2-—9q+27r,

we get

4(1 — 30)3 — (2 — 2 — — _
\/ (1—3¢)3 — (2 —9q + 27r) L, 27% - 4(1—3¢)/7(1 3q)’
27 27 27

1-3
(1 - 3¢)1/ 7q—2+9q—WT:0

Thus, it suffices to show that

with equality for

2—9q¢ 4(1—-3q)/7(1—3q
200,(1 — 2¢)* < ¢ —2¢° + o _ 4 )27( ),

which is equivalent to

7(1— k)

<1413k —5k2—2(1 - k)(1 S
2oy, < 1+ 13k — 5k% — 2(1 = k)(1+ 2k)y [ =~

For p = 1, the equality holds when (a — b)(b — ¢)(c —a) > 0, ¢ = k/(1 + 2k) and

-3 r
q—2—|—9q: 1—|—12k’

27r = (1 — 3q)

where
1—k%

=bk—24(1—k){/|=0—=——.
" 0= s
Therefore, the equality holds when a, b, ¢ are proportional to the roots of the equation

&
142k 27(1 + 2k)

w?’—wQ—i—

and satisfy (a — 0)(b — ¢)(c —a) > 0.
(b) Write the desired right inequality as

2B1(a* + b* + *)? > Z ab(a® + b%) + (Z a*h — Z ab3) :

Since

Za2:p2—2q:1—2q,
Zab(a2+b2) =q(p* —2q) —pr=q—2¢* —,

Y @b = ab® = —pla—b)(b—c)(c—a) < py/(a—b)*(b—c)(c—a)
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4(p? — 3q)® — (2p3 — 9pq + 27r)? 41 —3¢)3 — (2 —9q + 27r)?
—F 27 - 27 ’

it suffices to prove that

4(1 —3q)% — (2 —9q + 27r)?
27 '

2Bk(1—2Q)22q—2q2—r+\/

Applying Lemma below for

1 1
a=—, fB=—, =2(1-3¢)\/1—-3q, y=2-—9q+27r,

we get

VMu—wP—@—%+Wm{__2—%<40—@)7u—@)
27 ST 27 :
with equality for

1—3¢q
(1—3q)

Thus, it suffices to show that

+2—9¢+27r =0.

2—9¢g 4(1—3q)\/7(1—3q)
92> o — 942
206(1=2¢)" 2 ¢ = 2¢" + ——— + o7 :

which is equivalent to

(1= k)

276, > 1+ 13k — 5k*> +2(1 — k)(1 + 2 )
70k > 1+ 13k — 5k + 2(1 — k)(1 + 2k) oy

For p = 1, the equality holds when (a — b)(b —¢)(c —a) <0, g = k/(1 + 2k) and

where
1—-k%&

Therefore, the equality holds when a, b, ¢ are proportional to the roots of the equation

k r
32 i 0 _
W Y T k)

and satisfy (a —b)(b—c¢)(c —a) <0.

Lemma. If o, 3, x,y are real numbers such that
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then

o FF < BT 4y
Br +y/a?+ (52 =0.

with equality if and only if

Proof. Since
xyo? + 32+ By > [Ble + By = |Blly| + By > 0,

we can write the inequality as
2
o?(2? —9?) < (:c\/oﬂ + B2 + ﬁy) ,

which is equivalent to

(B2 +yv/e? + ) > 0.

P 1.145. If a,b, c are positive real numbers such that a + b+ ¢ = 3, then

a? N b2 N 2 >3
da+0b2  4b+c?  4dc+a? T 5

(Michael Rozenberg, 2008)

Solution. By the Cauchy-Schwarz inequality, we have

3 @ [NaRatof  @2Ya+3ab)
da+0 = Y (da+b)(2a+c)> Y (da+b2)(2a+c)?

Therefore, it suffices to show that

5(25 2+ 3 ab) >33 (da+8)(2a + o)

which is equivalent to the homogeneous inequalities
2
5(23 > ab) >3 Ha(a+b+c) + 307 (2a + o),
2
5 (2 Z a’® + Z ab) > Z(4CL2 + 3b? + 4ab + 4ac)(4a* + ¢ + 4ac),

22a4+52a2b2 Zacha—i—GZabB.
SZabg < (Za2>2,

Using Vasc’s inequality
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it is enough to prove the symmetric inequality

22a4+52a2b2 2(1602&—!—2(2&2)2,

which is equivalent to the well-known inequality

Z a’h? > abcz a.

The equality holds for a =b=c=1.

P 1.146. If a,b, c are positive real numbers, then

a2+bc+62+ca+c2+ab< (a+b+c)P
a+b b+c c+a ~ 3(ab+bc+ca)

(Michael Rozenberg, 2013)

Solution (by Manlio Marangelli). Write the inequality as

Z(a2+bc_a) < 3((a+b+c)3 Clatbio),

a+b ab + bc + ca)

b(c —a) (a+b+c)?
Z a+b S3(0Lb+bc—|—ca)_(CHFZH_C)’
STo(c® —a?)(b+c) < (a+b+c)? C(at+bto),

(a+0)(b+c)(c+a) ~ 3(ab+ be + ca)
3> ab® —3abc  a < (a+b+c)?

(a+0)(b+c)(c+a) ~ ab+bc+ca Sla+bto)
By the known Vasc’s inequality
32(11)3 < (Za2>2 ,
it suffices to prove the symmetric inequality
(3 a2)? = 3abe Y a - (a+b+c) 3a+ b o).

(a+b)(b+c)(c+a) ~ ab+bc+ ca

Using the notation
p=a+b+c, q=ab+bc+ca, r=abc,

this inequality can be written as

(»* —2q)* —3pr _p*
pg—r q
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which is equivalent to
¢*(p* — 4q) — (p* — 6g)pr > 0.

Case 1: p* —6g > 0. Since 3pr < ¢*, we have

2 2_6 22 2_3
q2(p2—4q)—(p2—6q)p7“2q2(p2—4q)—q(p3 Q): Q<p3 Q)ZO

Case 2: p?> —6¢ < 0. Using Schur’s inequality of fourth degree

6pr > (p* — q)(4q — p°),
we get

q2(p2 o 4q) o (p2 o 6q)pr > q2(p2 o 4q) . (p2 — 6Q)<p26_ Q)(4q _pQ)

_ =39 — 49 0.

6 =

The equality holds for a =b=c=1.

P 1.147. If a,b, c are positive real numbers such that a + b+ ¢ = 3, then

Vab? + be2 + Vbe2 + ca? + Vea? + ab? < 3v/2.
(Nguyen Van Quy, 2013)

Solution (by Michael Rozenberg). By the Cauchy-Schwarz inequality, we have

(S var i) < 3 S i+

a—+c

Therefore, it suffices to show that

Zab+c2< 9
a+c ~ ab+bc+ca’

which is equivalent to the homogeneous inequality

Zab—I—c2 < (a+b+c)
a+c ~ 3(ab+be+ ca)’

which is the inequality from the previous P 1.146. The equality holds for a =b=c=1.
O
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P 1.148. If a,b,c are positive real numbers such that a® + b° + ¢® = 3, then

a? v P

—+ =+ —=2>3.

b c a
Solution. We will prove the inequality under the more general condition a™ + b™ + ¢ = 3,

where 0 < m < 21/4. First, write the inequality in the homogeneous form

2 2 2 m m m\ 1/m
A e e R T
b c a 3

By the Power Mean inequality, we have

<am+bm+cm 1/m Q2l/4 4 p2L/4 4 21/4 4/21
S B <
o) ()

Thus, it suffices to show that

a2 2 Q2l/4 4 p21/a 4 21/4 4/21
—+—=—+—=2>3 )
b c a 3

By the known Vasc’s inequality in P 1.125, namely
(@® +y* +2°)° 2 3(2°y + v’z + 2°n),  w,y,2 €R,

we have
3

a2 b 2\ a’ b3 c
4248 =3 +——+ .
(5+2+%) =3 (= 7m)

Therefore, it suffices to prove the symmetric inequality

a3 . B3 . 3 . <a21/4 4p21/4 4 021/4>8/21
Vbe  Vea  ab ~ 3 7
which is equivalent to
a3 b3 3\ 24
+ + 21/4 21/4 21/4\ 2
Vbe  Vea  ab S 3( +0/% +c
3 - 3 ’
Setting
a=az¥", b=y, =Y, x,y,z > 0,

the inequality becomes

21/4 3/2 3/2 3/2\ 2
<—x+y+z> 23(:vyz)3/4(x/ Y +Z/) .

3 3
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By the Cauchy-Schwarz inequality, we have
(ZL‘—}-y—I—Z)(CL‘Q +y2 —|—ZQ) > (ZE3/2 +y3/2 _1_23/2)2‘

Thus, it is enough to prove that

<:v+y+2>17/4 S
— >

Due to homogeneity, we may assume that x + y + z = 3, when the inequality becomes
(wy2)*"(2® +y* + 2%) < 3.

Since
1

> —=,
V2

this inequality follows from the inequality in P 2.89 from Volume 2:

W~

(zyz)f(2* + 42+ 2%) <3, k>

Sl

The proof is completed. The equality holds for a =b=c=1.

P 1.149. Let P(a,b,c) be a cyclic homogeneous polynomial of degree three. The inequality
P(a,b,c) >0
holds for all a,b,c > 0 if and only if the following two conditions are fulfilled:
(a) P(1,1,1) = 0;

(b) P(0,b,c¢) >0 forall b,c>0.
(Pham Kim Hung, 2007)

Solution. The conditions (a) and (b) are clearly necessary. Therefore, we will prove further
that these conditions are also sufficient to have P(a,b,c) > 0. The polynomial P(a,b,c) has
the general form

P(a,b,c) = A(a® + b + ) + B(a*b + b*c + c*a) + C(ab® + bc* + ca®) + 3Dabc.
Since
P(1,1,1)=3(A+B+C+ D), P(0,1,1)=24A+B+C, P(0,0,1) = A,
the conditions (a) and (b) involves

A+B+C+D>0, 2A4+B+C>0, A>0.
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Assume that a = min{a, b, ¢}, and denote

b=a+p, c=a+q, p,q>0.
For fixed p and ¢, define the function

fla) =P(a,a+p,a+gq), a>0.

Since

we have the derivative

f'(a) =3A(a®> +b* + ) + (B+ C)(a + b+ c)* + 3D(ab + bc + ca)
= (BA+ B+ C)(a*+b* + ¢®) + (2B + 2C + 3D)(ab + be + ca)
= (BA+B+0O)(a* +b*+c —ab—bc—ca) +3(A+ B+ C+ D)(ab+ bc + ca).

Because f’(a) > 0, f is increasing, hence f(a) > f(0), which is equivalent to
P(a,b,c) > P(0,p,q) = P(0,b,c).

According to the condition (b), we have P(0,b,¢) > 0, hence P(a,b,c) > 0.
Remark 1. From the proof of P 1.149, the following statement follows:

e Let P(a,b,c) be a cyclic homogeneous polynomial of degree three. The inequality
P(a,b,c) >0
holds for all nonnegative real numbers a, b, ¢ satisfying
a<b<ece

if and only if P(1,1,1) > 0 and P(0,b,c¢) >0 for all0 <b < c.
Remark 2. From P 1.149, using the substitution

a=y+z, b=z4+2x c=x+y, x,y,z > 0,

we get the following statement:

e Let P(a,b,c) be a cyclic homogeneous polynomial of degree three, where a,b,c are the
lengths of the sides of a triangle. The inequality

P(a,b,c) >0

holds if and only if P(1,1,1) > 0 and P(b+ ¢,b,¢) > 0 for all b,c > 0.
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P 1.150. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then
8(ab + b%c + c*a) + 9 > 11(ab + be + ca).
Solution. Write the inequality in the homogeneous form P(a,b,c) > 0, where
P(a,b,c) = 24(a®b + b°c + c*a) + (a+b+c)* — 11(a + b+ c)(ab + bc + ca).

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0,b,¢) > 0 for all b,¢ > 0.
We have
P(1,1,1) =0

and

P(0,b,¢) = 24b%c + (b + ¢)® — 11be(b + ¢)
= b® + 16b%c — 8bc* +
> 16b*c — 8bc® + ¢* = c(4b — ¢)? > 0.

The equality holds for a =b=c=1.

P 1.151. If a,b, c are nonnegative real numbers such that a + b+ c = 6, then
a® +b* + ¢ + 8(a’b + b*c + c*a) > 166.
(Vasile Cirtoaje, 2010)

Solution. Write the inequality in the homogeneous form P(a,b,c) > 0, where

b 3
P(a,b,c) = a® + b* + ¢ + 8(a’b + b*c + c*a) — 166 (u) .

6

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0,b,c) > 0 for all b,¢ > 0.

We have 83 95
P1.1.1)=2T— —=—>0
(1L,1,1) 4 4

and

P(0,b,c) = b*+ ¢ + 8b’c — 18—038(19 +¢)?

1
= 1—08(25193 + 615b%c — 249bc* + 25¢°)

1

= —(5b— ¢)? 25¢) > 0.
g (50— )*(b+25¢) 2 0

The equality holds for a =0, b =1, ¢ = 5 (or any cyclic permutation).
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P 1.152. If a,b, c are positive real numbers such that abc = 1, then
atbecs > 1.
(Vasile Cirtoage, 2004)
Solution. Write the inequality as
a b c
—Ina+-Inb+ —Inc > 0.
b c a

Since the function f(x) = xInx is convex for x > 0, Jensen’s inequality gives

1 1 1 b abyec
—-alna+—--blnb+ - -clnec > E+_ € .ni By
’ ¢ ¢ boe a) gty
Since
a b ¢
—+-4+-2>3,
b ¢ «a
it remains to show that
b c>1+1+1
b ¢ a b ¢ a

which is the inequality from P 1.51, (a). The equality occurs for a =b=c = 1.

P 1.153. If a,b,c are nonnegative real numbers, no two of which are zero, then

b 17 b
— +C+7><a+ +C>.

b+c c+a a+bd =3 \a+b btc cHa
(Vasile Cirtoaje, 2007)
Solution. Write the inequality as P(a,b,c) > 0, where
P(a,b,c) = (3a—17b)(a+b)(a+ c) +21(a+b)(b+ ¢)(c+ a)
=3(a® + 0> + ) — 10(a®b + b*c + c*a) + T(ab® + bc® + ca?).

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0,b,¢) > 0 for all b,c > 0.
We have P(1,1,1) = 0 and

P(0,b,¢) = 3(b* + *) — 10bc + Tbc?.
Consider the nontrivial case b, ¢ > 0. Setting ¢ = 1, we need to show that f(b) > 0, where

f(b) = 3b° — 106*> + 7b + 3.
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Case 1: b > 3. We have
f(b) >3b° — 100> +7b = (b—1)(3b—T7) > 0.
Case 2: 2 < b < 3. We have
f(b) > 36> — 106> + 8b = b(b — 2)(3b — 4) > 0.
Case 3: 0 < b < 2. We have
f(b) > 3b> — 100 + 7b + 1.5b = b(3b* — 10b + 8.5) > 3b(b — 5/3)* > 0.

The equality holds for a = b = c.

P 1.154. Let a,b,c be nonnegative real numbers, no two of which are zero. If 0 < k < 5,

then ka+b kb k 3
a+ n +C+ C+a2_(l{;+1).
a+c b+ a c+b 2

(Vasile Cirtoaje, 2007)

First Solution. Write the inequality as

b+c+a 3+ka+b+c 3>0
a+c b+a c+b 2 a+c b+a c+b 2) 77

Since

b . c . a 3 >0
a+c b+a c+b 277
it suffices to consider the case k£ = 5, when the inequality can be written as follows:

> (Ba+b)(b+a)(c+b) >9(a+c)(b+a)(c+b),
2Zab2+2a3232a2b,
4 . 1 .
2 3 3 2
2> "ab +§Za —§Zb >3 a’,
> (6ab® + 4a® — b° — 9a’b) > 0,

(a—b)*(4a —b) + (b —¢)*(4b — ¢) + (¢ — a)*(4c — a) > 0.

Assume that ¢ = min{a, b, ¢}, and use the substitution
b=a+p, c=a+tq, pqg=20.
The inequality becomes

p’(Ba—p) + (p— q)*(3a+4p — q) + ¢*(3a + 4q) > 0,



Cyclic Inequalities 221

2Aa+ B >0,
where
A=p*—pg+¢*, B=p’ =3p°q+2p¢"+ ¢’
Since A > 0, we only need to show that B > 0. For ¢ = 0, we have B = p? > 0, while for
q > 0, the inequality B > 0 is equivalent to
1>x(z—1)(2—2),

where x = p/q > 0. For the non-trivial case x € [1,2], we get this inequality by multiplying
the obvious inequalities
1>x2—-1

and
1>z(2—x).
The proof is completed. The equality holds for a = b = c.
Second Solution. We can write the inequality in the form P(a,b,c) > 0, where P(a,b, c)
is a cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices to show

that the desired inequality holds for a = b = ¢, and also for a = 0. If a = 0, then the
inequality becomes

1 k 3
r+k+—+——2>-(k+1),

r 1+x 2
kx(x —1
z+1
where
b
r=->0.
c
For 0 < x <1, we have
kx(x —1
2o —1) x>0 2@l
rz+1
For 1 < x <5, it suffices to consider the case k = 5, when the inequality is equivalent to
Sbr(r —1)
2(x — 1)? > T/
(-1 4oz 0,

23 =322 + 224+ 1>0,
z(x —2)° + (z —1)* > 0.

Remark. As in the second solution, we can prove that the inequality in P 1.154 holds for

0 <k <k, ko = \/13 + 16v/2 ~ 5.969.

For a = 0 and k = kg, the inequality becomes

k -1 b
2(m—1)2+x2M, r=->0,
r+1 c
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22 — (ko + )2 + (kg — 1)z +2 >0,

1
(z — m)” (55' + —2) >0,
Ty

1+v2+V2v2 -1

To = 5 ~ 1.883.

where

b
If & = ko, then the equality holds for a = b = ¢, and also for a = 0 and — + (E) = 1++/2 (or
c

any cyclic permutation).
]

P 1.155. Let a,b, c be nonnegative real numbers. Prove that

(a) if k < 1—i, then

5vV5
ka+b kb+ c kc+a 2§(k+1).
2a+b+c a+2b+c a+b+2c 4
2
b)if k >1+ ——=, then
(b) if k> G
ka+b kb+ c kc+ a 3
< —(k+1).
2a+b+c+a+26+c+a+b~l—20_4( +1)

(Vasile Cirtoaje, 2007)

Solution. (a) Write the inequality in the form P(a,b,c) > 0, where P(a,b,c) is a cyclic
homogeneous polynomial of degree three. According to P 1.149, it suffices to show that the
desired inequality holds for a = b = ¢, and also for a = 0. For a = 0, the inequality becomes

T +kx+1+ k
r+1 2z+1 x—|—2_4

(x+2)(20* =2+ 1) > k(z +1)(22* — 2 + 2),

(k+1)

where .
r=-2>0.

c

It suffices to consider the case k =1 — \/_ when the inequality is equivalent to
(x — ) ( > >0,

where

3—-+5

To = .




Cyclic Inequalities 223

The equality holds fora =b=c. lf k =1—
b

2
——, then the equality also holds for a = 0 and
55 q y
g = 3 (or any cyclic permutation).

(b) According to P 1.149, it suffices to show that the desired inequality holds for a =
b = ¢, and also for a = 0. If a = 0, then the inequality becomes

T +k::c+1+ k 3(]{;—1—1)
z+1 2z+1 x+2_4

(x+2)(22° —x +1) < k(x4 1)(22° — z +2),

where ;
r=-2>0.
c
It suffices to consider the case k =1+ —— \/_ when the inequality is equivalent to
( 2 > >0
ZL’ — T ;
2 5v5 a2)
where

345
-2

The equality holds fora =b=c. lf k =1+

b
-+

2
——, then the equality also holds for a = 0 and
5 \/5 q Yy

= 3 (or any cyclic permutation).

SO

P 1.156. Let a,b, c be nonnegative real numbers, no two of which are zero. If k < 3 then

ka+b+kb+c+kc+a>k+1
2a+c 2b+a 2c+b '

(Vasile Cirtoaje, 2007)

Solution. We can write the inequality in the form P(a,b,c) > 0, where P(a,b,c) is a cyclic
homogeneous polynomial of degree three. According to P 1.149, it suffices to show that the
desired inequality holds for a = b = ¢, and also for a = 0. For a = 0, the inequality becomes

k1 k

— >k4+1
+2+2x+2 x = +h
ka?
2 2
— 1) >
T )_93+2’
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224
where

b

r=->0.

c

It suffices to consider that k = 23/8, when the inequality is equivalent to
2322
2% — 2 + 1 >
’ rri= 8(x+2)

1623 — T2 — 242 + 16 > 0,
16z(x — 1)* + (52 — 4)* > 0.

The equality holds for a = b = c.
Remark. For k = 2, we get the inequality in P 1.21.

P 1.157. If a,b, c are positive real numbers such that a < b < ¢, then
a b ¢ a+b b+c cHa
—+-+-+3=>2 + + .
b ¢ a b+c c+a a-+b

Solution. Write the inequality as follows:
Z<——1> >QZ<[ZI; )
Z(a—b) (%+cia) =
(a—b) (l—l— 2 )+(b—c) (l—k 2 >+[(c—b)+(b—a)] <é+b—?—c> >0,

b c+a ¢ a-+b

1 2 1 2 1 2 1 2
—a) (= - —n (= _ >
(b a)( * )+<C b)(a+b+c c a—l—b>_07

a b+ec b c+a
2 1 2 }
— | >0

!
= |- 5raeTa

The inequality is true since
2 cla+b+c)—ab a(c—10) -0
(b+c)(c+a) —

ab (b+c)ct+a)  (b+c)(c+a)

and
1 2 _bla+b+c)—ac c(b—a))

ac (b+c)a+b) (b+e)a+b) ~ (b+c)a+b) =

The equality holds for a = b = c.
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P 1.158. Ifa>b>c¢ >0, then

3a+b+3b+c+3c+a>4
2a+c 2b+a 2c+0b

(Vasile Cirtoaje, 2007)

First Solution. Write the inequality as follows:

> (3a+b)(2b + a)(2c + b) > 4(2a + ¢)(2b + a)(2c + b),

2Za3+132ab2+72a2b+42ab024(4Zab2+22a2b+9ab0),
22a3+6ab0232ab2+2azb,

2E(a,b,c) > F(a,b,c),

where

E(a,b,c) = a® + 3abc — Z ab® — Z a’b,
F(a,b,c) = Zab2 — ZaQb.

The inequality is true since E(a,b,c) > 0 (by Schur’s inequality of degree three) and
F(a,b,c) =(a—b)(b—c)(c—a) <0.
The equality holds for a = b = ¢, and also for a = b and ¢ = 0.

Second Solution. Denote

and write the inequality as follows

Z 3(1"‘1)_% ZO’
2a+c 3

Za+3b—4020’

2a+ ¢
a+3b—4c b+ 3c—4a c—|—3a—4b>0
2a + ¢ 2b+a 2c+b 7

r+4y dxr+ 3y 3x—y>0
2a+c 2b+a @ 2c+b

TA+yB >0,
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where
1 4 3
B 2a—|—c_2b+a+20+b
AR 1 1 1
B (Qa—l—c_ Qb—l—a) +3(26+b_ Qb—i-a)
B - +y 3(z + 2y)
C (2a+c)(2b+a)  (2b+a)(2c+ D)
and

4 3 1
C2a4+c¢ 2b+a 2ec+b

_3 1 1 n 1 1
- 2a+c¢c 2b+a 2a+c¢c 2c+b

3(—z+y) 20 +y

(2a+¢)(2b+a) (2a+c)(2¢+b)

Thus, the inequality is equivalent to
(= 4+ y)(2c+b) +3(z 4+ 2y)(2a +¢) + y[3(—x + y)(2c+b) — 2z +y)(2b+ a)] > 0,
2%(6a — b+ ¢) + xy(10a — 6b + 2¢) — y*(a — b — 6¢) > 0,
It suffices to show that
zy(10a — 6b + 2¢) — y*(a — b — 6¢) > 0,
which is true is
z(10a — 6b + 2¢) — y(a — b — 6¢) > 0.
We have
z(10a — 6b + 2¢) — y(a — b — 6¢) = 2(10x + 4y + 6¢) — y(z — 6¢)
= 102” + 3xy + 6¢(z +y) > 0.

Third Solution. According to Remark 1 from P 1.149, it suffices to prove that the in-
equality holds for ¢ = 0 and a > b; that is, to show that

3+1+ 3 r>4
-+ — T
2 2 24z -
where
_ %5
T = — )
b=

The inequality is equivalent to
203 — 22 —3x4+2>0,

(x—1)(22° +2—-2)>0
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P1.159. If a>b>¢c>0 and ab+bc+ ca=2, then

Va+ab+Vb+bec+ e+ ca> 3.
(KaiRain, 2020)

Solution. Consider the main case a > b > ¢ and show that

Va+ ab+ Vb +be+ e+ ca > 3.
For ¢ = 0, we need to show that ab = 2 involves

\/a+ab+\/i_)23,

that is

2
\/a+2—|—\/j23.
a

a
Denoting = = \/g , we need to show that

1
V222 +2>3— —.
x

2(z* +1) > (3— 1>2

This is true if

X

for x > 1/3, which is equivalent to the obvious inequality
(x — 1)*(22* + 42— 1) > 0.

Using this result, it suffices to show that

2
\/a+ab~|—\/b—|—bc+\/c+ca2\/a—l—2—|—\/g,

that is equivalent to

2
Vetea>Va+2—Va+ab+ \/j—\/b—kbc,
a

2 —ab 2 —ab — abc
ve+ca > + )
“Va+2++Va+ab  V2a+ avb+ be

c(a+b) c(a+b— ab)
ve+ca > .
“Va+2++va+ab  V2a+ avb+ be

So, we need to show that

— Vve(a+b) Ve(a+b—ab)
btaz \/a+2+\/a+ab+\/%+a\/b—l—bc'
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We get this inequality by summing the inequalities

V1i+a Ve(a+b) V1i4+a _ e(la+b—ab)
> , > .
2 Vva+2++a+ab 2 V2a + av/b + be

2
From ab + bc 4 ca = 2, it follows 3 < ab<2and b < /2. Since

Va+ab<vVa+2

and

a\/gé\/%, a\/gﬁavb+bc,

it suffice to prove the inequalities

Vve(a+b) Ve(a+b—ab)
\/1+a2m, 14+a> b )

By squaring, the first inequality becomes

a(l+a)(1+b) > c(a +b)?,
a(l+a)(1+b) > (a+b)(2— ab).
Since 2a > a + b, it suffices to show that
(I1+a)(140b) >2(2—ab),

that is
a+ b+ 3ab > 3.

Indeed, we have

2
a+ b+ 3ab > 2vVab + 3ab > 2\/;+2>3.
Since v/b > /¢, the second inequality is true if
avli+a>a+0b—ab,

that is

a(V1l+a—1)>b(1—a).
For the nontrivial case a < 1, it suffices to show that
a(vVl+a—1)>a(l—a),

that is

Vit+a+a>2.
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Since 3a® > ab + bc + ca = 2, we have

/ 2 2
vVi+a+a> 1+\/;+\/;>2.

The inequality is an equality for a =2, b=1, ¢ = 0.
Remark. The following sharper inequality holds in the same conditions:
\/a+ab+\/l;+\/52 3,

with equality fora =2,b=1, c=0.
For fixed b, according to the relation ab+ bc+ ca = 2, we may consider that a is a function
of ¢. Differentiating this equation, we get

,__a+b
b+’
S (a+b+(b—c)a"  (a+0b)(a—Db+2c)
(a+c)? B (a+c)3

Write the required inequality as f(c) > 0, where

fle)=vVat+ab+Vb++ec—3, cel0,b].
We have
av1+b N 1
2\/a 2\/c’
vy (20" — (d)*)V1+b 1
f (C> - 4q3/2 432

(a+b)(a® + 3ac — 3ab — be)v/1 + b 1

B 4a3%(a + ¢)3 42

f'(e) =

Since
a’® + 3ac — 3ab — be = a® — 3a(b — ¢) — be < a?,

we have
" (a+b)y/a(l+b) 1
File) < 4(a+ c)? 4¢3/2°

From b? < ab < ab+ bc+ ca = 2, we get b < /2, v/1+ b < 4, hence
3
(a+c)3 4¢3/2 a+c (\/_)
>

Since f is concave and 0 < ¢ < b, it is enough to show that f(0)
and f(b) > 0 (for ¢ = b and 2ab + b*> = 2). We have

0 (for ¢ =0 and ab = 2)

2+2b Vg LoV E-b)

0= b(2 +2b) — bvb+3b
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2
For ¢ = b, when 2 = 2ab + b* > 3b?, hence b < \/;, we have

_ A+ h2-?) . A
f(b>—\/ % +2vh 3_\/2b(1+b)(2—b2)—4b\/5+6b’

2
where, for z = vb < </;< 1,

A=(142%)(2—a2") —222(3 — 22)% = (1 — 2)(2 + 22 — 142% 4 102° + 2 + 25).
Since

2+ 21 — 142 +102° + 2* +2° =2 — 1322 + 132° + (1 — 2)?2(2 + 3z + 2?)

— 1322

1323 n 1323
2 2

1323 1323 169
z3§/2-Tx-Tx—13x2=(3{’/7—13)35%0,

we have A > 0, hence f(b) > 0.

> 241323 — 1322 =2+

P 1.160. If a > b > ¢ are nonnegative numbers such that ab+ bc+ ca = 3 | then

Va+ 2ab+ Vb + 2bc + e+ 2ca > 4.
(Vasile Cirtoage, 2020)

Solution. We will prove the sharper inequality

Va+2ab+ Vb +bec+ e+ ca > 4.
For ¢ = 0, we need to show that ab = 3 involves
\/a+2ab—|—\/1;2 4,

that is

\/a+6+\/§24.
a

It is easy to show that this inequality is true for all @ > 0. Using this result, it suffices to
show that

\/a+2ab+\/b+bc+\/c+ca2\/a+6+\/g,
a
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that is equivalent to

Vet ca>Va+6—+Va+ 2ab + \/3—\/b+bc,
a

2(3 —ab 3 —ab— abc
ve+ca > + )
T Va+6++va+2ab  V3a+ avb+ be
9 _
T > c(a+0b) cla+b— ab)

T Va+6++vVa+2ab  V3a+aVbh+be

So, we need to show that

T a> 2y/c(a+b) N Ve(a+b—ab)
a .
T Va+6++va+2ab  V3a+avb+be

We get this inequality by summing the inequalities

L —H&zwi\ﬁﬁ(aéﬁmb’ (- BWITas Vela+b— ab)

k:ﬁ
3

From ab 4+ bc 4 ca = 3, it follows 1 < ab < 3 and b < V3. Since

where

Va+2ab < Va+ 6,

the first inequality is true if

Vve(a+b)
EvV1+a> Y——=t,
“= va+ 2ab

that is
2a(1 + a)(1 + 2b) > 3c(a + b)?,

2a(1+a)(1+ 2b) > 3(3 — ab)(a + ).
Since 2a > a + b, it suffices to show that
(14 a)(1+2b) > 3(3 — ab),
that is
(504 1)a +2b > 8.
For a > b > 1, this inequality is obvious. For 0 < b < 1, from

3—ab
a+b

b>c=

we get
S 30
a .
-2

V3a + avb + be’
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Therefore,

(Bb+1)E-)

50+ 1)a+2b—8 >

2b
_3—b+30? =56  (1—10)(3+2b+5b?) -0
N 2b N 2b -

1
Since 1 — k > 7 the second inequality is true if

4y/c(a+ b — ab)
vVi+a> ,
" V3a+avb+be

Consider the nontrivial case a + b — ab > 0, and claim that v/3a > av/b+ be, which is
equivalent to 3 > ab + abc. Indeed, we have

S—ab—abc:3—ab—ab(3_ab) _ (3 —ab)(a+b—ab) > 0.
a+b a+b

Thus, it suffices to show that

Jita> 2\/E(a+b—ab)'

avb+ be

Since ; ;

atb—ab <1,

a
it suffices to show that
c
V1 > 2
Tz it

that is
b(1+a)(l+c) > 4c.

Since ab > 1, we have
b(l+a)>b+1>c+1,

therefore,
b(l+a)(l+c)—4c>(1+c)P—4c=(1-¢c)?>0

The inequality is an equality for a =3, b=1, ¢ = 0.

P 1.161. If a,b,c are nonnegative real numbers such that ab + bc + ca = 3, then

Va+3b+Vb+3c+Ve+3a> 6.
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Solution. Use the substitution
Va+3b=2x, Vb+3c=2y, +Vc+3a=2z,

which yields

a_:v2_3y2+922 a_yz—322+9x2 a_22_3$2+9y2
: 7 o 7 0= - :
ab + be + ca = _3(.2?4 +y4 +Z4) + 1O($2y2 _|_y2z2 +Z2.T2)
7 .

So, we need to show that
r+y+z2>3

for
3(at + yt 4+ 2Y) + 21 = 10(2%y® + 227 + 222%).
By the contradiction method, we need to prove that

r+y+z2<3

involves
3t + vt 4+ 2Y) + 21 > 10(2%y® + y22% + 222?).
It suffices to prove the homogeneous inequality f(z,y,2) > 0, where

flz,y,2) =81(a* + y* + 2) + T(x + y + 2)* — 270(2®y® + y*2* + 2°2?).

According to P 3.68 from Volume 1, it is enough to show that f(0,y,z) > 0 and f(z,1,1) >0
for z,y,z > 0. We have

F(0,y,2) = 81(y* + 2%) + T(y + 2)* — 270y%2>

> 162y%2% + 1129722 — 270y%2% = 4y%2* > 0

and
fz,1,1) = 81(z* +2) + 7(x + 2)* — 5402? = 4(222* + 142® — 932* + 562 + 1)

= (z — 1)*(222% + 587 + 1) > 0.

The equality occurs for a =b=c = 1.

P 1.162. If a,b,c are the lengths of the sides of a triangle, then

b b
0(5+2+5)>9(~+7+2).
b ¢ «a a b ¢
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Solution. According to Remark 2 from the proof of P 1.149, it suffices to show that
P(1,1,1) > 0 and P(b+ ¢,b,c) > 0 for b,c > 0, where

P(a,b,c) = 10(ab® + bc* + ca®) — 9(a®b + b*c + c*a).
We have P(1,1,1) =3 > 0 and
P(b+c,b,c) =0b> — Tb%c+ 12bc® + .

We need to show that
22— T2 +120+1 >0,

where x = b/c, x > 0. For x € (0,3] U [4,00), we have
2} — TP+ 120+ 1> 2° - T + 122 = 2(3 —2)(4 —x) > 0.
For x € (3,4), we have

20 — 7)?
x3—7$2+12x—|—1>$3—7x2+12$—|—%:%20.

P 1.163. If a,b,c are the lengths of the sides of a triangle, then

a N b . c 51
3a+b—c 3b+c—a 3c+a—b "
Solution. Write the inequality as follows:
a 1 1
S (1)t
(3a+b— c 4) 4
Z a—b+c > 1
3a+b—c
Applying the Cauchy-Schwarz inequality, we get
3 a—btec > (a—b+ )] (e .
3a+b—c " > a—b+c)Ba+b—c) > a?+2> ab

The equality holds for a = b = c.
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P 1.164. If a,b,c are the lengths of the sides of a triangle, then

a2—b - A—-ad
+ < 0.
a?+bc b 4+ca c+ab

(Vasile Cirtoaje, 2007)
First Solution. Suppose that a = max{a,b, c}. Since
C2 o CL2 — _<a2 o b2) o (b2 o 62),

the inequality can be written as follows:

1 1 1 1
2 _ 2 _ b2 — 2 _ <
(a )<a2—|—bc 02+ab)+< C)<Z)2+ca c2—|—ab)_o’

(@®> =) a—c)la—b+c) B —A)(b—c)(b+c—a)
_ _ <0.
a? + be a? + be -
The equality holds for an equilateral triangle, and also for a degenerate triangle having a

side equal to zero.

Second Solution. The sequences
{a*, ¥*, &}

and

1 1 1
a?+bc’ b2 +ca cE+ab

are reversely ordered. Indeed, if a > b > ¢, then

1 1 1
< < :
a?+bc b2 +ca " 2+ab
because
1 1 _(a—b)(a—l—b—c)>0
b2+ca a?2+bc (b2 +ca)(a?+be)
1 1 _(b—c)(b—i—c—a)>0
24ab bV2+ca (2+ab)(b2+ca) T
Then, by the rearrangement inequality, we have
1 1 1
2. b2 . 2. <
“ a2+bc+ bz—i—coz+c 2 +ab —
< P2 1 2 1 2 1

- .a2+bc+c 'b2+ca+a 2 tab’
which is the desired inequality.
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P 1.165. If a,b,c are the lengths of the sides of a triangle, then
a*(a+b)(b—c)+b*(b+c)(c—a)+cE(c+a)(a—0b) >0.
(Vasile Cirtoage, 2006)

First Solution. Assume that
a = max{a, b, c},

use the substitution
a=x+p+q, b=x+p, c=z+4q, x,p,q >0,
and write the inequality as
a?b® + b?c + c*a* — abe(a + b+ c) > ab® + bc® + ca® — @b — bPc — cPa,
a’(b—c) +b*(c—a)* +cA(a—b)?>2(a+b+c)(a—0b)(b—c)(c—a),
(z+p+0)*(p— )+ (@+p)°p" + (x+9)°¢" > 23z + 2p + 2¢)pa(q — p),

which is equivalent to
A:U2+QB.2:+C’20,

where
A=p*—pg+q¢* >0,

B=p’+qp—q)* =0,
C=@"+ps—q¢) >0
The equality holds for an equilateral triangle, and also for a degenerate triangle with

a b c

2 1+v5 345

(or any cyclic permutation).

Second Solution. Using the substitution

lca lab /bc
T = 7 Y= R z = R
b c a

we can write the inequality as follows:
b’c? + c*a® + a*b* > ab(b* + & — a®) + be(c® 4 a® — b*) + ca(a® + b* — ),

b b
oe + % + av > 2bcos A 4+ 2ccos B + 2a cos C,
c

22+ 9% + 22 > 2yzcos A + 2zx cos B + 2zy cos C,
(x —ycosC — zcos B)* + (ysinC — zsin B)? > 0.
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P 1.166. If a,b,c are the lengths of the sides of a triangle, then

a?b+ Ve + ?a > Jabe(a + b+ c) (a2 + b2 + ¢2).
(Vasile Cirtoaje and Vo Quoc Ba Can, 2005)

Solution. Without loss of generality, assume that b is between a and c; that is

(b—a)(b—c) <0.
First Solution. By the AM-GM inequality, we have

4abe(a + b+ c)(a® +b* + ) < [ac(a+ b+ c) + b(a* + b* + 2)).
Thus, we only need to show that
2(a*b + b?c + ca) > ac(a + b+ ¢) + b(a® + b* + ¢?),

which is equivalent to
bla* — (b—c)?] —ac(a+b—c) >0,

(a+b—c)(a=0b)(b—c)>0.

The equality holds for an equilateral triangle, and also for a degenerate triangle with
c=a-+b, b’ = a*(a + b)

(or any cyclic permutation).

Second Solution. The desired inequality is equivalent to D > 0, where D is the discrimi-
nant of the quadratic function

f(z) = (a® 4+ b* + H)a® — 2(a*b + b*c + c*a)x + abc(a + b + ¢).

For the sake of contradiction, assume that D < 0 for some a,b,c. Then, f(z) > 0 for all real
2. This is not true because

fO)=00b—a)b—c)a+b—c) <0.

P 1.167. If a,b,c are the lengths of the sides of a triangle, then

a2<g—1>+b2<§—1>+c2<%—1)ZO.

(Vasile Cirtoaje, Moldova TST, 20006)
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First Solution. Using the substitution

1 1
a=—, b=-, c=-,
x Y z
the inequality becomes
E(z,y,2z) >0,

where

E(z,y,2) = y2*(z —y) + 22 (z — 2) + 21°(y — ).

Without loss of generality, assume that
a = min{a, b, c}, r = max{x,y, z}.

We will show that
E(z,y,2) > E(y,y,2) > 0.

We have

E(z,y,z) — E(y,y,2) = 2(2° —y°) = 222> = *) + (& — y) — y°(2* — )

= (z—y)(@ —2)(z +yz —y*) >0,

because

20—c (b—a)+(a+b—c)

$Z+yz_y229(2z_y): bzc - b2C

Also,
E(y,y,2) = yz(y — 2)* > 0.

The equality holds for a = b = c.

Second Solution. Write the inequality as F'(a,b,c) > 0, where

F(a,b,c) =’V +b°c* + *a® — abe(a® + b* + ).

> 0.

Since
E(a,b,c) <Z a®b? + Z a’b® — 2abcz > — <Z a’b® — Z a3b2>
= <Za3b2 + Za c— 2acha ) — (Za2b3 — Za203)
—Z (b—c)? Za2(b3—63)
and
ZaZ(b3 — ) = ZaQ(b —c)?,
we get

E(a,b,c)zz (b—c)? Za (b—c)? Za2(b—c)2(a—b+c)20.
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Third Solution. By the Cauchy-Schwarz inequality, we have

@ _ (S a?h)’

c — > a?be’
Therefore, it suffices to show that
2
(Z a2b) > abe(a + b+ c)(a® +b* + c2),

which is the inequality from the previous P 1.166.

P 1.168. If a,b,c are the lengths of the sides of a triangle, then
(a) a®b + bdc+ cca > a®b? + VP + 2a?;

(b) 3(ab + b3c + ca) > (ab+ be + ca)(a® + b* + );

) a3b+1;3c+c32<a+§+c)4.
Solution. (a) First Solution. Write the inequality as
a’b(a — b) + b?c(b — ¢) + c*a(c — a) > 0.

Using the substitution

a=y+z, b=z+zx, c=z+y, x,y,z >0,
the inequality turns into

oy + oy 42t > ayz(o 4y + 2),
which follows from the Cauchy-Schwarz inequality
(zy® +y2° + 22%)(z + 2+ y) > 2y2(y + 2 + )%

The equality holds for an equilateral triangle, and also for a degenerate triangle with a =0
and b = ¢ (or any cyclic permutation).

Second Solution. Multiplying by a + b + ¢, the inequality becomes as follows:

Z a*b + abcz a? > Z a’b® + abcz ab,
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Zb4c+acha2 > Zb2c3 + achab,
DEARE SIS St g
> a’> ZS(CQ +a® —b?),
a? 4+ b* 4 ¢ > 2bccos B + 2ca cos C + 2abcos A,

(a —bcos A — ccosC)? + (bsin A — csinC')? > 0.
(b) Write the inequality as

Zazb(a —b) + ZbQ(a —b)(a—c) > 0.

Since Y a?b(a — b) > 0 (according to the inequality in (a)), it suffices to show that

Zb2(a —b)(a—c) >0.

This is a particular case (x = ¢, y = a, z = b) of the following inequality

(= y)(x = 2)a* + (y = 2)(y — )b + (z — 2)(z — y)* > 0,
where z,y, 2z are real numbers. If two of x,y,z are equal, then the inequality is trivial.
Otherwise, assume that x > y > z and write the inequality as
a? c? b?
+ > .
Yy—z =Y T—Zz

Applying the Cauchy-Schwarz inequality, we get

2 2 2 2 2
@ < (a+c) :(a—i-c) > b '
y—z xz—y (y—2)+(x—y) r—z r—z

The equality holds for a = b = c.
(¢) According to the inequality (b), it suffices to show that
9(ab + be + ca)(a® +b* +c*) > (a +b+c)t.
This is equivalent to
(A—B)(4B—A) >0,
where
A=ad>+V*+¢*,  B=ab+ bc+ ca.
Since A > B and
4B — A > 2(ab + be + ca) — a* — b — ¢*
=a(2b+2c—a) — (b—c)?
> a* — (b—c)?
=(a—b+c)la+b—c)>0.

the conclusion follows. The equality holds for a = b = c.
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P 1.169. If a,b,c are the lengths of the sides of a triangle, then
a? v ¥ ad?
2(§+g+¥) Z§+b—2+c—2+3.
Solution. Write the inequality as follows:
a* b a’
DE I3t
b? c? a?
DoEZ3EY m D
b? A a?
22 (1 T b?) ’
b2
Z = >2 Z —cos A
Putting
b c a
xrT = — = — z = —
C7 y a Y b Y
we have xyz = 1 and
c 1 a 1 b 1
—=—=yz, -—-—=-=2zr -—-=-=201y.
b =z c oy a z
Therefore, we can write the inequality as
22 + 9% + 22 > 2yzcos A + 2zx cos B + 2zy cos C,
which is equivalent to the obvious inequality
(x —ycosC — zcos B)? + (ysinC — zsin B)? > 0.
The equality occurs for a = b = c.
O

P 1.170. If a,b,c are the lengths of the sides of a triangle such that a < b < c, then

a? b? c?
a2—1)2+b2—02+62—a2 <0

(Vasile Cirtoaje, 2003)
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Solution. Write the inequality as
a? b? c?
> .
b>—a? -0 " ?—a?

Since ¢ < a + b, it suffices to show that

The equality occurs for a degenerate triangle with ¢ = a + b and a = xb, where x ~ 0.53209
is the positive root of the equation 23 + 32?2 — 1 = 0.
O

P 1.171. If a,b,c are the lengths of the sides of a triangle, then

a+b b+c cHa
+ + )
b+c c+a a+b

b
224543202
b ¢ «a

(Manlio Marangelli, 2008)

First Solution. Assume that ¢ = max{a,b,c}. If a < b < ¢, then the inequality follows
from P 1.157. Consider further that
b<a<ec

Write the inequality as follows:
b+c
-—1 2
S (G-0)=2 ().
1 2
—-b) |+ >0
Z(a )<b+c+@)_ ’

(a—b)(%+Cia>+[(b—a)+(a—c)](%+aib)+(c—a)<%+bi6)zo,
(a—b)<%+ 2 12 >+(c—a)(l+ 2 12 >20,
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1 2 1 2
(a=b)(c=0) 3 (a+b)(a+c)1+<6_a) {E‘(Hb)(mc) = 0.
Since
1 2 _c(a—b)+a(a+b)> a(a +b) B a
be (a+b)(a+c)  be(a+b(atc) T bela+b)(at+c)  be(atc)
and
1 2 —c(a —b) 4+ b(a+0b) —cla—b)  —(a—D)

_ = > = )
ac  (a+b)(b+c) ac(a+b)(b+ c) ac(a+b)(b+c) ala+b)(b+c)
it suffices to show that

(a—b)(c—bla (c—a)*(a—0) >0

be(a + ¢) a(a+b)(b+c) ’

which is true if

(c—b)a - (c—a)?
be(a+c¢) ~ ala+b)(b+c¢)
We can get this by multiplying the inequalities

—b>c—a,
11
- >,
b~ a
1 1
- > ,
ca+b
a c—a
> .
a+c~ b+c
The last inequality is true since
a c—a a b cla—0b)

_ _ — > 0.
at+c b+c a+c b+c (a+c)(b+c)_0

The equality holds for a = b = c.
Second Solution (by Vo Quoc Ba Can). Since

a+b a—c a—c

— 1 —3 7
b+c Z( +b~|—c) Jrz:b—l—c
we can write the desired inequality as

a—=c¢
E:——3 2§:b+d

Since

(ab + bc + ca) (Z%_;),) ZZGQ—QZab—i—Z%C
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and

Cc a—=¢C

(ab—irbc—irca)z(;jrc :[a(b+c)+bc]zb+c

9 be(a — ¢
:Za —Zab‘FZ%,

the inequality is equivalent to

a’c be(e — a) )
— 42 > .
PO RRED D s BL
Since
R
;=
(see the inequality in P 1.167), we only need to show that
Z be(c — a) >0.
b+c

Write this inequality as follows:

Z be(c? — a®)(a+b) >0,

> (@ —a) <1 + S) >0,

Z% > ab.

According to P 1.167, we have

bc?
Z e > a’ > Zab.

P 1.172. Let a,b,c be the lengths of the sides of a triangle. If k > 2, then
a"b(a — b) + b¥c(b — ¢) + cFa(c —a) > 0.

(Vasile Cirtoaje, 1986)
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Solution (by Darij Grinberg). For k = 2, we get the known inequality (a) in P 1.168:
a’b(a — b) + b?c(b — ¢) + c*a(c — a) > 0.

We will prove the following more general statement: if f is an increasing nonnegative function
defined on [0, 00), then
E(a,b,c) >0,

where

E(a,b,c) = a’bf(a)(a —b) + b*cf(b)(b—c) + af(c)(c — a).

For f(x) = 22 k > 2, we get the original inequality. In order to prove the claimed
generalization, assume that a = max{a, b, c}. There are two cases to consider.

Case 1: a > b > ¢. Since

fla) = f(b) = f(e) =20,

we have

E(a,b,c) > a*bf(c)(a—b) + b%cf(c)(b—c) + Paf(c)(c —a)
= f(o)[a*b(a — b) + b*c(b — ¢) + c*a(c — a)] > 0.

Case 2: a > ¢ > b. Since

fla) = f(e) = f(b) = 0,

we have

E(a,b,c) > a*bf(a)(a—b) + b’cf(a)(b—c) + Faf(a)(c— a)
= f(a)[a®b(a — b) + b*c(b — ¢) + cta(c — a)] > 0.
The equality holds for a = b = ¢, and also for a degenerate triangle with a = 0 and b = ¢ (or

any cyclic permutation).
O

P 1.173. Let a,b,c be the lengths of the sides of a triangle. If k > 1, then

3(a"b + 0" e+ Fa) > (a+ b+ ) (a"b + Ve + Fa).

Solution. For k = 1, the inequality is equivalent to
2(a®b + b*c + c*a) > ab® + bc® + ca® + 3abe,

(2¢ — a)b? + (2a* — 3ac — *)b — ac(a — 2¢) > 0.
Assuming that a = min{a, b, ¢} and making the substitution

a-+c
b=
x + 5
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this inequality becomes

3
(2c — a)z® + (:1: + Za) (a—c)*>0.
It is true since
dr+3a=a+4b—2c=2(a+b—c)+ (2b—a) > 0.
In order to prove the desired inequality for & > 1, we rewrite it as
a"b(2a — b —¢) + b*c(2b — ¢ — a) + *a(2c — a — b) > 0.

We will prove that if f is an increasing nonnegative function defined on [0, 00), then E(a, b, ¢) >
0, where

E(a,b,c) =ab(2a —b—c)f(a) + be(2b — ¢ — a) f(b) + ca(2¢c — a — b) f(c).

For f(z) = 21, k > 1, we get the original inequality. In order to prove this generalization,
assume that a = max{a, b, c}. There are two cases to consider.

Case 1: a > b > c. Since f(a) > f(b) > f(c) > 0, we have

E(a,b,c) > ab(2a — b —¢) f(b) + bc(2b — ¢ — a) f(b) + ca(2¢ —a —b) f(c)
= b[2(a — b)(a — ¢) + ab — *]f(b) + ca(2c — a — b) f(c)
> b[2(a — b)(a — ¢) + ab — *]f(c) + ca(2c — a — b) f(c)
[ 0

= [2(a®b + b*c + ca) — ab® — bc* — ca® — 3abc]f(c) >
Case 2: a > ¢ >b. Since f(a) > f(c) > f(b) > 0, we have

E(a,b,c) > ab(2a —b—c)f(c) +bc(20 — ¢ — a) f(b) + ca(2¢ —a — ) f(c)
=al(c—=b)(2c—a)+bla—b)]f(c) + bc(2b — ¢ — a) f(b).

Since

(c=b)(2c—a)+bla—0b) > (c—b)(b+c—a)+bla—0b) >0,

we get

E(a,b,c) > al[(c —b)(2¢ — a) + b(a — )] f(b) + bc(2b — ¢ — a) f(b)
= [2(a®b + b%c + c*a) — ab® — bc* — ca® — 3abe]f(b) > 0.

The equality holds for a = b = c.

Remark. For k = 1, the inequality has the form

b ¢ «a a b ¢
2(—+-+-)>-+-+-+3
a b ¢ b ¢ «a
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A sharper inequality is the following
b b
3(24+5+8) >2(24+245) 43,
a b ¢ b ¢ a

a-+c
b=
x + 5

Using the substitution

this inequality turns into

(30—2a)x2+<$+a—§> (a—c)* >0,

which is true since, on the assumption a = min{a, b, ¢}, we have 3¢ — 2a > 0 and

dr+4a—c=2a+4b—3c=3(a+b—c)+ (b—a) > 0.

P 1.174. Let a,b,c,d be positive real numbers such that a + b+ c+ d = 4. Prove that

a+b+c+d>1
3+b 34c¢ 34+4d 3+a

Solution. By the Cauchy-Schwarz inequality, we have

a (Y a)? B 16
§:3+b2§ja3+m__u+§jw'

Therefore, it suffices to show that
ab + bc + cd + da < 4.

Indeed,

b+d)]?
ab+bc+cd +da = (a+c)(b+d) < (a+c)ﬂ2L( +d) _ 9

The equality occurs fora=b=c=d = 1.

P 1.175. Let a,b, c,d be positive real numbers such that a + b+ ¢+ d = 4. Prove that

a n b n c n d S 9
1402 14¢2 1+d2 14+a2 7
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Solution. Since

a ab?
1402 14 b2’
the inequality is equivalent to
ab? n bc? n cd? n da? <9
1+ 1+c2 1+d?> 1+a%2 "
Since
ab? ab®>  ab

it suffices to show that

Indeed, we have

T <«
14062~ 2b 2’

ab + be + cd + da < 4.

(a+c)+(b+d)]*

ab+bc+cd+da=(a+c)(b+d) < =

The equality occurs fora=b=c=d =1.

2

P 1.176. If a,b,c,d are nonnegative real numbers such that a +b+ c+ d =4, then

a’be + bPed + Ada + d?ab < 4.

(Song Yoon Kim, 2006)

Solution. Let (x,y, z,t) be a permutation of (a, b, ¢,d) such that

hence

By the rearrangement inequality, we have

a’be + b*cd + Ada + d*ab = a - abc + b - bed + ¢ - eda + d - dab
<z-azyz+y-xyt+z-x2t+1t-yzt

r>y=>z2>t,

Yz > xyt > x2t > yzt.

= (zy + 2t)(zz + yt).

Consequently, it suffices to show that x 4+ y 4+ 2z +¢ = 4 involves

Indeed, by the AM-GM inequality, we have

(xy + 2t)(zz + yt) < 4.

1 1
(wy + 2t)(@z +yt) < J(ey + 2t +wz +yb)° = (v + 1) (y+2)* <4,
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because
(z+t+y+2)?*=4

1 =

(x+t)(y+2) <

The equality holds for a = b=c¢=d =1, and also for a =2, b=c=1and d = 0 (or any
cyclic permutation).
m

P 1.177. If a,b,c,d are nonnegative real numbers such that a + b+ c+ d =4, then

a(b+c)®> +blc+d)* +c(d+a)* +d(a+b)* < 16.

Solution (by Vo Quoc Ba Can). Write the inequality as
(a+b+c+d)? > 4alb+c)+blc+d)?+cld+a)? +dla+ b))

Since
(a+b+c+d)?>4(a+0b)(c+d),

we have

(a+b+c+d)?>4(a+b)(c+d)(a+b+c+d)
=4(c+d)(a+b)*+4(a+b)(c+d)*

Therefore, it suffices to show that
(c+d)(a+0b)*+ (a+b)(ct+d)?>alb+c)+blc+d)?®+c(d+a)?+d(a+b),
which is equivalent to
cla+b)?+alc+d)?>alb+c)*+c(d+ a)?
af(c+d)* = (b+ )] +cl(a+b)* = (d+a)*] 2 0,

(b+d)(b—d)(c—a)>0.
Similarly, due to cyclicity, the desired inequality is true if

(c+a)(c—a)(d—0b)>0.

Since one of the inequalities (b — d)(c —a) > 0 and (¢ — a)(d —b) > 0 is true, the conclusion
follows. The equality holds for a = ¢ and b = d.
0

P 1.178. If a,b,c,d are positive real numbers, then

a—b+b—c+c—d+d—a>0
b+c¢c c¢c+d d+a a+b
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Solution. We have

a—b+c—d+2_a+c+a+c
b+c d+a C b+c d+a

7 1 1
=(a+o) <m+d+a)
4
(b+c)+ (d+a)
4(a + c)
a+b+c+d

> (a+c)

Similarly,
b—c d—a 5> 4(b+d)

c+d+a+b “a+b+c+d

Adding these inequalities yields the desired inequality. The equality holds for a = ¢ and

b=d.

Remark. It seems that the following inequality holds for a, b, ¢, d, e positive real numbers

(Vasile Cirtoaje, AMM, 5, 1998):

a—b b—c c¢c—d d—e e—a

b+c+c+d+d—|—e+e+a+a+b 2 0.
The most difficult case (open)isa>b>d>c>e.
P 1.179. If a,b,c,d are positive real numbers, then
I AT =TA=s Eraree Rl
) 2a+ab+c+2b+bc+d+20+cd+a+2d+da+bSl’

Solution. (a) Write the inequality as
a—2>b 1
_AT0 L) >0
>(mrets) =

Z 3a+c 2 A
a+2b+c
By the Cauchy-Schwarz inequality, we get

3a +c 3a+c))”
2arahie Z(Bf[zz—i:—(c)(a +)2]b+ 0
16(3a)?
403 a2+2> ab+ > ac)
i,
(X a)”
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The equality holds for a = b =c¢ = d.
(b) Write the inequality as

1 a
> (3-mrs) 20
(2 2a+b+c>

2a+b+c
By the Cauchy-Schwarz inequality, we get

b+c b+ c)?
Z2a+b+c = Z(b[—l—zc()@a—?-]b—l—c)
43 a)”
203> a*2+2> ab+ > ac)
2z,
(X a)’

The equality holds for a =b=c=d.

Open problem 1. Ifa,b,c,d, e are positive real numbers, then

a—>b . b—rc N c—d n d—e . e—a >0
a+2b+c b+2c+d c+2d+e d+2e+a e+2a+b "

Open problem 2 (by Ando). If ay,as,...,a, (n > 4) are positive real numbers, then

a1 a2 Qnp,
+ o <1
(n—2)a;+as+az (n—2)as+as+ay (n—2)a, +a +ay —

P 1.180. If a,b,c,d are positive real numbers such that abed = 1, then

1 1 1 1
> 2.
aatd) bbto) detrd dd+a) "

(Vasile Cirtoaje, G. Dospinescu, 2007)

Solution. Making the substitution

a:\/Z b:ﬁ C:ﬁ d:ﬁ,
T Y z t

where x,y, z,t are positive real numbers, the inequality can be rewritten as

T

Y z t
+ + + > 2.
y+vrz z+Jyt t+zx x4+ \ly T
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Since
ez <z 4z, Wyt <y+t,
it suffices to show that
x Y z t
- - + >
r+2y+z y+2z+4+t z+42t+zx t+2xr+y

By the Cauchy-Schwarz inequality, we have

x (o () _
Zz—l—Qy—i—z = Salz4+2y4+2) Y a2+2> ay+ > xr

1 1
The equality holds for a = ¢ = 7=
Open problem 1. Ifay,as,...,a, are positive real numbers such that ayas - --a, =1, then
1 1 1 n
5 + = b >
ai +ara2  a; + agas az + apay 2
Open problem 2. Ifaq,as,...,a, are positive real numbers, then
1 1 1 n?
>

2 T3 Tt g = :
ai+ajay a3+ azas a2 + apa; — 2(ajag + agaz + - - + ayaq)

Remark 1. Using the substitution
T2 L3 L1
ay = —, a2 = —, ...,
T L2 Tn

the inequality in Open problem 1 becomes

2 2 Tt s 2
Ty +T1T3 X3+ Toky i+ TpXo 2
where 1, x9,...,x, > 0. This cyclic inequality is like Shapiro’s inequality
x x x n
1 + 2 . n 2 -
To+T3 T3+ T4 Ty +wx2 T 2

which is true for even n < 12 and for odd n < 23.

Remark 2. By the AM-GM inequality, we have

aias + azaz + -+ apa; > nifadad - - a2.

Thus, the inequality in Open problem 2 is weaker than the inequality in Open problem 1.
Therefore, if Open problem 1 is true, then Open problem 2 is also true.
O
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P 1.181. Ifa,b,c,d are positive real numbers, then
1 1 1 1 16
00 T oo et d Tdlra) T 1 evabed
(Pham Kim Hung, 2007)

Solution. Let p = v abed. Putting

where x1, x9, 3, x4 are positive real numbers, the inequality turns into

Z T > 16p
Ty +prs — 14 8p?

By the Cauchy-Schwarz inequality, we have

P EELE S VL) (Ean)

Ty +prs — Yo wi(va +pas)  (x1+ w3)(ve + 24) + 2p(2173 + To74)

2 2
T+ To+ X
$1$3+$2$4§( 12 3> +( 22 4) ;

it suffices to show that
(A+ B)? S 8

2AB + p(A%2 + B?) — 1+ 8p?’

Since

where
A =21+ x3, B = x5+ x4.

This inequality is equivalent to
A%+ B*+2(8p* —8p+ 1)AB > 0,
which is true because

A? + B? +2(8p* —8p+ 1)AB > 2AB +2(8p* — 8p + 1)AB
=4(2p —1)*AB > 0.

1
The equality holds fora =b=c=d = 3

P 1.182. Ifa,b,c,d are nonnegative real numbers such that a®> + b* + c® + d*> = 4, then
(a) 3(a+b+c+d) >2(ab+ bc+ cd+ da) + 4;
(b) a+b+c+d—4>(2—2)(ab+bc+cd+ da—4).
(Vasile Cirtoage, 2006)
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Solution. Let p=a+ b+ c+ d. By the Cauchy-Schwarz inequality
AI+1+1+D)(a®++F+d*) > (a+b+c+d)?
we get p < 4, and by the inequality
(a+b+c+d)?>a*+ b+ +d°

we get p > 2. In addition, we have

b d2 2
ab+bc+cd+da:(a+c)(b+d)§(a+c+ +d) _r

4 4
(a) Tt suffices to show that
2
3p>2 44
2
Indeed,
2 4—p)(p—2

The equality holds fora =b=c=d =
(b) It suffices to show that

p—4>(2-12) (%2—4).

This inequality is equivalent to
(4-p)p—-2v2) >0,
which is true for p > 2V/2. So, it remains to consider the case 2 < p < 24/2. Since
2(ab+be+cd+da) < (a+b+c+d)? — (a® + 0>+ +d*) = p* — 4,

it is enough to prove that

p—42(2—\/§)(#—4)-

Write this inequality as
2+V2)p—4)=2p* 12,
2vV2—p)(p—2++V2)>0.

The equality holds for a = b= c=d = 1, and also for a = b = 0 and ¢ = d = /2 (or any
cyclic permutation).

[]
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P 1.183. Let a,b,c,d be positive real numbers.

(a) If a,b,c,d > 1, then

1 1 1 1 1 1 1 1
— - — Z ) > _ _ - B
(a+b) (b+c> (c+d> (d+a) >(a+b+c+d) <a+b+c+d)’

(b) If abcd = 1, then

1 1 1 1 1 1 1 1
) (b+-= N (d+=)<@+o d(=+-+-4+-).
(a~|—b)( +C> <c+d>( —l—a)_(a—l— +c+ ><a+b+c+d)
(Vasile Cirtoage and Ji Chen, 2011)

Solution. Let

A =(1+4ab)(1 + be)(1 + cd)(1 + da)
=1+ ab+ Y a®hd +2abed + abed Y _ ab+ a’b*c*d®

(1 — abed)® + 4abed + (1 + abed) » " ab+ Y  a’bd

(1 — abed)® + dabed + (1 + abed)(a + ¢)(b+ d) + > _ abd

and
B =(a+b+ ¢+ d)(abc + bed + cda + dab)
=dabed + Y a*(be + cd + db)
=4abed + Z a’e(b+d) + Z a’bd
=dabed + (ac + bd)(a + c)(b+d) + > _ a’bd.
Thus,

A~ B = (1—abed)* + (1 + abed)(a + ¢)(b+ d) — (ac + bd)(a + ¢)(b + d)
= (1 —abed)® + (1 — ac)(1 — bd)(a + ¢)(b + d).
(a) The inequality A > B is clearly true for a,b,c,d > 1. The equality holds for
a=b=c=d=1.
(b) For abed = 1, we have

B—A= %(1 —ac)*(a+c)(b+d) > 0.

The equality holds for ac = bd = 1.
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P 1.184. If a,b,c,d are positive real numbers, then

2 2 2 2
) (e ) =) (1) sy
a+b b+c c+d d+a ’

(Vasile Cirtoaje, 2012)

First Solution. Assume that d = max{a,b,c,d}. We get the desired inequality by sum-
ming the inequalities

a 2 b 2 c 2
1+ +{1+—) +(1+ > 6
a+b b+c c+a

and
c 2 d 2 c 2
1+ + (14— >14(1+ .
c+d d+a c+a
Let
7a—b 7b—c _c—a
x_a—i—b’ y_b—l—c7 Z_c—i—a‘

We have —1 < x,y,z < 1 and
r+y+z+ayz =0.

Since

a+b 2 b+c 2 ' cta 2
we can write the first inequality as follows:

a x+1 b y+1 c z+1

Y

(x+3)*+ (y+3)*+ (2 +3)* > 24,

Py 22 +6(r+y+2)+3>0,
v? +y? + 22 +3 > 6ayz.
By the AM-GM inequality, we have

22 2+ 22+ 3> 69/ 02222 > 6ayz.

Write now the second inequality as

2
c c d c d
14 —1> — 2+ + .
c+d c+a d+a c+a d+a

c d a(c —d)
_ — <0,
c+a d+a (c+a)(d+a)

c 2 c d c d
14+ —1>0> - 2+ -+ .
c+d c+a d+a c+a d-+a

Since

we have
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Second Solution. Using the inequality

(14+z)*>1+32% 0<z<l,

2 2 2 2
TIUNL Y SOPIL A D R | OV I
a+b b+c c+d d+a
a 2+ b 2+ c 2+ d \°
a+b b+c c+d d+a
Therefore, it suffices to prove that

2 2 2 2
a n b n c N d 1
a+b b+c c+d d+a) — 7

which is equivalent to the known inequality in P 1.191 from Volume 2:

1 1 1 1
+ + + >1,
(I+z)2 (14y?2 (1422 (1412~

we have

>4+43

where

a = ¢ t——d t=1
€r = — Z = — - TYyz .
b? y Y d? a? y

P 1.185. If a,b,c,d are positive real numbers, then
a® —bd b2 — ca c?—db d? — ac
+ —- - >
b+2c+d c+2d+a d+2a+b a+2b+c
(Vo Quoc Ba Can, 2009)

Solution. Write the inequality as follows:
4a® — 4bd
————+b+d—2a) >
Z(b+2c+d+ i “)—0’

(b—d)?+2(a—c)(2a —b—d)
Z b+2c+d = 0.

It suffices to show that

Z(a—c)(?a—b—d) >0.
b+2c+d
This inequality is equivalent to

2a—b—d 2c—d—b> 2b—c— 2d —a —
(a—c)(a c )—i—(b—d)( c—a a 0)207

b—|—20+d_d—|—2a—|—b c—|—2d+a_a—|—2b—|—c
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which can be written as
(a—c)(a® — ¢?) (b—d)(b* — d?)
(b+2c+d)(d+2a+0b) (c+2d+a)(a+2b+c) —

The equality occurs for a = ¢ and b = d.

P 1.186. If a,b,c,d are positive real numbers such that a < b < c < d, then

Jars e
a+ b b+c d +a
Solution. According to the inequality in P 1.74, we have

\/ \/ 2c
+4/——<3
a—l—b b+c c+a

Therefore, it suffices to show that

2¢ 2d 2¢
+ <1+ )
c+d d+a c+a

By squaring, this inequality becomes

(Vasile Cirtoaje, 2009)

2 1 2
c+d+d+a+ + *

2c 2d ded < 2c 2c
(c+d)(d+a) ~ c+a ct+a

We can get it by summing the inequalities

2¢ 2d 2¢
+ <1+ )
c+d d+a c+a

ded 2c
2| —————— <2 .
(c+d)(d+a) ct+a
The former inequality is true since

2c N 2d q_ 2c (a—d)(d—c)(c—a)
c+d d+a c+a (c+d)(d+a)(a+c)

while the second inequality reduces to
cla—d)(d—c) <0.

The equality holds for a = b =c¢ = d.
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P 1.187. Let a,b,c,d be nonnegative real numbers, and let

a b c ; d
Tr = = —_— z = g .
b+ c’ y c+d’ d+a’ a+b
Prove that
(a) VIz Yt < T
(b) r+y+z+t+4(zz+yt) >4

(Vasile Cirtoaje, 2004)

Solution. (a) Using the Cauchy-Schwarz inequality, we have

vz Vit = (b+c)(d+a)+ (c+d)(a+D)
VT Vbd
“Vaer Vi Vae Vi

The equality holds fora =b=c=d,fora=c=0,and forb=d =0
(b) Write the inequality as

A+ B >0,
where
A—x+z+4x2+1—(a+b)(c+d)+(a+0)2+ab+2ac+cd
(b+c)(d+a)
(a+b)(c+ad) (a+ c)? @,
“(b+co)d+a) (b+c)(d+a) d+a bt
(b+c)(d+a) (b+d)? b d
B=y+t+dyt+1= " ‘
! ’ (c+d)(a+b)  (c+d)latb) a+tb c+d
Since
(a+b)(c+d)  (b+dd+a)
(b+c)d+a)  (c+d)at+b) =7
it suffices to show that
(a+c) (b+ d)?
brodta)  (ctdat) d+a

By the Cauchy-Schwarz inequality, we have
(a+c)? (b+d)? >(a+b+c+d)2
(b+c)d+a) (c+d)(a+b) C ’

Z - (a+b+c+d)?
d+a — D ’
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where

C=(0b+c)(d+a)+ (c+d)(a+Db),
D =Y a(d+a)=d>+b++d +ab+bc+ cd + da,
C+D=(a+b+c+d)?
Thus, it is enough to show that

(C + D) (é+%) > 4,

which is clearly true. The equality holds for a = b =c=d.

P 1.188. Ifa,b,c,d are nonnegative real numbers, then

2a 2b 2c 2d
>0,
(1+b+c) (1+c+d) (1+d+a) <1+a+b) =9

(Vasile Cirtoaje, 2004)

Solution. We can rewrite the inequality as

1+a—|—c 1+a+c 1+b—l—d 1+b+d > 9.
a+b c+d b+c d+a

Using the Cauchy-Schwarz inequality and the AM-GM inequality yields

- 12

2
<1+a—|—c) (1+a+0)2 n a+c 2(1+ 2a + 2c ) 7
a+b c+d @t b)ctd a+b+c+d

- 12

2
<1+b+d><1+b+d>Z n b+d 2(1+ 20 + 2d ).
b+c d+a (b+c)(d+a) a+b+c+d

Thus, it suffices to show that

2a + 2c 2b+2d
1+— |14+ —) =3
(+a+b+c+d)( +a—|—b+c—|—d)_

This is equivalent to the obvious inequality

4(a+c)(b+d)
m+b+c+@220

The equality holds for a = c¢ =0 and b = d, as well as for b=d =0 and a = c.



Cyclic Inequalities 261

P 1.189. Let a,b,c,d be nonnegative real numbers. If k > 0, then

ka kb ke kd
> 2,
<1+b+c) <1+c+d) (1+d+a) (1+a+b> > (1+k)

(Vasile Cirtoaje, 2004)

Solution. Let us denote

Since
[[+k2) > 1+ k(@ +y+2+1) + K (wy +yz + 2t + to + 22 + yt),

it suffices to show that
THy+z+t>2
and
xy+yz+zt+tr+xz+yt > 1.
The inequality = + y + 2z + ¢ > 2 is the well-known Shapiro’s inequality for 4 positive real
numbers. This can be proved by the Cauchy-Schwarz inequality, as follows:
2
a_ b L_c d > (a+b+c+d) o
b+c c¢+d d+a a+b " alb+c)+blc+d)+c(d+a)+d(a+D)

The right inequality reduces to the obvious inequality
(a—c)*+ (b—d)?* > 0.
To prove the inequality xy + yz + 2t + tx + xz + yt > 1, we will use the inequalities
T —2|— z > 1z,

+t
yTZyta

and the identity
rz(l+y+t)+yt(l+x+2) =1

If these are true, then

y+t

T+ z
xy+yz+n+¢x+xz+yh:—5—@+¢y+ (x +2) +xz+yt

>az(y+t) +yt(x+2) +xz+yt
=zz(l+y+t)+yt(l+a+2)=1.

We have
T4z _be+da+ (a—c)?

2 T 0t odra) -
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and
y+t  abted+(b—d)?

A G
To prove the identity above, we rewrite it as

Z:vyz+xz+yt: 1,

and see that

Sabcla+0b) > a*be+ > a*bd
D A

and ac(a+b)(c+d) +bd(b+)(d+a) _ Y a’ed+ (ac+ bd)’

A A ’

rz +yt =

where

A=]Ja+b)=> a’bc+> a’bd+ Y a’cd+ (ac+ bd).
Thus, the proof is completed. The equality holds for a = ¢ = 0 and b = d, as well as for
b=d=0and a=c.

Remark. For k£ = 2, we get the inequality in P 1.188. For k = 1, we get the following
known inequality

(a+b+c)b+c+d)(c+d+a)(d+a+b)>4(a+b)(b+c)(c+d)(d+ a).
A proof of this inequality starts from the inequalities

(a+b+c)? > (2a+b)(2c +b)

and
(2a + b)(2b + a) > 2(a + b)*.
We have
H(a +b+c)? > H(Za +0b)- H(Qc—i— b)
= [[2a+b)(2b+ a)
>2' (a+0),
hence
[[a+b+c)=4a]](a+0).

P 1.190. If a,b,c,d are positive real numbers such that a +b+ c+d =4, then
1 1 1 1
- il _ = > 2 b2 2 d2‘
Sttt 2l

(Vasile Cirtoage, 2007)
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Solution. Write the inequality as
(a+c)(b+d) > abed(a® +b* + 2 + d?).
From (a —¢)* > 0 and (b —d)* > 0, we get
(a+c)* > 8ac(a* + %), (b+d)* > 8bd(b* + d?),

hence
bd(a + c)* + ac(b + d)* > Sabed(a® + b* + & + d*).

Therefore, it suffices to show that
8(a+¢)(b+d) > bd(a+ c)* 4 ac(b+ d)*.
Since 4bd < (b+ d)? and 4ac < (a + ¢)?, we only need to show that
32(a+c)(b+d) > (b+d)*(a+c) + (a+c)*(b+d)*
Denoting a 4+ ¢ = 2x and b+ d = 2y, this inequality is equivalent to
2 > zy(2® + y?),

(z +1)* > 8xy(2? +4?),
(z—y)* >0

The equality occurs fora=b=c=d = 1.

P 1.191. If a,b,c,d are positive real numbers, then

a® b? c? d?
> —,
(a+b+c)2Jr (b+c+d)2Jr (c+d+a)2Jr (d+a+0)?—9

S

(Pham Kim Hung, 2006)

First Solution. By Holder’s inequality, we have

Z( CANS (X ")’

a+b+c)? [Za(a—l—b—l—c)]y

Since

D ala+b+c)=(a+0e)+(b+d)’+ (a+c)(b+d)

and

4/3 4/3
St = @y () 22 () (14
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it suffices to show that
9[(a+ )+ (b+d)**]" > 8[(a+c)> + (b+d)> + (a+c)(b+ d)]

Due to homogeneity, we may assume that b+d = 1. Putting a+c = t3, t > 0, the inequality
becomes
9(t* +1)3 > 8(° + 1 4 t%)2,

Setting

the inequality turns into
9(z* —2)° > 8(z* — 3z +1)%,

which is equivalent to
(z — 2)* (2" + 42° + 62 — 8z — 20) > 0.
This is true since
ot + 42?4+ 62° — 8x — 20 = ' + 42*(x — 2) + 4w (z — 2) + 10(2* — 2) > 0.
Thus, the proof is completed. The equality holds for a = b = c = d.
Second Solution. Due to homogeneity, we may assume that
a+b+c+d=1.

In this case, we write the inequality as

<1id)2+<1fa)2+<1ib)2+<1f0)223

Let (z,y, z,t) be a permutation of (a,b, ¢, d) such that

r>y=>z2>t.
Since
1 < 1 < 1 < 1
(1—22 7 (1—-227 (1-y? =~ (1-2a)*

by the rearrangement inequality, we have

() () + (5) () <
<(v5) < () (75) (%)
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Therefore, it suffices to show that z + y + 2 + ¢t = 1 involves

4
U+V > -
- -9
where
U=
() - ()
V_
() ()
Let
s=x+t, p=uat, se(0,1),
Since
Pt =522, 2P+13=5"—3ps, a4t =s"—4dps® + W7,
we get

22+ 12 = 2(23 +83) + 2t + 4
(1—s+p)?
C2p* =21 —s5)(1—2s)p+s*(1—s)?
P42l -s)p+(1-s)?
2-U)p* =21 —s)(1—2s+U)p+ (1 —5)*(s*>—U) =0.
The quadratic trinomial in p has the discriminant
D= (1-3s?*1-25s+U)*—(2-U)(s*-U)].
From the necessary condition D > 0, we get
45 — 1 — 25>

(2 —s)?

U=

b

U=

Analogously,

4y — 1 — 272
| —
- (2—-r)? ’

where r = y + z. Taking into account that
s+r=1,

we get
4s —1—2s%2  dr —1— 212

2_s2 T2
743—1—232 4r — 1 — 2r?
B ARED:
5(s% +1r?) —2(sT + 1)
(24 s7)?
_5(s241?) — 2(s 4+ 1r?)? + 4s%r?
(2 4+ sr)? ’

U+V >
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hence
ULv— 4 > 5(s% +1r?) — 2(s* + r?)? + 4s%r? 4
9 (24 s7)? 9

_B(sP4+1?) —2(s*+ 1?7 2(1 —4sr)? — 18
B (24 sr)? 9(2 + sr)?
S 5(s* +1r?) —2(s* +r%)? —2
= 2+ 1)
2= =r)(2s*+ 22 - 1)
B (24 s1)? '

Thus, we need to show that (2 — s? — r?)(2s®> + 2r* — 1) > 0. This is true since since
2—52—1r?>2—(s+7r)? =1,
252 +2r* — 1> (s+7r)>—1=0.

P 1.192. Ifa,b,c,d are positive real numbers such that a +b+ c+d =3, then
ab(b+ ¢) + be(c+ d) + cd(d + a) + da(a + b) < 4.
(Pham Kim Hung, 2007)
Solution. Write the inequality as

Zab2+2abc§4,

(ab® + cd* + bed + dab) + (be® + da* + abe + cda) < 4,
(b+d)(ab+ cd) + (a + c)(be + da) < 4.
Without loss of generality, assume that a + ¢ < b+ d. Since

(ab+ cd) + (bc + da) = (a + ¢)(b+d),
we can rewrite the inequality as
(a+c)(b+d)?+ (a+c—b—d)(bc+ da) < 4.
Since a + ¢ — b — d < 0, it suffices to show that
(a+c)(b+d)? < 4.
Indeed, by the AM-GM inequality, we have

(@ (P4 (2td <l_a+c+b+d+b+d3_1
2 2 ) T 27 2 2 -

The equality holds for a =b =0, ¢ =1 and d = 2 (or any cyclic permutation).
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P1.193. Ifa>b>c>d>0anda+ b+ c+d =2, then
ab(b+ ¢) + be(c+ d) + cd(d + a) + da(a +b) < 1.

(Vasile Cirtoaje, 2007)

Solution. Write the inequality as

Zotb2 + Zabc < 1.
Since
Z ab® — Z a®b = (ab® + bc® + ca® — a®b — b*c — c*a) + (cd* + da® + ac® — *d — d*a — a*c)

= (a=b)(b—c)(c—a)+(c—d)(d—a)(a—c) <0,

it suffices to show that
Z:ab2 +Za26+22abc < 2.

Indeed,

Zab2+2a2b+22abc: Z(ab2+a2b—|—abc+abd)
=(a+b+c+d)d ab
=2(a+c)(b+4d)
<5 {(G+C)+(b+d>r:2'

2

1
The equality holds fora =b=tand c=d =1 —t, where t € {5, 1}.

37
P 1.194. Let a,b,c,d be nonnegative real numbers such that a +b+c+d=4. If k > —

277
then
ab(b+ kc) + be(c + kd) + cd(d + ka) + da(a + kb) < 4(1 + k).

(Vasile Cirtoaje, 2007)

Solution. Write the inequality in the homogeneous form

1+k)(a+b+c+d)3
16 '

ab(b + kc) + be(e + kd) + cd(d + ka) + da(a + kb) < (

Assume that d = min{a, b, ¢, d} and use the substitution

a=d+x, b=d+y, c=d+ z,
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where z,y, 2 > 0. The inequality can be restated as
4Ad+ B > 0,
where
A= Bk —1)(2* +y*+2%) =2k + Dy(x + 2) + (6 — 2k)xz,
B=(1+k)(z+y+2)>—16(xy* +yz* + kryz).
It suffices to show that A > 0 and B > 0. We have
A=Bk—1Dy*+ Bk —1)(z+2)? =2k + Dy(z +2) —8(k — 1)zz
> Bk —1)y* + Bk —1)(z +2)* = 2(k+ Dy(z + 2) — 2(k — 1)(x + 2)?
=Bk—1Dy*+ (k+1D(z+2)* =2k + Dy(z + 2)
> 2/(3k — 1)(k + Dy(x + 2) — 2(k + Dy(z + 2)
2%k+1@&k—1—¢k+gy@+¢)zo

Since
(x+y+2)° — 16wyz > 0,

37 37
the inequality B > 0 holds for all k£ > 77 if it holds for k = 77 In this particular case, the

inequality B > 0 can be written as

3
37
4 (%) > xy? 4+ y2? + 2—7xyz

Actually, the following sharper inequality holds (see P 2.24)

3
3
4 <%> > ay? + oy + §xyz.

37
Thus, the proof is completed. The equality holds fora =b=c=d=1. If k = 77 then the

equality also holds for a = =, b = 3 and ¢ = d = 0 (or any cyclic permutation).

57

P 1.195. If a,b,c,d are nonnegative real numbers such that a + b+ ¢+ d = 4, then

¢3a+¢3b+¢30+¢3d<4
b+ 2 c+2 d+2 a+2

(Vasile Cirtoaje, 2020)
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Solution. (after an idea of Michael Rozenberg) Let (al, as, as,as) be an increasing permu-
tation of (a, b, ¢, d). Since the sequences

1 1 1 1
<a17 a2, a3, (1,4) and ) ) )
as+2 as+2 ay+2 a;+2

are increasing, according to the rearrangement inequality, we have

Jits et it Vi
C+2 d—|—2 a+2
3 3 3 3
s\/ . +\/ : +\/ + +\/ o =A+B
as + 2 as + 2 as + 2 a + 2

3a 3a 3a 3
A_\/ ! +\/ i p= 2 4q, 20
ag + 2 ay + 2 ag + 2 as + 2

We need to show that A + B < 2. According to Lemma below, we have

A+B§a1+§4+4+a2+§3+4:4‘

The equality holds for a =b=c=d = 1.

where

Lemma. If a,b are nonnegative real numbers, then

3a 3b a+b+4
+ < .
b+2 a+2 3
Proof. Use the substitution
3a 3b
r = =
br2 Y a+2’
which yields zy < 3 and
20" +3) 2" +3) Ly A 60 4 )
= 7 ==z 7 a = .
9 —x2y? ’ 9 — a2y? ’ 9 — x2y?
Thus, we need to show that
4 2,2 6 2 2
Srty) < Y (@497 |y

9 — x2y?
which is equivalent to
2(z +y)* — (9 —2®y*)(z +y) + 12 — day > 0,
(43: +4y — 9+ 3323/2)2 + 15 — 32xy + 18x2%y* — 2*y* > 0,

(4x +4y — 9+ x2y2)2 + (1 —2y)*(3 — 2y)(5 + zy) > 0.
The equality holds for a = b = 1.
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P 1.196. Let a,b,c,d be positive real numbers such that a < b < ¢ < d. Prove that

2 g_|_l_)_|_£_}_c_i >4+E+E+é+£l
b ¢ d a)~ c a d b

(Vasile Cirtoaje, 2012)
First Solution. Let

a b ¢ d a ¢ b
Ela,b,c,d) =2 -+-+-+—-] -4
@hed=2(5+ 0+ 5+ )
We show that
E(a,b,c,d) > E(b,b,c,d) > E(b,b,c,c).

We have L og 9
c
E(a,b,c,d)—E(b,b,c,d):(b—a)<E+E—E—£>20,
since
1,20 2 ¢ 1 2 2 ¢
c ab b ab " c ab b ab
_lye_ 2,1 ¢ 2 (-9,
c ab b~ c b b b’c  —
Also,
1 2c-b
E(b,b,c,d)—E(b,b,c,c):(d—c)(E— > )20,
since

1 2c—b_1 2c—=b (b—c)?
- > _

b cd T b c? bc?
Because E(b,b,c,c) = 0, the proof is completed. The equality holds for a = b and ¢ = d.

Second Solution. Using the substitution
a b

€r = — y:—’ z =

b’ c d’
the inequality becomes as follows:

0<x,y,2<1,

1 1 1
2(x—|—y—|—z—|——> >4+zy+ —+tyz+ —,
TYZ Ty Yz

y(2—x—z)+$(£—l—l)—2(2—x—z)20,

1
(2—xz—2) (y—i———2> > 0.
TYz
The last inequality is true since 2 —x —y > 0 and

1 1
y+—=-22y+--2>20.
TYz Y
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P 1.197. Let a,b,c,d be positive real numbers such that

a<b<ec<d, abed = 1.

Prove that b d
9+_+£+_2ab+bc+cd+da.
b ¢ d a

(Vasile Cirtoaje, 2012)
Solution. Write the inequality as follows:
a’cd + b*da + ?ab + d*be > ab + be + cd + da,

ac(ad + be) 4+ bd(ab + cd) > (ad + be) + (ab + cd),
(ac — 1)(ad 4 be) + (bd — 1)(ab + cd) > 0.

Since |
—1=—=—1>1—-0bd
ac 0 >
and
bd > vabed =1,
we have

(ac — 1)(ad + bc) + (bd — 1)(ab + cd) > (1 — bd)(ad + be) + (bd — 1)(ab + cd)
= (bd — 1)(a —¢)(b—d) > 0.
: 1 1
The equality holds for a =b = - = p
c

P 1.198. Let a,b, c,d be positive real numbers such that

a<b<c<d, abed = 1.
Prove that b d
4+g+—+2+—22(a+b+c+d).
b ¢ d a

(Vasile Cirtoaje, 2012)

Solution. Making the substitution

b
xzf/%a y:\/;7 Z:</§7 O<5573/72§17

we need to show that F(z,y,z) > 0, where

1 Yz z 1
E(x,y,Z):4+w4+z4+y2+m_2(x3yz+—+—+ )
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We will show that

The left inequality is equivalent to

(1 - y)E1<l‘,y, Z) Z 07

where
1+y 3 z 2 (= 1
Bl = -1y + oot a (e 2 - 2 (24 ).

To prove it, we show that
Ei(z,y,2z) > Ey(x,1,2) > 0.

We have
1
_ 3
Ei(x,1,2) =2(1 —x°2) <x4z4 — 1) > 0.
Since
Ey(x,y,z — Ey(z,1,2) = (1 — y)Ex(x,y, 2),
where

1+2y 2 (2 1
E S I e A (AT
2(x7y7 Z) + I’4y224 y (LIT + $23> 9

we need to show Fs(x,y,z) > 0. Indeed,

1 2 (z 1 1
E e Az =
2($ay>z) +$4y224 y< + )

The middle inequality in (*) is equivalent to
(1 —=2)F(z,2) >0,

where

xhzt Tz

1 2) 1 2
F(x,z):(1+z+22+z3)<4 —1)+2(x3+_>_ﬂ.
x
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It is true since

1 3 14 24 22
F > —14+-—
(z,2) xizd +x xz
2
NS NS
xz x xz
9 _ a4
_ r—z 0.

The right inequality in (*) is also true since

' E(x,1,1) = 2% — 227 + 62* — 62° + 1
=(r—1)%(2° —2* — 22 + 322 + 22 + 1)
> (r—1)*(2® — 2* — 22° 4 227)
=2%(x — D*(2* + 22 +2) > 0.

The proof is completed. The equality holds fora =b=c=d = 1.

P 1.199. Let A = {ay,a9,a3,a4} be a set of real numbers such that
a1+a2+a3+a4:0.
Prove that there exists a permutation B = {a,b,c,d} of A such that

a? + b+ +d*+ 3(ab+ be + cd + da) > 0.

Solution. Write the desired inequality as
a? +b* +c +d*+3(ab+be+ cd + da) > (a+ b+ c+d)?,

ab + bc + cd + da > 2(ac + bd),
(ab+ cd — ac — bd) + (bc + da — ac — bd) > 0.
(a—d)(b—c)+ (a—b)(d—c)>0.

Clearly, this inequality is true for a < b < d < ¢. The equality occurs when A has three
equal elements.

[]

P 1.200. If a,b,c,d, e are positive real numbers, then

a b c d e
> 1.
a+2b+20+b—1—20+2d+c+2d+26+d+26+2a+e+2a+2b_
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Solution. The inequality follows by applying the Cauchy-Schwarz inequality:

a (X a) _ (> a) _
Za—l—2b+20 = Sala+2b+2c) S a2+2> ab+2) ac

The equality holds fora =b=c=d =e.

P 1.201. Let a,b,c,d, e be positive real numbers such that a +b+ c+d+ e = 5. Prove that

a b ¢ d e
- +-+-+-+-<1+
b ¢ d e a

abede”

Solution. Let (z,y,z,t,u) be a permutation of (a,b,c,d,e) such that x >y > 2 >t > w.
By the rearrangement inequality, we have

a b ¢ d e T y z t u
— o<+ Do
b ¢ d e a"u t z y
T u
:(—+—+®+(g+—+a—3
u T t oy

where

From (p —1)(¢ — 1) > 0, we get

p+q<1+pq,
4(p+q) —3 <1+ 4pqg,
hence
a b ¢ d e
-+ -+ —+-<1+4pqg.
b ¢ d e a
Thus, it suffices to show that
1
Pgs ———,
zyztu

which is is equivalent to

2 2
T+ u y+t
< 1.
(57) (57) =
Indeed, by the AM-GM inequality, we get

r+u rT+u y+t y+t\°

2 2 zZ+ + + +
; T+ u y+t < 92 2 2 2 — 1.
2 2 - 5
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The equality holds fora=b=c=d=e=1.
Remark. Similarly, we can prove the following generalization (Michael Rozenberg):

o Ifay, as,...,a, are positive real numbers such that ay + as + - -+ + a, = n, then

4 a a a
n—dt————— > =
a10ag - - - Ay a2 as ai

P 1.202. If a,b,c,d,e are real numbers such that a+b+c+d+e =0, then

—vbH -1 < ab + be + cd + de + ea < V5 —1
4 T a2+ 4cE+dr+e2 4

Solution. From
(a+b+c+d+e) =0,

Za2+22ab+22ac:0.

Therefore, for any real k, we have

d @+ (2k+2)) ab=> 2a(kb—c).

By the AM-GM inequality, we get

we get

2a(kb — ¢) < a® + (kb — ¢)?,

hence

da®+(2k+2)) ab< Y @’ + (kb—c)’] = (K> +2)> a®— 2k ab,

which is equivalent to
2(2k+1)
2
22T 2 b

—-1- -1
Choosing k = T\/g and k = +\/5

both inequalities occurs when

, we get the desired inequalities. The equality in

a=kb—c, b=kc—d, c=kd—e, d=ke—a, e=ka—b
that is, when
a=z, b=y, c=-z+ky, d=-k(z+y), e=kr—y,

where x and y are real numbers.
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P 1.203. Let a, b, ¢, d, e be positive real numbers such that
a*+ b+ +d*+e* =5.
Prove that

a? b? c? d? e?

b+c+d+c+d+e+d+e+a+e+a+b+a+b+c

5
> —.
—3
(Pham Van Thuan, 2005)
Solution. By the AM-GM Inequality, we get
2b+c+d) <P+ 1)+ (P +1)+(d®+1)=8—a® — ¢

Therefore, it suffices to show that

Za—2 5
8—a2—e2 6

By the Cauchy-Schwarz Inequality, we have

Vv

| Ot

80— Za +e?) 80——[Z(a2+e2)r

5
The equality holds fora=b=c=d=e=1.

P 1.204. Let a,b,c,d, e be nonnegative real numbers such that a +b+ c+ d+ e = 5. Prove

that
729

5
(Vasile Cirtoaje, 2007)

(a® + b)) (b* + &) (A + d*)(d® + e*)(e* + a®) <

Solution. Write the inequality as
E(a,b,c,d,e) <0,
and, without loss of generality, assume that

e = min{a,b,c,d, e}.
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We claim that it suffices to prove the desired inequality for the case e = 0. To prove this, it
suffices to show that

E(a,b,c,d,e)gE(aJrg,b,c,dJrg,O), *)

which is equivalent to
(a® +bH)(? + d*)(d* + e*)(e* + a?) <

o (R O [ R

2 2 e\? 2
a‘+b* < a—|—§ + b°,

Since

2
c2+d2§c2+(d+§) :

P+ e* < d®+de < (d+§)2,

2
62+a2§ae—|—a2§ (a—l—g) ,

the conclusion follows. Thus, we only need to show that
a+b+c+d=5

involves

E(a,b,c,d,0) <0,

where

729

E(a,b,c,d,0) = a*d*(a® + b*)(V* + *)(c® + d*) — -

Without loss of generality, assume that
¢ = min{b, c}.

We claim that it suffices to prove the inequality E(a,b,c,d,0) < 0 for the case ¢ = 0. To
prove this, it suffices to show that

E(a,b,c,d,O)§E(a,b+g,0,d+g,0), (+%)

which is equivalent to

d*(a* + V)b + ) (P + d?) < (d+g>2 {a2+ (b+5>2} (b+5>2 (d+ 5>2.

This is true since

B(E + &) < (d+ 5)4
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2
a2+b2§a2+(b+§) :

2
P+ <b+be< (b+g) .

Thus, we only need to show that

a+b+d=5
involves
E(a,b,0,d,0) <0,
where 799
E(a,b,0,d,0) = a*b*d*(a® + b*) — -
We will show that
b b
E(a,b,o,az,o)gE(a’QF “; 0 dO) 0. (%)

The left inequality is true if
32a%b*(a* + b*) < (a +b)°.

Indeed, we have
(a+b)® — 32a*b*(a* + b*) > 4ab(a + b)* — 32a%b*(a® + b*) = 4ab(a — b)* > 0.

To prove the right inequality, denote

a+b
U= )
2
We need to show that
2u+d=25
implies
E(u,u,0,d,0) < 0;
that is,
729
6 4
d* < —
U <
wd? < z

By the AM-GM inequality, we have

5_2u+2u+2u+d+d t
3 3 3 2 2— 2

3
from which the conclusion follows. The equality holds for a = b = 3 c=0,d=2ande=0

(or any cyclic permutation).
0
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P 1.205. Ifa,b,c,d,e € [1,5], then

a—b b—c c¢c—d d—e e—a

> 0.
b+ c —i_c—i—d%—d—l—e—i_eqLa+ a+b—
(Vasile Cirtoaje, 2002)

Solution. Write the inequality as

S(+3)2 7

b+c 3/ 3’
b+c
Since
3a—b+2c>3—-5+4+2=0,
we may apply the Cauchy-Schwarz inequality to get
Z3a—b+20> > (3a — b+ 2¢)]? B 16 (3 a)’
b+tc T X (b+e)Ba—b+2¢) Sa?+4> ab+3> ac

Therefore, it suffices to show that

8(2@)2 > 5Za2+202ab+152ac.
(Za>2:2a2+22ab+22ac,

this inequality is equivalent to

Since

32@2 —i—Zac > 42@6.
Indeed,

3Za2+2ac—42ab:%Z(a—Zb—l—c)Q > 0.

The equality holds fora =b=c=d =e.

P 1.206. If a,b,c,d,e, f € [1,3], then

a—b+b—c+c—d+d—e+e—f+f—a>
b+c c¢c+d d+e e+ f f4+a a+b~

(Vasile Cirtoaje, 2002)
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Solution. Write the inequality as
a—b 1
-] >
X (i) 20

ZQa_b+CZ6.
b+c

Since
20 —b+c>2-3+1=0,

we may apply the Cauchy-Schwarz inequality to get

20 —b+c > (2a — b+ )] B 2(3a)’
Z b+c ZZ(b%—c)(?a—b%—c)_Zab—l—Zac'

Thus, we still have to show that

(Za)Q ZS(Z@b—i—Zac).

Let
r=a+d, y=b+e z=c+f.
Since
Zab+2ac:xy+yz+zx,
we have

(ZQ)Q—?)(Zab—FZac) =(x+y+2)?—3y+yz+zz)>0.

The equality holds fora =c=ce¢and b=d = f.

P 1.207. If a1, a9, ..., a, (n > 3) are positive real numbers, then

n
a; n
E S R
ai—1+2a; + a4

i=1

where ay = a,, and a1 = a;.

(Vasile Cirtoaje, 2008)
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Solution. Applying the Cauchy-Schwarz inequality, we have

n n

a; o a;
Z a1 +2a;+aiq A : (i1 + a;) + (@i + aiy1)

i=1 =

1< 1 1
< = .
- 42% (Gi1+ai * ai+ai+1)

1 “ a; & a;
n Z_l (; a;—1 + a; — a; + ai+1>
1 “ a1 - a; n
4 (;ai+ai+l +;ai+ai+l> 4
The equality holds for a1 = as = --- = a,.
O
P 1.208. Let ay, as, ..., a, (n > 3) be positive real numbers such that ayas - - - a, = 1. Prove
that ] ] ]

+ + e+ <1
n—2+a+a; n—2+as+as n—2+4+a,+ a;

(Vasile Cirtoage, 2008)

-2
First Solution. Letr = = We can get the desired inequality by summing the following
n

inequalities
n—2 <a§—|—a£—|—-~+a,ﬁ
n—24a +ay ~ al+ay+---+ay’
n—2 <a’{—|—a£—|—---—|—a;

n—2+ay+az  aj+ay,+---+al

n—2 <a§+a§+~-+ag,1
n—2+a,+a; = ad+ay+---+al,

The first inequality is equivalent to

(a1 +ag)(az +aj +--- +a;) > (n = 2)(a; + a3).

By the AM-GM inequality, we have

azt+ay+--+ap = (n—2)(azas - a,) 7 = ———.
(a1a2>n72

Therefore, it suffices to show that

a; + ag > (alaQ)ﬁ(aq + aj),
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or, equivalently,

1 n—2 n—2
a; + as > (ajaz)» <a1" +ay” ) :

This is equivalent to the obvious inequality

The equality holds for a1 = as = -+ = a,.

Second Solution. Since

n—2 ay + as

n—2+a +ay = n—24a +ay

we can write the desired inequality as

n

Z a; + a1 >9
i1 ai+ai+1+n—2

where a,, 11 = a;. Using the Cauchy-Schwarz inequality, we get

" 2
" (Z\/ a; + az‘+1>
i=1

a; + Qi1
i1 ai—|—ai+1+n—2 -

n

Z(ai + Qi1 +n— 2)

=1

220@ + 2 Z \/(CLZ + CLiJrl)(OJj + aj+1)
i=1

1<i<j<n

ZZai +n(n — 2)
i=1

Therefore, it suffices to prove that

n

Z \/(ai + aiy1)(a; +aj) > Zai +n(n — 2).

1<i<j<n i=1
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Setting a, o = ag, by the Cauchy-Schwarz inequality and the AM-GM inequality, we have

Z \/(ai + aip1)(a; + aji1) =

1<i<j<n

=> Vit ain)(am +ai2) + Y \/(az' + air1)(a; + aji1)

i=1 1<i<j<n
i+l
n

> Z (@ir1 + /@ia42) + n(n — 3)Jaras - - ay,
i=1

n

=Y a;+nn-3)+> aai,
1=1 i=1

> Zai—l—n(n—S)—Fn{L/alaQ---an:Zai+n(n—2).
i=1

=1

P 1.209. If ay,as,...,a, > 1, then

1 o 11 1
|| ag+—4+n—=-2>n"“(ar+a+--+a,) | —+—+-+—).
a9 ay a9 Ay,

(Vasile Cirtoaje, 2011)

Solution. Write the inequality as FE(aq, as, ..., a,) > 0, and denote

1 1 1
A= <a2+——i—n—2> (a3+—+n—2)~--<an_1+—+n—2).
as ay (07

We will prove that
E(ay,a9,...,a,) > E(1,as, ...,a,).

If this is true, then
E(ay,as,...,a,) > E(l,a9,...,a,) > E(1,1,as,...,a,) > --- > E(1,1,...,1,a,) = 0.

We have o
E(ay,aq9,...,a,) — E(1,as,...,a,) = (a1 — 1) (B — —) ,

3]
where

1 1 1
B = A(a,+n—2)—n""? <—+_+...+_)’
Gaz  as G,

1
C:A<—+n—2> —n"?(ag+az + -+ ay).

ag
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Since a; — 1 > 0, we need to show that
alB - C 2 0.

According to the AM-GM inequality, we have

V a3 ay V an n

therefore

and

1

alB—CZB—C:A(an——>+n"2 <a2—i>+...+n"2 <Cln

ag as

The equality holds when n — 1 of the numbers ay, as, ..., a,, are equal to 1.

P 1.210. If ay,as9,...,a, > 1, then

1 1 1 .
(a1+—) (aﬁ—)---(aﬁ—)+2"22(1+@) (1+@>---(1+a—).
aq a9 Ay, (05 as 3]

(Vasile Cirtoaje, 2011)

Solution. Write the inequality as F(aq, as, ...,a,) > 0, and denote

1 1
(s Yo )
az Qnp,
B= (1+@)~--<1+a”‘1>.
as an

E(ai,az,...;a,) > E(1 a9, ...,a,).

We will prove that

If this is true, then
E(ay,as,...;a,) > E(1,aq,...,a,) > E(1,1,a3,...,a,) > --- > E(1,1,

We have D
E(ay,as,...,a,) — E(1 a9, ...,a,) = (a3 — 1) (C — —) ,

ay

.,y La,) =0.
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where o5
C=A——,
a2
D = A - 2Ba,,.
Since a; — 1 > 0, we need to show that
alc —D Z 0.

First, we prove that C' > 0; that is,
(a54+1)--- (a2 4+ 1) >2(ay +as) - (an_1 + an).
By squaring, this inequality becomes
(a3 + Dl(az + 1)(as + 1] -+ [(an_y + D(ap + D](ay, +1) >

Z 4(&2 + a3)2 e (an—l + an)Q-

By the Cauchy-Schwarz inequality, we have
(a3 +1)(a3 +1) > (a2 +a3)?, .., (an_y +1)(an +1) > (a1 +an)”.
Therefore, we still have to show that
(a3 + 1)(a, +1) > 4,

which is clearly true for as > 1 and a,, > 1. Finally, we have

a2

The equality holds when n — 1 of aq,as, ..., a, are equal to 1.

P 1.211. Let k and n be positive integers with k < n, and let ay,as, ..., a, be real numbers
such that a1 < ag < ---<a,. Then

(a1 +ag + -+ an)® > n(a1app1 + Goarra + -+ + Aulnik)
(where a,; = a; for any positive integer i) in the following cases:
(a) n=2k;
(b) n=4k.
(Vasile Cirtoaje, Crux Mathematicorum, 5, 2005)
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Solution. (a) We have to prove that
(a1 +ag + -+ ag)® > 4k(a1ap41 + aaapi2 + - -+ + agagy).
Let = be a real number such that ay < z < agyq. Then, obviously,
(x —ar)(ags1 — @) + (z — a2)(agy2 — @) + - - + (x — ax)(agx — x) > 0.
Expanding, rearranging and multiplying by 4k, we obtain
4kx(ay + ag + - - + ag) > 4k*2% 4+ 4k(a1ap41 + agapio + - -+ apaog).
On the other hand, by the AM-GM inequality, we have
(ay 4+ ag + -+ + ag)? + 4k*2* > 4kx(ay +ag + - - - + ag).

Adding these inequalities, we obtain the desired inequality. The equality holds for

B B - _apt+ag+ -+ ag
Ajp1 = Qjp2 = = = itk = ok )

where j € {1,2,--- , k —1}.

(b) Let
bi :ai+a2k+ia 1= 1,27...,2]{3.

Clearly, by < by < --- < bg. Applying the inequality from part (a), we obtain
(a1 +as + -+ ag)® > 4k(arapsr + asapso + - + ageay).

(by + by + -+ 4 bop)? > 4k(bybgy1 + bobpio + -+ + bpbar),

which is the desired inequality. The equality occurs for
Aj42k4+1 = Aj42k42 = = Aj13k = b
)

a; +as + -+ ag = 2k(a +b)

where a < b are real numbers, and j € {1,2,--- ,k — 1}.

IN

Remark. Actually, the inequality holds for any integer k satisfying k (see Crux

~3
IA
|3

Mathematicorum, 2008, volume 34, issue 4).
O
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P 1.212. Ifay, ag, ..., a, € [1, 2|, then
- 3 & 2
— 0+ 2011 T + a1’

where a,+1 = ay.

Solution. Rewrite the inequality as follows

n

Q; — Qi1
>0,
Z-Zl (a; + ap1)(a; + 2a;41) —

- k:(az — ai—i—l) i _ 1
> {( + >0

~ | (ai + 1)@ +2ai01) @i @]

n 2

3 (i — aip1)[(k = 3)aiairs — af — 247,
Y a;i1(a; + aiy1) (@ + 2a;41)
Setting k = 6, the inequality becomes

S (ai - ai+1>2(2ai+1 - Clz‘)

— aitiy1(a; + aip1)(a; + 2a41) —

(Vasile Cirtoage, 2005)

k>0,

>0,

Since 1 < a; < 2, we have 2a,,1 —a; > 0 for all ¢ = 1,2,...,n. Thus, the inequality is

proved. The equality holds for a; = ay = -+ = a,.

]

P 1.213. Ifay,a9,...,a, (n>3) are real numbers such that ay > ay > -+ > a, and

ai1ag + asas + -+ - + apa; =N,

then

B—a)’+ (B —a)*+-+(3—ay)®>4n.

(Vasile Cirtoaje, GMA, no. 3-4, 2022)

Solution. Let
0= Qo+ a3+ -+ ap_1

n—2

By Jensen’s inequality applied to the convex function f(x) = (3 — )%, we have

B—a)+B—a)’+ -+ B—a,1)*>(n—2)3-a)

Thus, it suffices to show that

(B3—a1)*+ (3—a,)*+ (n—2)(3—a)® > 4n.
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Using the substitutions
a—+ ap _ata

2 2

A=
the inequality becomes as follows:
(3+a—24)*+(3B3+a—2B)*+ (n—2)(3—a)® > 4n,
4(A2+B?) - 4834+ a)(A+B)+2B3+a)*+ (n—2)3—a)? —4n >0,
4A+B)?*-4B+a)(A+B)+2B+a)*+ (n—2)(3 —a)® — 4n > 8AB,
(2A+2B -3 —a)*+(3+a)*+ (n—2)(3 —a)® — 4n > 8AB.

It is true if
(3+a)*+ (n—2)(3 —a)® — 4n > 8AB.

By Lemma below, we have:
4AB + (n — 4)a* < n.

So, it suffices to show that
(34 a)*+ (n—2)(3 —a)® —4n > 2n — 2(n — 4)d?,

which is equivalent to
3(n—3)(a—1)*>0.
The equality occurs for a; =as =--- =a, = 1.

Lemma. If ay,a9,...,a, (n>3) are real numbers such that a; > ag > -+ > a,, then

(a+ a1)(a+an) + (n — 4)a® < aray + asaz + - - - + anas,

where
a0 = ag +as+ -+ ap—1
N n—2 '
Proof. For n = 3, the inequality is an identity. For n > 3, since the sequences (as, . .., a,_2)
and (ag,...,a,—1) are decreasing, by Chebyshev’s inequality we have

(n—3)(agas + -+ an—2ay-1) > (aa + -+ an—2)(as + -+ + ap_1).

Thus, the desired inequality is true if

(a1 + ap)a + (n —3)a® < ayag + an_1a, +

n_3(@2+---+an_2)(a3+---+an_1),

which is equivalent to

1

ar(a —as) + ap(a — a,_1) + (n — 3)a* < —

[(n—2)a — an_1][(n — 2)a — ay).
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Since a — as < 0 and a — a,,_1 > 0, it suffices to show that

as(a — a) + an_1(a — an_1) + (n —3)a® < [(n —2)a— ap_1][(n — 2)a — as),

n—3

that is
(2n — 5)a® — (2n — 5)(az + an_1)a + (n — 3)(a5 + a2 _,) + asa, 1 > 0,

2
as + ap_1 2n—17

2n — 5 -

(2n )(a 5 ) + 1

Remark 1. Actually, 3 is the largest real value of k such that
(k—a)* +(k—ay)* +-+(k—ay)?*>n(k—1)?

(CLQ — an,1)2 Z 0.

for any real numbers a; with a; > ay > --- > a, and ajas + asaz + - - - + a,a; = n. Choosing
a; > ay =+ =a, 1 =1>a, >0 and denoting s = (a; + a,)/2, the equality constraint
becomes aia, + 2s = 3. From 3 = aja, + 2s > 2s and 3 = aja, + 25 < s> + 25, we get
s € (1,3/2). The inequality can be written as follows:

(k—a1)*+ (k—a,)?* > 2(k—1)% (s—1)(s+2—k) >0, s+2—k>0.
Taking s — 1, we get the necessary condition k£ < 3.
Remark 2. We can write the inequalities from P 1.213 as

ai+ay+---+ai+5m>6(a +ay+ - +ay).

Since et

a1+ as+ -+ ay n

1 2 n >9
n a1 t+az+---+a,
for ay + as + - -+ + a, > 0, the following inequality follows:
e Ifay,as,...,a, (n>3) are nonnegative real numbers such that
aiaz + a0z + -+ - + Apay =N, ap 2 az 2 -+ 2 ap,
then 62
n
ai+as+---+al+ > n.

P 1.214. Let a,b,c,d be positive real numbers such that ab + bc + cd + da = 4.

(a) Ifa>b>1>c>d, then
1 1 1 1
B T T > _
a—l—b—l—c—l—d+8_3(a—|—b—|—c—|—d)
(b) Ifa>b>c>12>d, then the inequality above holds true.

(Vasile Cirtoage, SSMJ, 4 and 6, 2024)
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Solution. Write the constraint as

(a+c)(b+d) =4

(a) Let
_a+tc _b+d _1
Tr = 2 ) y_ 2 ) Iy— .
From (a —1)(c—1) <0and (b—1)(d—1) <0, we get
1
ac < 2x — 1, bd <2y —1, §<y§x<2.
Since
1,1 1 1 ate bid_ 2 2y

a b ¢ d  ac * bd _2x—1+2y—1’

it suffices to show that
T y

2x—1+2y—1

+4>3(z+y),

which is equivalent to

1 1
’ + +4Z3<x+—>,
T

2r—1 2—=x
(z—1)*>0.
The equality occurs fora=b=c=d = 1.
(b) Let
a+d b+ c
x 5 Y 5 (Y
Since
1+1> 4
b ¢ btc vy

it suffices to show that

1 1 2
—+=4+-+8>3(a+d+2y),
a d vy

that is )

x

—+—-4+4>3 )

ad+y+ > 3(z +vy)
From

oy —4=(a+d)(b+c)—(a+c)(b+d)=(a—b)(c—d) >0,
we get
xy > 1,

and from

A—(a+y)(y+d) =(a+c)b+d) —(a+y)(y+d) =alb—y)+ (bc—y*) +d(c—y)
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_a(b—c) (b—c)? d(b—c) (b—c)(2a+c—b—2d)>

2 4 2 4 -
we get (a4 y)(y + d) < 4, hence

0,

ad < 4 —y* — 2xy.

So, it suffices to show that

that is
1
x+ (4 —y* — 22y) <—+4—3x—3y) > 0.
Y
For fixed y, the inequality is true if f(z) > 0, where
f(x) = 6y*z® +y(9y* — 8y — 13)x + (y* — 4)(3y* — 4y — 1).
Since
f(x) = 12y%z + y(9y* — 8y — 13) > 12y + y(9y° — 8y — 13)
=y’ -8y —1) =yly - 1)(%9y +1) >0,
f is an increasing function, therefore
1
f@ﬁzf(;):3f—4f—4f+8y—3:@—Jf@f+2y—$20.
The equality occurs fora=b=c=d =1.

Remark 1. Points (a) and (b) can be combined as follows:

o Let a>b>c>d>0 such that ab+bc+cd+da=4. If b> 1, then

1 1 1 1
—+ -+ -+ =48> :
a+b+c+d+8_3m+b+c+®

Note that the inequality

r 1 1 1
— — — — — 4 > —
St ot Az ket bt d—4)

does not hold true for £ > 3. To prove this assertion, we set b = ¢ = 1, when the inequality
becomes L
-4+-=-22>k d—2
- + g > k(a+ )
under the constraint

ad+a+d=3.
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Denoting = = (a + d)/2, we have ad = 3 — 2z and z € [1,3/2). The condition = > 1 follows
from
3=ad+ S < z?+uz.

Consider now that = € (1,3/2), and write the inequality as follows:

X
——1>kx—-1
L1z k- 1)

T
3 —2x

—1>k(z—1),

k<

3— 2z

From this, we get the necessary condition

3
<1 _3
=30

Remark 2. Since
a+b+c+d 4

> 9,
4 a+b+c+d ™

the following statement follows:
o Let a>b>c>d>0 such that ab+bc+cd+da=4. If b> 1, then

1 1 1 1 48

-4+ — > 16.
a+b c d+a+b+c+d_6

P 1.215. If a,b,c,d are nonnegative real numbers such that
ab+ bc+ cd + da = 4, a>b>c>d,

then
4 < 1 . 1 . 1 i 1 < 3
37 a+2 b+2 c¢c+2 d+2~ 2
(Vasile Cirtoaje, Math. Reflections, 4, 2024)

Solution. The hypothesis is equivalent to
(a+c)(b+d) = 4.

Therefore,
a+c>2>b+d.
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(a) To prove the right inequality, we see that

1 1

n B at+c+4 a+c+4
a+2 c¢+2 ac+2a+c)+4” 2a+c+?2)
and
1 N I b+d+4 < b+d+4 a+tc+l
b+2 d+2 bd+20b+d)+4~ 2b+d+2) at+c+2
hence
1 n 1 N 1 n 1 a+c+4 at+c+1 3
a+2 b+2 c+ 2

d+2 = 2(a+c+2) a+c+2 2
The equality occurs for ab =4 and ¢ = d = 0.

(b) Let
a+d b+c
T = , Y= )
2 2
From
oy —4=(a+d)(b+c)—(a+c)(b+d)=(a—b)(c—d) >0,
we get
xy > 1,

and from

4—(a+y)y+d)=(a+c)b+d)—(a+y)(y+d) =alb—y) + (bc —y*) + d(c —y)
_ alb—c) (b—c)* d(b—c)

2 4 2
we get (a +y)(y + d) < 4, hence

(b—C)(ZCLZC—b—Qd) >0,

ad < 4 — 2zy — >
Since
1 1 2
+ > ,
b+2 c+2 7 y+2

we only need to show that

1 N 1 N 2 4
a+2 d+2 y+2 3

that is
T+ 2 n 1
ad+4r+4  y+2

2
> 2
3
So, it suffices to show that

T+ 2 n 1
8+4dr —2xy —y> y+2

2
> o)
-3
that is

1 2
24+ 8+4dx—2xy—y)[———=21]>0
r+ 2+ (8+4x Ty y)<y+2 3)_,
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c(4y? =3y +2) + 20> + > — 10y +4 > 0.
Since xy > 1, it is true if

49 — 3y + 2
M+2y3+y2—10y+420,
which is equivalent to

2" +y° =6y +y +22>0,

(y —1)*(2y* + 5y +2) > 0.
The proof is completed. The equality occurs fora =b=c=d = 1.

P 1.216. Ifn>6 anda; > 1> ay > --- > a, such that ajas + asaz + - - -+ a,a; = n, then

Loy o
a1+3 CLQ‘I‘?)

>

~3

an + 3

(Vasile Cirtoaje, Crux Mathematicorum, 6, 2024)
Solution. Let

a2+a3+---~|—an_1
N n—2 ’
where

ar>1>x>a,.
By the AM-HM inequality, we have

1 1 (n —2)? n—2
+--+ > =
as +3 an1+3 ~ (a2 +3)+ -+ (a1 +3)

x4+ 3’
and it suffices to show that

1 n 1 +n—2>
a+3 a,+3 x+3

By Lemma below, we have (n — 3)z? + z(a; + a,) + a1a,

-3

< n. Since the left hand side of
the desired inequality decreases when a; increases, we may replace this inequality constraint

with the equality constraint (n — 3)z? 4+ z(a; + a,) + a1a, = n, i.e.
ara, =n —2xS — (n — 3)a*.

From (a; — z)(a, —z) <0, we get aja, < 225 —z?, and from n — 225 — (n — 3)z* = a1a,, <
225 — 2%, we get

—(n — 42
5251:%_
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Since
1 1 25 +6 25+ 6

a1—|—3+an+3:alan—|—9—|—6S:n+9+2(3—x)3—(n—3)x2’

we need to show that

25 +6 +n—8—n:c
n+9+2B83—-2)S—(n—3)22 4(x+3) — 7

which can be written as 2A(z)S + B(z) > 0, where
A(r) =na® —4(n —3)r +3(n—4) = (z — 1)(nx — 3n + 12),
B(z) =n(n —3)z* — (n —3)(n — 8)2> — (n® + 9n — 24)z + n(n + 1)
= (x —1)[n(n —3)2® +8(n — 3)x —n(n +1)].

Since z < 1l and 3n—12—nz > 3n—12—-n = 2(n — 6) > 0, we have A(z) > 0. So,
it suffices to show that 2A(x)S; + B(z) > 0, which is equivalent to the obvious inequality
(xr — 1)%h(x) > 0, where

h(z) = (n —2)x* +2(2n — 5)z + 3(n — 4) > 0.

Thus, the proof is completed. For k, = 3, the equality occurs when ay = --- =a,_1 =1 and
ay + a, + aia, = 3 such that a; > 1 > a,,.

Lemma. Let a; > ay > ... > a, > 0 such that ajas + asaz + --- + a,a; =n. If n > 4 and

T = a2+---—|—an_17 then
n—2
(n —3)2® + z(ay + ap) + ara, < n,
with equality for as = -+ = a,_1.

Proof. Write the desired inequality as follows:
(n —3)2* + z(a1 + a,) + ara, < ajag + azaz + - -+ + ayay,
(n —3)2® + a1 (z — ag) + (T — an_1) < azas + -+ + Ap_9ay_1.
Since © — ay, < 0 and = — a,,_1 > 0, it suffices to show that
(n —3)2® + ag(x — ag) + ap_1(x — ap_1) < agaz + - -+ + Gp_oGy_1,

which can be rewritten as

(03 + + - Apnp-1 > (0 — 3)a® + (ag + ap-1)T — a3 — aj_,.

Since the sequences as,as,...,a, o and as,ay,...,a, 1 are decreasing, by Chebyshev’s in-
equality we have

(n—3)(agaz+- - +an_o0a,_1) > (ag+- - +an_2)(az+- - +a,—1) = ((n —2)x —ap_1) (n — 2)x — as) .
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Thus, it suffices to show that

(n—=2)r —ap,_1)((n—2)z — ay)

; > (n —3)2? 4 (ay + ap_1 )z — a2 — a?_|,
n R

which is equivalent to
(2n —5)2% — (2n — 5)(az + an_1)x + (n — 3)(a3 + a2 _,) + aza,_, >0,

(2n —5)(22 —ay — an_1)* + (2n — 7)(az — ap_1)* > 0.
Clearly, the last inequality is true.

Remark. Note that 3 is the largest positive value of k such that the inequality

1 n 1 n n 1 S n
a1 +k  ax+k an,+k — 1+k

holds for n > 6 and all nonnegative numbers ay, as, .. ., a, satisfying
ayas + azas + - - + apa; = n, ay>1=>ay = - > ay.

Indeed, by setting ay = 3, as = --- = a,_1 = 1 and a,, = 0, the desired inequality leads to
the necessary condition k£ < 3.

]

P 1.217. If x1, x5, x3, x4, x5 are nonnegative real numbers such that
T1To + XToT3 + T3T4 + T4X5 + T5T1 = O,

then
1 1 1 1 1 5

>
5$1+4+ 5$2+4+5$3+4+5l’4+4+ 5$5+4 -9
(Vasile Cirtoaje, AMM, 6, 2023)

Solution. According to Lemma below, it is sufficient to show that

1 n 1 L 1 n 1 L 1 >5
ba+4 bHb+4 bHc+4 5Hd+4 be+4 9

fora>b>c>d>e >0 such that ae + ad + be 4+ bc + cd = 5. We will prove the extended

inequality
1 1 1 1 1 S 5

ik bk Texk Tdxk TexkT14k

V54— 25 — 35 4+ 3
0<k<hy, ko= ‘/; VB3 083234991,

for
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Denote
a+b d+e

2 Y y = 2 Y
Replacing a and e with 2x — b and 2y — d, respectively, we have

T = a>xr>b>c>d>y>e.
5=a(d+e)+be+bc+ cd =22z — b)y + b(2y — d) + be + cd = 4xy + be — (b — c)d.

From this, we get
5> day +be — (b — c)c = 4y + ¢,

hence
4oy < 5— 2, C<\/5,
and
5=dxy+bc— (b—c)d <dxy+bc— (b—c)y =4xy+blc—y)+cy
3
<daxy+ax(c—y)+cy=3zy+clz+y) < 1(5—02)+c(x+y),
hence

de(z +y) > 3¢ + 5.
By the AM-HM inequality, we have

1 1 4 1 1 4
+ > ) + > .
a+k b+k ~ a+b+2k d+k e+ k= x4+x5+ 2k

So, it suffices to show that the conditions
4oy <5 — 2, de(x 4 y) > 3c¢® + 5, r>c>y>0, <2
involve

2 N 2 N 1 S 5
r+k y+k ct+k T 1+EK

that is
2(x +y) + 4k 1 .5

ry+k(z+y)+k> c+k = 14k
Since 4zy < 5 — 2, it suffices to show that

1 5
> =
c+k ~1+k

A+

where
8(x +y) + 16k 2 4k(z +y) + 8k?

- 5—+4dk(z+y)+4k2  k 5— 2+ 4k(z +y) + 4k2
2 4k* — 542

=—|1
k +5—02—|—4k:(x+y)+4k2

Case 1: 4k*> — 5+ ¢® > 0. Since
A>

I

El ]
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we need to show that

2 1 5

. >

k c+k —1+k
which is true when

2 1 5

24 > :
ko 54k 1+k
hence when 0 < k < k.

Case 2: 4k* — 5+ ¢* < 0. Since 4de(x +y) > 3¢ + 5, it suffices to consider the case
de(z + y) = 3¢* + 5, when
2 4k* +5 — 2 6c* + 16kc + 10

A>>1 = :
~k i 5—c2+k(3c?+5)/c+ 4k? 5k + (4k? + 5)c + 3kc? — @

Thus, we need to prove that

6c2 + 16kc + 10 L 1 S )
5k + (4k?2 +5)c+3kc2 — ¢ c+k — 1+ Kk’

which is equivalent to
ct+ (1 —k)c® — (2k* — 5k + 5)c* + (4k* — Tk + 3)c — 2k* + 3k > 0,
(c—1)?[c* + (3 —k)c+ k(3 —2k)] > 0.
The proof is completed. The equality E(a,b,c,d,e) = % occurs fora =b=c=d=e =1,
while the original inequality is an equality for vy = 2o = 23 = 14 = x5 = 1.

Lemma. Let x1,x9, 23,24, x5 be nonnegative real numbers such that xixo + xox3 + x314 +
T4x5 + 5wy = 5, and let E(xq, %2, x3,T4,x5) be a symmetric and decreasing function with
respect to each variable. If E(a,b,c,d,e) > 0 for anya > b > c > d > e > 0 such that
ae + ad + be + be + cd = 5, then E(xq, 29, w3, x4, 25) > 0.

Proof. Let T = (T4,1,15,Ty,T5) and t = (t1,ts,t3,14,t5) be two decreasing sequences
of nonnegative real numbers. By Karamata majorization inequality applied to the convex
function f(z) =e*, it Ty---T; > t;---t; for j =1,2,3,4,5, then

T1+T2+T3+T4+T5 Zt1+t2+t3+t4+t5
If (a,b,c,d,e) is a permutation of (z1, xs, 3, x4, r5) such that a > b>c>d > e > 0, then
E(a>bv C, d? 6) = E($1,$2,x3,$4,3§'5)

Z ab = Zwlxg,

sym sym

E T1T9 = E XTiZj.

sym 1<i<5<5

and

where
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Let T = (ab,ac,bd,ce,de) be a decreasing sequence, and ¢ a decreasing permutation of
the sequence (2129, XaT3, T3%yg, Tk, T5x1). Since Ty ---T; > ty---t; for j = 1,2,3,4,5, by
Karamata’s inequality we have

ab+ ac+ bd + ce + de > x1x3 + x375 + T5T9 + ToTy + T421,
which is equivalent to
Z ab — (ab + ac + bd + ce 4 de) < Z 1Ty — (X123 + T3x5 + T5xe + Toxy + T471),
sym sym

ie.
ae + ad + be + be + cd < x1x9 + Loz + T3x4 + TaTs + Tsx1 = 5.

In the case ae+ ad + be + bc+ cd < 5, by increasing the numbers a, b, ¢, d, e to have ae + ad +
be+bc+cd =5 and to keep the constraint a > b > ¢ > d > e > 0, the function F(a,b,c,d, e)
decreases, therefore

E(a,b,c,d,e) < E(xq, 22, T3, T4, T5).

On the other hand, by hypothesis, E(a,b,c,d,e) > 0. So, we have

E($1,ZL’2,$3,$4,CE5) Z E((I, b7 ¢, da 6) Z 0.

P 1.218. Ifa,b,c,d, e are nonnegative real numbers such that
ab + bc + cd + de + ea = 5,
then

1+1+1+1+1
a+1 b+1 c¢c+1 d+1 e+1

)
> —.
-2
(Vasile Cirtoaje, AMM, 6, 2023)
Solution. Assume that a = max{a,b,c,d, e}, a > 1. Since
(a+c)b+ (a+de=5—cd, cd<D5,

(a+c)b+1)+(a+d)(e+1)=2a+c+d+5—cd,
by the Cauchy-Schwarz inequality we have

1 N L (Va+c+Va+d)?
b+1 e+1 7 (a+ce)b+1)+(a+d)(e+1)

_20+c+d+2/(atc)(atd) 4a+c+d+2ved
N 2a+c+d+5—cd “2a+c+d+5—cd
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Thus, it suffices to prove that

1 1 1 da+c+d+2Ved 5
e R P = > (+)
a+1 ¢+1 d+1 2a+c+d+5—cd — 2

for @ = max{a, c,d}, a > 1 and cd < 5. Due to symmetry, we may assume that ¢ > d, hence
a>c>d, a>1, cd<H5>.

Denote

d
x:“;, p=ed

From ¢+ d > 2v/cd and (a—c)(a—d) >0, we get x> pand a® — 2ax + p* > 0, therefore

a2+p2

<z <
P=T= 2a

For fixed a and p, the inequality (*) can be written as

1 2(x +1) da + 2x + 2p
a+1 14+2zx+p> 2a+22+5—p?

)
Z a)
2
which is equivalent to f(z) > 0, where f is a polynomial of second order with the expression

f(z) =4(1 — a)a® + B(a,p)x + C(a, p).

a2 + p?
2a '

Since f is concave, it suffices to prove the inequality f(z) > 0 for x = p and = =
therefore for ¢ = d and for ¢ = a.
Case 1: ¢ =d < /5. We need to prove the inequality

1 . 2 . da + 4c
a+1 c+1 2a+2c+5—-¢2

)
> o)
-2
which is equivalent to

2(3 —c)a® + (5c® — & = 17c+5)a+ 3¢ + ¢ —5e+5 > 0,
23 —c)a—c)? +5(c - —c+1Da+5c*—c—c+1)>0,
2(3 —c)(a—c)* +5(c—1)*(c+1)(a+1) >0.
Case 2: ¢ = a. We need to show that

2 n 1 +5a+d+2\/ad
a+1 d+1 3a+d+5—ad

5
> o)
— 2
which is equivalent to

5a2d% — 2ad(a + d) + a® + d* — 20ad — 2(a + d) + 5+ 4(a + 1)(d + 1)Vad > 0,
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(a—1)2(d—1)% + 4 [a®d® — 6ad + 1+ (a + 1)(d + 1)\/@] > 0,

$a = 172d = 17 + (ad = 1+ Vad [(Va — Vi) + (Vad = 1] 20

The proof is completed. The equality occurs fora =b=c=d=¢ = 1.

Remark. In our opinion, the inequality

1+1+1+1+1 >5
a+k b+k c+k d+k e+k T 1+Ek

holds for k € [0, k;], where

C3vVh—d4+4V4—/5
B 2

is a root of the equation

2 +2_ 5
VE+k k 14k

In addition, the condition k < k; is necessary. Indeed, by choosing ¢« = b = /5 and
¢ = e = 0, the equality constraint is satisfied and the inequality becomes

2 1 3k —2
\/5+k:+d+k = k(1+ k)
Clearly, the inequality is true for all d > 0 if and only if
2 S 3k —2
Vi+k k(14 k)

that is £ < k;.

P 1.219. Ifay,as,...,as are nonnegative real numbers such that aias+asas+---+aga; = 8,

then
1 1 1

e > 1
5CL1+3+5CE2+3+ +5CL8+3_
(Vasile Cirtoaje, GMA, no. 3-4, 2024)

Solution. We first show that

1 1
64 Sajas > 21.
<5a1 T3 5a2—|—3> Tomas =

a1 + as

Denoting s = and p = y/ajas, the inequality becomes as follows:

64(10s + 6) )
5p? > 21
25 +30s+9 = b
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2(15p? + 1)s + 25p* — 96p® 4+ 39 > 0.

Since s > p, we have
2(15p? + 1)s + 25p* — 96p® + 39 > 2(15p* + 1)p + 25p* — 96p? + 39

= 25P* + 30p* — 96p” + 2p + 39 = (p — 1)*(25p* + 80p + 39) > 0.

1 1
64 ) —211 >0
Zl (5a1+3+5a2+3>+ a2 :| -

cyc

Thus, from

we get the desired inequality. The equality occurs for a; = ay =--- =ag = 1.

Remark 1. Similarly, we can prove the following statement:
o Ifay, as,...,a, are nonnegative real numbers such that
aias + agas + -+ -+ apa; = n,

then
1 1 1

5a1+3+5a2+3+"'+5an+3

n
> —.
-8

Remark 2. The following stronger inequality is true.

VE+1

If k>
of_2

~ 1.618 and ay,as,...,a, are nonnegative real numbers such that

ai1ag + agasz + -+ -+ apa; = n,
then
1 1 1 n

> )
ka1+1+ka2+1+ +kan+1_k—|—1

The proof is based on the inequality

(k:+1)2( !

k:a1+1+l€a2—|—1

> +I€CL16L2 Z 3k5+2,

which is equivalent to
20k —k — 1+ kpH)s + k*p* — (3k* +2k — 1)p* + 2k +1 > 0,

+ as

where s = and p = \/aiay. For p = 0, the inequality becomes

20> =k —1)s +2k+1>0,

5+1
and it is true for k > \/_;_ . For p > 0, it suffices to show that

20k —k — 1+ kpH)p + E*p* — (BK* + 2k — 1)p* +2k +1 >0,



Cyclic Inequalities 303

which is equivalent to
E*p* 4+ 2kp® — (3k* + 2k — D)p* +2(k* —k — D)p+2k +1 >0,
(p— 1?[k*p* + 2(k + 1)p+ 2k + 1] > 0.

Remark 3. The following nice open inequality is true.

e [fay, as, ..., a7 are nonnegative real numbers such that aias + asas + -+ aray =7,
then
1 n 1 T 1 S 7
CL1+1 CL2—|—1 CL7—|—1_2.

Note that the inequality

1 n 1 . N 1 S 7
CL1—|—]€ a2+k CL7+I€_1+I€

doesn’t hold for k > 1. Choosing a; = a4 = 3, as = a3 = 1 and a5 = a; = 0, the equality
constraint is satisfied and the inequality becomes:
5

1 N 2 +2>
ag+k 3+k kT 1+Ek

Moreover, for ag — 0o, we get the necessary condition

2 2 )
>
3+k kT 1+Ek

which involves k < 1.

Choosing a5 = a; = 0 and then ag — 0o, we get the following very nice inequality (see P
2.119):

o Ifay,aq,as, ay are nonnegative real numbers such that aias + asas + azay =7, then
1 1 1 1 3
>

)

a1+1+a2+1+a3+1+a4+1_2

with equality for a; = a4 = 3 and ay = az = 1.

As a final remark, the inequality

Ly b
CL1+1 (12+1 (ln+1

|3

with aias + asaz + - -+ + a,a; = n, does not hold for n = 6 and for n = 8.
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P 1.220. If a,b,c,d, e are nonnegative real numbers such that
ab + bc + cd + de + ea = 5, a>b>c>1>d>e,

then
1 1 1 1 1 5
>

at3 043 c13 di3 er3 4
(Vasile Cirtoaje, Arhimede Math. J., No. 2, 2024)

Solution. For fixed a, d and e, from the equality constraint we may assume that b is a
function of c. By differentiating the constraint, we get
b
= +d <
at+c

(a+c)p+b+d=0, =V 1.

Denoting the left side of the desired inequality by f(c), we have

3
b 1 1 1 <o.

T = a3 " v aE SBrap  ferar S

Thus, f(c) is decreasing and has the minimum value when ¢ is maximum, that is when ¢ = b.
So, we only need to show that

1 n 2 . 1 n 1 >5
a+3 b+3 d+3 e+3 4

for
ab+b* 4+ bd + de + ea = 5, a>b>1>d>e.

For fixed a and e, from the equality constraint, we may assume that b is a decreasing function
of d. By differentiating the constraint, we get
b+e

1
20+ d)b +b = = < =
(a+2b+d)b'+b+e=0, s sy

Denoting the left side of the desired inequality by g(d), we have

-2 1 1 1

D= Grse  @raE S prsE @rar =

Thus, g(d) is decreasing and has the minimum value when d is maximum (b is minimum),
that is when d = 1 (because d < 1) or b =1 (because b > 1). So, it suffices to consider these
cases.

Case 1: d =1. We need to show that

1 2 1

>1
a+3+b+3+6+3_

for
ab+ b +b+e+tea=5a>b>1>e.
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Since
5—b—b*—ab 8—b—0"+(3—b)a
e= , e+3= ,
1+a 1+a
we need to show that
1 N 2 N 1+a 51
a+3 b+3 8—-b—02+(3—b)a "’
which is equivalent to
1 14+a b+1

>
a+3+8—b—62+(3—b)a— b+ 3’
(b—1)[ba® + (b* + 5b — 4)a + 2b* + 4b — 9] > 0.

Since a > b > 1, we have

ba? + (b +5b —4)a+20* +4b—9>a*+2a—3 = (a—1)(a +3) > 0.

Case 2: b=1. We need to show that

1 . 1 . 1 >3
a+3 d+3 e+3 7 4

for
(a+d)(e+1)=4, a>1>d>e.

Write the desired inequality as

a+d+6 n 1
(a+3)(d+3) e+3

3
> —.
— 4
From (a —1)(d — 1) <0, we get ad < a+ d — 1, hence
(a+3)(d+3)=(a—1)d—1)+4(a+d)+8<4(a+d)+8
and
a+d+6 S a+d+6  4/(e+1)+6  3e+5

(a+3)(d+3) ~ 4la+d)+8 16/(e+1)+8 4(e+3)
So, it suffices to show that

3e+5 1 3
+ > 2
4e+3) e+3 4

which is an identity.

The equality occurs forb=c=d=1anda+e+ae=3,a>1>c¢.
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P 1.221. Prove that 3 is the largest positive value of the constant k such that

1+1+1+1+1 >5
a+k b+k c+k d+k e+k T 1+Ek

foranya>b>c>d>12>e>0 satisfying ab + bc + cd + de + ea = 5.
(Vasile Cirtoaje, RMM, 38, 2025)

Solution. Choosing a =3, b=c=d =1 and e = 0, the constraints are satisfied, while the
inequality becomes

1 1 2
— >
3+k kT 1+k
i.e. k < 3. To prove that 3 is the largest positive value of k, we need to show that
1 n 1 n 1 n 1 n 1 >5
a+3 b+3 c¢c+3 d+3 e+3 4

b+c+d a+e

Denote = = — and y = . We have

By the AM-HM inequality, we have

1 1 1 9 3
+ + > = :
b+3 c¢c+3 d+3 7 (b+3)+(c+3)+(d+3) x+3

Thus, it suffices to show that

1 n 1 n 3
a+3 e+3 x+3

1.e.

2y +6 . 3 S §
ae+6y+9 z+3 4
First, we show that 222 4+ 22y + ae < 5. Indeed, we have

9(5 — 22* — 22y — ae) = 9(ab+ bc+cd +de +ea) —2(b+c+d)* —3(b+c+d)(a+e) — Yae
=20b+c+d)?+3a(20—c—d) —3e(b+c—2d) +9c(b+ d)
> —2(b4c+d)? +3b(2b—c—d) —3d(b+ c— 2d) + (b + d)
=4(b—d)* +2(b—c)(c—d) > 0.

Since the left side of the desired inequality decreases when x increases, we may replace the
inequality constraint 222 + 2zy + ae < 5 with the equality constraint

22% + 2xy + ae = 5.
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So, since ae = 5 — 2zy — 222, it suffices to show that

2y+6 3 5
+ > —,
1446y —2zxy —222 =43~ 4

which is equivalent to (r — 1)E > 0, where
E = (5z — 3)y + 52° + 8z — 15.

Since x > 1, we need to show that E > 0. From (x — a)(z —¢e) < 0, we get ae < 2zy — 22,
and from
5 =222 4+ 2zy + ae < 22% + 2y + 22y — 22,

5 — 2
we get y > T Thus,
_ .2 3 2 o . 2
B> bz —3)(5—=x )+5$2+8x—15 _ 5(3x® 4+ Tx* — Tx — 3) _ 5(x — 1)(3z* + 10x + 3) >0.
4z 4z 4z
For k = 3, the equality occurs when b=c=d=1and a+e+ae =3 witha > 1> e.
O

P 1.222. Ifa,b,c,d are nonnegative real numbers such that
ab+ ac + ad + bc + bd + cd = 6,

then
1 1 1 1
> 1.

ab+ 3 + bc+ 3 + cd+3 + da+3 —
(Vasile Cirtoaje, Math. Reflections, 3, 2023)

Solution. By the AM-GM inequality, we have
6 = ab+ ac+ ad + bc + bd + cd > G{j/m,
hence
abed < 1.
Write the required inequality as follows:

1 n 1 N 1 . 1 S
ab+3 cd+3 bec+3 da+3

ab+ cd+ 6 n bc+ da+ 6 S
(ab+3)(cd+3)  (be+3)(da+3) —

3(ab + cd) + 18 Bbetda) +18
abed + 3(ab+cd)+9  abed + 3(bc+da) +9 ~
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. 9 — abed L1 9 — abed S>3
abed + 3(ab + cd) + 9 abed 4 3(be +da) +9 — 7

1 1 1
> .
abed + 3(ab+ cd) + 9 * bed +3(bc+da)+9 — 9 — abed

According to the AM-HM inequality, it is sufficient to show that

4 1
>
[abed + 3(ab + ¢d) + 9] + [abed + 3(be + da) + 9] — 9 — abed’

which is equivalent to
6 > ab + bc + cd + da + 2abcd,

ac + bd > 2abcd.

Indeed, we have
ac + bd > 2v abed > 2abcd.

The proof is completed. The equality occurs fora =b=c=d = 1.
Remark. The inequality

1 n 1 n 1 n 1 S 4
ab+k be+k cd+k da+k T 1+E

does not hold for k£ > 3. By choosing b = d = /ac, the constraint ab+ac+ad+bc+bd+cd = 6
becomes (a + ¢)\/ac + ac = 3, while the inequality can be written as follows:

1 1 2
>
a\/ac+k’+c\/ac+k 14k

(a + ¢)\/ac + 2k - 2
a?c® + k(a+c)vac+k? ~ 1+ k

Denoting x = ac, we have 3 = (a + ¢)y/ac + ac > 3ac = 3z, hence = € (0,1]. Since
(a + ¢)y/ac = 3 — x, the inequality becomes

3+2k—=x 2
22 —kr+k2+3k~ 1+Ek’

which is equivalent to
(x—1)2x+3—-k) <0.

It is true if and only if 22 +3 — k > 0 for x € (0,1). For x — 1, we get the necessary
condition k£ < 3.

]
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P 1.223. If a,b,c,d are nonnegative real numbers such that
ab+ ac+ ad + bc + bd + c¢d = 6, a>b>c>d,

then
1 1 1 1 2
>

ab+5+bc+5+cd+5+da+5 -3
(Vasile Cirtoaje, AMM, 1, 2023)

Solution. Write the inequality as follows:

ab + cd + 10 . bc + ad + 10 >%
(ab+5)(cd+5)  (bc+5)(ad+5) — 3
5(ab + ed) + 50 5(betad)+50 10
abed + 5(ab+ cd) + 25 abed + 5(bc + ad) +25 — 3
" 25 — abed T1a 25 — abed >1_0
abed + 5(ab + cd) + 25 abed + 5(bc + ad) +25 = 3
1 1 4

+ > :
abed + 5(ab+ cd) + 25  abed + 5(be + ad) + 25 — 3(25 — abed)

Since
ab+ cd =6 — (bc + ad) — (ac+ bd) = 6 — 2(bc + ad) — (a — b)(c — d) < 6 — 2(bc + ad),

it suffices to show that

1 1 4
> .
abcd — 10(be + ad) + 55 i abed + 5(be + ad) + 25 — 3(25 — abed)

Using the substitution
bc = x, ad =y,

the inequality becomes

1 1 4
+ > .
zy —10(x +y) +55  zy+5(x+y)+25 ~ 3(25 — zy)

T+ . .
Let z = Ty Since xy < 22, it suffices to show that

1 1 4
>
22—202+55+z2—|—102+25 — 3(25 — 22)’

which is equivalent to
10 — 21z + 1227 — 2° > 0.

(1—2)*(10 —2) > 0.
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Since 2z = bc + ad < ab+ ac + ad + bc 4 bd + c¢d = 6, the latter inequality is obvious. The
original inequality is an equality fora =b=c=d = 1.

Remark 1. The inequality

1 n 1 n 1 L 1 S 4
ab+k be+k cd+k da+k — 1+Ek

does not hold for k£ > 5. By choosing a = b and ¢ = d, the constraint ab+ac+ad+bc+bd+cd =
6 becomes a? + d? 4 4ad = 6, while the inequality can be written as follows:

1 n 1 n 2 S 4
a?+k d&P+k ad+k T 1+EK

a’ + d* + 2k N 2 4
a?d?* + k(a? +d?)+ k> ad+k — 1+k
Denoting = = ad, we have 6 = a® + d* + 4ad > 6ad = 6x, hence x € [0,1]. Since a® + d* =
6 — 4x, the inequality becomes

3+k—22 N 1 S 2
22 —dkr+k2+6k x+k " 14Kk

which is equivalent to (z — 1)P(x) < 0, where
P(x) = 22* — (5k — 3)x + 9k — k*.

Since x — 1 < 0, the inequality is true if and only if P(z) > 0 for z € [0, 1]. Letting d — 0,
we get the necessary condition (5 — k)(1 + k) > 0, that is k < 5.

Remark 2. We claim that the following open problem is valid:
e Ifa,b,cd, e are nonnegative real numbers such that
ab + ac + ad + ae + be 4+ bd + be + c¢d 4 ce 4+ de = 10, a>b>c>d>e,
then

1 1 1 1 1
> 1.
ab+4+bc+4+cd—|—4+de—l—4+ea+4_

An interesting (open) particular case is for a = b and d = e: If b,c,d are nonnegative real
numbers such that
2(bc + cd + db) + (b+d)* =10,

then
1 N 1 N 1 N 1 N 1 .-
bc+4 cd+4 db+4  b24+4  d2+4

Remark 3. We claim that the following open problem is valid:
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e [fa,b,c d, e are nonnegative real numbers such that
ab+ ac + ad + ae + bc 4+ bd + be + cd + ce + de = 10,
then
1 N 1 N 1 n 1 n 1 S 5
ab+3 bc+3 cd+3 de+3 ea+3 " 4
O

P 1.224. If a,b,c,d are nonnegative real numbers such that
ab+ bc+ cd + da = 4, a>b>c>d,
then

1 1 1 1 1 1
ab—{—4+ac+4+ad+4+bc+4+bd+4+cd—l—4

6
> —.
)

(Vasile Cirtoaje, GM-B, 1, 2024)

Solution. By the AM-GM inequality, we have

4 =ab+ be+ cd + da > Va2b22d? = Vabed,

hence
p <1, p = abed.

Write the required inequality as follows:

1 N 1 N 1 N 1 N 1 N 1 S 6
ab+4  cd+4 ac+4  bd+4 ad+4 bc+4) — 5
ab+ cd + 8 n ac+ bd + 8 n ad + bc + 8 >6
p+4(ab+cd)+16  p+4(ac+bd)+16  p+4(ad+bc)+16 — 5’
4(ab+ cd) + 32 4(ac+ bd) + 32 4(ad + be) + 32 >%
pt+4(ab+ed)+16  p+4(ac+bd)+16 p+4(ad+bc)+16 — 5’
16 —p 16 —p 16 —p
1 1 1 —
+p+4(ab—|—cd)+16+ +p—|—4(ac+bd)+16+ +p+4(ad+bc)+16_ 5’

1 1 1 9

>
prA(abtcd) 116  pt4d(actbd) +16 | p+4(ad 1 bo) +16 — 5(16 —p)’

According to the AM-HM inequality, it is sufficient to show that

9 9

>
[p+ 4(ab + cd) + 16] + [p + 4(ac + bd) + 16] + [p + 4(ad + be) + 16] — 5

(16 —p)’
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which is equivalent to

1 1
>
3p+4(ab+ cd + ac + bd + ad + bc) + 48 — 5(16 — p)’

1 1
>
3p+4(ac+bd) +64 ~ 5(16 — p)’
4> 2p+ac+bd,

ab+ bc + cd + da > 2p + ac + bd,
(a—d)(b—c)+bc+da > 2p.

It suffices to show that
bc + da > 2p.

Indeed, we have
be +da > 2/p > 2p.

The proof is completed. The equality occurs fora =b=c=d = 1.

P 1.225. If a,b,c,d are nonnegative real numbers such that
ab+ bc+ cd + da = 4, a>b>c>d,

then
1 1 1 1 1 1

b t7 aerT T adsT ber7 bdarT a7

3
> —.
4
(Vasile Cirtoage, SSMJ, 1, 2024)

Solution. Denote p = abced and write the desired inequality as follows:

ab+cd+ 14 n ac + bd + 14 N ad + bc+ 14 >§
p+T7(ab+cd)+49  p+T(ac+bd)+49  p+T(ad+bc) +49 — 4’

49 —p 49 —p 49 —p 21

1 1 1 —

+p—|—7(ab—i—cd)+49+ +p+7(ac+bd)+49+ +p+7(ad+bc)+49_ 4’
1 1 1 9

> .
p+ T(ab+ cd) + 49 +}H—?(czc%—bd) + 49 +p~|—7(ad—|—bc)+49 ~ 4(49 —p)
By the AM-HM inequality, it suffices to show that

4 1 9
> .
2p~|—7(ab+cd+ac+bd)~l—98+p+7(ad+bc)+49 ~ 4(49 —p)

Since

ab+ cd + ac+bd = 2(ab+ cd) — (a — d)(b— ¢) < 2(ab+ cd) = 2(4 — ad — be),
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it suffices to prove that

2 1 9
> .
p—T(ad 1 b)) 177 p+T(ad+be) +49 ~ 4(49 —p)

Using the substitution
ad = x, bc =y,

the inequality becomes
2 1 9
+ > .
zy—Tx+y)+77 zy+T(x+y)+49 — 4(49 — zy)

x 4+ . .
Let z = Ty Since zy < 22, it suffices to show that

2 1 9
>
22—14z+77+z2+14z+49 T 4(49 — 22)’

which is equivalent to
(z—1)*(7—32) > 0.

b+0b d+d
Since z < abtbetedtda 2, the latter inequality is obvious. The original inequality is

an equality fora=b=c=d = 1.
Remark. The inequality

1 N 1 N 1 N 1 N 1 N 1 S 6
ab+k ac+k ad+k bect+k bd+k cd+k T 1+k

does not hold true for k£ > 7. By choosing b = ¢ = 1, the constraint ab + bc + cd + da = 4

becomes ad = 3 — 2S5, where S = QT, while the inequality can be written as follows:

2 n 2 n 1 S 5
a+k d+k ad+k T 1+Ek
2a+ d + 2k) 1 5

ad+k(a+d)+k*> ad+k ~ 14k

45 + 4k 1 5

>
(2k—2)5+k2+3+k+3—25 T 14k
2(3k — 7)S* — (k* + 6k — 35)S + k* — 21 > 0,
(S —1)[2(3k —7)S — k* 4 21] > 0.

From 3 — 25 = ad < S?, we get S > 1. Thus, the inequality is true if and only if 2(3k —
7)S —k*+21 >0 for S > 1. So, we get the necessary condition 2(3k — 7) — k% +21 > 0, i.e.
(T—k)(1+Ek)>0,k<T.

0
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P 1.226. If a,b,c,d are nonnegative real numbers such that
ab+ bc + cd + da = 4,

then
42 - 1 1 1 1

<
3 _a2+1+b2+1+02+1+d2+1

(Vasile Cirtoage, Recreatii Matematice, no. 1, 2022)

3.

Solution. The hypothesis is equivalent to

(a+c)(b+d) =4.

(a) Write the right inequality as

a? b2 c? d?

> 1.
a2+1+b2+1+02—|—1+d2+1
Since
a? N c? (a+c)? S (a+c)?
a?+1 A+1 7 (@®+1)+(2+1) ~ (a+¢)?+2
and
b2 ¢ (b+d? 8

Pil @+1° b+di+2 (@tcZ+s

it suffices to show that
(a+c)? 8

> 1
(a—l—c)2—|—2+(a+c)2+8

This is equivalent to the obvious inequality

(a+c)? - (a+c)?
(a+c)3?+2" (a+c)2?+38

(b) To prove the left inequality, consider a + ¢ > 2 > b+ d and first show that

1 n 1 S 8
a?+1 +17 (a+c)?+4

Write this inequality as follows

1 4 N 1 4 -
a?+1 (a+ce)’+4 A+1 (a+c)?+4—

0,

(¢c—a)(3a+c) N (a—c)(3¢c+a) >0,
a?+1 c2+1
(a—c)*(a® + ¢ + dac — 2) > 0.
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The last inequality is true since
a® 4+ +4dac—2 = (a+c)* +2ac—2 >4+ 2ac—2 > 0.
Thus, we need to show that b + d < 2 involves

8 1 1 42

>
(a+c)2+4+b2+1+d2+1_ 3

that is 3
2 1 1 4+/2
i + >,
s+1 b¥*+1 d2+1 3
where 1
S:Z(b+d>2’ 0<s<1.
Denoting

p=bd, 0<p<s<l,

the inequality is equivalent to

s n 2s+1—p >2\/§.
s+1 p>—2p+4s+1— 3

We have two cases to consider.

Case 1: 2s < 1. Since
I—2s+1p>1—(2s+1)s=(1—-2s)(1+s) >0,

we have
2s+1—p 2s+1 p[l — (25 + 1)p] _

P—2p+4s+1 4ds+1 (ds+1)(p>—2p+4s+1)
Thus, it suffices to show that

s +2s+1>2\/§.
s+1 4s+1— 3

This inequality is equivalent to
2
(14s-3v2+2) >0,

Case 2: 2s > 1. Since

2s4+41-p 1 (s—p)@2s—1+p)
PP—2p+4s+1 s+1 (s+1)(p2—2p+ds+1)

it suffices to show that
s 1 - 2V/2

3+1+s+1_ 37




316

Vasile Cirtoaje

which is obvious.
The equality holds for

=F=24+3V2, V=

(or any cyclic permutation).

P 1.227. If a,b,c,d are nonnegative real numbers such that

ab + bc 4 cd + da = 4,

then

Solution. From

we get

Write the inequality as

Since

it suffices to show that

1 1 1 1

+

4=(a+c)(b+d) < (a+c),

a+c>2.

1 1 b?

d2

> .
a2+1+c2+1_b2+1+d2+1

b2 B> b d?
R+1—-20 2 d? +1
1 N 1 >b+d’
a?+1 c24+1— 2

which is equivalent to E(a,c) > 0, where

1 1

d
<_a
-2

2

E(a,c)

It is true because @ > 1 > ¢ and a + ¢ > 2 involve

E(a,1) =

and

1 1 2
E(a,c) — E(a,1) = <02—i—1 —§> — (a—l—c_a—i—l

:a2+1+62+1_a+c‘

—y
211 pPil e2rl @r1°

1 1 2 (a—1)3

aszlzczda

(Vasile Cirtoaje, 2023)

2

—_—— p— >
a2—|—1+2 a+1 2a+1)(a2+1) —

) 10,
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where 41 4 41 5
F(a,c)zc — >C —
2+1 (a+c)a+1l) —+1 a+1
c+1 2 (1- )(1+3c)>0
“c2+1 3—-c (2+1)(B3-¢) ‘
The equality occurs fora=b=c=d =1.
]
P 1.228. If a,b,c,d are nonnegative real numbers such that
ab+ bc + cd + da = 4,
then
2 < ! + ! + ! + ! <3
“a+1 b4+1 c+1 d+1
Solution. The hypothesis is equivalent to
(a+c)(b+d) =4.
(a) Since
1 1 a+c+2 a+c+2
+ == <
a+1 c¢c+1 ac+a+c+1 7 a+c+1
and
L1 b+d+2  _b+d+2_ 2Aatc+?)

b+1 d+1 bd+b+d+1 " b+d+1 a+c+4

the right inequality is true if
at+c+2  2a+c+2)
a+c+1 a+c+4

<3,

which is equivalent to

a+c>0.
The inequality is strict since the necessary equality condition a + ¢ = 0 contradicts the
constraint (a + ¢)(b+ d) = 4.

(b) To prove the left inequality, we apply the AM-HM inequality as follows:

1 i 1 4
a+1 c+1 " a+c+2
1 1 4

+ > .
b+1 d+1 " b+d+2
So, we only need to show that

2 n 2 >,
a+c+2 b+d+2
1 1
which is an identity. The equality holds for a = ¢ = =T
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P 1.229. If a,b,c,d, e are nonnegative real numbers such that ab + bc + cd + de + ea = 1,

then
3 < L + ! + L + ! + ! <4
a+1 b4+1 c+1 d+1 e+1— °

(Vasile Cirtoaje, Math. Reflections, 3, 2023)

Solution. (a) To prove the left inequality, assume that a = min{a,b,¢,d,e} < 1/2 and
c <d. For a = c =0, we need to show that de = 1 involves

1+1+1>
b+1 d+1 e+1

L,

which reduces to the obvious inequality

Counsider next that a + ¢ > 0. Since
(a+c)b+(a+de=1—cd, cd<1,

(a+c)b+1)+(a+d)(e+1)=2a+c+d+1—cd,
by the Cauchy-Schwarz inequality we have

1 N . (Va+c+ Va+d)?
b+1 e+1 " (a+c)(b+1)+(a+d)(e+1)

_2tctd+2/lato)latd) _ datcrdt2Ved

20+c+d+1—cd T 2a4c+d+1—cd
Thus, it suffices to prove that

1 N 1 N 1 da+c+d+2Ved
a+1 c¢c+1 d+1 2a+c+d+1—cd

>3 (*)
for a < 1/2, a4 c¢> 0 and c¢d < 1. Denote

x:cgd, ]

From ¢+ d > 2v/cd and (a — ¢)(a — d) > 0, we get « > p and a® — 2az + p* > 0, therefore

a2—|—p2
20

IN

psw =
We have z = p for ¢ = d < 1, and = = (a® + p*)/(2a) for a = ¢ € (0,1/2). Write now the
inequality (*) as

1 2(x+1) da + 2z + 2p

> 3.
a+1 142x+p> 2a+2x+1—p?
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For fixed a and p, the inequality is equivalent to f(x) > 0, where f is a polynomial of second
order with the expression

f(z) = —4ax® + B(a,p)x + C(a,p).

a2+p2
2a

Since f is concave, it suffices to prove the inequality f(x) > 0 for x = p and = =
therefore for ¢ = d <1 and for a = ¢ € (0,1/2), respectively.
Case 1: ¢ =d < 1. The inequality (*) becomes

1 N 2 n 4a + 4c
a+1 c¢c+1 2a+4+2c+1-¢c2

> 3,
which is equivalent to the obvious inequality
2(1 —c)a* + (3¢ — ¢ — ¢+ 3)a + 2¢(c®* + 1) > 0.
Case 2: a = c € (0,1/2). The inequality (*) becomes

2 1 Sc+d+2vVed
+ > 3,
c+1 d+1 3c+d+1—cd

2(c+ 1)(d + 1)Ved + 33d? — cd(2¢ + d) — c(c + 2d) + 3¢ > 0.

Using the substitution
cd = 3, 0<y<1,

the inequality becomes

2 2 92
2y(c+1) (%+1) + 3yt — 42 (26-}—%) —c(c+%) +3c >0,

¥} (2 —y)
c
It is true if —c? + (3 + 2y — 2y%)c > 0. Indeed, we have

— 4 (3+2y — 2y e+ y(2 — 2y +2y* + 3y%) > 0.

4+ (3+2y -2yt > —c+ (3+2y —2y%)e=2(1+y —y*)c > 0.

(b) To prove the right inequality, suppose that (z1, 2, x3, 24, x5) is a permutation of
(a,b,c,d,e) such that 1 > x9 > w3 > x4 > 5. Due to symmetry, the desired inequality is
equivalent to

1 N 1 N 1 N 1 N 1 <4
1+l x4+l a3+1 ay+1 z5+17 7

that can be written in the form
1 To X3 Ty 4 Zs 1.

- + —~ >
.T1—|—1 .I‘2+1 Z’g—l—l $4—|—1 $5+1_
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For 129 > 1, the inequality is true because

€1 To T1x9 — 1
$1+1 l'2+1 (x1+1)(:v2—1—1) -

Consider further 25 < 1. For 3+ x4 + x5 > 0, by the Cauchy-Schwarz inequality we have

XT3 Ty Iy (1’3 + T4 + 1’5)2
+ + >
r3+1  xa+1 ws+1 7 xs(ws+ 1) +aa(za +1) +25(25 + 1)

(3 + x4 + T5)> _ o wmtaatas 1
T (3t rgtas)tastagtaos x3t+argt+as+1 T3+ Ty +a5+17
hence
T3 Ty Ts 1

+ + >1- .
z3+1 x44+1 z5+1 T3+ x4+ x5+ 1

We can see that this inequality is also true for x3 = x4 = x5 = 0. So, it suffices to prove that

T i) 1
+ - > 0.
rT1+1 2o+ 1 w3t+as+a5+1
By Lemma below, we have
1-— T1T9
T3+ 24+T5 > ———,
T+ T2
hence 1 ]
X x x x
1 + 2 i Z 1 + 2 —
ZE1+1 Ig—i-]. $3+ZE4+I5+1 ZE1+]. Ig—i-]. aclTlcvgz+1
il ) T+ X9 2I1$2(1 — ZB1$2)

.CC1+1 l’2+1 1—3}1.’1524—1’14-1}2 (.’,Ul—'—l)(flfg—i-l)(l—xll'g—i-ﬂfl+SL’2> -

The proof is completed. The equality is an equality for ab =1 and ¢ = d = e = 0 (or any
cyclic permutation).

Lemma. Let a,b,c,d,e be nonnegative real numbers, and let (xy1,xa, 3,24, T5) be a permu-
tation of (a,b,c,d,e) such that x1 > xo > x3 > x4 > 5. Then,

r1xo + (x1 + x2) (23 + 4 + 25) > ab+ be + cd + de + ea.

Proof. Assume that a = max{a,b,c,d, e}, hence a = x; and 9+ x5+ 24+ 25 =b+c+d+e.
Since

T1Xo + (Zﬂl -+ $2)<ZE3 -+ Ty + LU5) = ;Cl(Q?Q + T3 + T4 + LU5) + .’132<$3 —+ T4 -+ $5>

=alb+c+d+e)+ay(vs+axs+ax5) >alb+c+d+e)+ xoxs,

it suffices to show that

a(b+c+d+e)+ xox3 > ab+ be+ cd + de + ea,
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that is
a(c+ d) + zoxs3 > be + cd + de,

which is equivalent to the obvious inequality

cla—b)+d(a—c)+ (rox3 — de) > 0.

P 1.230. Ifa,b,c,d,e, f are nonnegative real numbers such that
ab+bc+ cd+ de+ef + fa =6,
then

20+ 1)+ (26 4+ 1) + (2c+ 1) + (2d + 1)* + (2e + 1)? + (2f +1)* > 54.

(Vasile Cirtoaje, MATINF, 9-10, 2022)

Solution. Let
s=a+c+e, qgq=ac+ce+ea, 3q¢<s°

By the Cauchy-Schwarz inequality, we have:
[(a+c)*+ (c+e)*+ (e+a)?] [(2b+1)* + (2d + 1)* + (2f + 1)*] >

[(a+c)2b+ 1)+ (c+e)2d+ 1)+ (e+a)2f + 1)]2

>
=4(a+c+e+ab+be+cd+de+ef + fa)® = 4(s+ 6)°.

Since

(a+c)+(c+te)+(e+a)=2a*+c+e*+ac+ce+ea)=2(s*>—¢q) >0,

we get
2(s + 6)?
(20 + 1) + (2d +1)* + (2f + 1)* > g
Thus, it suffices to prove that
2(s + 6)?
(2a+ 1)2 + (2c+ 1)2 + (2e +1)% + (82+ S sna
§°—4q

Since
(20 + 1)+ (2c+1)*+ e+ 1) =4(a®>+* +e*+at+c+e)+3=4(s*+s5—2q) + 3,
we need to prove the inequality

2(s + 6)?

4(s* + 5 —2q) + o

> 51

Y
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which is equivalent to f(q) > 0, where
f(q) = 8¢* — (128* + 45 — 51)q + 45* + 45> — 495% + 245 + 72.
For s <1, we have
f(q) > 8¢* — (125* + 45 — 51)q > (51 — 45 — 125%)q > 0.

Consider now s > 1 and write f(q) as

125% +4s — 51 2 g(s)

f(CJ)=8( 16

where

g(s) = —16s" + 32s® — 360s + 11765 — 297.
For 1 <s< g, we have g(s) > 0, therefore f(q) > 0. Indeed,
g(s) = 45(25 + 3)(s — 1)(5 — 25) — 4045% 4 12365 — 297 > —404s? + 12365 — 297
> —420s° + 1200s — 375 = 15(—28s + 80s — 25) = 15(5 — 2s)(14s — 5) > 0.
For s > g, since

125% +4s — 51 S 125> +4s — 51 &2 B 20s% + 12s — 153

16 1= 16 3 8
2052 + 125 — 1 925 — 5)(1 1
- s+ 12s 55:(5 5)<OS+3)ZO,
8 48

f(q) is a decreasing function, hence

2)  8(s* 4 3s* — 365 +27s+81)  8(s—3)*(s*+9s+9)

rw =7 (3 v - g >0

The proof is completed. The equality occurs fora =b=c=d=e= f = 1.

P 1.231. Prove that 4 is the largest positive value of the constant k such that
a?+ai+---+at-—n>klag+ay+---+a,—n)

for all odd integers n > 3 and nonnegative real numbers a; which satisfy ayas + asaz + - - - +
ana; = n.

(Vasile Cirtoaje, AMM, 3, 2025)
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Solution. For a; = a3 = -+ = a, o =2, a9 = a4 = -+ = a,_1 := y and a, = 1, the
constraint becomes (n — 2)zy +x +y =n, i.e.

25 =n—(n—2)p,

Y and p=xy. From n—(n—2)p =25 >2,/p, we get p < 1. On the other

hand, the inequality becomes as follows:

where S = *

(n=DE+y") o [(r=D+y)
2 = 2

+1—n|,
2+ y* —2>k(z+y—2), 45% —2p — 2 > k(2S - 2),
n—(n—2)p*—2p—2>k[n—(n—2)p—2],
(1=p)[n* =2~ (n—2)*] = k(n —2)(1 - p).
It is true for all p € [0,1] if and only if
n? —2—(n—2)% > k(n—2).

For p =1, we get

2
k<4 .
< +n—2

Clearly, this condition is true for all odd integer n > 3 if and only if £ < 4. To finish the
proof, we need to prove the inequality

a?+ai+--+ai+3n>4(a fay+ - +ay),

which is equivalent to the obvious inequality

Z(al + as — 2)2 Z 0.

cyc
For k = 4, the equality occurs when a; = as =---=a, = 1.
Remark 1. From the proof above, it follows that the inequality

ai +as+---+al+3n>4(a +ag+ -+ ay)

holds for all integer n > 2 and all nonnegative real numbers aq,ao,...,a, which satisfy
ai102 + G203 + - -+ + A1 = N.

Remark 2. For a given even n > 2, the largest values of k, is 4. Indeed, by choosing
ay =a3 = -+ = ap_1 :=x and ay = a4 = --- = a, := y, the constraint becomes xy = 1,
while the inequality becomes as follows:

(22 —1)? S kn(x — 1)2.

4y’ —2>ky(z+y—2), — >
xXr xXr
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(r+1)?

The inequality is true for any positive x if and only if &, < . For x =1, we get the

necessary condition k,, < 4.

Remark 3. For a given odd n > 3, the largest values of k,, (when a; are real numbers) is
2+ 2sec (E> Denoting a; = 1+ x; for i =1,2,...,n, and
n

2

X=ai+a+ -+, Y =x129+ T3+ + 2,71,

the constraint becomes
Y42, +20+--+2,)=0

while the inequality becomes
X—(k=2)(xy+20+ - +12,) >0,
hence

2X
—+Y >0
k:—2+ Z

It is known that the least value of A, such that A,X +Y > 0 for any real x1,xo,...,2, is
A, = cos (E> So, from
2 s
E_2 (E) ’

n
we obtain the largest value of k, that is k, = 2 + 2sec (Z)
n

P 1.232. Ifa,b,c,d, e are positive real numbers such that
ab+bc+ cd + de + ea = 5,
then

11 1 1 1
5(=+-+-+5+-)>4la+bt+c+d+e)+5.
a b ¢ d e

(Vasile Cirtoaje, RMM, 36, 2025)
Solution. Using Lemma in the proof of P 1.217, it suffices to consider
ae + ad + be + bc + cd = 5, a>b>c>d>e.
Denote
a+b _d+te
2 ) y - 2 )
As shown at P 1.217, we have

T = a>x>b>c>d>y>e.
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and
de(z +y) > 3+ 5.

By the AM-HM inequality, we have

4

+ a+b:5

>

I

SN =
SN
Q| =
IV
NS V)

Q|-

Thus, it suffices to show that the conditions

Aoy <5 — ¢, de(x+y) >3 +5, x>c>y>0

involve
2 2 1
5|—4+—+-) >42x+2y+c)+5,
x Yy c
that is
5 5
2e+y)|——-4)+—-——4c—-5>0.
Ty c
Since
5 20 4c?
24> 4= 7
Ty —5—c? 5—c?
it suffices to show that
8(x + y)c?

This inequality is true if

which is equivalent to
2t + ¢ =32 —5¢+5>0,

(c—1)*(2¢* + 5c+ 5) > 0.
The proof is completed. The equality occurs fora =b=c=d=¢e¢ = 1.
Remark 1. The inequality

1 1 1 1 1
—+ -+ -+-+-—-5>k(a+b+c+d+e—5)
a b ¢ d e

4
is not valid for k > £ To prove this assert, consider the case

m
a=1% b=e=—, c=d=-, m,x > 0.

From the constraint ab + bc + cd 4 de + ea = 5, we get

2m 1 _ x(ba? —1)
B 23+ 1)
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The desired inequality becomes

1 212 2 2
b5 k(2 25,
2 m 2 T
1 4 341 5r? — 1 2
L @d ) o ek (a2 22 )
22 52 — 1 4+ T

For x — oo, this inequality leads to the necessary condition

Lok
52
Remark 2. Since
a+b+c+d+e+ 5
5 at+b+c+d+e 7

the following inequality follows from P 1.232:

e Ifa,b,c,d, e are positive real numbers such that
ab + bc + c¢d 4 de + ea = 5,

then
1+1_|_1+1+1+ 20 > 9
a b ¢ d e a+bt+c+d+e ™

P 1.233. Ifa,b,c,d, e are positive real numbers such that

ab + bc + cd + de + ea = 5, a>b>c>1>d>e,
then 11 1 1 1
-+ -+-4+-+-+10>3(a+b+c+d+e).
a b ¢ d e

(Vasile Cirtoaje, Math. Reflections, 4, 2024)

Solution. Write the inequality as £ > 0. For fixed ¢, d and e, we may consider that a and
E are functions of b. Differentiating the equality constraint yields

:a+c> a—l—c> a+b'
b+e " b+c— 2b

(b+e)d +a+c=0, —a

Therefore,

1 1 1 1 a+b
/ !
(b) (b2 3) <a2 3)@ <b2 3) <a2 3) 2b
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4 a+b_1 (1 a+b\ _ (a—1D)(3a®b—2a—D)
N 2b 2 2a2h ) 2a2b2 '

Since ab > 1, we have 3a?b —2a — b > 3a —2a — b =a — b > 0. Thus, E'(b) > 0, E(b) is
increasing and has the minimum value when b is minimum, hence when b = ¢. So, we need
to show that F' > 0 for

ac+ c® 4+ cd + de + ea = 5, a>c>1>d>e>0,
where
1 2 1 1
F=—-4-4+-+-4+10-3(a+2c+d+e).
a ¢ d e

For fixed a and e, we may consider that d and F' are functions of c. Differentiating the
equality constraint yields

:&+20+d>

(c+e)d +a+2c+d=0, —d' > 2.
cte

Therefore,

1 1 1 1
F%@:—Q(g+ﬁ>—(ﬁ+ﬂ>dz—2<g+3)+2<ﬁ+ﬁ>2&

F(c) is increasing and has the minimum value when ¢ is minimum (d is maximum), hence
when either ¢ =1 or d = 1. So, it suffices to consider these cases.

Case 1: ¢ =1. We have

1 1 1
F=—-+—-+-+6-3(a+d+e)
a d e
and
a+d+de+ea =4, a>1>d>e>0.

d
Denoting s = %, we have

4d—a—-d 2-s
a+d s
and from (a —1)(d — 1) <0, we get ad < 2s — 1. Therefore,

Y

2s s 3(2 —s) 2s s 3(2 —s) 12(s — 1)*
F=— 6—6s— > 6—6s— = >
aaleQ—s+ ° s _25—1+2—5+ ° s s(2s—=1)(2—s) —

Case 2: d =1. We have
1 2 1
F=—-+—-+4+-+8-3(a+2c+e)
a ¢ e

and
ac+02+c+e—|—ea:5, a>c>1>e>0.
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2
Since — > 4 — 2¢, it follows that
c

1 1
F>-—3a—8c+ - —3e+12.
a e
Since ¢? > 2¢ — 1, the constraint ac + ¢ + ¢ + e + ea = 5 yields

ac+ 3c+e+ea <6.

Thus, we have

C<6—(1—|—a)e7
- 3+a
6>ac+3c+e+ea>a+3+040, 1<a<3,
3 _
6>ac+3c+e+ea>a+3+e+ea, 0<e§1+a. €g.
a
Therefore, for fixed a € [1,3), we have F' > f(e), where
1 6—(1+a)e 1
=~ 3-8 YL 3112 0, eq].
f(e) ~—3a 5 a +€ e+ 12, e € (0, e

Since

2
f/(@)zm_l_3:5a_1 1<5a—1_(1+a)

3+a e? 3+a e~ 3+a 3—a
~ 4a®—=9a*+11a—3)  4(a—1)(a® —8a+3) <0
B (34+a)(3—a)? n (34+a)(3—a)? -

f(e) is decreasing, therefore

1 l+a 3(3—a) 3(1 —a)?
> — - _31-8 _ 12 = > 0.
f(e) 2 fleo) a ¢ +3—a 1+a * a(3—a)(1+a) —
The proof is completed. The equality occurs fora =b=c=d=e=1.

O
P 1.234. For given n > 3, prove that 3 is the largest positive value of the constant k such
that
1 1
— 4+ — 4+ ——n>k(ag +az+- - +a, —n)
ap Qa2 an

foranyay > as >+ > a,_1 > 1> a, >0 with ayas + asaz + - - - + a,_1a, + a,a; = n.

(Vasile Cirtoaje, RMM, 39, 2025)
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Solution. Choosing ay = --- = a,,_1; = 1, the inequality becomes

1 1
_+__22k(a1+an_2)7
aq Qp,

where a; > 1 > a,, > 0 such that aya, + a1 + a,, = 3. Let p = aya,. From
3=ama,+ a1 +a, >p+2p,
we get p € (0,1]. Write the inequality as follows:

%—22/{(1—@, (1-p)(3—kp) > 0.

It is true if and only if 3 — kp > 0 for p € (0,1). From the necessary condition
i —kp) >
lim(3 — kp) 2 0,

we get k < 3. To show that 3 is the largest positive value of the constant k , we need to
prove the inequality

1
—+ — 4+ —+2n >3 tag+ - +an).
aq (05} Qp,

By the AM-HM inequality, we have

1 4 n 1 S n—2
as p1 S
where S = G2t _;an_l > 1. So, it suffices to show that £ > 0, where
n_

1 1 n—-2
E=—+—+

ay Qp,

+2n — 3[a; + a, + (n — 2)95].

By Lemma in the proof of P 1.216, we have
(n —3)S%+ (a1 + a,)S + a1a, < n.
Since the expression E decreases when a; increases, we may increase a; to have

(n —3)S*+ (a1 + a,)S + ara, = n.

Denoting = = a1+an,we need to show that
2z n—2
2n — 3[2 —2)S]1>0
n—23x—(n—3)52+ S T2 =3Rr+(n=2)5] =
for

(n —3)S? 4 25z + ara, = n.
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From (S — a;1)(S — a,) < 0, we obtain
25 > S* + aja, =n — 2Sx — (n — 4)S?%

therefore
4S8z >n — (n—4)5°.

For fixed S, the desired inequality is equivalent to F'(x) > 0, where

F(x) =1258%% +[6(2n — 5)S? —4nS — 8n +6]Sz + [n — (n — 3)S?|[n — 2+ 2nS — 3(n — 2) S%.
Since

F'(z) = 245%2+6(2n—5)5*—4nS*—(8n—6)S > 6S5[n—(n—4)S*+6(2n—5)S*—4nS*—(8n—6)S

=6(n—1)S* —4nS* — (2n —6)S > 6(n — 1)S* —4nS? — (2n — 6)S = n(n —3)S(S —1) > 0,

F(xz) is increasing, hence

n—(n—4)S*\  n[3(n—2)S"—4(n—2)S* — 2nS* + 4nS —n — 2
”ﬂZF< 1S )_ 1

n(S—1)*3(n—2)S?+2(n—2)S —n — 2]

_ > 0.
1 >
The proof is completed. For k£ = 3, the equality occurs when @y =a, =--- =a, = 1.
Remark. Since
a;+ag+---+ay, n
Z 2 - 9
n ay+as+---+ay

the following inequality follows from P 1.234:

o Ifay>ay>--->a,_1>12>a, >0 such that ayas + asaz + - - - + ap_1a, + ana; = n,

then
1 1 1 3n?
e > 4n.
ay a9 a, a1+a+---+ay,

P 1.235. Ifa,b,c,d,e, f are nonnegative real numbers such that
ab+bc+ cd+ de+ef + fa =6, a>b>c>d>e>f,

then
1 1 1 1 1 1 3

> —.
13 b3 c13 d43 ex3 F13-2
(Vasile Cirtoaje, GMA, no. 1-2, 2022)
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b d
First Solution. Let = = # and y = #. By the AM-HM inequality, we

have

1 1 1 1 16 4
+ + + > = :
b+3 ¢+3 d+3 e+3 (b+3)+(c+3)+(d+3)+(e+3) x+3

So, it suffices to show that
1 1 4

a3 F13 713

3
> a)
-2

ie.
2y+6  dr+l >0
af +6y+9 2(x+3) —

By Lemma in the proof of P 1.216, we have

322 + 22y + af <6, < V2.

So, it is enough to show that

2y +6 3z +1
— > 0.
15—-322+23—2)y 2(x+3) —

After multiplying by 3 — z, we get the equivalent inequalities

(3—z)(2y + 6) (3—2)(3x+1)
15—mﬁ+m3—@y_q_%b_ 2(x + 3) 20,
3(x —1)? 3(x—1)2 0.

15—-322+2(3—2)y 2(x+3) —
The equality holds forb=c=d=e=1anda+ f+af =3 (a>12>f).

P 1.236. Let ay,as,...,a, be positive real numbers such that
ajaz + agaz + - - - + a1 =M, ap 2 Ay 2 -+ 2 Q.
Prove that:
1 1 1
—+ =+t —2>a+ax+- -+ a,.
aq a9 Ay,

(Vasile Cirtoage, Cruz Mathematicorum, 9, 2023)

Solution. For n = 2, the inequality is an equality. Consider further n > 3. Let

ag + -+ Qp—
y=— Loa 2y >a, >0
n—2
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By the AM-HM inequality,

1 1 (n —2)? n—2
__|_..._|_ Z = .
Qs Qp—1 Q2+ -+ apq Y

By Lemma in the proof of P 1.216, it suffices to show that (n — 3)y*+ (a1 +a,)y + aja, < n

involves
1 1 n—2

a1 Qp,

>a; +an, + (n—2)y.

Denoting a; by x and a,, by z, it suffices to prove the homogeneous inequality

n—3 1 1 1
[(n = 3)y* + 2y + yz + 2a] <T+E+§+;> >nl(n—=3)y+z+y+2l,

which is equivalent to A+ (n — 3)B > 0, where

2

z zx oz 2 xz
A=L3 20 iyt B=L4L T3y
x y 2 r oz y
Since
D D Ul e ' Gl i ok ) R
Yz
and pr
2 92
B>3<y__y_ﬂ) 3y =0,
r oz vy

we obtain the required inequality A+ (n—3)B > 0. So, the proof is completed. The equality
occurs foray = ay = ... =a, = 1.

Remark. Since
a1+a2+---+an+ n

> 9,
n ay+az+---+ape
the following inequality follows from P 1.236:
e Ifay, as,...,a, are positive real numbers such that
aias + agaz + - -+ + apa; = n, ap 2 Az 2 -+ 2 Gy,
then
1 1 1 n?
—+— 4+ —+ > 2n.
ay a9 a, ai+a+---+ay,

P 1.237. If n>3 and a; > ay > --- > a, > 0, then

1 1
— E a1ag > n-1 — g aiag -+ Qp_1.
n n

cyclic cyclic

(Vasile Cirtoaje, AMM, 1, 2024)
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Solution. For n = 3, the inequality is an equality. Consider further n > 4. Due to
homogeneity, we may set
Z a1 = N

cyclic

to prove that

Write the desired inequality as

(a1 + an)A + a1a,B < n,

where
A:a2a3...an_17 B:a2a3...an_2+a3a4...an_1_’_..._’_an_lal...an_3.
Let + 4ot
a a a R
S =t - r =2 nl, a1 >x>a, >0
2 n—2

Since A < 2" % and B < (n — 2)2"3, it suffices to prove that
252" 7% + (n — 2)a1a,2" " < n.

On the other hand, by Lemma in the proof of P 1.216, we have (n — 3)z* + 25z + aya, < n.
Since the left hand side of the desired inequality increases when aja, increases, we may
replace the inequality constraint with the equality constraint

(n — 3)z* + 25z + aja, = n.
So, the desired inequality is equivalent to
252" 4+ (n—2) (n — (n — 3)a* — 25z) 2" < n,

that is
(n—2)(n—3)x" ' +2(n—3)2" %S +n > n(n —2)a" .

From n = (n — 3)z* + 2Sx + a1a, < (n — 3)2? + 25z + 5%, we get
S>+/n—(n—4)2?—zx.

Also, from 25 = a;+a,, > a; > randn = (n—3)z*+2Sz+a a, > (n—3)x*+2S5x > (n—2)z?,

n n
we get x < ,/——. So, it suffices to prove that x <
n—2 n—2

(n—2)(n—3)z" ' 4+ 2(n — 3)a" 2 ( n—(n—4)z?— x) +n >n(n—2)z"?

involves

that is f(z) > 0, where

f(x)=(n—=3)(n—-4)2""+2(n—-3)2"2/n— (n—4)z2+n —n(n—2)z" >
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We have f'(z) = (n — 3)z" 1g(x), where

o(@) = n(n = 2) = (n = )0 — 4a’] ( - 1)

n—(n—
n(z? — 1)[n(n —2) — (n —1)(n — 4)z?] '
(2x—|— vn—(n— 4):102) Vn— (n—4)z?

Since

n(n—2) — (0= 10— 42 2 nfn —2) - "D I

we have g(z) <0 for z € [0,1], and g(x) > 0 for = € [1, A /LQ , therefore f is decreasing
n —

n

on [0, 1] and increasing on {1, } As a consequence, f(z) > f(1) = 0.

For n > 4, the equality occurs for a; = a3 =--- = a,, and also fora; > ay =--- =a, =0.

Remark. We claim that the following generalization is valid:

o Letn>3anday >ay>--->a, >0. Ifk€{2,3,...,n—2}, then

1 1
k—E aa---ak>n—1—g a1as -+ Qp_1.
\/n 102 \/n 102 n—1

cyclic cyclic

P 1.238. Let a,b,c,d, e be nonnegative real numbers satisfying ab + bc + cd + de + ea = 5.
Prove that:

(a) (a+2)2+(b+2)%+ (c+2)2+ (d+2)*+ (e + 2)? > 45.
(b) ab? + 02 4 32 B 4 €32 > 5
(Vasile Cirtoaje, Crux Mathematicorum, 5, 2024)

Solution. (a) Denote

= Z:ab7
5

and write the inequality as follows:

Za2+42a225, Za2—|—42a252ab,
ZaQ—ZabZZL(Zab—Za), Z(a—b)228<2ab—AZa),
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S (). e e - (59

SA;% > (@b 253 (32 a>2 : % S (@024 (a-b)? > 43 alb—e),

QAIAZ(L Z(a_b)2 > 42@([)—6).

From > (a — 2b+ 2¢ — d)* > 0, we get

10Y a>—16> ab+6» ac>0, 5 (a—b)>>6» a(b—o).

Thus, it suffices to show that

9A—|—Za>g

44 T 37
that is 3> a > 13A. By Lemma 1 below, we have

32@26\/ab+bc+cd+de+ea:6\/5A> 13A.

The proof is completed. The equality occurs fora =b=c=d=e¢ = 1.

(b) Assume that a = max{a,b,c,d,e}. Since the inequality is true for a*? > 5, we
assume next a < 5%/, hence a < 3, b < 3, ¢ < 3, d < 3 and e < 3. Based on the inequality
in Lemma 2 and the inequality in (a), we have

4) a®? > (a+2)* — 25> 45— 25 > 20.

The equality occurs fora=b=c=d=e=1.

Lemma 1. Ifa,b,c,d, e are nonnegative real numbers, then

a+b+c+d+e>2vVab+ be+ cd + de + ea.

Proof. Due to cyclicity, we may assume that « = max{a,b,c,d,e} and b > e. We need to
prove the homogeneous inequality

(a+b+c+d+e)* > 4(ab + be + cd + de + ea),
which is equivalent to the obvious inequality
(a—b—e)?+c+d* +2c(la—b+e)+2d(a——c)+2d(b—e) > 0.

The equality occurs for a = b+ e and ¢ = d = 0 (or any cyclic permutation).

Lemma 2. If0 < x <4, then
4237 > (x +2)* — 5.
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Proof. Denote f(x) = 42%? — (v +2)? + 5. From
fi(w) =6V —2(x +2) =2(Vo - 1)(2 - V),

we get f'(x) < 0 for z € [0,1] and f'(z) > 0 for = € [1,4]. As a consequence, f(z) is
decreasing on [0, 1] and increasing on [1,4], therefore f(z) > f(1) = 0.

Remark. Similarly, using the inequality in Lemma 1 and the inequality

Z(a—mb+mc—d)220

for m = , we have

V5 +1
2
(a+k)+O+k)>+(c+k)’+(d+k)*+(e+k)*>5(1+k)?

/B

for 0 <k < 1+75. So, from Y (a — mb + mc — d)* > 0, we get
2(m2—|—1)2@2—2m(m+2)2ab+2(2m—I)Zaczo,
(m*+1)) (a—b)*>202m—1)) a(b— o).

For m = (when this inequality is strongest), we obtain

‘/54“2(@—1))2 > ab— o).

On the other hand, the desired inequality is equivalent to

2k +5)A+ > a
( Q)kA 2 D (a—b’>4> alb—c).
So, it suffices to show that

which is true if

(2k +5)A +2v/5A
>
T >V5+1,

V5

that is £ <1+ > ~ 2.118. Note that the computer calculations show that the inequality

is true for 0 < k < kg, where kg ~ 2.123535.
O
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P 1.239. Ifa,b,c,d are nonnegative real numbers such that ab + bc + cd + da > 4, then
(@ + D)+ 1)+ 1D)(d?*+1) > (a+b+c+d)>
(Vasile Cirtoaje, Cruxz Mathematicorum, 10, 2024)
Solution. Write the hypothesis as
(a+c)(b+d) > 4,

and assume that
a+c>b+d.

There are two cases to consider: b+d > 2 and b+ d < 2.
Case 1: b+ d > 2. Since

(a®+ 1)(+1) > (a+c)?, (B> + 1)(d*+1) > (b+d)?,

it suffices to show that
(a+c)b+d)>a+b+cH+d.

Indeed, we have

(a+c)b+d)—(a+b+c+d)>2(a+c)—(a+b+c+d)=(a+c)—(b+d)>0.

Case 2: b+d < 2. Let

a+c b+d
— = - >1>
x 5 Yy 5 Tz Yy
We have
xy > 1, bd < 12

Since

(@ +1)(*+1) > (a+c)? = 4da®
and

(0° + 1)(@+1) = 0+ d)* + (1 = bd)* > 4y* + (1 — y*)* = (1 +¢*)*,
it suffices to show that
4 (1 + 9% > (22 + 2y)?,
which is equivalent to

z(1+y*) >z+y, yley—1)>0.

2
a+c,0rbd:1anda:c:b+—d.

Remark 1. The inequality is also true for abcd > 1 (Pham Kim Hung, 2006). Indeed, if
abed > 1, then

The inequality is an equality for ac =1 and b =d =

ab + bc+ cd 4+ da > 4V abed > 4,
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Remark 2. The inequality is also true for ab + ac + ad + bc + bd + c¢d > 6 (see P 3.69,
Volume 1). Indeed, if ab+ ac + ad 4+ be + bd + cd > 6, then at least one of the inequalities

(a+Db)(c+d) >4, (a+c)(b+d)>4, (a+d)(b+c)>4

is true.

P 1.240. Let a,b,c,d, e be real numbers such thata >b>c>d > e >0 and ab+ bc+ cd +
de + ea = 5. Prove that
a5/4+55/4+c5/4+d5/4+65/4 > 5.

(Vasile Cirtoaje, GMA, no. 3-4, 2023)

Solution. Denote
a+b _d+e

T = T >c>y.
5 Y 5 ZCcZ2Y
By Jensen’s inequality for convex functions, we have
a5/t > 2554 A/t 4 It > 0P

Also, by Bernoulli’s inequality, we have

5¢—1

65/4:(1+(c—1))5/421+Z(c—1): I

So, it suffices to show that
8(x*/* + y*/*) + 5e > 21.

We will first show that
2 +y' +ay+ce(z+y) > 5.

Indeed, we have

4P+ +ay+c(r+y)—5) =(a+b)’+(d+e)’+ (a+b)(d+e)+2cla+b+d+e)
—4(ab+bc + cd + de + ea) = (a — b)* + (d — e)* + a(d + 2c — 3¢) + b(d + e — 2¢) + 2c(e — d)
> b(d+2c—3e) +b(d+e—2¢)+2c(e —d) =2b(d — e) + 2¢c(e —d) =2(d —e)(b—¢) > 0.
So, we only need to show that

5(5 — 2% — y? — )

8(z%* + ¢/ +
( y") prar

> 21.

Denoting x = s+t, y=s—1t and

ft) = (s+1t)>* + (s — )4, t€[0,s],
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we need to show that ¢g(t) > 0, where

B 5t2 + 1552 + 42s — 25

o(t) = 1) o

For even j (j > 2), we have
f90)=2k(k—1)--- (k—j+1)s"7 >0,

where k& = 5/4. Thus, by the Maclaurin series expansion of the even function f, we have

P el ) A O A2 o)
JO =0+ T = e b 2 J O+ T
— 28k + k?(k? o 1)Sk—2t2 + k:(k: - 1)(k1; 2)(k - 3) Sk_4t4
5 35 5 1
— 945/ | 2 -3/4y2 —11/444 5 95/ | 0 3/4y2 | © —11/444
S +168 +—10245 > 28 +16s +323

Consequently, to prove that g(t) > 0, it suffices to show that

5 1 562 4+ 1552 + 425 — 25
963/ 4 2 (3/4y2 L 1 11/44d
ST t 30 = 165 )

which is equivalent to
s —10(1 — sV + 6454 — 3052 — 845 4 50 > 0.

/4 the inequality becomes

Substituting r = s
=t — 10(1 — )t + 64r° — 30r® — 847" — 50 > 0,
tY —10r"(1 — 7r)t* + 7 (6477 — 30r® — 84r* — 50) > 0,
(t* — 507 + 5r%)2 + 7 (397 + 20r® — 2577 — 847 + 50) > 0.

Since
3970 4 20r% — 2577 — 8471 + 50 = (r — 1)°E,

where
E = 39" + 985 + 132r° + 166r* + 2007 + 1507* 4 1007 + 50 > 0,

the proof is completed. The equality occurs fora =b=c=d=¢e = 1.

5!
Remark. For 0 < k < 7 the inequality a® + % 4 ¥ + d* 4 ¥ > 5 does not hold. To prove

this assert, suppose
a=b=14+x, c¢c=1-2%/2, d=e=1-—z.

For z € [0,1], we have a > b > ¢ > d > e > 0 and ab + bc + cd + de + ea = 5, while the
inequality a* + b + ¢ + d* + e* > 5 is equivalent to g(x) > 0, where

g(x) =21 +2)* +2(1 — 2)F + (1 — 2?/2)* — 5.
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We have ¢(0) = 0, ¢’(0) = 0 and ¢”(0) = k(4k — 5). Since ¢”(0) < 0 for 0 < k < 5/4, the
point x = 0 is a local maximum of ¢g. In addition, since g(0) = 0, there is a neighbourhood
V of 0 such that g(z) < 0 for z € V N (0, 1].

Open problem 1. If ay,ao,...,a7 are real numbers such that

ap >2ay>--->a; >0,  aagtagaz+---+agay =7,
then

ai’/2+a§/2+---+a§/2 > 7.
. 2n —5
Open problem 2. Let n (n > 5) be an odd integer number and k > ko = T If
n —_

ai,0ao, . ..,a, are real numbers such that

ap Zaz > 2a, 20,  aa+axaz+---+aya; =n,
then

af +as+---+al>n.

Note that for 0 < k < ko, the inequality af +a} + -+ +a® > n does not hold. To prove this
claim, suppose

2
a=ay=---=a;=1+z, ajp1=1—(n—4)2"/2, aj2=a43= - =a,=1—u,

n—1
where j = — For z € [0, 1], we have a; > ay > -+ > a,, > 0 and ajas+asaz+- - -+a,a; =

n. The inequality a¥ + a + -+ + a® > n is equivalent to g(z) > 0, where

g(x) =7 ((1+2)" + (1 —2)%) + (1—%) —n.

1
We have ¢(0) =0, ¢'(0) = 0 and Eg”(O) = (n—1)k—2n+5. Since ¢"(0) < 0 for 0 < k < ko,

the point z = 0 is a local maximum of g. In addition, since g(0) = 0, there is a neighbourhood
V of 0 such that g(z) < 0 for z € V N (0, 1].
O

P1.241. If a1 > 1> a9 > --- > a, > 0 such that a; + as + - - - + a, = n, then

aias + asas + -+ + ay,a; < n.

(Vasile Cirtoaje, RMM, 38, 2025)
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Solution. For n = 2, the inequality reduces to (a; — ay)* > 0. Consider next n > 3 and
write the desired inequality in the homogeneous form

(ay 4+ ag + -+ +ap)? —nlajag + agas + - - - + anar) > 0.

From
nay <N =ap+as+ -+ ay,
we get
a; > (n—1)ag —ag — -+ — ay,.
For fixed as,as, ..., a,, the homogeneous inequality is equivalent to f(a;) > 0, where
flay) = (a1 +ag + -+ an)* —n(agas + - - + ap_1a,) — nlag + a,)a;.
Since

f'(a1) = 2(a1+as+---+a,)—nlas+a,) = (a1 +as+- - -+a, —nas)+ (a1 +as+- - - +a, —nay)

=n(l—as) + (a1 + az + -+ + a, — na,) >0,

f(ay) is increasing, hence

flar) > f((n—1)ay —az — -+ — ay).
Thus, it suffices to show that f((n —1)ag —az —--- —a,) > 0, that is
nas — (asaz + -+ + ay—1a,) — (az + a,)[(n — Vag —az — -+ — a,) > 0.

2

For n = 3, the inequality reduces to (ay — a3)® > 0, while for n > 4, the inequality is

equivalent to
nas — (agaz + - -+ + ap_1a,) — nlag + a,)ag + (ag + a,)(ag +az +--- +a,) >0,
—(agaz + agaq + - -+ + ap_1a, + anas) — (n — Daga, + (az + ay)(as + as + -+ a,) > 0,

as(ag+asz+---+ay,)—(agaz+aszas+- - -+ a,_10, +ana2)+aylas+az+- - -+a,—(n—1)ag] >0,
az(as —as) +az(ag —as) +- -+ an_1(as —a,) — apl(az —az) + (ag —ag) + - - - + (a2 — a,,)] > 0,

(ag — as)(ags — an) + (a2 — aq)(as — an) + - - - + (a2 — an)(an—1 — a,) > 0.
The last inequality is clearly true. The equality occurs for a1 = ay =--- =a, = 1.
Remark. The following statement is also valid:

o If a1 >1>ay>--->a, >0 such that ajas + asasz + - - - + a,a; = n, then

ay+az+---+a, = n.
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P1.242. If 0<a; <1<ay <---<a, such that a; + as + - -- + a, = n, then

a1ag + agasg + - - - + ana; < n.

(Vasile Cirtoaje, Math. Reflections, 3, 2024)

Solution. For n = 2, the inequality reduces to (a; — a)? > 0. Consider next n > 3 and
write the desired inequality in the homogeneous form

(ay +ay + -+ +a,)* —n(arag + azaz + - - - + apay) > 0.

From
nag > n=aj+az+---+ ayp,
we get
a; < (n—1)ag —az — -+ — ay,.
For fixed asg, as, . .., a,, the desired inequality is equivalent to f(a;) > 0, where
flar) = (a1 +az + -+ an)? —n(azas + - - + an_1a,) — naz + ay)as.
Since

f'(a1) = 2(a14as+- - -+a,)—n(as+a,) = (a1+as+- - +a,—nas)+(a+as+- - -~+a,—na,) <0,

f(ay) is decreasing, hence

fla) = f((n = 1)az —ag —--- — ay).
Thus, it suffices to show that f((n — 1)ag —ag —--- — a,) > 0, that is
nay — (agaz + -+ + a,_1a,) — (ag + a,)[(n — Vag —az — -+ —a,] > 0.

For n = 3, the inequality reduces to (ay — az)?> > 0, while for n > 4, the inequality is
equivalent to

(ay + ay)(az +az + -+ -+ a,) — (azas + azaq + - -+ + ap_1a, + anaz) — (n — 1)aga, >0,
lag(ag+az+- - -+a,)— (agaz+azag+- - -+ ay_ 10, +ana2)|+ay[as+as+- - -+a,—(n—1)as] > 0,
lag(ag —az) +az(ag —ag) +- -+ a,_1(as—a,)] — an[(ag —az) + (ag —aqg) +- - -+ (ag —ay,)] >0,

(ag — az)(ag — an) + (a2 — ag)(az — a,) + -+ + (a2 — ay)(ap—1 — a,) > 0.

The last inequality is clearly true. The equality occurs for a; = a, =--- =a, = 1.

Remark. The following statement is also valid.

e I[f 0<a; <1< ay < <a, such that a1as + asaz + - - - + a,a; = n, then

a4+ as+ - +a, > n.
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P 1.243. Supposen >4 and ay > ay > --- > a, > 0. If a; = as and a,_1 = a,, then

n(aias + asas + - -+ anpar) > (ay +ag + - -+ a,)?.

(Vasile Cirtoaje, Math. Reflections, 1, 2024)
Solution. For n = 4, the inequality reduces to an identity. Consider next n > 4, denote

S_a2+an—1 S_Cl3+"'+an—2
B 2 ’ N n—4 ’

and write the inequality as follows:
nlas + al_y + agan_1 + (a2as + -+ + n_20,1)] > [2(a2 + an_1) + (a3 + - - + an_2)]*,

n[4S% — asan 1 + (azaz + -+ + ay_9a,-1)] > [4S + (n — 4)s]°.

Since the sequences (as, . .., a, o) and (ag, . .., a,_1) are decreasing, by Chebyshev’s inequal-
ity we have

(n—3)(agaz + -+ ap—2a,1) > (a2 + -+ an_o)(ag+ -+ an_1),

(n—3)(agas + -+ + ap_2a,_1) > [az + (n — 4)s]lan_1 + (n — 4)s],
(n —3)(agas + - -+ apn_9an_1) > agan_1 + 2(n — 4)sS + (n — 4)%s*
So, it suffices to show that

Aoty 1+ 2(n — 4)sS + (n — 4)?s?
n—3

n 452 — asa,_1 + > [4S+ (n— 4)5]2,

which is equivalent to
4(n —3)S? — 6(n — 4)sS + 3(n — 4)s* > naga,_;.
Since ay > s > a,_1, we have
(s —az)(s —an_1) <0, Agly_1 < 25S — s%.
Therefore, it suffices to show that
4(n —3)S% — 6(n — 4)sS + 3(n — 4)s* > n(2s9 — s°),

that is equivalent to
(n —3)(S —5)*>0.

The equality occurs for a; =as =--- =a, = 1.
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P 1.244. Leta>b>c>d > e > 0 such that ab+ bc + cd + de + ea = 5. Prove that
A+ +E+d>+ e +5a+b+c+d+e) > 30.

(Vasile Cirtoaje, Math. Reflections, 6, 2023)

Solution. Denote
a+b B d+e

7 YT

xr = , T >c>y.

Since
a?+ v > 2:1:2, d* +e* > 2y2,

it suffices to show that
2(2* +y®) + 10(z + y) + ¢ + 5e > 30.
Moreover, since ¢? > 2¢ — 1, it suffices to show that
2(2? + ) 4+ 10(z +y) + Tc > 31.

We will first show that
o +y? +ay+c(r+y) >5.

Indeed, we have
A+ +ay+e(r+y) =5 =(a+b)*+ (d+e)* + (a+b)(d+e)
+2c(a+b+d+e) —4(ab+ bc + cd + de + ea)
=(a—b)*+(d—e)*+a(d+2c—3e)+b(d+e—2c)+2c(e —d)
>b(d+2c—3e)+b(d+e—2¢c)+2c(e—d) =2b(d—e) +2c(e—d)=2(d—e)(b—c) > 0.
So, it suffices to show that

7(5 — 2% — y? — xy)
T+y

> 31.

2(2® + y?) + 10(z +y) +

Denoting

the desired inequality becomes

42
7(5 —4s* + p) > 31,
2s

165° + 125 — 62s + 35 > p(8s — 7).
For 8s — 7 < 0, it suffices to show that 1653 + 12s? — 62s 4+ 35 > 0. Indeed,

8s% — 4p + 20s +

165% + 125% — 625 + 35 = s(4s — 3)* + (1 — 5)(35 — 365) > 0.
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Also, for 8 — 7 > 0, we have
165° + 125% — 625 + 35 — p(8s — 7) > 165 + 125* — 625 + 35 — 5*(8s — 7)
= 85® 4+ 19s% — 625 + 35 = (s — 1)*(8s + 35) > 0.
The proof is completed. The equality occurs fora =b=c=d=¢e¢ = 1.
Remarks. Similarly, we can prove the stronger inequality
200+ +E+d*+e*) +11(a+b+c+d+e) > 65.
It suffices to show that
4(z® 4+ y?) + 22(x + y) + 26 + 11c > 65

for
22 +y* +ay+c(r+y) > 5.

Since ¢? > 2¢ — 1, it suffices to show that
4(x® +9?) + 22(x +y) + 15¢ > 67.

Denoting

b=y,

we need to show that
16s* — 8p + 445 + 15¢ > 67

for
2cs > 5+p—432.

It suffices to show that

15(5 + p — 4s?)
25

165 — 8p + 44s + > 67,

ie.
325® 4 28s% — 134s + 75 > p(16s — 15).

Since
3257 + 285 — 1345 + 75 = 32s(s — 1)? + 925 — 1665 + 75 > 925 — 1665 + 75 > 0,
the inequality is true if 16s — 15 < 0. For 16s — 15 > 0, since p < s?, it suffices to prove that
325% + 28s? — 1345 + 75 > 2(165 — 15),

i.e.
16s® + 43s* — 1345 + 75 > 0,

(s —1)*(16s + 75) > 0.
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P 1.245. Ifa>b>1>c>d>e> f >0 such that ab+ bc+ cd+ de + ef + fa =6, then
(2a +3)* 4+ (2b 4+ 3)* + (2¢ + 3)% + (2d + 3)* + (2e + 3)* + (2f + 3)* > 150.
(Vasile Cirtoaje, RMM, 38, 2025)

Solution. Denote by E the left hand side of the inequality. For fixed c,d, e, f, we may
assume that b and E are functions of a. By differentiating the equality constraint, we get

b+ f)

V4+btf=0 Y= — > 1.
(a+c)b +b+ f , re o

Since

El
i“) =2a+3+ (20+3))) >2a+3—(2b+3)=2(a—b) >0,

E(a) is increasing and has the minimum value when @ is minimum, hence when a = b.
Similarly, for fixed a, b, ¢, d, assume that e and E are functions of f. By differentiating the
equality constraint, we get

(d+ f)e+a+e=0, e’:éaT?g—l.
Since ,
Eif) =2f+3+(2e+3) <2f+3—(2¢+3)=2(f —e) <0,

E(f) is decreasing and has the minimum value when f is maximum, hence when f = e.
So, it suffices to consider a = b and f = e, when we need to show that F* > 150 for
b>1>c>d>e>0such that b> + bc + cd + de + € + be = 6, where

F =2(2b+3)*+ (2¢ + 3)* + (2d + 3)* + 2(2e + 3)*.

Now, for fixed d and e, assume that b and F' are functions of ¢. By differentiating the equality
constraint, we get

_ —bt+d) _ ~(b+a)
%+ c+e " 2b+c+d

(2b+c+e)) +b+d=0, v

hence
F'(c) 2(2b+3)(b+4d) < 5_2(2b +3)(b+d)  544b—4b* — (4b+1)d

964 312(2043) < 2043 _
CH3F2AWA3Y < 2e3———, T < %+ 1+d %+1+d

We will show that F'(c) < 0, that is
46> —4b — 5+ (4b+ 1)d > 0.
From

6=0>+bc+cd+de+e®+be <b®+bc+cd+ 2d* +bd < b*>+b+3d+bd
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we get
6—b—0b?
>—7
- b+3
therefore
4b+1)(6 — b — b* -1
AP —ab— 54 (b4 1)d > 4 —ap— 54 LTVO=b=E)_30=D0FI)

b+3 b+3 -

Since F'(c) <0, F(c) is decreasing and has the minimum value when ¢ is maximum, hence
when ¢ = 1. So, it sufficesed to consider this case, when we need to show that G > 125 for
b>1>d>e>0such that b* + b+ d + de + € + be = 6, where

G =2(20+3)% + (2d + 3)* + 2(2¢ + 3)%.

For fixed b, we may assume that d is a function of e. By differentiating the equality constraint,
we get
(14+e)d +b+d+2e =0,

hence
2 2 2 2
Gl o(9e43)+(2d13)d = 2(2e+3)— L3O 2) o gy Lot 3O+ 2)
4 1+e 1+e
~ (2e+3)(2-b—ad)
N 1+e ‘
From

6=0"+b+d+de+e*+be<b>+b+d+2d*+bd < (b+d)?+ (b+d),

we get b+ d > 2, therefore G'(e) < 0, G(e) is decreasing and has the minimum value when
e is maximum, hence when e = d. So, it suffices to consider e = d, when we need to show
that if b > 1 > d such that

b2 +b+d+ 2d* + bd = 6,

then 2(2b+ 3)% +3(2d 4 3)* > 125, i.e.
26 + 3d* +6b+9d > 20,  2b(2—d) > d*> —T7d +8.
Since 2b=—d—1+ \/m, we need to show that
(—d —1++V25—2d—7d%)(2 — d) > d* —7d +38,

i.e.
(2 —d)V25 —2d —7d?> > 10 — 6d.

This is true if
(2 —d)?(25 — 2d — 7d*) > (10 — 6d)?,
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which is equivalent to the obvious inequality
d(d—1)*(12 — 7d) > 0.

The equality occurs fora =b=c=d=e = f =1, and also fora = b =2, c =1 and
d=e=f=0.

Remark. Note that % is the largest positive value of k such that the inequality
(a+k)?+B+k)?+(c+k)>+(d+k)?*+(e+k)’+(f+k)?>6(1+k)?
holds for all nonnegative numbers a, b, ¢, d, e, f satisfying
ab+bc+ cd+ de+ef + fa =6, a>b>1>c>d>e>f.

Indeed, assuming a = b =2, c=1and d = e = f = 0, the equality constraint is satisfied,
while the desired inequality becomes

2(2 + k)% + 3k > 5(1 + k)2,

which is equivalent to 2k < 3.

P 1.246. Ifa>b>c>d>e >0, then

\/ab—l—bc—i—cd—I—de—l—ea S i/abc+bcd+cde+dea—|—eab
5 - 5 )

(Vasile Cirtoaje, Mathproblems, 4, 2023)

Solution. For ¢ = 0, the right side of the inequality is zero, therefore the inequality is true.
Consider further ¢ > 0. Due to homogeneity, we may assume that the right hand side of the
inequality is 1. So, we need to show that

ab+bc+cd+de+ea>5

for
abc + bed + cde + dea + eab = 5.

By Lemma below, it suffices to consider the case when a = b = ¢, and the case when b = ¢
and d = e.

Case 1: a = b= c. We need to show that
2+ cd+de+ce>5

for
2¢% + Ad + 2cde + e = b, c>d>e.
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For fixed ¢, we may consider that d is a function of e. From the equality constraint, we get

—(c—|—2d)‘

(c+2e)d +c+2d =0, d =
c+2e

Writing the desired inequality as F'(e) < 5, we have

9 —e(d —
F’(e):c+d+(c+e)d':c+d—(C+e)(c+ d): eld e)ﬁO,
c+2e ¢+ 2e

F(e) is decreasing and it is minimum when e is maximum, hence when e = d. So, we need
to show that
22+ 2cd+d* > 5

for
A+ 2¢%d + 2ed? = 5, c>d.

Write the desired inequality in the homogeneous form
(2¢* + 2cd + d*)® > 5(c® + 2c*d + 2cd?)?.
Due to homogeneity, we may set ¢ = 1. So, we need to show that f(d) > 0, where
f(d)=3In(d* +2d+2) —In5—2In(2d* +2d + 1), d € [0,1].
We have

~ 6(d+1)  4@2d+1) 22 42d* —3d—1)
A2+ 2d+2 22 +2d+ 1 (d?+2d+2)(2d% +2d + 1)

f'(d)

2(d —1)(2d* + 4d + 1)
(d>+2d+2)(2d?>+2d+1) — 7
f(d) is decreasing, hence f(d) > f(1) = 0.

Case 2: b=c and d = e. We need to show that
ab+b*4+bd+d*>+ad > 5

for
ab? + b%d + bd® + ad® + abd = 5, a>b>d.

For fixed b, we may consider that a is a function of d. From the equality constraint, we get
(b* +bd + d*)d’ + ab + b* + 2ad + 2bd = 0.
Writing the desired inequality as F'(d) > 5, we have

b+ d)(ab+ b* + 2ad + 2bd) A(a, b, d)
F'(d) = b+2d+ (b+d)d = b Qd—( = -
(@) =a+b+2d+(bt+da=atb B+ bd + B+ bd + &
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where

Ala,b,d) = (a+b+2d)(b* + bd + d*) — (b + d)(ab + b* + 2ad + 2bd).

We will show that
A(a,b,d) < A(b,b,d) < 0.

Indeed,
Ala,b,d) — A(b,b,d) = —d(2b + d)(a — b) <0,
A(b,b,d) = —2d(b* — d?) < 0.

Since F'(d) < 0, F(d) is decreasing and it is minimum when d is maximum, hence when
d = b. So, we need to show that

2ab + 3b* > 5
for
3ab® + 2b° = 5, a>1>0b.
We have
2(5 — 203 3 _ 2 —1)%(b+2
3(2ab+3b2—5)2w+962—15:5<b ;H ) _ 50 )b<b+ )20.

The proof is completed. The equality occurs for a = b = ¢ = d = e = 1, and also for
b=c=d=e=0.

Lemma. Ifa>b>c>d > e >0 such that abc + bed + cde 4+ dea + eab = 5, then the
eTpression
E =ab+bc+ cd+ de + ea

18 minimum when a =b=c, or when b=c and d = e.
Proof. For fixed a, d and e, we may consider that b is a function of ¢. From the equality

constraint, we get
(ac+ cd + ea)b’ + ab+ bd + de = 0.
So,
E(e) = b+d+ (at ol =b+d— (a+ c)(ab+ bd + de) _ —(a+d—e)(ab— cd) <0,
ac + cd + ea ac+ cd + ea

hence F(c) is decreasing and is minimum when ¢ is maximum, hence when ¢ = b.

Similarly, for fixed b, ¢ and d, we may consider that a is a decreasing function of e. From
the equality constraint, we get

(be + de + eb)a’ + cd + da + ab = 0,

b+e)(cd+da+ab) —(b—c+d)(ab— de)

E/ == d —_— b / = d — ( — < 0
(@ =atd=(btejd=at be + de + eb be + de + eb -
hence E(e) is decreasing and is minimum when e is maximum (@ is minimum), i.e. when

e=dora=>.

Finally, we conclude that F is minimum when either b = cand d = ¢, or b =c and a = b
(i.e. a=b=c).
O
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P 1.247. Let a,b,c,d be nonnegative real numbers such that

1 1 1 1

_1.
er3 b3 ex3 dis

Prove that there is a permutation (x1, %2, x3,z4) of the sequence (a, b, c,d) such that
T1To + ToT3 + T3T4 + Taxy > 4.
(Vasile Cirtoaje, 2023)
Solution. Assume that a > b > ¢ > d > 0. Since
(a+d)(b+c)—(a+c)(b+d)=(a—b)(c—d) >0

and
(a+d)(b+c)—(a+Db)(c+d)=(a—c)(b—d) >0,

the sum
S=ab+bd+dc+ca=(a+d)(b+c)

is the largest cyclic sum of this form. So, we will show that the sequence
(xb Z2,T3, 374) = (CL, b7 du C)
satisfies the requirement S > 4. Denoting

_a—l—d b+c

T

we need to show that
1 1 1 1

1
at3 d13 T bvi3tcrs

involves zy > 1. Since
1 1 2

b13 c+3-y+3
(from the AM-HM inequality or Jensen’s inequality), we have

1 n 1 n 2 <1
a+3 d+3 y+3~ "7

2(x +3) Lyt
ad+6x+9 ~ y+3

From (y — a)(y — d) <0, we get ad < 2zy — y?, therefore

2(z +3) <y+1
2oy —y2+6x+9 ~ y+3’

2(x +3) Lyt
2z —y+3)(y+3) ~y+3’
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2 3
e t3) <y+1,
20—y +3

2ey > y* — 2y + 3,
hence

2wy —1) > (y—1)* > 0.

Remark. The following generalization is valid:

e Ifay,as,...,a, are nonnegative real numbers such that
1 1 1
+ +ot—=1,
air+n—1 ay+n-—1 a,+n—1
then there is a permutation X = (x1,%s,...,x,) of the sequence A = (a1, as,...,a,) such
that

T1Xo + Toxg + - -+ + TpT1 > N

To prove this, it suffices to show that Z a;a; > n. Using the contradiction method, we

1<i<j<n
need to show that Z a;a; < n involves
1<i<j<n
1 1 1

+ 4+ ——>1
ai+n—1 ay+n-—1 a,+n—1

This is true if E a;a; = n involves
1<i<j<n

1 1 1
+ +ooit—2>1
ar+n—1 ay+n-—1 a, +n—1

?

which is just P 1.208 in Volume 2.

P 1.248. Leta; > ay > -+ > a9 > 0 such that a1 + a9 + -+ + ag = 2. Prove that
a1az + agas + - - - + aga; < 1.
(Vasile Cirtoaje, Math. Reflections, 1, 2023)
Solution. Write the inequality as F'(ay, as,...,a9) > 0, where
F(ay,aq,...,a9) = (a; +ay + -+ ag)* — 4(aray + asas + - - - + agay).

We will show that
F(ai,as,a3,...,a9) > F(ag,az,a3...,a9) > 0.
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The left inequality is equivalent to
(a1 +as+az+- - -+a9)2—(2a2+a3+- . -+a9)2 > 4(ajas+asaz+- - -+a9a1)—4(ag+a2a3+- - Fagas),

(ay — ag)(ay + 3ag + 2a3 + - - - + 2a9) > 4(a; — az)(az + ag),
(a7 — ag)(ar — ag + 2a3 + - -+ + 2ag — 2a9) > 0,
while the right inequality is equivalent to G(ag, as, ..., as, ag) > 0, where
Glag,as, ..., ag,a9) = (2a9 +ag + - - - + ag + ag)® — 4(a3 + azas + - - - + agag + agay).
We will show that
G(ag,as, ..., as,a9) > Glas,as,...,as,0) > -+ > G(a,0,...,0,0) =0.

We have
G(CLQ, as, ..., as, CLg) — G((J,Q, as, ..., as, O) =

:(2a2+a3+~--—|—a8+a9)2—(2a2+a3+---+a8)2—4(a§+a2a3+---—|—a8a9+a9a2)
+4(a§+a2a3+---—l—a7a8)

= ag(4as + 2az + - - - + 2ag + ag) — 4ag(asg + az) = ag(2a3 + - - - + 2a7 — 2ag + ag) > 0,

G(as,as,...,ar,as,0) — G(ag, as,...,ar,0,0) =
=(2ay +az+---+ag)® — (2ay +az +--- +ar)* — 4(a3 + azaz + - - + aag)
+4(a2 + agas + - - - + agar) = ag(dag + 2a3 + - - - + 2a7 + ag) — 4azag
= ag(4as + 2asz - - - + 2a¢ — 2a7 + ag) >0
and, similarly,

G(as,as,...,ar,0,0) — G(ag, as, . .. ,as,0,0,0) = a7(4day + 2a3 + 2a4 + 2a5 — 2a6 + a7) > 0,

G(az,as, a4, as, as,0,0,0) — G(ay, as, as, a5, 0,0,0,0) = ag(4az + 2a3 + 2a4 — 2a5 + ag) > 0,
G(as, as, as, as,0,0,0,0) — G(as, as, as, 0,0,0,0,0) = as(4as + 2a3 — 2a4 + as) > 0,
Gl(ag, a3, a4,0,0,0,0,0) — G(ag, as, 0,0,0,0,0,0) = ay(4ay — 2as + ay) > 0,

G(as, as,0,0,0,0,0,0) — G(az,0,0,0,0,0,0,0) = a2 > 0.

The proof is completed. The equality occurs for a; =ay =1 and a3 =--- = a9 = 0.
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P 1.249. Let n be a natural number, n > 3. Prove that there is a real number q, > 1 such

that
ai 5] anp, n
+ TR >
ag +as  az+ay ay +ay — 2
for any real numbers ay,as, ..., a, € [1/qn, qn)-

(Vasile Cirtoaje, Crux Mathematicorum, 8, 2006)

Solution. Write the inequality as

n

2¢2a; — a;y1 — a;
Z 4,4 i+1 i+2 Z n(qi B 1)’
— Qi1+ Aiy2

where a,.1 = a; and a,,2 = as. Since
2 2 2
2¢,,0; — @iy1 — Qive = (¢,0; — aiy1) + (¢,ai — ai2) >0,

the Cauchy-Schwarz inequality may be applied to get

n n

n 2
2 2050 — Qi1 — Qiyy 2
Z(ai—i-l +ai+2)(2qnai — Qi1 _ai+2) : Z > Z(Qqnai — Qip1 — Cli+2) .

a; a;
i=1 i=1 i+ T @i i=1

Thus, to obtain the desired inequality, it suffices to prove that

n

n 2
(Z(ZQEL% — Qi1 — ai+2)> > n(QZ - 1) Z(aiJrl + ai+2)(2q721ai — Qi1 — ai+2>~

i=1 i=1

Since
n n

> 2ara; — aip — aipa) = 2(q; 1)) @

i=1 i=1
and

n n n

Z(ai-i-l + ai+2) (2020 — Qip1 — Qip2) = 20, Z ai(@ip1 + Qo) — Z (ai +ai1)?,

i=1 i=1 i=1
the inequality becomes

n

2
4 n n
LRSI POTYIEET) SRCNERISED SPRREN

i=1 i=1
i.e.

n n

2
4 n
E(Qi —1) <Z ai) > 207 > (@i + aip1) (@i + aign) — (@2 +1) D (a5 + ain)
=1

i=1 i=1
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Using the substitution b; = a; + a;41 for © = 1,2, ... n, the inequality reduces to
1 n 2 n n
2 2 2 2
ﬁ(qn —-1) <Zl bz‘) > 2q;, ;bibiﬂ — (¢, +1) Zl by .
Since

(Z bi> = anf — Z(bj - bk)27

Jj<k

the inequality is equivalent to

2q72b (Zl b? - ;binl) > %(QZ - 1) Z(bj _ bk)2,

j<k

i.e.

But, for j < k, we have

n k—1 k—1 2
1 1
E (b — biy1)* > g (bi — biy1)* > - ( E (b; — bi—l—l)) > — (b; — br)?.

i=1 1=j J i=J

Summing over j and k with j < k yields

@ Z(bi —bit1)® > ﬁ Z(bj O

i=1 j<k
i.e.

nZ(bi — b)) > ﬁ > (b; = bi)

j<k

Comparing this inequality with (*), we see that (*) is true by choosing

PR
¢ (n—1)%
that is
B 1 B n—1
= VI=2/(n—12 n2—2n -1
Since ¢, > ! = " , we can also choose
N YA

"= g
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Open problem. Does there exist a real constant ¢ > 1 such that

a1 a2 ap

+ +
as+as as+as a;+as

n
>
-2

for any natural number n > 3 and for any real numbers ay,as, ..., a, € [1/q,q]?

P 1.250. If a,b,c,d are positive real numbers and 0 < x < 1, then

a
> 1.
Z a+ (3—x)b+xc —

cyclic

(Vasile Cirtoage, Cruz Mathematicorum, 2006,1)
Solution. Let y =3 — z. Writing

a N c A
a+byt+cr c+dy+ar A+B

and

b d e
b+cy+dr d+ay+br C+D’

we need to show that
AC > BD,

where
A= (a® + )z + (ad + be)y + 2ac,

B = (ab+ cd)xy — ac(1 — z%) + bdy?,
C = (b +d*)z + (ab + cd)y + 2bd,
D = (ad + be)zy — bd(1 — x%) + acy®.
Using the substitution
p=ac, q=bd, r=ab+cd, s=ad+be, u=d>+ v=0b+d,
we find
A=uz+sy+2p,  B=rzy—p(l—2*)+qy’
C =vr+ry+ 2q, D:sxy—q(1—$2)+py27

and
AC = wva® + 4pq + rsy?® + 2(qu + pv)z + (ru + sv)zy + 2(pr + ¢s)y,

BD = rsa*y® +pg(1 —22* + ' +y*) — (ps+qr)a(l —a?)y + (pr +gs)zy’ — (p° +¢°) (1 —2)y?
= rse’y® + pg(z® +y* — 1)? — (ps + ¢r)z(1 — 2y + (pr + gs)ay’ — (p — ¢)*(1 — 2%)y”,
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Since u > 2p and v > 2q, we have qu + pv > 4pq and ru + sv > 2(pr + ¢s), hence

AC > E,
where
E = wvz? + 4pq + rsy* + 8pqx + 2(pr + ¢s)(z + 1)y.
So,
AC — BD > FE — BD = E, + E»,
where
Ey = wa® + (p— q)*(1 — )y + (pr + ¢s)(2 + 22 — zy*)y
= wz® + (p — q)*(1 — )y + (pr +¢s)(1 — 2)(2 — 5z + 2%y
and

Ey =rs(1 —2*)y* + (ps + qr)z(1 — 2°)y + pq[4 + 8z — (2 +y* — 1)?).
Since r > 2,/pq and s > 2,/pq, we have rs > 4pq and

ps+qr > 2(p+ q)\/pq > 4pq,

hence

Ey > 4pg(1 — 2%)y® + 4pgz(1 — 2*)y + pq[4 + 8z — (2° + y* — 1)?] = pq(E3 — 427),

where
By =4(1 —2%)(z + y)y + 4z +1)* = (2* +y* = 1),
Since
41 -2 (z+y)y =12(1 — 2?)y
and
Yr+1) - (@ +y 1) =Rz +3 -2 —yH2r + 1 +2° + 9
= —4(1 —2)(3 — 2)(2® — 22+ 5) = —4(1 — 2)(2* — 2z + 5)y,
we have
Es =4(1 —2)y[3(1 + z) — (2* — 22 + 5)] = —4(1 — 2)(2 — 5z + 2°)y.
Thus,
AC — BD > Ey + E; > Ey + pq(E5 — 42®) = F,
where

F = (w —4pg)z® + (p — q)*(1 — 2*)y* + (pr + qs — 4pq) (1 — 2)(2 — 5z + 2°)y.

It suffices to show that F' > 0. Since uv > 4pq and pr + gs > 2(p + q)\/pq > 4pq, we have
clearly F' > 0 for (1 — z)(2 — 5z + %) > 0, that is for x = 1 and for 0 < z < (5 — V17)/2 ~
0.438. Next, we claim that

uv + 2p* — 8pq + 24 > 2(pr + qs — 4pq). (1)



358 Vasile Cirtoaje

Indeed,
wo + 2p° — 8pq +2¢° — 2(pr + gs — 4pg) = (ab — p)* + (cd — p)* + (be — ¢)* + (ad — ¢)* > 0.

We distinguish two cases, y? —22y? —22% > 0 and 222 +2%y? —y? > 0, which are equivalent to
x € [0,z1] and x € [x1, 1], respectively, where 1 ~ 0.837 is the positive root of the equation

gt — 62° + 102 + 62 — 9 = 0.
Case 1: y? — z*y* — 22* > 0. Using (1), we have
F = (uv+2p* —8pq+2¢*)2* + (pr+qs —4pq) (1 — ) (2 — 5z + 22y + (p — q)* (v* — 2*y* — 22?)
> (uv + 2p* — 8pg + 2¢%)x° + (pr + s — 4pg)(1 — =)(2 — 5z + 2°)y
> 2(pr + qs — 4pq)x* + (pr + qs — 4pq)(1 — x)(2 — 5z + 2°)y

= (pr + qs — 4pq) [2x2 +(1—2)(2—-5x+ xz)y} )
Since pr 4+ gqs — 4pq > 0 and

207 + (1 —2)(2 = b + %)y = 6 — 2320 + 272° — 92° + 2* = (1 — 2)* + 5 — 192 + 212* — 52°

(3 —z)(45 — 156z + 1372?%) + 223
27

=(1—a)t+ > 0,
we have [ > 0.

Case 2: 22 + 2*y* — y? > 0. Using (1), we have
2F = (uv+2p*—8pg+2¢°) (1—2?)y* +2(pr+qs—A4pq) (1—x) (2—5a+2°)y+(uv—4pq) (22° +2%y* —y?)
> (uv + 2p* = 8pg + 2¢°)(1 — 2%)y* + 2(pr + g5 — 4pq) (1 — 2)(2 — 5z + %)y
> 2(pr + gs — 4pg) (1 — 2*)y* + 2(pr + ¢s — 4pq) (1 — 2)(2 — 5z + 2?)y
=2(pr +qs —4pq)(1 — 2)(y + zy + 2 — bz + 2%y
= 2(pr + ¢s — 4pq)(1 — x)(5 — 3z)y > 0.

The equality occurs for a = b =c¢ = d.

P 1.251. Prove that 18 1is the largest positive value of the constant k such that

1 N 1 n 1 S 3
ab? +k bc24+k ca?+k T 14+Ek

foralla>b>c>0 such that a +b+ ¢ = 3.
(Vasile Cirtoaje, Math. Reflections, 6, 2024)
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3
Solution. Setting a = b = — and ¢ = 0, the inequality leads to £k < 18. We will further

show that the inequality is true for £k = 18. Let us denote p = a+ b+ ¢, ¢ = ab + bc + ca,
r = abc and
A = a*b + b*c + cfa, B = ab® + bc® + ca®.

Since p = 3, we have ¢ < p*?/3 = 3 and r < p?/27 = 1. By expanding, the inequality can be
restated as follows:
3k* > 3r° + (2k — \)rA+ k(k — 2)B,

6k* > 6r° + [(2k — D)r + k(k — 2)](A + B) + [(2k — 1)r — k(k — 2)](A — B).
Since (2k — 1)r —k(k —2) < 2k—1—k(k—2) = —k*+4k -1 < 0and A — B =
(a—b)(b—c)(a—c) >0, it suffices to show that
6k* > 6r° + [(2k — )r + k(k — 2)](A + B),
ie.
6k> > 6r° + [(2k — 1)1 + k(k — 2)](pg — 37),
648 > 2r° + (357 + 288)(q — 7).
Case 1: 0 < ¢ <9/4. It suffices to show that

9
648 > 21 + (357 + 288) <ZL — r> :
which is equivalent to

(837 + 140r — 8r%) > 0.

Case 2: 9/4 < q < 3. Let z = ¢/3 € [3/4, 1]. For fixed z, we need to show that 648 > f(r),
where f(r) = 2r® + (35r + 288)(3z — r). By the fourth degree Schur’s inequality, we have

PP —glg—p) _ B-2)(4z-3)
6p 5 . 0-

r

Since f'(r) = 6r* — 70r + 105z — 288 < 6 — 70r + 105 — 288 < 0, f(r) is decreasing. So, we
only need to show that 648 > f(r), i.e.

648 — 864z > 2ry — 3515 — (288 — 1052)ry.

Since 15
648 — 8642 = ~216(42 — 3) = — o
—Z

we need to show that
—432

7, 2 2re — 3519 — (288 — 1052),

that is
—864

33—z

> 1621 — 12023 4 4372% — 5852 — 180,
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162° — 1682% + 79723 — 189622 + 1575z — 324 > 0,
(z—1)g(z) >0,

where
g(z) = 162" — 1522° + 6452% — 12512 + 324.

The inequality holds if g(z) < 0. Indeed,

g(2) < 6452% — 12512 + 324 = —6452(1 — 2) — 151(42 — 3) — 22 — 129 < 0.

3
For k = 18, the equality occurs when a = b =c =1, and also when a = b = 5 and ¢ = 0.

[]

P 1.252. Leta=b>c>d > 0 such that ab+ bc + c¢d + da = 4. Prove that

A+ +F+d*+28>8(a+b+c+d).

(Vasile Cirtoaje, Math. Reflections, 5, 2024)
Solution. We need to show that

20 + 2+ d* —8(2b+c+d) +28>0

for
(b+c)b+d) =4, b>c>d>0.
Denote o
z = ;C, b>z>c>d>0, x> 1.

Since 20% + ¢ > 322, it suffices to prove that
32° +d* — 8(3x +d) +28 >0,

ie.
372 — 24z + 12+ (4 — d)* > 0.

From
16 =(20+2¢)2b+2d) = B3z +c)Bx+2d—c)=Bx+d+c—d) Bz +d+d—c)

=Br+d)?—(c—d)?*> Br+d)? — (v —d)?* =8(2* + du),

we get
2 _ 2 2 _
d§2 x) 4—d24—2 x:x+4$ 2,
T T T
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therefore

(22 + 4z — 2)? _ 4(z —1)4

30 — 24w 4+ 12+ (4 —d)* > 32° — 24w + 12+ 5 5

> 0.

x x
Thus, the proof is completed. The equality occurs fora=b=c=d = 1.

Remark 1. Note that 8 is the largest positive value of £ such that
>+ +E+d—4>k(a+b+c+d—4)
whenever a = b > ¢ > d > 0 satisfying ab + bc + ¢d + da = 4. To prove this assert, we

assume a = b = c. The equality constraint becomes ¢ + cd = 2 where ¢ € [1, /2], while the
inequality becomes as follows:

2, (2=

3 +d*—4 > k(3c+d—4), 3P+ —4>k (30 +

2 2—02_4)7 4(02—1)2>2k(c—1)2.
c

c c? - c

2 1)
It is true for all ¢ € (1,v/2] if and only if He+ 1P

condition k£ < 8.

> k. Setting ¢ — 1, we get the necessary

Remark 2. Since
a+b+c+d 4

> 9
4 a+b+c+d—

the following inequality follows from P 1.252:

e Ifa,b,c,d are nonnegative real numbers such that
ab + bc + cd + da = 4, a=b>c>d,

then
128

a+b+c—|—d_36

A+ +E+ 2+

P 1.253. If x1, 29, x3, x4, x5 are positive real numbers such that
T1%2 + Loy + T3T4 + Xyx5 + T5w1 = 5,

then
1 1 1 1 1 25
— -+ —+— 4+ —+ > 10.
T XTo X3 Ty Ty X1+ To+ X3+ x4+ X5

(Vasile Cirtoaje, Recreatii Matematice, 1, 2025)
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Solution. By Lemma from P 1.217, it suffices to show that

1—0—1+1+1+1+ 25 10>0

a b ¢ d e a+b+c+d+e -
for

ae + ad + be + bc + cd = 5, a>b>c>d>e>0.
Denote

a—+b _d+e
2 ) y - 2 )
Replacing a and e with 2z — b and 2y — d, respectively, we have

T =

a>x>b>c>d>y>e.

5=a(d+e)+be+bc+ cd =22z — b)y + b(2y — d) + be + cd = 4zy + be — (b — ¢)d.

From this, we get
5> day + be — (b — c)c = 4wy + ¢,

hence
4oy <5 — 2, c<\/§,
and
b=dxy+bc— (b—c)d <daxy+bc— (b—c)y=4dxy+blc—y)+cy
3
g4xy—|—x(c—y)+cy:3a:y—|—c(x+y)SZ(5—02)+C(:c+y),
hence
4e(x 4 y) > 3c¢® + 5.
By the AM-HM inequality, we have
1 n 1 S 4 B 2 1 n 1 S 2
a b a+b <z’ d ey
Thus, it suffices to show that
2 2 1 25
S ————>10
r Yy c 2x+4+2y+c
2 2 : Tty
for > ¢ > y > 0 such that 4xy <5 — ¢* and 4¢(x + y) > 3¢® + 5. Denoting S = —5 we
need to show that
45 n 1 n 25 > 10
xy ¢ 4S+4c
for )
5
xy < ¢ 8¢S > 3% + 5.

4 Y
The inequality is true if

S +1+ 25
5—c2 ¢
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which is equivalent to
32¢S% 4+ 2(10¢ + 3¢? — 50c + 5)S + ¢(5¢° — 13¢% — 25¢ + 65) > 0,

that is
(32¢S + A)* +25B > 0,

where
A =10c® + 3¢* — 50c + 5,

B = —4c® + 4c® +23c¢* — 24¢® — 182 +20c — 1 = (¢ — 1)*(c + 1)(—4c® + 19¢ — 1).

1
Case 1: c € [E, 1] Since

—43419¢—1> —4¢+19¢—1=15¢—1> 0,

we have B > 0, therefore (32¢S + A)? + 25B > 0.

Case 2: c € (O, %] U [1,+/5). Since

32¢S + A > 43¢ +5) + A =5(2¢" +3¢> —10c +5) = 5(c — 1)(2¢* + 5¢ — 5) > 0,
we have
(32¢S 4 A)? +25B > 25(c — 1)*(2¢% + 5c — 5)% +25(c — 1)*(c + 1)(—4c* +19¢ — 1)

= 200(c — 1)*(2¢® + 3¢® — 4c + 3) > 200(c — 1)*(2¢* — 4c + 2) = 400(c — 1)* > 0.

The proof is completed. The equality occurs for x1 = 29 = 23 = x4 = x5 = 1.

7
P 1.254. Prove that 6 15 the least positive value of the power exponent k such that

o+ ok tak 4o a2k >5

for any nonnegative real numbers x; with at most one x; < 1 and x1x9+ Tox3+ X304+ T4T5+
T5l1 = 5.

(Vasile Cirtoaje, Arhimede Math. J., No. 1, 2024)
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) . 5—2x — 22 _
Solution. Assuming x1 = 29 :=x, 23 =25 = 1 and x4 = — the constraints

are satisfied for z € [1,v/6 — 1], while the inequality becomes f(x) > 0, where f(z) =

_ 90 — 22\ F
2xk+<5#> — 3. From

L, 52z —a2\"!
Ef(x)—Qx 1—(:)3+1)(T) ,

1., —2 5— 2z —a2?\ " o (5 — 22 —a? o
o (z) = 2(k — 1)z ‘(T) +(k=1@+1) (T) )

we find f(1) = f'(1) = 0 and f"(1) = k(6k — 7). From the necessary condition f”(1) > 0,
we get k > 7/6. To show that 7/6 is the least positive value of k, we need to prove the
required inequality for £ = 7/6. By Lemma below, it suffices to show that F(a,b,c,d,e) >0
fora>b>c>d>12>e>0such that ab+ ac + bd + ce + de = 5, where

E(a,b,c,d,e) = a* +b" 4+ " + d" + e — 5.

For fixed b, ¢ and e, we may assume that a and F are functions of d. By differentiating
the equality constraint, we get

a/: _(b—‘f_e) >

—(b+e)_d—e_1>d—e . —(a+e)
b+c b+d  b+d “a+d a+d

(b+c)d +b+e=0,
Denoting E(a,b,c,d, e) by f(d), we have

6f'(d) VR VL Y L al/6(a+ €>.

7 a—+d

: , - a+d ay1/6
We claim that f’(d) > 0. To prove this, it suffices to show that n > (3) . By
a+e
Bernoulli’s inequality,

a\1/6 a—d\Y° a—d a+5d
— =1 <1 = )
(2) ( * > =176 T Ted

d 5d
So, it is enough to show that @t > a—gd . From 5 = ab+ ac+ bd + ce + de > ad + ad +

a-+te
5 — 2ad — d* 5—d?

d? + de + de, we get e < and a + e < ﬁ, therefore

2d
atd a+bd _ 2d(a+d) a+5d _a(13d® —5)+d(17d* — 25)
a+e 6d ~— 5—d? 6d 6d(5 — d?)

- d(13d* —5) + d(17d* —25)  5(d* —1) -0
- 6d(5 — d?) - 5—adz T
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Since f'(d) > 0, f(d) is increasing and has the minimum value when d is minimum, hence
when d = 1. So, we need to show that

aTl® 4 BT/ L TI6 GTI6 >y

fora>b>c>1>e>0such that ab+ac+b-+ce+e=25.

For fixed a and e, we may assume that b is a decreasing function of c. By differentiating
the equality constraint, we get (a + 1)b' + a + e = 0. Denoting the left side of the desired
inequality by g(c), we have

64'(c) Sy Sy — 6 b'/5(a +e) S 1 a'/%(a + e)‘

7 a+1 - a+1

1
We claim that ¢’(d) > 0. To prove this, it suffices to show that % > a'/%. By Bernoulli’s
a+e
inequality,
—1 5
/6 = [1+(a—1)]1/6§1+“6 - ag .

a+1 _ a+5

So, it suffices to show that >

n . Fromb5=ab+ac+b+ce+e>a+a+1+e+e,
a+e

we get a + e < 2, therefore

a+1_a+5>a+1_a+5:a—1>0.
a+te 6 — 2 6 3

Since ¢'(c) > 0, g(c) is increasing and has the minimum value when ¢ is minimum (b is
maximum), that is when ¢ = 1 or b = a. Consider now these cases.

Case 1: ¢ = 1. We need to show that a™/6 4+ b7/ +¢7/6 > 3 fora > b > 1> e > 0 such

b
that ab+a+b+2e=05. Let =z = % > 1. Since, by Jensen’s inequality and Bernoulli’s

inequality,

-1 -1
q7/6 4 p7/6 > 9,7/6 — 2[1 + (1’ _ 1)]7/6 > 92 |:1 + 7(1' ):| _ Tx

6 3 7

we have

a7/6+b7/6+e7/6—327x;1—3:7$g1020
5—2x—ab _ 5— 2z — 2?
>
2 = 2
521 —a22\"°
#) _s
2

for x > 10/7. For x € [1,10/7], since e = > 0, we have

a7/6+b7/6+67/6—322x7/6—1—( = G(x).

If G'(z) > 0, then G(x) is increasing, therefore G(x) > G(1) = 0. Since

2 5— 9z — 22\ /6
z+1 2x ’

— 9 — 2\ 1/6
G'(z) = Zx1/6 — g(x +1) (5#) = gxl/ﬁ(oc +1)

3
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2 \* 5-—2z—2a2
we need to show that H(z) > 0, where H(z) = ( > _bndwoa . Indeed, since

r+1 2z
2 \° 2 \*
> 2 — 1, we have
r+1 z+1

16 5—2r —x? 16 5— z?
Hz)> —— —1— _ _
(z) 2 (x+1)3 2z (x+1)3 2z

243" —20% — 142® + 170 -5 (x —1)*(2® + 52® + Tx — 5)
B 2z(x +1)3 B 2z(x +1)3

> 0.

Case 2: b = a. We need to show that 2a™/6 4+ ¢7/6 +¢7/6 > 4 for a > ¢ > 1> e > 0 such
that a® + ac + a + ce + e = 5. For fixed e, we may assume that a is a function of c. By
differentiating the equality constraint, we get

~(ate) | —(a+e)

2 1)a’ =0 = .
(2a+c+1)d" +a+e=0, a atetlZ Aat D)

Denoting the left side of the desired inequality by h(c), we have

61 (c) B 49 By — 6 a'’S(a+ e) > 1 a'/%(a +e) S

7 a+1 - a+1 -

The last inequality was proved before. Since h'(c) > 0, h(c) is increasing and has the
minimum value when ¢ is minimum, hence when ¢ = 1. So, we need to show that 2a7/64¢7/6 >
3 for a > 1> e > 0 such that a® + 2a + 2e = 5. If a > 10/7, then

2a"/6 4+ "% —3>24"° -3 >0,
and if @ € [1,10/7], then
_ 2 7/6
2J“+Jm—3=2fm+<i—%%il> —3>0.
The latter inequality was proved at Case 1.
The proof is completed. The equality occurs for vy = x5 = 3 =24 = 25 = 1.

Lemma. Let x1, 29,23, 24, x5 be nonnegative real numbers such that at most one of them
is less than 1 and x1x9 + xoxs + X314 + 45 + x521 = 5, and let E(x1,xq, 3,24, 75) be a
symmetric and increasing function with respect to each variable. If E(a,b,c,d,e) > 0 for any
a>b>c>d>12>e>0 such that ab+ac+bd+ ce+de = 5, then E(xq, s, x3, 74, 25) > 0.

Proof. Let T = (T1,Ts,T3,Ty,T5) and t = (t1,ta,13,t4,t5) be two decreasing sequences of
positive real numbers. By Karamata majorization inequality applied to the convex function
fle) =€ if Ty ---T; >ty ---t; for j =1,2,3,4,5, then

T1+T2—|—T3+T4—|—T5Zt1+t2+t3—|—t4+t5.
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If (a,b,c,d,e) is a permutation of (z1,x2, 3, x4,25) such that a >b>c>d>1>e >0,
then
E(a,b,c,d,e) = E(x1, 2, 3, T4, T5).

Let T = (ab,ac,bd, ce,de) be a decreasing sequence, and t a decreasing permutation of
the sequence (x122, Tox3, T3Ty, 45, T5x1). Since Ty ---T; > ty---t; for j = 1,2,3,4,5, by
Karamata’s inequality we have

ab+ ac + bd + ce + de > x119 + xoT3 + X314 + T4x5 + T5x1 = D.

In the case ab + ac + bd + ce + de > 5, by decreasing the numbers a,b,c,d,e to have
ab+ ac+bd+ ce+de = 5 and to keep the constraint a > b>c>d > 1> e > 0, the function
E(a,b,c,d,e) decreases, therefore

E(a,b,c,d,e) < E(xy,x9, 23,24, Ts5).
On the other hand, by hypothesis, E(a,b,c,d,e) > 0. So, we have

E(x1, 29,23, 14, 75) > E(a,b,c,d,e) > 0.

P 1.255. Let a,b,c,d be nonnegative real numbers such that at most one of them is larger
than 1 and ab -+ be + c¢d + da < 4. Prove that

>+ b0+ +d*+16 > 5(a+b+c+d).
(Vasile Cirtoage, 2024)
Solution. Without loss of generality, assume that a > 1 and b, ¢,d < 1. Since (a+c)(b+d) <

4, let us denote

a+c b+d
T = , y=—".

We have
zy <1, y<I1

Consider next two cases: £ <1 and z > 1.
a+b+c+d

Case 1: £ <1. Let S = — We have
r+vy
S = <1
5 =
and )
2P+ +d > (a+bzc+d) — 452,
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therefore
A+ +E+d*+16-5(a+b+c+d) > 457 +16—205 =4(1 - S)(4—S) > 0.

Case 2: x > 1. From (a —1)(c—1) <0, we get ac < 2z — 1. In addition, bd < y*. So, we
have

A+ +E+d*+16—5(a+b+c+d) = 42® — 2ac + 4y* — 2bd + 16 — 10(x + ¥)

11 5 ?
24x2—2(2x—1)—|—4y2—2y2—|—16—10(x+y):4:62—14:64—7—%2(§—y>

2 4 _ 7.3 2 _ _1)3 _
24:{;2—141:—1—2—1—2 5 1 :2(2x Tz 4+ 9z 5x+1):2(x 1)°(2x 1)20.
2 2 x? x?
The proof is completed. The equality occurs fora =b=c=d = 1.
m

P 1.256. Prove that [—32,17] is the range of values of the real constant k such that
(a+b+c+d)?*+4k(a+b+c+d) > (16 +k)(a+b)*(c+d)?
for all nonnegative real numbers a,b,c,d with a > b > ¢ > d and abc + bed + cda + dab = 4.
(Leonard Giugiuc and Vasile Cirtoaje, Recreatii Matematice, 2, 202/)

Solution. Write the inequality in the homogeneous form
(a+b+c+d)* +k(a+b+c+d)(abe + bed + cda + dab) > (16 + k)(a + b)*(c + d)*.

For a = b= c¢ =1 and d = 0, the inequality becomes k < 17, and for a = b := x > 1 and
¢ =d =1, the inequality becomes

(z — 1)*[4(2* + 62 + 1) + ka] > 0.
It is true for z > 1 if and only if 4(2* 4+ 6z + 1) + ka > 0 for all z > 1. From

lim [4(z* 4+ 62 + 1) + kx] > 0,

r—1

we get the necessary condition £ > —32. To finish the proof, we need to prove the inequality
for k € [—32,17]. For fixed a,b,c,d, the inequality has the form f(k) > 0. Since f(k) is
a linear function, it has the minimum value when £ = —32 or k = 17. Thus, it suffices to
consider these two cases.

Case 1: k = —32. We need to show that

(a+b+c+d)*+16(a+b)*(c+d)* > 32(a + b+ c + d)(abc + bed + cda + dab).
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b d
a+ ands:c+

Let S =

. Since

abc + bed + cda + dab = ab(c + d) + cd(a + b) < 25%s + 25°S = 255(S + s),

it suffices to show that
(S +8)t +165%s* > 8S55(S + s)?,

which is equivalent to

(S—s)*>0.
Case 2: k = 17. We need to show that
(a+b+c+d)* +17(a+ b+ c+ d)(abe + bed + cda + dab) > 33(a + b)*(c + d)*.

Let s = ¢+ d and = = cd. For fixed a, b and s, we may write the inequality as f(z) > 0,
where
f(x)=(a+b+s)* +17(a+ b+ s)[abs + (a + b)x] — 33(a + b)*s*.

Since f(z) is increasing, it has the minimum value when z = 0, hence when d = 0. So, it
suffices to prove the inequality for d = 0, that is

(a+b+c)" +17(a+ b+ c)abe > 33(a + b)>c>.

Since
3(a+b)e < 2(ab+ be + ca),

it suffices to show that
3p* + 5lpr > 44¢%,

where p=a+b+c, q=ab+bc+ca, r=abc. If p*> > 4q, then
3p* + 5lpr — 44¢% > 48¢% + 5lpr — 44¢* > 0.
Consider now the case 3¢ < p? < 4¢. By Schur’s inequality, we have p3 + 9r > 4pq. Thus,
3(3p" + 5lpr — 44¢%) > 9p* + 17p(dpq — p*) — 132¢° = 4(—2p" + 17p*q — 33¢%)

= 4(p* — 3¢)(11q — 2p®) > 4(p* — 3¢)(8¢ — 2p*) > 0.

The proof is completed. For k € [—32,17], the equality occurs when a =b=c=d = 1.
Moreover, for k = 17, the equality also occurs when a = b = ¢ = v/4 and d = 0.
m
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Chapter 2

Noncyclic Inequalities

2.1 Applications

2.1. If a, b are positive real numbers, then

1 N 3 16
4a? +b* b2 +4ab ~ 5(a+0b)?

2.2. If a, b are positive real numbers, then

3av/3a + 3bv/6a + 3b > 5(a + b)Va + b.

2.3. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

(ab+ c)(ac+0b) < 4.

2.4. If a, b, ¢ are nonnegative real numbers, then

a® +b* +¢* —3abc > ~(b+c— 2a)’.

1
4
2.5. If a, b, ¢ are nonnegative real numbers such that
¢ = min{a, b, c}, a>+ b+ =3,
then
(a) 5b+ 2¢ < 9;

(b) 5(b+c) <9+ 3a.

371
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2.6. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 n 1 L 16 S 6
(a+0b)?  (a+¢)? (b+¢)? ~ ab+bc+ca

2.7. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 2 5
> .
(a+b)? * (a+ c)? * (b+c)? — 2(ab+ be + ca)

2.8. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 N 1 N 25 8
(a+0)? (a+c)? (b+c¢)2 ™ ab+bc+ca’

2.9. If a, b, c are positive real numbers, then

(a+b)*(a+ c)® > 4a*bc(2a + b + ¢)*.

2.10. If a, b, c are positive real numbers such that abc = 1, then
(a) %+g+%2a+b+h
(b) %+g+éz¢ﬁﬁ?ﬁIﬁ
2.11. If a, b, ¢ are positive real numbers such that abc > 1, then

a. b
abbect > 1.

2.12. If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then
ab’c® < 4.
. 5
2.13. If a, b, ¢ are positive real numbers such that ab + bc + ca = 3 then

ab’*c? <

W =
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2.14. Let a, b, ¢ be positive real numbers such that

a<b<eg, ab + bc + ca = 3.

Prove that
9
be < =
(a) ab’c < <;
(b) abic < 2;
(c) a’bic < 2.

2.15. Let a, b, ¢ be positive real numbers such that

1 1 1
a<b<cg, at+btec==+-+-.
a b ¢
Prove that )
“at+c—1
2.16. Let a, b, ¢ be positive real numbers such that
1 1 1
a<b<cg, a+b4+c=-4+-+-.
a b ¢

Prove that
ab’c® > 1.

2.17. Let a, b, ¢ be positive real numbers such that
a<b<eg, a+b+c=abc+ 2.

Prove that
(1—1b)(1—ab’c) > 0.

2.18. Let a, b, ¢ be real numbers, no two of which are zero. Prove that

(0—bP  (a=0P_ (b-cp

(a)

(
a?+b  a?+ _2(b —1—02)
(b) (a+b)? (a+c)? (b—c)?
@2+ 2+ T2 +A)
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2.19. Let a, b, ¢ be real numbers, no two of which are zero. If bc > 0, then

(a=b)? (a=c?_ (b=0)?
(a) a? + b? aﬁm22w+df
(a+b)?® (et (b—0o)?
(b) a2+ b a?+c? = (b+c)?

2.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

o =0 Ja—cf _ Jb—cf

ad+b0 ot T (b+ce)d

2.21. Let a, b, ¢ be positive real numbers, b # c. Prove that

ab ac (b+c)?
@0 Tt R S ib_op

2.22. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. Prove that

3bc 4+ a? _ 3ab — 2 N 3ac — b?
b2+c2 — a2+ b? a? +c?’

2.23. Let a, b, ¢ be nonnegative real numbers such that a + b+ ¢ = 3. Prove that

ab?® + bc? + 2¢a® < 8.

2.24. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

3
ab? 4+ bc? + §abc < 4.

2.25. Let a, b, ¢ be nonnegative real numbers such that a + b+ ¢ = 5. Prove that

ab® + bc? + 2abe < 20.

2.26. If a,b, c are nonnegative real numbers, then

(a —b)(b—c)*.

©| 0o

ad+ 02+ —a?b—ble— Fa>



Noncyclic Inequalities 375

2.27. 1If a,b, c are positive real numbers, then

P S
b ¢ a ab + be + ca
2.28. If a, b, c are positive real numbers, then
(a) %+2+§23+(3(fb—:3);2;
(b) %+§+223+%.

2.29. Ifa>b>c¢ >0, then
b ¢ 3(b— c)?
- >3+ —.
b ¢ a— +ab—|—bc+ca

2.30. Let a, b, c be positive real numbers such that abc = 1. Prove that
(a) if a > b>1> ¢, then

(b)if a>12>b> ¢, then

2.31. Let a, b, ¢ be positive real numbers such that

a>1>b>c, abc = 1.
prove that
c 9(b — ¢)?
e b sy Moo
b ¢ «a ab + be + ca

2.32. Let a, b, c be positive real numbers such that
a>1>b2>c, a+b+c=3.

prove that
a+b+c >3+4(b—c)2
b ¢ a b2+
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2.33. Let a, b, ¢ be positive real numbers such that
a>b>12>c, a+b+c=3.

Prove that
a b ¢ 3(a — b)?
St -4 - >3+ L
b ¢ «a ab

2.34. If a,b, c are positive real numbers, then

a b ¢ 2(a —c)?
— -+ - 23+
b ¢ a (a+c)?
2.35. If a, b, c are positive real numbers, then
a> v P 4(a — c)?
—+—+—>a+btect—-".
b c a a+b+c
2.36. Ifa>b>c>0, then
a> b 6(b — c)?
—+—+—2a+btc+—7—.
b c a a+b+c

2.37. Ifa>b>c>0, then
a? b P
— + — 4+ — > 5(a—0).
b+c+a (a )

2.38. Let a, b, ¢ be positive real numbers such that
a>b>12>c, a+b+c=3.

Prove that
a? v P 11(a — c)?
P — >34
b ¢ a 4(a+c)

2.39. If a, b, c are positive real numbers, then

a b c

27(b — ¢)?
+ +
b+c¢c c+a a-+b

16(a+b+c)?

>3+
=2
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2.40. Let a, b, ¢ be positive real numbers such that @ = min{a, b, c}. Prove that

a b c
+ +
b+c c+a a—+bd

2.41. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. Prove that

o, b L >§_}_(b—c)2
b+c c+a a+b 2 2b+c)?

2.42. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

a b c 3  (b—c)?
+ >S4
b+c c+a a+b 2 4bc

2.43. Let a, b, c be positive real numbers such that
a<l<b<e, a+b+c=3,

then
a b c 3 3(b—rc)?
>y "9

b+c+c+a+a+b_2 4bc

2.44. Let a, b, ¢ be nonnegative real numbers such that
a>1>b>c, a+b+c=3,

then
a_ b L >§_i_(b—c)2
b+c¢ c+a a+b~ 2 (b+c)?

2.45. Let a, b, ¢ be positive real numbers such that @ = min{a, b, c}. Prove that
ab+bc+ca  2(b—c)? .
a2+ +c 30+ "

ab + be + ca (b—c)?

a?+b> 4+ b24+bec+ T
ab+bc+ca  (a—b)? <1
a?+0+c 2a+02) T

?
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2.46. Let a, b, c be positive real numbers such that
a<1<b<ec a+b+c=3,

then
ab+bc+ca (b—c)?

< 1.
a? +b% + 2 be

2.47. Let a, b, ¢ be nonnegative real numbers such that « = max{a, b, c} and b+c¢ > 0. Prove
that

(a) ab + bc + ca (b—c)?
a’?+ b+ 2(ab+bc+ca) —
ab+bc+ca  2(b—c)?

a?+b0+c (a+b+c)?

(b)

2.48. Let a,b, ¢ be positive real numbers. Prove that

(a) ifa>b>c, then

ab + be + ca (a —c)?

> 1
a?+b2+c2  a?—ac+c2
(b) ifa>1>b>cand abc =1, then
Y
ab + bc + ca (b—c) -1

a?+b24+c2 b2 —bec+c?

2.49. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

2 12 2 _
(a) a*+b°+c S 14 4(b c))
ab+ be + ca 3(b+c)?
(b) a?+ 0+ (a — b)?
ab+bc+ca (a+0b)?

2.50. If a, b, c are positive real numbers, then

a’> + b+ 9(a — c)?
— > 1+ —
ab + bc + ca 4(a+b+c)?
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2.51. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If @ = min{a, b, ¢},

then
1 1 1 6

+ + > .
Va2 —ab+b V2 —bc+c2 JE—ca+a2  btc

2.52. Ifa>1>b>c >0 such that
ab + bc 4 ca = abe + 2,

then
ac < 4 — 2/2.

2.53. If a, b, ¢ are nonnegative real numbers such that

ab + bc + ca = 3, a<l1<b<eg,
then
(a) a+b+c<4;
(b) 20 +b+c <4

2.54. Let a, b, ¢ be nonnegative real numbers such that a < b < ¢. Prove that

(a) if a4+ b+ c=3, then
a*(b* + ) < 2

(b) if a+b+c =2, then
cta* +b") < 1.

2.55. Let a, b, ¢ be nonnegative real numbers such that
a<b<c a+b+c=3.

Find the greatest real number £ such that

V(5602 + 25)(56¢2 + 25) + k(b — ¢)? < 14(b + ) + 25.

2.56. If a > b > ¢ > 0 such that abc = 1, then

3a+b+c) <8+,
C
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257. Ifa>b>c>0, then

(a+b—c)(a®b — b*c+ c*a) > (ab — be + ca)?.

2.58. If a>b>c>0, then
ab + be < 1++3
a?+b2+c2 - 4

259. Ifa>b>c>d >0, then

ab 4+ be + cd < 2 +7
a2+ +c2+d> - 6

2.60. If
a>1>b>c>d>0, a+b+c+d=4,

then
ab + bec + cd < 3.

2.61. Let k£ and a, b, ¢ be positive real numbers, and let

k1 1 k 1 1
E:(ka+b+c)(5+5+z)’ F:(ka2+b2+02)(§+ﬁ+c_2)'

(a) If k> 1, then
-\ ) > -\ 2.
oah T o
(b) If 0 < k£ <1, then

F—k2+2>E—k2
k+1 ~ k+1

2.62. If a, b, c are positive real numbers, then

a b 25¢

!
%1+ 6c  Teta Oatsh
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2.63. If a, b, ¢ are positive real numbers such that

1
2 +_7
C

Q|
S|

then
1 1 1 55
>

a+b+b+c+c+a_ 12(a+b+c)

2.64. If a, b, c are positive real numbers such that

1
2 +_7
C

Q|
S|

then
1 1 1 189

> .
a2+62+b2—|—cz+62+a2 ~ 40(a? 4+ 0% + ?)

2.65. Find the best real numbers k, m,n such that

(Va+Vb+e)Va+b+c> ka+mb+nc

foralla >b>c¢>0.

2.66. Let a,b € (0,1] , a <b.
1
(a) If a < —, then
e
20 > ab + b;
1
(b) If b > —, then
e
20° > a® + b,
1
267. If0<a<band b > 37 then

2b2b > CL2b 4 b2a'

2.68. If a > b > 0, then

(a) <14 C‘J;;
(b) N 1 ok}

> NG
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2.69. If a, b, ¢ are positive real numbers such that
a>b>c, ab203:1,
then 1 2 3
a+2b+3c> -+ -+ —.
a b ¢
2.70. If a, b, c are positive real numbers such that
a+b+c=3, a<b<eg,
then L o
—+ I >d+ 0+
a b
2.71. If a, b, c are positive real numbers such that
a+b+c=3, a<b<cg,
then 5 3 1
S+ =220+ 0+ ).
a b ¢
2.72. If a,b, ¢ are positive real numbers such that
a+b+c=3, a<b<eg,
then 31 25 25
— 2 27(a" + 0+ ).
a b c
2.73. If a,b, c are the lengths of the sides of a triangle, then
a*(b+ c) + be(b® + ) > a(b® + c*).
2.74. 1f a,b, c are the lengths of the sides of a triangle, then

(a+b)?®  (a+c)? _ (b+0)?
2ab+ 2 2ac+b?> T 2bc+ a?’
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2.75. If a,b, c are the lengths of the sides of a triangle, then

a-+b a+c b+c
+ > .
ab+c?  ac+b* T be+ a?

2.76. If a,b, c are the lengths of the sides of a triangle, then

bla+c) cla+d) S a(b+ c)

ac + b? ab4+c?2 — bc+a?

2.77. If a,b, ¢, d are positive real numbers such that
a>b>c>d, ab?*3d® =1

then 1 92 3
a+2b+3c+6d> -+ -+ -+
a b ¢

2.78. If a,b, ¢, d are positive real numbers such that

a>b>c>d, achd421,

then L1 9
a+b+2c+4d> -+ -+-+
a b ¢

2.79. If a,b,c,d, e, f are positive real numbers such that
abedef > 1, a>b>c>d>e>f,

then
1

1 1 1
a+huwd+e+f25+—+g+—+

b d

2.80. Let a, b, ¢, d be nonnegative real numbers such that
a’> —ab+b* = — cd + d*.

Prove that
(a+b)(c+d) >2(ab+ cd).

Y

6

d

4

7

af > be > cd,

1

1

-I—f.
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2.81. Let a, b, ¢, d be nonnegative real numbers such that
a® —ab+b* = — cd + d*.

Prove that
1 1

< .
a2+ab+62+02+cd+d2 ~ 3(a+b)(c+d)

2.82. Let a, b, ¢, d be nonnegative real numbers such that
a® —ab+b* = c* — cd + d°.

Prove that
1 1

< .
a2~|—ab+b2+02+cd~l—d2 ~ 3(a+b)(c+d)

2.83. Let a, b, ¢, d be nonnegative real numbers such that
a® —ab+b* = ¢ — cd + d°.

Prove that
1 1 2

< .
(ac +bd)t " (ad 1 b0)t = (ab 1 cd)?

2.84. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, A+ 0+ 2+ d* = 43.

Prove that
ab > cd + 3.

2.85. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, >+ 0+ +d* =43

Prove that
83 < ac4bd < 169
— < ac —.
4 — - 8

2.86. If a,b, ¢, d are positive real numbers such that
a2+62+c2+d2:4, a<b<c<d,

then )
—4+a+b+c+d>5.
a



Noncyclic Inequalities 385

2.87. If a,b, ¢, d are real numbers, then

6(a®> + b+ +d*) + (a+b+c+d)? > 12(ab+ be+ cd).

2.88. If a, b, ¢, d are positive real numbers, then

1 n 1 . 1 . 1 S 4
a?2+ab bV +bc c24+cd d?+da T ac+bd

2.89. If a,b, ¢, d are positive real numbers, then

1 1 1 1 16
+ + + > :
a(l+b)  b(l4+a) c(1+d) dl+c) ~ 1+ 8Vabed

2.90. If a,b, ¢, d are positive real numbers such that a > b > ¢ > d and
a+b+c+d=4,

then
ac+ bd < 2.

2.91. If a,b, ¢, d are positive real numbers such that a > b > ¢ > d and
a+b+c+d=4,
then

1 1
2(E+3) > a2+ 02+ A+ d%

2.92. Let a, b, ¢, d be positive real numbers such that a > b > ¢ > d and
ab+ bc + cd + da = 3.

Prove that
a’bed < 4.

2.93. Let a, b, ¢, d be positive real numbers such that a > b > ¢ > d and
ab+ bc + cd + da = 6.

Prove that
acd < 2.
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2.94. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and
ab+ bc + cd + da = 9.

Prove that
abd < 4.

2.95. Let a, b, ¢, d be positive real numbers such that a > b > ¢ > d and
a’ 4+ b* + & + d* = 10.

Prove that
2b +4d < 3¢+ 5.

2.96. Let a, b, c,d be positive real numbers such that a < b < ¢ < d and
abed = 1.

Prove that b g
a c
— — — - > .
Ity +ot o+ ->2at+b)(c+d)

2.97. Let a,b, c,d be positive real numbers such that a > b > ¢ > d and
3@+ 0+ +d*) =(a+b+c+d)>

Prove that

a+d
bic§2
a+c<7+2\/a
b+d—~ 5
ate_3+V5
c+d— 2

Y

2.98. Let a,b, c,d be nonnegative real numbers such that a > b > ¢ > d and

2@+ 0+ 4+ d*) = (a+b+c+d)>

Prove that
a>b+3c+ (23— 1)d.
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2.99. If a,b, ¢, d, e are real numbers, then

ab + bc + cd + de < V3
a?+b2+c24d2+e2— 2

2.100. If a, b, c,d, e are positive real numbers, then

ab? b2c? 2a? 3abc

> .
bd+ce+cd+ae+ad+be_ d+e

2.101. Let a,b,c and x,y, z be positive real numbers such that
r+y+z=a+b+c

Prove that
az? + by* + c2* + xyz > 4abe.

2.102. Let a,b,c and x,y, z be positive real numbers such that
r+y+z=a+b+c
Prove that

z(3x + a) n y(3y +b) N 2(3z 4+ c¢) > 12
bc ca ab

2.103. Let a,b, ¢ be given positive numbers. Find the minimum value F(a, b, ¢) of

ax by cz

E(‘,L‘7y7z): + + )
y+z z+zxr T4y

where x, ¥y, z are nonnegative real numbers, no two of which are zero.

2.104. Let a,b,c and x,y, z be positive real numbers such that

Prove that

(a) x+y+zz\/4(a+b+c+x/%+\/E+\/£)+3\3/abc;

(b) r+y+z>vVatb+vb+c+crta.
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2.105. If a,b, c and x,y, z are nonnegative real numbers, then

2 2 2 9
(a+b)(z+y) * (b+c)(y+2) * (c+a)(z +x) = (b+c)x+(c+a)y+ (a+b)z

2.106. Let a,b, c be the lengths of the sides of a triangle. If x,y, z are real numbers, then

(ya® + 2b* + xc?) (za® + xb* + yc?) > (zvy +yz + 20)(a*b* + b*c? + 2a?).

2.107. If a, b, c are nonnegative real numbers such that
2(a+b+c)+ab+bc+ ca =9,

then
16

1)b 3(b < .
(a+ 1)be + (+@_a+1

2.108. If a, b, ¢ are nonnegative real numbers such that
2(a+b+c)+ab+bc+ca=9,
then

1 n 1 n 1 n 1
ab+4 ac+4 b+4 c+4

4
> —.
)

2.109. If a, b, c are nonnegative real numbers such that

6a* + 4a(b+ c) + be = 15,

then
4 N 1 n 1 >3
a?+1 +1 A24+17 7
2.110. Let aq,as,...,a, be positive real numbers such that a; > 2a,. Prove that
(5n—1)(ai +a5+---+a) >5(a; +ag+ -+ a,)>.
2.111. If aq, ao, ..., a, are positive real numbers such that a; > 4as, then

11 1 1\2
(ar+as+-+a) | —F+F—+-+—|>(n+=] .

ai Qo an, 2
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2.112. Suppose n > 3 and ay, as, ..., a, are nonnegative real numbers such that a; < ay <

. <a,.
(a) Prove that

n—1

10y + Al + - + Ap1 (a1+a2+-‘~+an1)2_
n — Y

(b) If k> kj = —————, prove that
n
1+

n— 2

10y + 203 + -+ py <ka1—|—a2—|—---+an1)2

n n—2+k

1
(c) If 0§k§k52:1+—n,provethat
1+

n—2

010y + G203 + -+ + an1 (al +---+an_2—|—kan_1>2

n n—2+k

2.113. If k> ky=7—2V6~2101 and a>b>¢c>d>e> f >0, then
(ka+b+c+d+e+f)2> ab+ bc 4 cd + de + ef + fa

k+5 - 6

2.114. If a1 > ay > -+ > ag > 0, then

(4a1+a2+-~-+a9)2> a1a9 + asasg + -+ - + agaq
12 - 9 )

3
2.115. Prove that 1 is the least positive value of k such that

ka+b+c+d 2> ab + bc + cd + de + ea
k+3 - 5

whenever a >b>c>d>e > 0.

2.116. If a; > ay > --- > ag > 0, then

(201 +ag + -+ - + a7)2 > 8(arag + agas + - - - + asay).

2.117. Let a, b, ¢, d be nonnegative real numbers such that ab + bc + cd = 7. Prove that

1 N 1 N 1 N 1 >3
a+1 b+1 c+1 d+1—2
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2.2 Solutions

P 2.1. If a,b are positive real numbers, then

1 . 3 S 16
4a® +b> b2 +4ab ~ 5(a+0b)?

Solution. Using the Cauchy-Schwarz inequality gives
2
1 3 S (1+3) 4

121 P tdab -~ @+ 1) 4 3(12 +dab) @+ 12 +3ab

Thus, we only need to show that

1 4
>
a?+ b2+ 3ab ~ 5(a+ b)?’

which reduces to (a —b)? > 0. The equality holds for a = b.

P 2.2. If a,b are positive real numbers, then

3av/3a + 3bv/6a + 3b > 5(a + b)Va + b.

Solution. Due to homogeneity, we may assume that a +b = 3. Thus, we need to show that
ava+ (3 —a)V3+a>5

for 0 < a < 3. Substituting
Va =z, O<ax< \/§,

the inequality becomes

(3—aH)V3+22>5— 2%
For v/5 < z < /3, the inequality is trivial. For 0 < & < /5, squaring both sides of the
inequality gives
(B—a®)(9—a") = (5-2),
3z* — 102° + 92° — 2 < 0,
(x —1)*(32° — 42 — 2) < 0.

2 —10 24+ V10

Since 322 — 42 — 2 < 0 for —3 <z < 3 we only need to prove that

%§2+—3:/m'
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Indeed, we have

0.

3
<2+\/1_o> L 2V10-67
3 B 27

The equality holds for a = b/2.

m

P 2.3. If a,b, c are nonnegative real numbers such that a + b+ ¢ = 3, then

(ab+ c)(ac+0b) < 4.
Solution. By the AM-GM inequality, we have
b b)]? 1)2(b + ¢)?
(ab + ) (ac +b) < (ab+c)+(ac+b)]"  (a+1)*(b+¢) ‘
2 4
Therefore, it suffices to show that
(a+1)(b+c) <A4.
Indeed,
1)+ (b 2
(a+1)(b+c) < {(“ >;( “)} —4

The equality holds fora=b=c=1,fora=1,0=0,c=2,and fora=1,b=2, c = 0.

O

P 2.4. If a,b, c are nonnegative real numbers, then

1
a4+ b+ & — 3abe > Z(b—l—c—?a)g.

Solution. Write the inequality as
2(a+b+c)[(a—b)?+(b—c)?+(c—a)?] > (b+c—2a)
Consider the non-trivial case b + ¢ — 2a > 0. Since (b — ¢)* > 0 and
a+b+c>b+c—a,
it suffices to show that
2(a —b)* +2(c—a)® > (b+c— 2a)*.
Indeed, we have
2(a —b)? +2(c—a)® = (b+c—2a)* = (b—c)>>0.

The equality holds for a = b = ¢, and also for a = 0 and b = c.
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P 2.5. If a,b, c are nonnegative real numbers such that
¢ = min{a, b, c}, a’+ b+ =3,
then
(a) 5b4 2¢ < 9;

(b) 5(b+c) <9+ 3a.

Solution. (a) It suffices to show that
5b+2c+ (a—c) <9;

that is,
9>a+5b+c.

This follows from the Cauchy-Schwarz inequality

(14+25+1)(a®> +b* +c*) > (a+5b+ )%

1 5
The equality holds for a = ¢ = 3 and b = 3

(b) It suffices to show that
5(b+c)+4(a—c) <9+ 3q;

that is,
9>a+5b+c.

As we have shown at (a), this follows from the Cauchy-Schwarz inequality

(1+25+1)(a® +b*+c*) > (a+5b+c)*.

1
The equality holds for a = ¢ = 3 and b = g

P 2.6. If a,b, ¢ are nonnegative real numbers, no two of which are zero, then

1 N 1 N 16 6
(a+b)?2 (a+c¢)? (b+¢)> ~ ab+bc+ca

(Vasile Cirtoaje, 2014)
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Solution (by Nguyen Van Quy). Since the equality holds for a = 0 and b = ¢, we write the
desired inequality in the form

6 (1 1 ? . 6 N 2
(b+c)? a+b a+c) T ab+bc+ca  (a+b)(a+c)
and apply then the AM-GM inequality

6 (1 1 2> 8 L1
(b+c)? a+b a+c) “bt+c\a+db a+c/)’

Therefore, it suffices to show that

8 1 n 1 S 6 n 2
b+c\a+b a+c) " ab+bc+ca (a+b)(a+c)
Since (a + b)(a + ¢) > ab+ bc + ca, it is enough to show that

8 1 1 8
+ D T —
b+c <a+b a+c) ~ab+bc+ca
which is equivalent to
(2a + b+ c)(ab+ bc+ ca) > (a+b)(b+ c)(c+ a).
We have

(2a+ b+ c)(ab+be+ ca) > (a+ b+ c)(ab+ be + ca)

>
> (a+b)(b+)(c+a).

This completes the proof. The equality holds for a =0 and b = c.

P 2.7. If a,b, c are nonnegative real numbers, no two of which are zero, then

1 1 2 5
> .
@02 (@t  (h+ P 2(ab+bet ca)

Solution. This inequality follows from Iran 1996 inequality (see P 1.72 in Volume 2, for

k = 2), namely
1 1 1 9
>

(a+0)? * (a+ c)? * (b+c¢)? — 4(ab+ bc+ ca)’
and the inequality in P 2.6, namely
1 1 16 6
(a+ b)? * (a+c)? * (b+c)? = ab+bc+ ca’

Indeed, summing the first inequality multiplied by 14 and the second inequality, we get the
desired inequality. The equality holds for a = 0 and b = c.
O
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P 2.8. If a,b, c are nonnegative real numbers, no two of which are zero, then

1 N 1 N 25 8
(a+0)?  (a+¢)? (b+¢)*> ~ ab+bc+ca

(Vasile Cirtoaje, 201/)

Solution. Write the inequality as

L1 2+ 25 8 N 2
a+b a+c (b+c¢)? ~ab+bc+ca (a+b)(a+c)

By the AM-GM inequality, we have

1+12+25>10 1+1
a+b a+c (b+c)2 ~b+c\a+b a+c)’

Therefore, it suffices to show that

10 1 n 1 S 8 + 2
b+c\a+b a+c) " ab+bc+ca (a+Db)(a+c)

Since (a + b)(a + ¢) > ab+ bc + ca, it is enough to show that

10 1 1 10
+ D N —
b+c<a—|—b a+c) ab + bc + ca
which is equivalent to
(2a 4+ b+ c)(ab+bc+ ca) > (a4 b)(b+c)(c+ a).
Indeed,

(2a+ b+ c)(ab+bec+ ca) > (a+ b+ c)(ab+ be + ca)

>
> (a+b)(b+c)(c+a)

C

b:3.

b
This completes the proof. The equality holds for ¢ = 0 and - +
c

P 2.9. Ifa,b,c are positive real numbers, then
(a+b)*(a+c)® > 4a*bc(2a + b + ¢)*.

(XZLBQ, 2014)
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Solution (by Nguyen Van Quy). Write the inequality as

(a+b)%*(a+ c)? S (2a+ b+ c)?
4a?bc “(a+b)(at+c)

Since

(a+b)*(a+c)* = [(a —b)* + 4ab][(a — ¢)* + 4ac]

> dac(a — b)* + 4ab(a — ¢)* + 16a%bc,

it suffices to show that

(a—b?  (a—0)
b ac +42(a—|rb)(a—|rc)’

which is equivalent to

AV 2 2
(a —b) N (a—c) - (b—c) ‘
ab ac  ~ (a+Db)(a+c)
Indeed, by the Cauchy-Schwarz inequality, we have
AV )2 _h 2 2
(a—b) N (a—c) > (a—b—a+c) > (b—c) |
ab ac ab + ac (a+b)(a+c)

The equality holds for a =b = c.

P 2.10. If a,b, c are positive real numbers such that abc = 1, then

a b 1
—4+ 4+ > b+ 1;
(a) b+c+a_a—|— + 1;
a b 1
b — 4+ -+ —=>/3(a2+02+1).
(b) b+c+a_ (> +0%+1)

(Vasile Cirtoaje, 2007)

Solution. (a) First Solution. Write the inequality as

1 1
<29+l—))+([3+—)+(—+a) > 30+ 2b+ 2.
b ¢ c a a

By the AM-GM inequality, we have

b b 1 1 2 b
294 ) (242 )+ (—ta) =32/ = +2=3a+2+2
b ¢ c  a a be ca

The equality holds for a =b=c=1.
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1
Second Solution. Since ¢ = e the inequality becomes as follows:
a

1
S rar s >at b+,
b a

1 1 b 1
0+ 5> 1+ -4,
a a a

1 1 1
——b+DH=+V+-—1>
(+)a+ +3-120,

1 b+1\> (b—1)%(3b+4)
(Lobe) oo,

(b) Write the inequality as

1 1
a(5+§)+52 3(a? + b2 + 1).

By squaring, this inequality becomes

1 1 2
(0 +20-3+—= |+ >0*+3-— .
b2 a b

Since 1 1 (b 1)2(26 1)
— +
4
b+2b_3+ﬁ>2b_3+ﬁ: 12 ZO,

by the AM-GM inequality, we have

1 1 1
ﬁ(#+2h—&+ﬁ)+5522¢H+2h—&+ﬁ.

Thus, it suffices to prove that

2¢m+ab—3+§;zw+3—%.
Squaring again, we get the inequality
b’ — 26 +4b* — b+ 4 > 0,
which is equivalent to the obvious inequality
b(b* — 1)* +4(b—1)* > 0.

The equality holds for a =b=c=1.
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P 2.11. If a,b,c are positive real numbers such that abc > 1, then
abbect > 1.
(Vasile Cirtoaje, 2011)
Solution. Write the inequality as

%lna—i—l—)lnb—l—clncz 0.
c

Since f(x) = xInz is a convex function on (0, 00), apply Jensen’s inequality to get

palna+gblnb+rclne > (p+q+r) (W) In (W)

p+q+r p+q+r
pa+ qb+re
=pa+qgb+rc)ln ( ——
(pa+q ) ( T )
where p,q,r > 0. Choosing
1 1
_ — _ — :1
p b’ q c7 /r. )
we get
“ by
b b LT
glna—l——lnb—l—clncz(g—l———l—c)ln b c
b c b ¢ 11
E—Fz-i-l

Thus, it suffices to show that
a

b 1 1
+-+cz2-+-+1L
b ¢ c

b
) 1
Since a > e we need to show that
c
+ b +c> ! + ! +1
— 4+ -4c> -+ - .
b’c ¢ ~—b <
This is equivalent to

1
ﬁ+b+&zg+1+a

- 1+1 c—l—b—1+l>0
b b2

b+1\>  (b—1)%(4b+3)
G > 0.
(C 2 ) i e =0

The equality holds for a =b=c=1.
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P 2.12. If a,b,c are positive real numbers such that ab + bc + ca = 3, then
ab’c < 4.
(Vasile Cirtoaje, 2012)

Solution. From ab+ bc + ca = 3, we get

3—ab< 3
a+b a+b

Therefore,

(a+b)*(4 — ab®*c®) > 4(a + b)® — 27ab?
= 4a® + 12a*b — 15ab® + 4b°
= (a + 4b)(2a — b)* > 0.

5
P 2.13. If a,b, c are positive real numbers such that ab + bc 4 ca = 3’ then

ab’*? <

W =

(Vasile Cirtoaje, 2012)
Solution. By the AM-GM inequality, we have

ab+ ca > 2aV/be.

5
Thus, from ab + bc + ca = 3 we get

2aVbe + be <

W] ot

Therefore, it suffices to show that
(5 — 3bc)b*c?
6v/be

Setting v/ bc = t, this inequality becomes

1
< -.
-3

3t° — 5t +2 > 0.
Indeed, be the AM-GM inequality, we have

4 2=+ P L P+ 1+ 1>V 51511 =55,

1
The equality holds for a = 3 and b=c=1.
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P 2.14. Let a,b, ¢ be positive real numbers such that

a<b<eg, ab + bc + ca = 3.
Prove that
(a) ab’c < g;
(b) ab*c < 2;
(c) ab3c? < 2.

(Vasile Cirtoaje, 2012)
Solution. From (b—a)(b—c¢) <0, we get

b’ +ac < b(a+c),

b’ +ac < 3 —ac,

b? + 2ac < 3.
(a) We have
9 — 8ab’c > 9 — 4b*(3 — b?) = (20> — 3)* > 0.
. 1 /3 3
The equality holds for a = 5\ 3 and b=c= 7

(b) We have

4 —2ab*c >4 —b*(3 - b*) = (b* — 2)*(B* + 1) > 0.

The equality holds for a = g and b= ¢ = /2.

(c) Write the desired inequality as follows:

2(ab + be + ca)® > 27ab*c?,
2 (a +c+ %)3 > 27ac?.
Since ca/b > a, it suffices to show that
2(2a + 0)3 > 27ac?,
which is equivalent to the obvious inequality
(a+ 2c)(4a — ¢)* > 0.

2
The equality holds for a = % and b= c = 2.



Noncyclic Inequalities

401

P 2.15. Let a,b, ¢ be positive real numbers such that

1 1 1
a<b<eg, a+b+c=—+-+-.
a b ¢
Prove that
1
b )
a+c—1
(Vasile Cirtoaje, 2007)
Solution. Let us show that
a <1, c>1
1 1 1
Froma+b+c= -+ -+ - and
a b ¢
1 1 1 —1)? b—1)2 —1)?
atbreriptyl g laz 7 o1 fem 7,
a b ¢ a b c
we get
1 1 1
atbtc=—-+-+-2>3
a b ¢
Then,

1>1<1+%+1>217 C>(l+b+c>
c

a3

Further, consider the following two cases.

- 3

a

Case 1: abc > 1. Write the desired inequality as
1
at+c—1-— R > 0.

We have

1 abc — 1
a—i—c—l—gz(l—a)(c—l)—i— 7 >

Case 2: abc < 1. Since

1 1 1

at+c—1——-—=—-+-—1-0,

b a ¢

the desired inequality is equivalent to
1 1

S+ —1-b>0.
a C

We have

1 1 1 1 1 — abe
-4+ -=1-b=--1 1——-)+ >
a c a c ac

This completes the proof. The equality holds for a =b=c¢=1.

1.

0.
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P 2.16. Let a,b, c be positive real numbers such that

1 1 1
a<b<cg, a+btc==+-+-.
a b ¢

Prove that
ab’c > 1.

(Vasile Cirtoage, 1998)

First Solution. Write the inequality in the homogeneous form

ab®c® >

abc(a+b+¢)]?
ab+bc+ca |’

which is equivalent to
(ab+ be+ ca)® > a*b(a + b+ c)®.

Since
(ab+ bc + ca)?* > 3abc(a + b+ c),

it suffices to show that
3c(ab + be + ca) > ala + b+ c)?.

Indeed,
3c(ab+ be+ ca) — ala+b+c)? > (a+b+c)(ab+ bc+ ca) — a(a+ b+ c)?

= (a+b+c)(bc — a*) > 0.
The equality holds for a =b=c = 1.

Second Solution. Let us show that

b ¢ a b c

which is false. On the other hand, from a < 1 and

1 1
——=(b ——1
o= (hte) ( L ) |
we get bc > 1. Similarly, we can prove that

c>1, ab < 1.

Since bc > 1, it suffices to show that
abc® > 1.
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Taking account of ab < 1, we have

c—lz(a+b)<$—1>22\/%(3—1)22<L—\/%>z\/%—\/%,

c ab ab
hence
1 ab
c— — 1+——120
(o) (7
The last inequality involves
abc® > 0.

P 2.17. Let a,b, c be positive real numbers such that
a<b<eg, a+b+c=abc+ 2.

Prove that
(1—=0)(1—ab’c) > 0.

(Vasile Cirtoage, 1999)

Solution. Let us show that
a<l, c>1.

To do this, we write the hypothesis a + b + ¢ = abc + 2 in the equivalent form
(1—a)(1—=¢c)+(1=0b)(1—ac)=0, (*)

If a > 1, then 1 < a < b < ¢, which contradicts (*). Similarly, if ¢ < 1, then a < b <c¢ <1,
which also contradicts (*). Therefore, we have a < 1 and ¢ > 1. According to (*), we get

(1-=0b)(1—ac)=(1—-a)(c—1)>0. (**)
There are two cases to consider.
Case 1: b > 1. According to (**), we have ac > 1. Therefore,
ab’*c = ac- b > 1,
hence (1 — b)(1 — ab*c) > 0.
Case 2: b < 1. According to (**), we have ac < 1. Therefore,
abdc =ac- b <1,

and hence
(1 —0b)(1—ab’c) > 0.

This completes the proof. The equality holds fora =b=1<cora<1=b=rc.
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P 2.18. Let a,b, c be real numbers, no two of which are zero. Prove that

(a—=0? (a—c?_ (b—0)
(a) aZ + b2 a2 + 2 2 2(b2 + 2)’
) (a+0)* (a+c)? S b— c)?

(
a? + b2 a?+c2 7202+ 2)

Solution. (a) Consider two cases.
Case 1: 2a*> < b? + 2. By the Cauchy-Schwarz inequality, we have

(@=0)? (a=c) _ [b-—a)+(a=c) _ (b-0¢
a2+ a?+c T (a0 + (e + ) 282+ + 2

Thus, it suffices to show that

1 1
>
202 + b2+ 2~ 2(b2 + ¢2)’

which reduces to b + ¢ > 2a>.

Case 2: 2a® > b* 4 ¢*. By the Cauchy-Schwarz inequality, we have
(a—b)* (a—c)? S [c(b—a)+bla—c)]* a’(b — c)?
a2+ b a2+ T a2+ b2+ b2(a +c?)  a2(b? + c?) + 2b2c?

Therefore, it suffices to prove that
a? - 1
a?(b? + ¢2) + 2022 — 2(b%2 + 2)’

which reduces to a?(b* + ¢%) > 2b?c?. This is true since
2a*(b* + ) — 4b*c® > (b* + *)* — 4b%c* = (b* — )2

The equality holds for a = b = c.

(b) The inequality follows from the inequality in (a) by replacing a with —a.

equality holds for —a =0 =c.

P 2.19. Let a,b, c be real numbers, no two of which are zero. If bc > 0, then

(a=0?* (a—c)? _ (b—0c)?
(@ a2+ a?+c3 = (b+c)?

(a+b)? (a+c)* _ (b—c)?
(b) a? + b2 a? + 2 = (b+c¢)?

The

[]

(Vasile Cirtoaje, 2011)
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Solution. (a) Consider two cases: a* < bc and a* > be.
Case 1: a® < be. By the Cauchy-Schwarz inequality, we have

(@a=b)? (@=0*) [b-—a)+(@=gP _ (b=0)
a?+0  a?+c2 T (a?+0)+ (a?+c?) 202+ + 2

Thus, it suffices to show that

1 1
>
202+ 02+~ (b+¢)?

which is equivalent to a? < bc.
Case 2: a® > be. By the Cauchy-Schwarz inequality, we have

(a—b)* (a—c)? S [c(b—a)+bla—c)]* a*(b—c)?

a2+ a2+ 7A@+ 0?) +b2(a? 4+ 2) a?(b? + ?) + 2022

Therefore, it suffices to prove that

a? 1

>
a?(b? + c2) +20%2¢2 = (b+¢)?’

which reduces to bc(a? — be) > 0. The equality holds for a = b = ¢, for b= 0 and a = ¢, and
forc=0and a =b.

(b) The inequality follows from the inequality in (a) by replacing a with —a. The
equality holds for —a =b=¢, for b=0and a + ¢ =0, and for c =0 and a + b = 0.
O

P 2.20. Let a,b, c be nonnegative real numbers, no two of which are zero. Prove that

la—b*  la—cf _ [b—c

a4+ ad+S T (b+e)

(Vasile Cirtoaje, 2013)

Solution. Without loss of generality, assume that b > c¢. Thus, we have three cases to
consider: a>b>c,b>c>aand b>a>c.
Case 1: a > b > c. It suffices to show that

la—c> _|b—¢|)?
(a+c)® = (b+¢)3’

which is equivalent to
a—c _ b—c
> .
at+c  b+c
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Indeed,
a—c b—c  2cla—0)

a+c bt+c (a+c)b+c) ™~
Case 2: b > ¢ > a. It suffices to show that
o-a (b0
ad+b = (b+c)

Indeed,
_ 4)3 _ 2\3 _\3 A %
(b—a) >(b c) >(b c) >b c).
G+ T B+ T B+E T (b4 e)?
Case 3: b > a > c. We need to prove that
b-a) (@0 _ (b0
a® + b3 at+ ¢~ (b+c)3

Using the substitution

b—a a—c
= ) = , 0<z<l, 0<y<l,
. a+b 4 a+c * Y
we have
1+ 1—y
b= a, C = a,
1—x 1+y
83 83
b—a) = ——d®, a—c)P=—"—10d
2(1 + 323 2(1 + 312
a3—|—b3:(+x>, a3—|—03:(+y),
(1—x)3 (1+7y)3
b—c x+y
b+c 14y
Thus, the desired inequality becomes
4a3 493 S (x +y)?

1132 1132~ (1+ay)

x2+y2—xy+3a:2y2> (4 y)?

(14+322)(1+3y%) — 4(1 4 xy)*’
s — p+ 3p? - s+ 2p
1+3s+9p2 = 4(1 +p)3’

where

s=a+y*, p=ay, 0<p<l, 2p<s<1+p

Therefore, we need to show that f(s) > 0, where

f(s) =4(1+p)3(s —p+3p®) — (s +2p)(3s + 1 + 9p?).
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Since f is a concave function, it suffices to show that f(2p) > 0 and f(1 + p?) > 0. Indeed,
we have

f(2p) =4p*Bp+1)(p+3) >0,
f(1+p*) =16p°(p+1)> > 0.

Thus, the proof is completed. The equality holds for a = b = ¢, for b = 0 and a = ¢, and for

c=0and a =b.
]

P 2.21. Let a,b, c be positive real numbers, b # c. Prove that

ab ac (b+c)?
@02 T latop Sab—op

(Vasile Cirtoaje, 2010)
Solution. Write the inequality in the form
(a—b)* (a—c)? N (b+c)?

> 2
(@0 T ateR T h—op "
Replacing a be —a, the inequality becomes
a+b? (a+c)?  (b+c)?
@+ (ato?  (be? .
(@=0) (a—cp? (b—c)?
Making the substitution
a-+b b+c c+a
Tr = = z =
a—bv YT h—¢ c—a’
we can write the inequality as
4yt 42> 2
From 5 5
:L’+1:—a, y+l=— 2+1= <
a—>b — c—a
and 2b 2 2
c a
1= 1= 1=
. a—bv 7 b—o c—a’
we get

4+ Dy +1)(+1)=(@-Ly—-1(E-1),
zy+yz+zex+1=0.

Therefore, we have

Py —2= P A 2y dyr ) = (+y+2)2>0.
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The inequality (*) is an equality for z + y 4+ z = 0; that is,
(a+ b+ c)(ab+ be+ ca) — 9abe = 0.
Therefore, the original inequality is an equality for

(b+ ¢ —a)(bc — ab — ac) 4+ 9abe = 0.

P 2.22. Let a,b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc+a® _ 3ab—c? N 3ac — b?
b2+c2 — a4+ b2 a? 4+ ¢’

(Vasile Cirtoaje, 2014)
Solution (by Nguyen Van Quy). Write the inequality as

a2+ b2 . 2 +Sbc>3ab+3ac
2+c2 a2+ a?+02 242 T a?+b?2 0 a4+

By the Cauchy-Schwarz inequality, we have

b2 ) 2 y (8% + @) B (8% + @)
a2+ a? 402 T (e + )+ A(aP+02) a?(b? + ) + 2%
Sy a*(b? + c*) + 20°¢? 5 a®>  20%¢°
- (b +c?)? v+ (024 2)?
hence
a? n b? n c? S 20%c?
242 a4+ a?+0% (b2 + )%

Therefore, it suffices to show that

2b%c? 3bc 3ab 3ac

2 — + > + .
B2 +c2)2 P+ a?+b? a?+

This inequality is equivalent to

1 202 n 3 3ab n 3 3ac S 3 3bc
2 (02 +c2)? 2 a2+ b? 2 a?+) 7 \2 »P+e)’
(v* =)  (a=b)? (a=0cf _ (b=0)
3+ 2)2 @+ a2+ T P+
Using the inequality in P 2.19-(a), namely
(4B (a—c _ (b0
a2+ a?+ct T (b+c)?

Y
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it is enough to prove that

(b+ c)? 1 1
+ > ;
302 +c2)?  (b+c¢)? ~ b2+ 2

which is equivalent to
v 2(b* — be + ¢2)
(b+c)2 = 3(b?+?)?

We have

3(b% + c*)? = 2(b+c)?(b* — be+ ) = 3(b* + )? —2(b+ ¢)(b* + )
=b' + ' + 6b°c? — 2bc(b* + )
> (b + c)? — 2bc(b* + ¢*)
=" +)(b—c)?>0.

The equality holds for a = b = c.

P 2.23. Let a,b, c be nonnegative real numbers such that a + b+ ¢ = 3. Prove that

ab® + be? + 2ca® < 8.

Solution. Since the equality holds for a = 2, b =0, ¢ = 1, we apply the AM-GM inequality
to get
1

ca® a<1<+a+a>3_1(+)3<
=cC 5 = C - (& a = 97

(a+b+c)=1.

W
o

Therefore, it suffices to show that
ab® + bc? + ca® < 4,

which is the inequality in P 1.1.

P 2.24. Let a,b, c be nonnegative real numbers such that a + b+ ¢ = 3. Prove that
2 2 3
ab” + b + §abc < 4.

(Vasile Cirtoage and Vo Quoc Ba Can, 2007)
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Solution. Consider two cases.

Case 1: ¢ > 2b. We have

ab2+b02+;abc:b(a+c)2—ab<a—b+g> < b(a + c)?

a+c a+c\?

b+ +
:4b<a+c> (a+c)§4 2 2 4
2 2 3

Case 2: 2b > c¢. Write the desired inequality as f(a) > 0, where

3
fla) =14 <%b+c> —ab® — bc* — ;abc,

with the derivative

The equation f’(a) = 0 has the positive root

" 3 b(2b+30)_b_c_ (2b — ¢)(5b + 8¢)
b2 2 61/20(2b+ ¢) + 8(b+¢)’

Since f’(a) < 0 for 0 < a < ay and f'(a) > 0 for a > ay, f(a) is decreasing on [0, a;] and
increasing on [a;, 00); consequently, f(a) > f(a1). To complete the proof, it suffices to show
that f(a;) > 0. Indeed, since

4(a1+b+c

2
3
— b1 2
3 ) R

we have

3
flay) =4 <%b+c) —ay (62 + gbc) —bc?

b
_mtote (62 + §bc) —a (b2 n gbc) b

3 2
_btc—2a (5 3 9
e (0,
1202 + 3b
= <b—|—c— +36> (bz—i-gbc) — bc?

- Z [452 4 10be + 2¢% — (2b + 3¢)\/2b(2b + 30)]

B be(2b — ¢)?(b + 2¢) =0
(452 + 10bc + 262 + (2b + 3¢)\/26(26 + 30)]
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Thus, the proof is completed. The equality holds for a = 0, b = 1, ¢ = 2, and for a = 1,
b=2¢=0.
m

P 2.25. Let a,b, c be nonnegative real numbers such that a + b+ ¢ = 5. Prove that
ab® + bc? + 2abe < 20.

(Vo Quoc Ba Can, 2011)

Solution. Write the inequality as
b(ab + ¢® + 2ac) < 20.

We see that the equality holds for a = 1 and b = ¢ = 2. From (a — b/2)? > 0, it follows that

b2
b<a®+ —.
a_a+4

Therefore, for b < 4, we have

b2 b2
b(ab+02—|—2ac)—QOSb(a2+Z+c2—|—2a0) —20zb[(a—|—c)2—|—z] —20

b2
=) {(5—b)2+z} —20 = Z(b—4)(b—2)2 <0.
Consider now that b > 4. Since
a=5—-b—c<5-b,
We have

ab® + bc* + 2abe — 20 = ab® + b(5 — a — b)* + 2ab(5 — a — b) — 20
=0 + ab® — 106 — a®b + 25b — 20
< b+ ab® — 10b% 4 25b — 20
< b+ (5 — b)b* — 106* + 250 — 20
=-50b-4)b-1)<0.

P 2.26. If a,b, c are nonnegative real numbers, then

a® + b+ —a*h—bc—Fa > g(a —b)(b—c)*
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Solution. Since
3(a® + b + ¢ —a*b— b*c — cfa) = Z(2a3 —3a*b + b*) = Z(2a +b)(a — b)?,

we can write the inequality as

oo

(2a +b)(a —b)* + (2b+¢)(b—c)* + (2c+a)(c — a)* > =(a — b)(b— c)*.

w

If a < b, then
(2a 4 b)(a —b)* + (2b+¢c)(b—c)* + (2c+a)(c—a)* > 0> g(a —b)(b—c)?.

If a > b, then there are two cases to consider: b > ¢ and b < c.
Case 1: a > b > c. It suffices to show that

2+ a)(a — )2 > S(a—b)(b— o).

w

By the AM-GM inequality, we have

omrenn () ()
(

S4[(@—5)+ b— (;) C)/Q]3
;m_”f

Therefore, it suffices to show that
(2c+a)(a—c)* > Z(a—c)?,

which is obvious.
Case 2: a > b, ¢ > b. Making the substitution

a=>b+p, c="b+gq, p,q >0,

the inequality becomes

oo

C%+2Mﬁ“%@b+qml+@b+p+2@0r—®22gnﬂ

8
ﬂﬁ+@”+@—QW5+%P+f+%p+%XP—®22gm?

It suffices to show that

oo

2ﬁ+@&+@+2®@—QVZ§m{
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which is equivalent to

34
2p° +2¢° > gpq?

By the AM-GM inequality, we have
3 3 3 3 3 3 34
2p° +2q° = 2p° + q° + q° > 3/ 2p3¢5 > 9P
because a4
3V2 > 9

The equality holds for a = b = c.

P 2.27. If a,b, c are positive real numbers, then

(a—c)?

a
ab+ be + ca’

b ¢
+-+->3+
b ¢ a
(Vasile Cirtoaje and Vo Quoc Ba Can, 2008)
First Solution. By expanding, the inequality can be written as

b2 2 b2
bz+%+%+%22ab+%c.

We can get this inequality by summing the AM-GM inequalities

b2
ab—l—i > 2bc,
a

CCL2 2

b
P+ 2> 3ap.
b c
The equality holds for a =b = c.

Second Solution. From

(a+b+c) (%+g+§—3) :Z%Q+Z%—2Za

a—>b?2 1 a(b — c)?
:Z( b)+§z bc)’
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we get
b —b 2 bh— 2 _ )2
(a+b+c) 2424+ 53 2@ ) +( 9 +® M'
b ¢ «a b c a
By the Cauchy-Schwarz inequality, we have
(0=t (b= (=0
b c - b+c

Therefore,

which is equivalent to

c
T .
LR “alb+c)

From this result, the desired inequality follows immediately.

P 2.28. If a,b, c are positive real numbers, then

a b ¢ 4(a —c)?

AT [ . Gl
(a) b+c+a_ +(a—|—b+c)27

a b ¢ 5(a — c)?
b @ 2 sy e
v et aT +(a—|—b+c)2

(Vo Quoc Ba Can and Vasile Cirtoaje, 2009)

Solution. As we have shown at the second solution of the previous problem P 2.27:

(a+b+c) (%+g+§_3) :Z@jL%Za(bl;c) |

a b ¢ (a—c)?
AR (ET)

(a) According to the upper inequality, it suffices to show that

1 S 4
alb+c¢) ~ (a+b+c)?
Indeed,
1 4 (a—b—c)?

alb+c) (a+b+c? ab+o)atbtc)?™
The equality holds for a =b = c.
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(b) According to the upper identity, write the inequality as

N2
(atbto)(balicg)sdlao
b ¢ «a a+b+c

(a—b)* 1s=ab—c)? _ 5(a—-c)?
Z b +§Z be Za—l—b—l—c’
m—by+(b—@{+da—@2+a®_@2z( 5 1 b)(a_@?

b c 2ab 2bc a—l—b—l—c_a_QTLc

By the Cauchy-Schwarz inequality, we have

[(a—b)+ (b—0o)

(=2, (b0

> Y
b c b+c
c(a — b)* N a(b— c)? S [(a=b)+(b—c)* acla—c)?
2ab 20c 2ab 4 2be ©2b(a? + 2)
Thus, we only need to show that
1 ac ) 1 b

>
b+c+2b(a2—|—c2) “a+b+c a 2ac

Y

which is equivalent to

1+ 1 . ac n b S )
a b+c 20(a2+¢?)  2ac T a+b+c

This inequality is true because, by the AM-HM inequality and the AM-GM inequality, we

have
1 1 4

— >
a+b+c_ a+ (b+c)

and
ac n b S 1 N 1 S 1
20(a2+c?)  2ac Va2+2 a+c a+b+c

The equality holds for a = b = c.

P 2.29. Ifa>b>c¢ >0, then

3(b— c)?

a
ab+ bc+ ca’

b ¢
+-+-2>3+
b ¢ «a
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First Solution. Since

a ¢ ¢ (a—=b)(a—rc)
N - 0
b a b ab ’
it suffices to show that
b ¢ 3(b — c)?
s s/
c b “ab+bc+ca
Indeed, we have
b+c_2_ 3(b—c)?*  (b—c)*(ab+ ac — 2bc)
c b ab+bc+ca  be(ab+ be + ca)

The equality holds for a = b = c.

Second Solution. Since
ab + bc + ca > 3bc,

it suffices to show that

a b ¢ (b—c)?
-—+-4+-2>3
b+c+a be
which is equivalent to
g+£>1+g
b a— b’
(a—b)(a—c)>0
ab -

P 2.30. Let a,b, c be positive real numbers such that abc = 1. Prove that

(a) if a>b>12>c, then

(b) if a>1>0b2>c, then

b 2(b—c)?
9+_+223+u.
b ¢ «a

(Vasile Cirtoaje, 2010)
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Solution. (a) Write the inequality as

f(c)25+2__17
where ;
floy=-+-
From
b > 1 = abe,
we find
b2 > ac
We will show that
flo)> f N P
C —_— J— —_—
- al) b a
The left inequality is equivalent to
b N ¢ a b2
c a b 2’
2 2
b ac _ b ac >0,

The right inequality reduces to

The equality holds for a =b=c=1.

(b) Write the inequality as

b c
>_-4+2-—1
where a
fla) =4+~
From
PB<1= abe,
we find
b < ac.

We will show that
b? b c
flay>fl—)>-+2--1

c

o
S

The left inequality is equivalent to
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ac — b - c(ac — b?

>0
be —  ab?2 T 7
(ab — c*)(ac —b*) > 0.
The right inequality reduces to
c 2
c-1) =0
(G-1) =

The equality holds for a =b=c=1.

P 2.31. Let a,b,c be positive real numbers such that
a>1>b>c, abc = 1.

prove that
b ¢ 9(b — ¢)?
>34+ — .
b ¢ a” ab + be + ca

Solution. From b® < 1 = abe, we find b? < ac. We will show that

a b c_ 20 ¢ 9(b — c)?
e

b ¢ a” ¢ b2 ab+ bc+ ca’

The left inequality is equivalent to

be ab> T
(ac — b%)(ab — ¢?)

ab?c -

The right inequality is equivalent to

2b+c_2_3> 9(b — ¢)?
c b2 ~ab+bc+ca
(b—¢)*(2b+ ¢) S 9(b — ¢)?
b2c ~ab+bc+ca

We need to show that
(2b+¢) S 9

b’c T alb+c)+be

(Vasile Cirtoaje, 2010)
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This is true if
(2b+¢) - 9

b’c T bb+c)+be’

which is equivalent to
2(b — c)?
b2e(b+2c) —

The equality holds for a =b=c=1.

P 2.32. Let a,b, ¢ be positive real numbers such that
a>1>02>c, a+b+c=3.

prove that
a+b+c >3+4(b—c)2
b ¢ a b2+ 2
(Vasile Cirtoaje, 2010)
Solution. From
3b<3=a+b+ec,

we find
2b<a+c, a>2b—c.

We will show that

b c>2b—c+b+ c >3+4(b—c)2
b ¢ a b c 2b—c b2 +c2

The left inequality is equivalent to

a . S 2b—c . c
b a— b 2b — ¢’
atc—=2b cla+c—2b) >0,
b a(2b—c¢) —
(a+ ¢ —2b)[a(b—c) + bla — ¢)] -0
ab(2b — ) -
The right inequality is equivalent to
(b—¢)*(2b + ¢) - 4(b — c)?
be(20—c) T b2+
We need to show that
(2b+¢) - 4

be(2b—c¢) — b2+ ¢’
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which is equivalent to
2% — Th%c 4+ 6bc® + ¢ > 0,

2b(b — 2¢)* + (b — ¢)*c > 0.
The equality holds for a =b=c=1.

P 2.33. Let a,b,c be positive real numbers such that
a>b>12>c, a+b+c=3.

Prove that

b 3(a —b)?
a ab

(Vasile Cirtoaje, 2008)
Solution. From
3b>3=a+b+c,

we get
2b>a+c, c<2b-—a.

We will show that

QS

a 1
- +-4+-2>
b a

The left inequality is equivalent to
b ¢ b 2b—a
> +

c a~ 2b—a a

(2b —a — ¢)[b(a — ¢) + ¢(a — b)] > 0.

The right inequality is equivalent to

_ )2
a b 2b a_3>3(a b)

T —  ab
(a —b)*(4b — a) S 3(a —b)?
ab(2b —a) —  ab
AT
2a=bf
ab(2b —a) —

The equality holds for a =b=c=1.
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P 2.34. If a,b,c are positive real numbers, then
a b ¢ 2(a — c)?
e 2 3 + M
b ¢ a (a+c)?
Solution. Since
a b a
-+ - Z 2 )
b ¢ c
it suffices to show that ,
€ o [tsaylaz
a c (a+c)?
Using the substitution z = \/E , this inequality becomes as follows:
c
1 2(z% —1)?
—4+2r >34+ ——
AR (2 41)%7
(r —1)*(2x + 1) S 2(x? — 1)2
22 = (2412
We need to show that
2041 2(x + 1)
22 T (2 41)?2
which is equivalent to
20° — 32t + 20+ 1> 0.
For 0 < x <1, we have
20° —32x' 4+ 20 +1> -3z' +22+1> -3 +22+1>0.
Also, for x > 1, we have
20° — 32 + 20 +1>22° - 30" + 22 — 1 = (v — 1)*(22* + 2 — 1) > 0.
The equality holds for a = b = c.
m

P 2.35. If a,b,c are positive real numbers, then

a? v 4(a — c)?
i satbtet—
b c a a+b+c

(Balkan MO, 2005, 2008)
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Solution. Write the inequality as follows:

2 2 2 Ala — )2
C b))+ (Cem ) (Cham2e) > e
b c a a+b+c

(a—b)2+(b—c)2+(a—c)2 >4(a—c)2

b c a T a+b+c
By the Cauchy-Schwarz inequality, we have

(a—b)2+(b—c)2+(a—c)2 [((a—0)+ (b—c)+ (a—))? :4(a—c)2
b c a b+c+a a+b+c

1++5
7

Vv

b
The equality holds for a = b = ¢, and also for a = b+ ¢ and — =
c

P 2.36. Ifa>b>c >0, then

a v 6(b — c)?
—+—+—=—2a+btct+—v——.
b ¢ a a+b+c

(Vasile Cirtoage, 2014)

Solution. Write the inequality as follows:

2 2 2 N2
o)+ (Caemo) 4 (S o) 8=
b c a a+b+c

(oz—b)2+(b—c)2_|_(a—c)2 - 6(b — c)?

b c a —a+b+c
(a—0)? (a—c)*  (a+b—5c)(b—c)?
TR cla+b+c) = 0.
Since
(@ = (0= )+ (b~ ) = (a— b+ 2a— )b — ) + (- o).
we have
(a—bb)2 N (a;c)2 > ((JJ—OLC)2 > 2(a—b)(b—ac) + (b—c)z'

Therefore, it suffices to show that

2(a—b)(b—c)+ (b—c)? N (a+b—5¢)(b—c)?

>0
a cla+b+c) -

which can be written as

2(a—b)(b—c) N (a —c)* +ab+ bc — 2ca

b—c)? > 0.
a ac(a+b+c) (b= 2
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Since
(a—c)*+ab+bc—2ca=(a—c)*+alb—-c)—cla—0b) > —c(a—0b),

it is enough to prove that

Ao bc)z(b =9 a(ai_bi c) (b—c)*>0.
Indeed,
2(a — b)(b— c) a—>b »_(a=bb—c) (, _b-c
a _a(a+b+c)(b_c> N a (2 a+b+0) -0

The equality holds for a = b = c.

P 237. Ifa>b>c>0, then

a> b
— 4+ —+ —>5(a—0D).
b + c + a (a )
(Vasile Cirtoaje, 2014)
Solution. Consider two cases: a < 2b and a > 2b.

Case 1: a < 2b. It suffices to show that

a2 2

24> _
b+b_5(a b),

which is equivalent to the obvious inequality
(2b —a)(3b—a) > 0.

Case 2: a > 2b. Since

2 2 2
b_+c__b_b_:(b_c)<l_’_b+c)

c a a c a
b b+c (b—¢)*(20+ ¢)
> . _ — — >
2 (b= (c 2b ) 2bc 20,
it suffices to show that
a2 2

— 4+b+—>5a—b
b T +a_(a ),

which is equivalent to
z(r—2)3—1) <1,

where x = a/b > 2. For the non-trivial case 2 < z < 3, we have

r(r—2)3—1z)>=x (x—2)—;—(3—x) 2:§<1.
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P 2.38. Let a,b, c be positive real numbers such that
a>b>1>c, a+b+c=3.

Prove that
a> b P 11(a —c¢)?
b= >3
b ¢ a 4(a+c)

(Vasile Cirtoaje, 2010)

Solution. We have
a+b+c=3<0b, 2b > a+c.

Thus, we need to prove the homogeneous inequality

ﬁ+w+§> +b++1a_c2
b e a =" ¢ 4(a + c)
for n
a+c
> b > .
1=0="5
Denote
, 2 2 2 ,
f(CL, ,C)—?—i-?-i-z—a— —c.
We will show that 1 )2
a—+c a—c
b,c) > >__- 7
flabe) = f (o 55 e) = 5O

Write the left inequality as follows:

a®>  2a? v (a+c)? a+c
& - N - >
(b a+c>+[c 4c } (b 2 >_0’

a? 2b+a+c

Since 2b — a — ¢ > 0, we only need to show that

2b+a+c a?
> + —.
4c “blatc) 2

a—+c

It suffices to prove this inequality for b = . Making this, the inequality becomes

2
ala—9” o
2c(a+c¢)? —

To prove the right inequality, we find

f aa+cc _ (a—c)*(a® + Tac + 4c?)
2 ) dac(a + c)

Y
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hence " ) ) 02
f a’a—l—c?C ~ 11(a—¢) _ (a —c¢)*(a — 2c) >0.
2 4(a +c) dac(a + c)
. a b ¢ ) 4
The equality holds for a« = b = ¢ = 1, and also for 1-3-3 (that is, for a = 3’ b=1,
%)
c=-).
3
m
P 2.39. If a,b,c are positive real numbers, then
o b L 3 27(b — ¢)?
b+c c+a a+b 2 16(a+b+c)?

(Vasile Cirtoaje, 2014)

Solution. Write the inequality as follows:

a 9 27(b — ¢)?
1) >4+ —n 2
Z(b+c+ ) - 2+16(a+b+c)2’

1 27(b — ¢)*
[Z(b—l—c)} (Z b+c> > 9+m.

Replacing b + ¢, ¢ + a, a + b by a, b, ¢, respectively, we need to show that

1 1 1 27(b — ¢)?
b S | [ Ml /A
(a+b+c) (a+b+c) _9+2(a+b+0)2,

where a, b, ¢ are the side-lengths of a non-degenerate triangle. Write this inequality in the
form

a+b—|—c+( bt 1+1 54bc .- 27(b+ ¢)?
—— + (a c) | =+ - —_—— _—
a b ¢ (a+b+c)? — 2(a+b+c)?
Applying the AM-GM inequality gives
11 54bc 6(b+c)
b -+ - —_— > _—
(a+ +c)(b+c> (a+b+c)2_6 a+b+c
Therefore, it suffices to show that
a+b+c ¢ 6(b+ c) S 27(b+ c)?
a a+b+c 2(a+b+c)?’
which can be rewritten as
1 N 6(b+ c) - 27(b+ c)?
] b+c a+b+c =" 2a+b+c)?

Ca+bte
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Using the substitution

b+c 25 5 3
AL A
a+b+c 3 4
this inequality becomes
4t >3+ 2t
3_op T HEOTA

2% — 3t — 483 + 3t> + 6t — 4 > 0,
(t — 1)2(2t* + 4¢° + 3> — 2t — 4) > 0,
(t—1)%[(4* = 3)(#* + 2t +2) + * + 2t — 2] > 0.

Clearly, the last inequality is true for ¢*> > 3/4. The original inequality is an equality for
a=b=c
O

P 2.40. Let a,b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

a b c
- +
b+c¢c c¢c+a a-+b

(Vasile Cirtoaje, 2014)

Solution. Write the inequality as

Yo+ 52y =9
b+c 2 dla+b+c)?

1 18(b — c)?
{Za’“)} <Zm) 29T T ot et a)+ @t

Replacing b+ ¢, ¢ + a, a + b by a, b, ¢, respectively, we need to show that

1 1 1 18(b — ¢)?
b S ¢ i
(a+b+c) (a+b+c) >9+ CET Rk

where a, b, ¢ are the side-lengths of a non-degenerate triangle, a = max{a, b, c}. Since

(a+b+c)? > =(b+c)* > 9be,

| ©

it suffices to show that

1 1 1 2(b — ¢)?
b -t -4+ >9+ —.
(a+ +c)<a+b+c>_9+ o

Write the inequality as follows:
AV 2 2 2
(a —b) (a—c) (b—c) S 2(b—c)

ab ac be be
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c(a —b)? +bla—c)* > alb—c)?,
(b+c)a* — (b+c)?a+be(b+c) >0,
(b+c)(a—Db)(a—c)>0.

Clearly, the last inequality is true. The original inequality is an equality for a = b = c.
O

P 2.41. Let a,b, c be nonnegative real numbers, no two of which are zero. Prove that

@ b 4+ >3+(b—c)2
b+c c+a a+b 2 2b+c)?
(Vasile Cirtoaje, 2014)
First Solution. Write the inequality as follows:
2bc n a n b n c o
(b+¢)? b+c c+a a+b~ 7
a(b+ c) + 2bc b c
> 2
(b+c)? +c+a+a+b_ ’
By the Cauchy-Schwarz inequality, we have
b c o (b+ c)? (b +ep

c+a+a—|—b_b(c—|—a)—|—c(a+b) a(b+ c¢) + 2bc
Therefore, it suffices to prove that

a(b+ c) + 2bc (b+ c)?
(b+c)? a(b+c)+2bc —

which is obvious. The original inequality is an equality for a = b = ¢, for a = b and ¢ = 0,
and for a = c and b = 0.

Second Solution. Write the inequality as follows:
a 9 (b—1c)?
1) >4+ —
2 (b+c+ ) =2 30 o

[Z(b+c)] <Z$) > 9+ Ezlgz

Replacing b + ¢, ¢ + a, a + b by a, b, c, respectively, we need to show that

1 1 1 b—c)?
(a+b+c)<—+——|——>29+< C),
a b ¢
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where a, b, c are the lengths of the sides of a triangle. Write this inequality as
@b  (a=0?  (b=cf (-0
ab ac bc a?
ale(a —b)* +b(a — ¢)?] > (be — a®)(b — ¢)*.

Without loss of generality, assume that b > ¢. Since a > b — ¢, it suffices to show that

cla —b)? +b(a—c)* > (be — a®)(b—c).
Indeed, we have

c(a—b)? +bla—c)* — (bc — a®)(b—c) = 2b(a — ¢)* > 0.

P 2.42. Let a,b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

o b 4 >3 (b—c)?
b+c c+a a+b 2 4bc

(Vasile Cirtoaje, 2014)
First Solution (by Nguyen Van Quy). Notice that for a = min{a, b, ¢}, we have

4bc = (2b)(2¢) > (a +b)(a+¢) > 2a(b+ ),

hence
a_ 20> (b—c)? < (b—c)?
b+c ™ (a+b)la+c) 4bc ~ (a+b)(a+c)
So, it suffices to show that
2a? b c 3 (b—c)?
+ + >
(a+b)a+c) c+a a+b 2 (a+b)(a+tc)

which is equivalent to the obvious inequality
(a—1b)(a—c)>0.
The proof is completed. The original inequality is an equality for a = b = c.

Second Solution. Let

a b c

FE(a.b,c) = .
(a,b,¢) b+c+c—|—a+a—|—b

Without loss of generality, assume that b < ¢, hence a < b < ¢. We will show that

3 (b—c)?
> > — .
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We have
a—b b(b—a) c(b—a)
E(a,b,c) — E(b,b,c) = b—l—c+ (a+c)(b+c)  2bla+b)
B (b—a)—c ¢
=(b—a) {(a_i_c)(b—i—c) + 2b(a+b)]
B (b—a)[2b(b2_a2)+c<c_b>(a+2b+c>] >0
= 2b(a + b)(a + ¢) (b + ) -
and

2 4be b+c 2b 2 4bc
(b—c (b=c)

E(b,b,c)—é—(b_c>2:( 2b +£_§)_(b—_‘3)2

~ 2b(b+c) 4bc

~ (e—=b)?
—WZO.

P 2.43. Let a,b, c be positive real numbers such that

a<l1<b<ec, a+b+c=3,

then
o b L€ >3+3(b—c)2
b+c¢c c+a a+b 2 4bc
(Vasile Cirtoage, 2014)
Solution. From
3b>3=a+b+c,
we get
a<2b—c, 2b > c.
Let )
a c
E(a,b,c) = )
(a,b,¢) b+c+c+a+a+b
We will show that 3 30 )2
—c
FE(a,b > FE(2b—1¢,b >4~ 7
(@h.6) > B@ e > o+ 20
We have
E(a,b,c) — E(2b —¢,b,¢c) = (2b —a — ¢)F,
where

r_ -1 . 1 . c
Cb+c 2cta) (a+b)(Bb—c)
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Since 2b — a — ¢ > 0, we need to show that F' > 0. This is true because

1 c
_§< b—l—c c—l—a) b—l—c (a—l—b)(Sb—c)

1 c
> - + > — +
- 2(b~|—c) (a+b)(3b—c) ~— 2(a+b)  (a+b)(3b—c)
3(c—b)
= > 0.
2(a+b)(3b—c) —
In what concerns the right inequality, we have
b—c)? 1 1
E(2b—¢,b,c) — g _30 = g

(b+c)3Bb—c) 4be
_ =3(b—0)*(3b+c)
Dbt o)3b—c) =

4bc

The proof is completed. The original inequality is an equality for a = b =c = 1.

P 2.44. Let a,b, c be nonnegative real numbers such that
a>1>b>c, a+b+c=3,
then

a b c 3 (b—c)?
t—t—> .
b+c c+a a+b 2" (b+c)?

(Vasile Cirtoaje, 2014)
Solution. From
3b<3=a+b+c,

we get
a>2b—c.

Let
a b c

b—l—c+c—|—a+a—|—b'

E(a,b,c) =

We will show that

3 (b—c)?
Ela.b,c) > E(2b—rc,b,c) > =
(CL, 70)— ( ¢, 70)—2+(b+c)2
We have
E(a,b,c) — E(2b — ¢,b,¢c) = (a — 2b+ ¢)F,
where

1 1 c
T b+c 2c+a) (a+D)Bb—c)
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Since a — 2b + ¢ > 0, we need to show that F' > 0. This is true because

R S U WS S ¢
~2\b+c cHa 2b+c¢) (a+b)(3b—c)
1 c 1 c

2+ (arb)@—0) = 2a+b) (a+)Bb—0)

B 3(b—c)
= et )@ =

The right inequality is also true because

3 (b—c)? (b—rc)? 3 1
BE(2b—¢,bc)— 2 — - -
b=ebe) =S~ oror = bre |B—c btc
4e(b — c)?

St er@—_o ="

The proof is completed. The original inequality is an equality for a = b = ¢ = 1, and also
fora=2,b=1,¢c=0.
O

P 2.45. Let a,b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that
ab+bc+ca  2(b—c)?

1.
(@) A+ +c2 342 T
) ab + be + ca (b—c)? L
a2+ +c2 B+be+c2 T
ab+bc+ca  (a—b)?
(c) 2 2 4 2 s =L
a?+ b+ 2(a?+b?)

(Vasile Cirtoaje, 2014)
Solution. (a) First Solution. Since
3(b% + %) > 2(a* + b + ),

it suffices to show that
ab + be + ca (b—c)?
+ <
a2+ +ct a?+br+c2 T
This inequality is equivalent to

(a—b)(a—rc) >0,
which is clearly true. The equality holds for a = b = c.

Second Solution. Write the inequality as follows:

4(b — c)? - (b—c)*+(a—0)*+ (a—c)?
302 4 ¢2) ~ a? 4+ b + ¢?

?
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3(b% 4+ )[(a — b)? + (a — ¢)*] > (b—c)*(4a® + b* + c2),
3(b% 4+ A)[(b—¢)* +2(a — b)(a — c)] > (b — ¢)*(4a® + b* + ¢?),
6(b* + c*)(a — b)(a — ¢) + 2(b — ¢)*(b* + & — 2a*) > 0.
The last inequality is true because (a — b)(a — ¢) > 0 and b* + ¢ — 2a*> > 0.

(b) Without loss of generality, assume that
a<b<e.

Write the inequality as
ab + bec + ca < 3bc

a?+b24+c2 b2+bc+02;

that is,
E(a,b,c) >0,

where
E(a,b,c) = 3bca® — (b+ c)(b* + ¢ + be)a + be(2b* + 2¢* — be).

We will show that
E(a,b,c) > E(b,b,c) > 0.

We have
E(a,b,c) — E(b,b,c) = 3bc(a® — b*) — (b+ ¢)(b* + ¢* + be)(a — b)
= (b—a)[(b+c)(b* + &+ be) — 3bc(a + b)]
> (b—a)[(b+c)(b* + ¢ + be) — 3be(c + b)]
=b-a)(b+c)(b—c)?*>0.
Also,

E(b,b,c) = b(c—b)* > 0.
The equality holds for a = b = ¢, and also for a =b =0 or a = c= 0.

(c) Write the inequality as follows:

ab+ (a+ b)c < (a+b)?
a2+ b +c2 = 2(a?+b?)’
(a+b)2c* —2(a +b)(a® + b*)c + (a® +b*)* > 0,
[(a+b)c— (a® +b*)]* > 0.
a? + b?

The equality holds for ¢ = e
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P 2.46. Let a,b, c be positive real numbers such that
a<1<b<ec, a+b+c=3,

then
ab+bc+ca (b—c)?

a? + b + 2 bc

<1

(Vasile Cirtoaje, 2014)

Solution. From
3b>3=a+b+c,

we get
a<2b-—c.

Write the inequality as follows:

2(bb—c P (b=cf ;(i;bf; (-0
b—op+(e—ap 2 (PR ) oo
(c— b2 +2(b—a)(c—a) > <2“2 +2blf +2 1) (c— b2
(b—a)(c—a) > (W‘l) (c— b

Since
b—a>b—(20—c)=c—b2>0, c—a>c—(2b—c)=2(c—0b) >0,

it suffices to show that 2, 2 )

2> arorte 1

be
which is equivalent to
3be > a? + b* + 2.
This is true if
3bc > (2b—¢)* +b* + &,
which reduces to
Tbe > 5b° + 2¢2,
(¢ —=b)(5b — 2¢) > 0.

Thus, we only need to show that 56 — 2¢ > 0. Indeed, we have
5b —2¢ > 2(2b—¢) > 2a > 0.

The equality holds for a =b=c=1.
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P 2.47. Let a,b,c be nonnegative real numbers such that a = max{a,b,c} and b+ ¢ > 0.
Prove that

ab + bc + ca (b—c)?

<1,

(a) a2+ +c2 2ab+be+ca) T
ab+bc+ca  2(b—c)?
) a—

a2+ +c (a+b+c)?
(Vasile Cirtoaje, 2014)

Solution. Without loss of generality, assume that a > b > c.
(a) Write the inequality as follows:

(b—c)? - (b—c)®+ (a—0b)2+ (a—c)?
ab+bc+ca — a? + b2 + 2
(ab+ be+ ca)[(a — b)* + (a — ¢)?] > (b — ¢)*(a* + b* + ¢ — ab — be — ca).

)

Since
ab +be + ca > ab > b > (b —¢)?,

it suffices to show that
(a—b)*+(a—c)* >a*+ b+ —ab—bec— ca.
Indeed,
(a=b)2+(a—c)—(a*+b*+c —ab—bc—ca) = (a—b)(a—c)>0.
The equality holds for a = b = ¢, for a = b and ¢ = 0, and for a = c and b = 0.
(b) Write the inequality as follows:
4(b — c)? - (b—1c)?*+ (a—0)%*+ (a — c)?
(a+b+c)? — a? + b2 + ¢2
(a+b+c)?[(a—0b)*+ (a—c)?] > (b—c)*[3(a* + b* + ) — 2(ab + bc + ca)),
(a+b+0)’[(b—c)*+2(a—0b)(a—c)] > (b—c)*B(a®+ b + ) — 2(ab + b + ca)],
(a+b+c)(a—b)(a—c)>(b—c)[a* +b* + c — 2(ab + be + ca)].

?

Since
a® +b* + ¢ — 2(ab + be + ca) = (a — b)* — c¢(2a +2b —¢) < (a — b)?,

it suffices to show that
(a+b+c)(a—c)>(b—c)*(a—0).
This inequality is true because

(a+b+c)*>(b—c)?

and
a—c>a—b.

The equality holds for a = b = ¢, for a = b and ¢ = 0, and for a = c and b = 0.
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P 2.48. Let a,b, c be positive real numbers. Prove that
(a) if a>b>c, then

ab + be + ca (a —c)?
a2+ b+ a?—ac+c?

(b) ifa>1>b>candabc =1, then

ab + bc + ca (b—c)?
a?+b2+c2 b2 —bc+c? T

(Vasile Cirtoaje, 2014)
Solution. (a) Write the inequality as follows:

ab + be + ca ac

a?+b2+c?2 a2 —ac+c?’

ach? — (a+ c)(a* — ac+ )b+ a*c* <0,
ach? — (a® + )b+ a*c® <0,
(ab — c*)(bc — a®) < 0.

Because ab—c? > 0 and be—a? < 0, the conclusion follows. The equality holds for a = b = c.
(b) From
it follows that

Write the inequality as follows:

ab + bc + ca < bc
a2+ +c2 = b —bec+c?’
bea® — (b+ c)(b* — be + *)a + b*c? > 0,
bea® — (b° + *)a + b*c® > 0,
(ab — c*)(ac —b*) > 0.

The inequality is true because ab — ¢* > 0 and ac — b* > 0. The equality holds for a = b =
c=1.

[]
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P 2.49. Let a,b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that
a2—|—b2—|—02> 4 — )

(a) ab+bc+ca ~ 30102 3(b+c)2’
a’ + b + 2 (a — b)?

b —>1

v ab+bc+ca +(a—|—b)2

(Vasile Cirtoage, 2014)
Solution. (a) First Solution. Since
3(b+¢)? > 12bc > 4(ab + be + ca),
it suffices to prove that
a2—|—62+02>1 (b—c)?
ab+bc+ca — ab + bc + ca’
which is equivalent to the obvious inequality

(a—"0b)(a—c)>0.
The equality holds for a = b = c.

Second Solution. Since (b+ c)? > 4be, it suffices to prove that

a2+b2+02>1 (b—c)2‘
ab+bc+ca — 3bc
Write this inequality as follows:
(a—b)*+(a—c)?+ (b—c)? S 2(b — ¢)?
ab + be + ca - 3bc
3bc[(a — b)* + (a — ¢)?] > (b — ¢)*(2ab + 2ac — be),
3bc[(b — ¢)* + 2(a — b)(a — ¢)] > (b — ¢)*(2ab + 2ac — be),
6bc(a — b)(a — ¢) + 2(b — ¢)*(2bc — ab — ac) > 0.
The last inequality is true because (a — b)(a — ¢) > 0 and

2bc — ab —ac =b(c —a) + ¢(b —a) > 0.

(b) Write the inequality as follows:

a’ + b + - 2(a* + %)
ab+ (a+b)ec — (a+b)? "’
(a+b)%2 —2(a+b)(a* + )+ (a® + b*)? >0,
[(a+b)c— (a® +b*)]* >0,
a® + b?
a+b

The equality holds for ¢ =
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P 2.50. If a,b,c are positive real numbers, then

a’> +b*+ 2 9(a — c)?
2> 1+ ——.
ab + be + ca 4(a+b+ c)?

(Vasile Cirtoaje, 2014)
Solution. Write the inequality as follows:

(b—c)?+ (a—Db)*+ (a—c)? < 9(a —c)?
ab + bc + ca “2a+b+0)?

2(a+b+c)?[(b—c)* + (a—b)? > (a — c)*[5(ab + bc + ca) — 2(a* + b* + 2],
2(a+b+c)[(a—c)*—2(a—0b)(b—c)] > (a—c)[Blab+ be+ ca) — 2(a® + b* + 2)],
(a—c)’[4(a* + b* + ¢*) — (ab+ bc + ca)] > 4(a+ b+ c)*(a — b)(a — ).
Consider further the nontrivial case (a — b)(a — ¢) > 0. Since
(a—cf =lla=)+ (b= 2 4e=b)b-0),
it suffices to show that
4(a® +b* + ®) — (ab + be + ca) > (a+ b+ ).
Indeed,
4(a* + 0>+ *) — (ab+be + ca) — (a+ b+ c)* = 3(a* + b* + ¢* — ab — bc — ca) > 0.

The equality holds for a =b = c.

P 2.51. Let a,b, ¢ be nonnegative real numbers, no two of which are zero. If a = min{a, b, c},
then

1 1 1 6
+ + >
Va2 —ab+ b0 Vb2 —bc+2 VR —ca+a® T btc

Solution. Since

1 1 1 1 1 1
- - > o+ -,
Vaz—ab+b VB2 —bc+c2 VR —ca+a? b VB2 —bc+c2 ¢
it suffices to show that
1+ 1 +1> 6
b V2 —bc+2 ¢ b+c

Write this inequality as
b ¢ b? + 2 + 2be
- < - T T sy
c+b+ b2+c2—be —
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/x—|—224_x7
r—1

b ¢
where x = - + R x > 2. Consider the non-trivial case 2 < x < 4. The inequality is true if
c

which is equivalent to

2
v 2(4—ZE)27
z—1

which is equivalent to
(x —2)(2* — T2z +9) <0.

This inequality is true because
2 —Tr+9<2®*—Tr+10=(x —2)(z —5) <0.

The equality holds for a = b = ¢, and also a = 0 and b = c.

P 2.52. Ifa>12>b2>c>0 such that

ab + bc 4 ca = abec + 2,

then
ac < 4 — 2V/2.
(Vasile Cirtoaje, 2012)
Solution. By hypothesis, we have
2 —bc
a=——
b+ c— bc

Sinee 1 (2—be)b+c) 2—b 2—b
C C C C
ac < galb+c) 2b+c—be) 2— 2 =9\ /i

btc

it suffices to show that
2 —bc

2 —/be

(Ve — 24+ +/2)? > 0.
The equality holds for a = 2 and b = ¢ = 2 — /2.

<4-2V2,

which is equivalent to
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P 2.53. If a,b,c are nonnegative real numbers such that

ab + bc + ca = 3, a<l1<b<eg,
then
(a) a+b+c<4;
(b) 20 +b+c < 4.

Solution. From
(1-=0)(1—-¢) >0,

we get
bc >b+c—1.

Therefore, we have

3=alb+c)+bc>alb+c)+b+c—1=(a+1)(b+c)—1,

4
b+c< ——ro
a+1
hence A 5
a+b+c—4<a+ —4=M§0,
a+1 a+1
2 —1
20 +b+c—4<2a+ - :Mgo.
a+1 a+1

The equality holds for a = 0, b = 1 and ¢ = 3. In addition, the inequality (b) is also an
equality fora=b=c=1.
O

P 2.54. Let a,b,c be nonnegative real numbers such that a < b < c. Prove that
(a) if a+b+c=3, then
at(b* + ) < 2
(b) if a+b+c=2, then
cHa* +b*) < 1.

(Vasile Cirtoaje, 2012)
Solution. (a) Let x,y be nonnegative real numbers. We claim that
vt =yt >4yt —y).
Indeed, this inequality follows from

vt =yt =y —y) = (z —y)(@® + 2%y + 2y’ = 3y)
= (z—y[® = y*) +y(@® = y*) + ¥’ (z — y)).
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Using this inequality, we can show that
V4t <a*+ (b+c—a)
Indeed, we have
at+b+tc—a) -t —ct =@ -+ (b+c—a)' -
> 4b*(a —b) +4c*(b+c—a—c)
=4(a—b)(b* - ) > 0.
Thus, it suffices to show that
a*la* + (b+c—a)* <2,
which is equivalent to f(a) < 2, where
f(a) =a®+a*(3 —2a)*, 0<a<l.

If f'(a) > 0 for 0 < a < 1, then f(a) is increasing, hence f(a) < f(1) = 2. From the
derivative

f'(a) = 4a*[2a* — (4a — 3)(3 — 2a)?],

we need to show that
2a* > (4a — 3)(3 — 2a)*.

This inequality is true for the trivial case 0 < a < 3/4. Consider further that 3/4 < a < 1.
We need to show that h(a) > 0, where

h(a) =In2+4Ina —In(4da —3) —3In(3 —2a), 3/4<a<Ll

trom Y 6 6(7a — 6)
Wla) = = — — @
(a) a 4a—3+3—2a a(4a —3)(3 — 2a)’

it follows that h(a) is decreasing on (3/4,6/7] and increasing on [6/7,1]. Thus,

6 6 3 9 32
> — ) =mIn24+4ln-—In-—-3ln-=In— .
h(a)_h(7> n2+ ny—lng 3n7 n27>0

The equality holds for a =b=c¢=1.
(b) Since a* + b* < (a + b)*, it suffices to show that
ta+b)t <1,
which is true if
cla+b) <1.

Indeed, we have
l—cla+b)=1—c(2—¢c)=(c—1)>>0.

The equality holds for a =0 and b =c = 1.
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P 2.55. Let a,b, c be nonnegative real numbers such that
a<b<e a+b+c=3.

Find the greatest real number k such that

/(5602 4 25)(56¢2 4 25) + k(b — ¢)? < 14(b + ¢)* + 25.
(Vasile Cirtoaje, 2014)
Solution. For a = b =0 and ¢ = 3, the inequality becomes
1154+ 9k < 126425, k<4

To show that 4 is the greatest possible value of k, we need to prove the inequality

V(5602 + 25)(56¢2 + 25) + 4(b — ¢)? < 14(b + ¢)* + 25,

which is equivalent to

V/ (5602 4 25)(56¢2 4 25) < 10(b* 4 ¢?) + 36bc + 25.
By squaring, the inequality becomes as follows:
(10b% 4 10¢® 4 36bc)* — 56°b*c* > 50[28(b* + ¢*) — (106> + 10¢* + 36bc)],

20(b — ¢)?(5b% 4 5c? + 46bc) > 900(b — c)?,
20(b — ¢)*(5b* + 5c* + 46bc — 45) > 0.

Therefore, we need to show that
5(b+ ¢)? + 36bc — 45 > 0.
From (a —b)(a —¢) > 0, we get
be > a(b+c) —a*=a(3 —a) — a* = 3a — 2a°.
Thus,
5(b+ ¢)? + 36bc — 45 > 5(3 — a)? + 36(3a — 2a*) — 45 = a(78 — 67a) > 0.

The proof is completed. If k = 4, then the equality holds for a = b = ¢ = 1 and also for

a=0b=0and c=3.
O

P 2.56. Ifa > b > c > 0 such that abc = 1, then

3(a+b+c) < 8+%.

(Vasile Cirtoage, 2009)
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Solution. Write the inequality in the homogeneous form

3(a+b+c) gl

, <8+ —,
v abe c
which is equivalent to
(3 4+ 0B L 23 3
(z"+y +Z)<8—|——3, r>y>z2>0
TYz

We show that

3.3 1 53 3 3 3
x+y+z§x + 2z 1 8+x_ '
3 23

Tyz xz?

Write the left inequality as
(y = 2)[z° + 2% —yz(y + 2)] > 0.
This is true since
P42 —yzly+2) 2+ 2 gy +2) = (y+2)(y - 2)° > 0.
Write the right inequality as
(x — 2)(z® — 202 — 2227 + 62°) > 0.
This is also true since
23— 2222 — 2222 +62° = (v — 2)® + 2(2® — brz + 72%) > 0.

The equality holds for a =b=c=1.

P 2.57. Ifa>b>c>0, then

(a+b—c)(a®b — b*c + c*a) > (ab — be + ca)®.

Solution. Making the substitution
a=p+1le, b=(¢+1)c, p=q=0,

we get
a+b—c=(p+q+1)c,
a*b — Ve + fa = (PP + p* + 2pg — ¢ + 3p — g + 1),
ab — be + ca = (pg + 2p + 1)
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Thus, the inequality becomes
(P+q+D@Pq+p"+2pg— " +3p—q+1) > (pg+ 2p + 1),
which is equivalent to the obvious inequality
P a+1)+¢*(p—q) +2q(p —q) > 0.

The equality holds for a = b = c.

]
P 2.58. Ifa>b>c>0, then
ab+be 1+ V3
a? +b2+c2 - 4
Solution. Denote
1
F=1TY3 s,
4
and write the inequality as E(a,b,c) > 0, where
E(a,b,c) = k(a® + b* 4 ¢*) — ab — be.
We show that
E(a,b,c) > E(b,b,c) > 0.
We have
E(a,b,c) — E(b,b,c) = (a — b)[ka — (1 = k)b] > 2k —1)(a —b)b >0
and
E(b,b,c) = (2k — 1)b* + kc* — be > 2y/k(2k — 1)bc — be = 0.
1
The equality holds for a = b = +2\/§c.
O

P 2.59. Ifa>b>c>d>0, then

ab + be + cd <2+ﬁ
>+ +ct4+d> - 6
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Solution. Write the inequality as F(a,b,c,d) > 0, where

S

2+

E(a,b,c,d) = k(a®> + >+ +d*) —ab—bc—cd, k= 5

~ 0.774.

We show that
E(a,b,c,d) > E(b,b,c,d) > E(c,c,c,d) > 0.

We have
E(a,b,c,d) — E(b,b,c,d) = (a —b)[ka— (1 — k)b] > (2k — 1)(a — b)b > 0,
E(bb,c,d) — E(c,c,e,d) = (b—c)[(2k — 1)b— (2 — 2k)c] > (4k — 3)(b—¢)c > 0

and
E(c,c,c,d) = (3k — 2)c + kd® — ed > 2+/k(3k — 2)ed — ed = 0.
2
The equality holds for a =b=c= +3\/7d.
]
P 2.60. If
a>1>b>c>d=>0, a+b+c+d=4,
then

ab + bec + cd < 3.
Solution. Write the inequality in the homogeneous form E(a, b, ¢,d) > 0, where
E(a,b,c,d) = 3(a+b+c+d)* —16(ab+ bc + cd).
From
a+b+c+d=42>4b,

we get
a>3b—c—d.

We will show that
E(a,b,c,d) > E(3b—c—d,b,c,d) > 0.

We have
E(a,b,c,d) — E(3b — ¢ —d,b,c,d) = 3[(a+ b+ c+ d)* — (4b)*] — 16b(a — 3b + ¢ + d)
=(a—3b+c+d)(3a — b+ 3c+3d) > 0.
Also,
E(3b—c—d,b,c,d) = 48b* — 16(3b* — bd + cd) = 16d(b — ¢) > 0.

The equality holds for
a€l2,3, b=1, ¢c=3—a, d=0.
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P 2.61. Let k and a, b, c be positive real numbers, and let

ko101 ko1 1
E = AT F— 2 2 AN (AT I
(ka+b+c)(a+b+c>, (ka”+0b +C)(a2+b2+62>
(a) If k> 1, then
F — (k—2)? E — (k —2)?
—_— 2>
ok 7T o
(b) If0 <k <1, then
F—k2+2>E—k2
k41 ~ k+1

(Vasile Cirtoaje, 2007)

Solution. Due to homogeneity, we may assume that bc = 1. Under this assumption, if we

denote
1 1 1
r=a+—-, yYy=b+-=cH+ -
a b c

1 1
E=(karor i) (Evpsl
b a b

= (ka+y) (§+y>

= k* + kay + 3

1 k 1
2 2 2
F = <k:a +b +—b2> (—a2+b +_52)

k
:(ka2+y2—2) (?+y2—2)

=24+ k(2® —2) (2 — 2) + (v* — 2)%

(x> 2,y >2), then

and

(a) Write the inequality as
2kF — 2k(k —2)* > (B — k* — 4)°.

We have
E—k —4=kxy+y*—4>0,

(B —k* —4)* = B*2%y* + 2kay(y? — 4) + (y* — 4)%,
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and
F—(k—=2)" =4k + k(z* = 2)(y* = 2) + ¢*(v* — 4),

2kF — 2k(k — 2)? = 8k* + 2k* (2 — 2)(y* — 2) + 2ky* (v — 4).

Therefore,

2kF — 2k(k —2)* — (B — k* — 4)? = (y* — 4)[k*(2* — 4) — 2ky(z —y) — (y* — 4)].
Since y?> — 4 > 0, we still need to show that

K2 (a? —4) = 2ky(z —y) > ¢ — 4
We will show that
k(2% —4) = 2ky(z —y) > (2" —4) = 2y(x —y) > y* — 4.
The right inequality reduces to (x — y)? > 0, and the left inequality is equivalent to
(k= D[(k+1)(2* = 4) = 2y(z —y)] > 0.

This is true because

(k+1)(z% —4) —2y(z —y) > 2(2* —4) —2y(z —y) = 2(x —y)* + 2(xy — 4) > 0.
The equality holds for b = ¢. If k = 1, then the equality holds for a = b or b = ¢ or ¢ = a.

(b) Write the inequality as

(k+1)(F - k) > (E—k* -2k —2).

We have
E—k —2k—2=k(zy—2) +y*>—2>0,
(B —k* =2k —2)* = B*(vy — 2)* + 2k(2y — 2)(y* — 2) + (y° — 2)%,

" (k+1)(F = k) = k*(2* = 2)(y* = 2) + k(y* = 2)(2” +y* = 4) + (y° — 2)*.
Thus,
(k+1)(F—k*) — (B —k* =2k —2)> =k(z —y)*(y* — 2k — 2)
> k(z —y)*(y* —4) > 0.
If 0 < k < 1, then the equality holds for a = b or a = c.

P 2.62. If a,b,c are positive real numbers, then

a b 25¢

> 1.
%160 Teta  9a+8h
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Solution. By the Cauchy-Schwarz inequality, we have

@ b N 25c (a+ b+ 5c)?
20+6¢c  Tc+a 9a+8b — a(2b+ 6¢) + b(7c+ a) + ¢(9a + 8b)°

Therefore, it suffices to show that
(a+ b+ 5¢)* > 3ab + 15bc + 15ca,

which is equivalent to
a’® + b* + 25¢2 — ab — 5be — 5ca > 0.

Indeed, we have

2(a® +b* + 25¢* — ab — 5bc — 5ca) = (a — b)* + a® + b? + 50¢® — 10bc — 10ca
= (a—b)*+ (a —5¢)* + (b —5¢)* > 0.

P 2.63. If a,b,c are positive real numbers such that

1
+_a
C

ISEN
S|

>

then
1 1 1 55
>

a+b+b+c+c+a_ 12(a+b+c)

(Vasile Cirtoaje, 2014)

Solution. Denote

be
T = , a<uwx,
b+c
and write the desired inequality as
a+b+c S ﬁ)
b+c 12
a b c 19
>

b—i—c+ c+a+ a+b 12
Using the Cauchy-Schwarz inequality
2
b L (b+c) |
c+a a+b " blct+a)+cla+b)

it suffices to show that
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where
a (b+c)?
Fl(a,b,c)= )
(@50 = e st o) + 2
We will show that
1
Flab.e) > Fla,be) > o
Since
1 (b+c)?

F(a,b,c) — F(x,b,c) = (x —a) |—

btc  (a(b+o) + 260 @b+ o) +20) |
we need to prove that
(b+ ) > [a(b+ ¢) + 2bc][(x(b + ¢) + 2bc].

Since
a(b+ c¢) + 2bc < z(b+ c¢) + 2bc,

it is enough to show that
(b+¢)* > 2(b+ c) + 2bc,

which is equivalent to the obvious inequality
(b+¢)* > 3be.

Also, we have

19 be (b+c)> 19  (b—c)?(4b* + bbc + 4c¢?)
F(z,b,¢) — — = - == > 0.
O A v Rl s A TR D 12be(b + c)?2 =0

The equality occurs for 2a = b = c.

P 2.64. If a,b, c are positive real numbers such that

1
+_a
C

S =

Q|-

>

then
1 1 1 189

> .
a? + b? * b? + 2 * 2+ a? ~ 40(a® + b+ 2)
(Vasile Cirtoaje, 2014)
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Solution. Denote

and write the desired inequality as
Za2+b2+02>189
b24c2 T 407
a? n b? n c? S 69
2+c2 24a? a2+ T 40
Using the Cauchy-Schwarz inequality
b2 N C2 - (b2 + 62)2
24a?  a?4+b T (A +a?)+ A+ )

it suffices to show that

F(a,b,c) > %,
where ) (b2 2)2
a +c
Fl(a,b,c) = )
(,6,¢) P a?(b + c2) 4+ 2b%c2
We will show that 69
F(a,b,c) Z F(l’,b,C) Z TN
40
Since
1 (b + )3

F(a,b,c) — F(x,b,c) = (2* — a?)

PrE @R 1) T 20) (@2 1 3) 1 2B |
we need to prove that
(b + ) > [a® (b + 2) + 202 [22 (b + &) + 2b%C7).
Since
a?(b* + ) + 2% < 22 (b + ¢2) + 2677,

it is enough to show that

(b2 + 62)2 > .172(52 4 02) =+ 2b262,
which is equivalent to

(b* + M) (b +c)* > B (b + P).
This inequality follows from b* + ¢* > b?c? and (b + ¢)* > b* + ¢*. Also, we have
x? (V% + 2)?

F(z,b,c) = 2+ 2B+ ) + 2022

Since
2% < 4:172(62 + 02),
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we have ) (62 2)2 |
T +c t
F(x.b.c) > —_ -2
(= ’C)_b2+02+5x2(b2+02) T
where 2 )
t= tc > 8.
x
Therefore,
69 1 ¢t 69 (t—8)(8 —5)
Flr.bec)——=>-4+ - - = = > 0.
(b0 - 52775 10 40t =

The equality occurs for 2a = b = c.

P 2.65. Find the best real numbers k,m,n such that
(Va+ Vo +Ve)lWa+b+c > ka+mb+ ne

foralla>b>c>0.

Solution. Fora=1and b=c=0,fora=b=1and ¢c=0, and fora=b=c=1, we get
respectively
E<1, k+m<2V2, k+m+n<3V3,

which yield
ka +mb+nc=k(a—b)+ (k+m)(b—c)+ (k+m+nz)c
<a-b+2vV2(b—c)+3V3c¢
=a+(2V2—1)b+ (3V3 - 2V2)c.

Therefore, if the following inequality holds

<\/5+¢5+\/E> Va+b+c>a+(2vV2—-1)b+ (3V3 - 2v2)c,

then

k=1, m=2V2-1 n=3V/3-2V2
are the best real k, m,n. Since
<\/E+\/l3+ \@2 =a+ (2\/%+b> + (2\/%+2\/%+c) > a+ 3b+ 5c,
it suffices to show that
(a+3b+5c)(a+b+c)>[a+ (2vV2 - 1)b+ (3V3 — 2v/2)c],
which is equivalent to the obvious inequality
(3 —2v2)b(a —b) + (34 2V2 — 3V3)c(a — b) + 3(5 — 2v6)c(b — ¢) > 0.

Ifk=1, m=2vV2—1, n=3V3—2v2, then the equality holds for a = b = ¢, for a = b
and ¢ =0, and for b=c = 0.
O
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P 2.66. Let a,be (0,1] , a<b.

(a) If a < é, then
2a% > a’ + b%;
(b) If b > é, then
20" > a” + b,
(Vasile Cirtoaje, 2012)
Solution. (a) We need to show that f(a) > f(b), where

flz) =a"+2" =z €la,b.
This is true if f(z) is decreasing; that is, if f’(z) < 0 on [a,b]. Since the derivative
fl(r) =a(x* ' +a* tIna) < a(z* ' —a*t),

it suffices to show that
:L,a—l < aa;—l

for 0 < a <z < 1. Consider the non-trivial case 0 < a < x < 1, and write the inequality as
g(x) = g(a), where

Inz

It suffices to show that ¢'(z) > 0 for 0 < < 1. We have

, h(x) 1
= =——1+Inx.
J(@) = g h@) =~ 1+
Since ]
/ T —
B (z) = o <0,

h(z) is strictly decreasing, h(xz) > h(1) = 0, ¢’(z) > 0. This completes the proof. The
equality holds for a = b.

(b) We need to show that f(b) > f(a), where
flx) =2 +b", x€la,b).
This is true if f(x) is increasing; that is, if f’(x) > 0 on [a,b]. Since the derivative
() = bz + 0" nb) > b2t — b,

it suffices to show that
xb*l Z b:t*l

for 0 <z <b < 1. As we shown at (a), this inequality is true. The equality holds for a = b.
O
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1
P 2.67. ]f(]gagbcmdbzé, then

26%° > a® + b*.
(Vasile Cirtoaje, 2012)
Solution. We need to show that f(a) < f(b), where
flx) =2+, x€]0,b].
From the derivative
f(x) =20 26 In*b+ (20 — 1)2® 7] >0, =z € (0,0],
it follows that f(z) is convex on [0, b]. Therefore, we have

f(a) < max{f(0), f(b)}.

From this, it follows that f(a) < f(b) if f(0) < f(b). To prove that f(0) < f(b), we apply
Bernoulli’s inequality as follows:

f) = f0)=20" —1=2[1+(b-1)]* -1
> 2[1+2b(b—1)] —1=(20—1)*>0.

1 1
The equality holds for a =b > 27 and also for a =0 and b = 3

P 2.68. Ifa>b>0, then

(a) a1y “J;;
. 3(a—0b)
(b) vt >1-— Vi

(Vasile Cirtoaje, 2010)

Solution. (a) Write the inequality as

—b
(a—b)lna—l—ln(l—i—a )20,

which follows by adding the inequalities

a—>b a—b (a—0)?
In 1 — >
n( + \/5> \/E+ 0 >0,
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_ )2
(a—b)lna+a b_la=b) > 0.

Va 20—

Denoting
a—>b

Vi

we can write the first inequality as f(z) > 0 for x > 0, where

T

2

f(zx) zln(l—l—x)—a:—b—%.

From the derivative

12

/ — > O
flo) =1t >
it follows that f is increasing, hence f(z) > f(0) = 0.

The second inequality is true if

)

1 a—2b
Ina+ — —

Vva o 2a T

It suffices to prove that g(a) > 0, where

From 2\/_ .
a —

gla) =22,
av/a

it follows that ¢ is decreasing on (0, 1/4] and increasing on [1/4, 00); therefore,

1 3
> — — - — .
g(a) 9(4) =3 In4 >0

The equality holds for a = b.

3(a —b)
4/a

—3b
(a—b)lnazln(l—gi\/c_? ),

(b) Consider the non-trivial case 1 — > 0, write the inequality as

and prove it by adding the inequalities

3a — 3b 3(a—0b)
Ozln(l— a )—1—

3(a—0)
4/a

(a—b)lna+
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Denoting

$:3(a—b) 0<z <1,

g

we can write the first inequality as f(z) < 0, where

f(x) =1In(1 — x) 4 =.

From the derivative
T

/ — - < 0
it follows that f is decreasing, hence f(x) < f(0) = 0.

The second inequality is true if g(a) > 0, where

g(a) =Ina+ 3

na

From the derivative
it follows that

The equality holds for a = b.

P 2.69. If a,b,c are positive real numbers such that
a>b>c, ab20321,

then
1 2 3
a+2b+3c>—+ -+ —.
a b ¢

(Vasile Cirtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality
3 1 2 3
a+ 2b+ 3¢ > Vab%c? ——1—5—1—— )
a c

Replacing a, b, ¢ with a3, b3, ¢3, the inequality becomes as follows:

bQ3 2 3
a3+2b3+3632—2+%+3ab2,
a

3
a® + 26 — 3ab® > CTb(2a3 —3a*b + b?),
a
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(a —b)*(a + 2b) > ac_;b(a —b)*(2a +b).

Thus, we need to show that
a®b(a + 2b) > 3(2a +b)
for a > b > c. Since ¢ < ab?, we have
a®b(a + 2b) — ¢*(2a + b) > a®b(a + 2b) — ab*(2a + b) = ab(a® — b*) > 0.

The equality occurs fora =b=1/c > 1.

P 2.70. If a, b, c are positive real numbers such that
a+b+c=3, a<b<eg,

then L 9
—+>a+ b+
a b

(Vasile Cirtoaje, 2020)

Solution. Let 1 9
fla,b,c) = a—l—g —a® -V -2
We will show that
f(a7b7c) Z f(a7$’x) Z 07
where
B b+c B 3—a

T 2

Since 5 o9
fla,b,¢) — fla,z,z) = i (b* + & — 22%)

20c—b) (c—b)? (c—Db)(b*>—bc*+4)

b(b+ c) 2 2b(b + ¢) ’

we need to show that
b —b2+4>0.

Since b+ ¢ < 3, we have
b —b+4>0 —b(3—b)?+4=060"+4—9b> (4V/6 —9)b > 0.
Also, since a < 1, we have

1 2 1 4 1
fla,z,2) ==+=—a>—22° =~ + 2
a x a 3—a

a' —5a* 4+ 90> —Ta+2 (1—a)*2—a)
a(3 —a) a3 —a) -

The equality occurs for a =b=c = 1.
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P 2.71. If a, b, c are positive real numbers such that

a+b+c=3, a<b<eg,
then 9 3 1

ST - >2a+ 0+ A

a b ¢

(Vasile Cirtoaje, 2020)

Solution. From
a<b=3—a-—c,

we get
3—c
a< .
- 2
For fixed b, write the inequality as f(a) > 0, where
2 3 1
f(a):a+g—|—z—2(a2+b2+c2), c=3—a—b.
We have
/ 2 1 1
Fla)= -2t &=L rac-20@),  gl) =20+ &
Since 5
g/(a):2_$§07

g(a) is decreasing, hence

nd 1 3 7¢2 + Ge — 9
)< = +4c—2g (2=C) =6(c—1)— £ 27
Pl < 5 te-29 (255) ot - - RS
16,_, —2_
<6(c—1)— 8—1(76 +6c—9) = §(56C + 171 — 195¢)

< g—f(zx% — 65)c < 0.
Therefore, f(a) is decreasing. On the other hand, from a < band b < ¢ =3 —a — b, we get
a <b, a<3—2b.
There are two cases to consider: b € (0,1] and b € [1,3/2).
Case 1: b € (0, 1]. Since a < b, we have

f(a) > f(b) :%+%—2(2b2+02), c=3—2b,
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hence . )
ST  o1)2
fla) > b+3—2b 4b° — 2(3 — 2b)
3(5 — 3b) 9
=— - —3(4b"—8b+6
TEEEI +6)
3(8b* — 28b* 4 360> — 21b 4 5)
b(3 —2b)
S 3(8b* — 270 + 356 — 21b + 5)
- b(3 — 2b)
— 1)2(8bp2 —
_ 3(b—1)%(8v* — 11b+ 5) > 0.
b(3 — 2b)
Case 2: b€ [1,3/2). Since a < 3 — b, we have
2 3 1 9 9 9
f(a)Zf(?)—b):3_2b+5+z—2(3—2b) —2(b°+¢*), c=0b,
hence 5 4
> f(3—b) = —— + - —2(3—2b)% — 4
fl@)> f(B=b) = ==+ 23— 20)
6(2—-0) 9
=——— —6(20°"—4b+3
TR +3)
~12(20* — 707 + 90 — 5b + 1)
B b(3 — 2b)
120 - 1)3(20—1)
B b(3 — 2b) -
The equality occurs for a =b=c = 1.
Remark. Since
2 n 3 N 1 <9 1 " 2
a b ¢~ \a b))’
the inequality is stronger than the one of P 2.70.
O

P 2.72. If a, b, c are positive real numbers such that
a+b+c=3, a<b<eg,

then 31 25 25
— 4+ =+ = >27(a* +b* + &),
a b c

(Vasile Cirtoaje, 2020)
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Solution. From
a<b=3—a-—c,

we get
< 3—c
a .
-2
For fixed ¢ € [1, 3),write the inequality as f(a) > 0, where a < —— and
31 25 25
f(a):——|—7+——27(a2+b2+c2), b=3—-a—c
a c

We will show that

f(a)2f<3;6) > 0.

Since a + b < 2, we have

a+b 16
>2
a?b? ~ (a+10b)3 7
therefore 31 95 97 97
f'a):—¥+§—27(2a—2b) < —¥+b—2—54(a—b)
a+b
. . L 3—c
f(a) is decreasing, hence f(a) is minimum for a = , when
3
b=3—a—c= 5 C:a.
So, we have
3 — 56 25
f( C)=—+——27(2a2+02)
2 a c
112 2 27(3 — ¢)?
= + _5 — M — 272
3—c ¢ 2
3(27c* — 135¢* 4 243¢* — 185¢ + 50)
2¢(3 —¢)
_ _ _r\2
_ 3(c—1)(3¢—2)(3c—5) >0
2¢(3 —¢) -
: 2 5
The equality occurs for a = b =c =1, and also for a = b = 3 and ¢ = 3"

Remark. Actually, the following stronger inequalities are true:

29 27 25
T4 = > 27(a® VP + P,
a b c
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28 28 25
;+7+—>27(a +b* + ). (*)
For (*), we have
28 28 25
fla)==+=—=+==-27(*+ V¥ +*), b=3-a-—c,
a b c
28 28 27 27
f’a):——+b—2—27(2a—26) <———|—ﬁ—54(a—b)
a+b
— 27(a — b) (a2b2 —2) <0
and
3—c 56 25
=202 970242
f( 2 ) a * c 7(2a )
_ 3(c—1)(3¢ —2)(3c —5)? >0
2¢(3 —¢) -
On the other hand, we can prove the inequality (*) by showing that
fla,b.¢) =2 f(z,2,c) 20,
where
28 28 25 a+b 3—c
S T | 2P =
fla,b,c) P s 7@+ +c%), =z 5 5
We have
1 1 2 9 9 9
fla,b,¢) — f(x,z,¢) =28 ( —+ - — — | —27(a" + b° — 227)
a b «x
1 56 27 2
= la—b2|—2 o7l >a—p? | — 1 >
ya=") [ab(a+b) 7} y (=0 Lb(ﬁb) ] =0
and )
56 25 _ 3(c—1)(3c — 2)(3¢ - 5)
= — 4+ = —27(222 0.
O

P 2.73. If a,b, c are the lengths of the sides of a triangle, then

a*(b+ c) + be(b® + ) > a(b® + ¢*).

(Vasile Cirtoaje, 2010)
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First Solution. Because the inequality is symmetric in b and ¢, we may assume that b > c.
Consider the following two cases.

Case 1: a > b. It suffices to show that
a*(b+c) > a(b® + c%).

We have
a*(b+c) —a(d® + ) > ab*(b+c) — a(t’ + ) = ac(b* — *) > 0.

Case 2: a < b. Write the inequality as
c(a® +b*) — c*(a — b) + ab(a® — b*) > 0.

It suffices to show that
c(a® + b*) + ab(a® — b*) > 0.

We have
c(a® +b*) + ab(a® — b*) > c(a® +b*) — abe(a + b) = c(a + b)(a — b)* > 0.
The equality holds for a degenerate triangle with a = b and ¢ =0, or a = c and b = 0.

Second Solution. Consider two cases.

Case 1: b + ¢ > a(b+ ¢). Write the inequality as
be(b? + %) > a(b + c)(b* + ¢ — be — a?).

It suffices to show that
be > b? + ¢ — be — d?,

which is equivalent to the obvious inequality
a’ > (b—c)*
Case 2: a(b+ c) > b* + 2. Write the inequality as
a(b+ c)(a* + be) > (b* + ¢*)(ab + ac — be).

It suffices to show that
a® + be > ab + ac — be,

which is equivalent to the obvious inequality

bc > (a —c)(b—a).
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P 2.74. If a,b,c are the lengths of the sides of a triangle, then

(a+b)2+(a+c)2 - (b+ c)?
2ab+ 2 2ac+b? T 2bc+ a?’

Solution. By the Cauchy-Schwarz inequality, we have

(a+b)2+(a+c)2> (2a + b+ c)*
2ab+ ¢ 2ac+ 0> 7 2a(b+c) + b2+

Therefore, it suffices to show that

(2a+ b+ ¢)? S (b+c)?
2a(b+c) + b2+~ 2bc+ a?

We will show that
(2a+ b+ c)? oo (b+c)?

2a(b+c)+ b2+~ 7 2bc+a?

(Vasile Cirtoaje, 2010)

The left inequality reduces to 4a® > (b—c)?, and the right inequality reduces to 2a® > (b—c)>.
These are true because a*> > (b—c)?. The equality holds for a degenerate triangle with a = 0

and b = c.

P 2.75. If a,b,c are the lengths of the sides of a triangle, then

a+b a+tc S b+c
ab+c2  ac+b? T be+a?

]

(Vasile Cirtoage, 2010)

Solution. Without loss of generality, assume that b > ¢. Since a + b > a + ¢ and

ab+c® — (ac+b*) = (b—c)la—b—1c) <0,

by Chebyshev’s inequality, we have

a+b a+c 1 1 1
ab+c?  ac+b? = 5[(a+b)—|—(a+0)] (ab—|—02 +ac+b2>
2(2a 4 b+ c)?
“albt+e)+ 02+
On the other hand,
b+c b+c ~ 2(b+¢)
bc+a? — b2t

1
§<b —¢)?+be
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Therefore, it suffices to show that

22a+b+c¢) S 2(b+c)
alb+c)+b2+c2 ~ b2+’

which is equivalent to a(b— ¢)? > 0. The equality holds for a degenerate triangle with a = 0
and b = c.
O

P 2.76. If a,b,c are the lengths of the sides of a triangle, then

bla+c) c(a—l—b)>a(b+c)
ac+0*  ab+c2 T be+a?’

(Vo Quoc Ba Can, 2010)
Solution. Without loss of generality, assume that b > ¢. Since
ab+c* — (ac+b*) = (b—c)la—b—c) <0,
it suffices to prove that

bla+c) cla+b) S a(b+c)
ac+b*  ac+b* T be+a?’

which is equivalent to
2bc+ a(b+ c) - a(b+c)
ac+0b* T be+a?’

2bc >a(b+c) 1 _ 1
ac+ 0% — bc+a? ac+b2)’

2bc(be +a*) > a(b+c)(b—a)(a+b—c).

Consider the nontrivial case b > a. Since ¢ > b — a, it suffices to show that
2b(bc + a*) > a(b+c)(a+b — c).

We have
20(bc + a*) — a(b+ c)(a + b — c) = ab(a — b) + ¢(2b* — a® + ac)
> —abc + ¢(2b* — a* + ac) = ac(b + ¢ — a) + 2bc(b — a) > 0.

The equality holds for a degenerate triangle with a = b and ¢ =0, or a = c and b = 0.
[
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P 2.77. If a,b,c,d are positive real numbers such that
a>b>c>d, a6203d621,

then L 2 3 ¢
a+2b+3c+6d>—+ -+ -+ -.
a b ¢ d

(Vasile Cirtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality

1 2 3 6
a -+ 2b+ 3¢+ 6d > Vab*c3ds (_+E+_+E> :
a c
Replacing a, b, ¢, d with a®, 0%, c®, d®, we need to show that
Ve 2ac®  3ab?
ad + b* + c3

ab + 2b° + 3¢5 > ( — 6) d° + 6ab*c?

for a > b > ¢ > d. By the AM-GM inequality, we have

b2’c® 2ac®  3ab? 023 facd \? [ab?\?
ad * b * c3 _626\/F.<b_4.) (?) —6=0

Since d® < ab®c?, it suffices to show that

b’ 2ac®  3ab?
+ 2

a® bt 3

a® + 205 4 3¢° > ( — 6) ab’c + 6ab*c?,

which is equivalent to
bicb 2428

a®+20° 4+ 3¢° > — + + 3a%b*,
a b2

bt 2a?
ab + 205 — 3a%p* > (E + b—C; — 3) b,
(a2 _ 62)2(2a2 + b2)c6

(a®> — b%)*(a® + 20%) > i

We need to show that
a*b?(a® + 2b%) > (2a* + b*)cP.

Since ¢® < a?b*, we have
a*b?(a® + 2b%) — (2a® + b*)c® > a*b*(a® + 20%) — (2a* + b*)a®b* = a*b*(a* — b*) > 0.
The equality occurs fora=b=c=d = 1.

Remark. By induction method, we can prove the following generalization.
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o Ifay,as,...,a, (n>3) are positive real numbers such that
ap1 > Qg > - > ay, alagagai . -afL” >1, k,=3-2"73,
then
1 2 3 6 ky,
ar +2az +3az +6ag + -+ hkpan > —+—+ —+—+--+—,
aq as as ay an
with equality for a1 = ay = -+ = a,.

For n = 3, we get the inequalities in P 2.69

P 2.78. If a,b,c,d are positive real numbers such that
a>b>c>d, abcd* > 1,

then 1 1 2 4
a+b+2c+4d> -+ -+ -+ .
a b ¢ d

(Vasile Cirtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality

11 2 4
a+b+2c+4d > Vabc2d (E+E+E+EZ>'

Replacing a, b, ¢, d with a*, b*, ¢*, d*, we need to show that

bc? 2 2ab
a* + vt + 26 > (%+£+i—4)d4+4ab02
a b3 2

for a > b > ¢ > d. By the AM-GM inequality, we have

b2 ac®  2ab bz a2 [ab\?
e T TN (‘) —i=0
Since d* < abc?, it suffices to show that
bc? 2 2ab
at + bt 4 2¢1 > i—i-%—l-i—él abc? + 4abc?
a3 b3 c2
which is equivalent to
2,4 24
at + b +2c¢* > — + — + 2a°V°,
a b2

2 2\2 4
2 212 (a® —b%)°c
(a—b)Z—azb2 ,
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(a? — B2 - V>0
a2 ) —

The equality occurs fora=b=c=d = 1.

Remark. By induction method, we can prove the following generalization.

e Ifay,ay,...,a, (n>3) are positive real numbers such that
a >ay>--->a,  aagaial---a? > 1,
then
L 1 1 2 4 9n-—2
CL1+CL2+2CL3+4(Z4+"'+2 an2—+—+—+——|—+ s
ap az az Qa4 an
with equality for a1 = ay = -+ = a,.

For n = 4, we get the inequalities in P 2.78.

P 2.79. Ifa,b,c,d, e, f are positive real numbers such that
abedef > 1, a>b>c>d>e>f, af > be > cd,

then
11 1 1 1 1
atbtec+rdtet+f>—+-+-—+=+-+.
a b ¢ d e f

(Vasile Cirtoaje, 2018)

Solution. Write the inequality as

(a+ /) (1—$)+(b+e) (1—é)+(c+d) (1—%) >0,

af =k = constant,

For

k
we claim that the sum a + f is minimum for a = — > b and f = e. Indeed, we have
e

a—i—f—g—e—a—i—f—%—e—a—e—(%—1)f—

In addition, for
cd = k = constant,

k
we claim that the sum ¢ + d is maximum for ¢ = — < b and d = e. Indeed, we have
e

—(c—e)(d—¢)

(&

<0.

c—l—d—ﬁ—e:c—kd—g—e:c—e—(E—1>d:
e e e
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Thus, it suffices to prove the inequality for f = e and d = e, that is for d = e = f. So, we

need to show that
1 1 1 3
a+btc+3d> -+ + -+
a b ¢ d

for
a>b>c>d, abed® > 1.

It suffices to prove the homogeneous inequality

1 1
a+b+c+3d> \/abcd3( +b+ +?l)

Replacing a, b, ¢, d with a3, b2, ¢, d*, we need to show that
3 .3 3 bc ca ab 3
a’+b°+c > +b—2 ——3 d° + 3abc

for a > b > ¢ > d. By the AM-GM inequality, we have

bc ca ab
——|—§+——3>0

Since d* < ¢3, it suffices to show that

b b
a+ b+ > ( C+Z§+a— 3)03+3abc,

which can be written as follows:

b 4
a’® + b + 43 >i+£+4abc

C4

(a® + %) <1 — 2—[)2) —4c(ab — c*) >0,
(ab — *)[(a® + b*)(ab + ¢*) — 4a*b*c] > 0.
It is true since
2
(a® 4 b*)(ab + &) — 4a*b?c > 2abVab (ab+ ¢?) — 4a’b’c = 2abV ab <\/@ - c) > 0.

The equality occurs for af = be = cd = 1.

P 2.80. Let a,b, c,d be nonnegative real numbers such that
a® —ab+b* = ¢ — cd + d°.

Prove that
(a+b)(c+d) > 2(ab+ cd).

(Vasile Cirtoage, 2000)
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Solution. Let
r=a’>—ab+ b= —cd+ &>

Without loss of generality, assume that ab > cd. Then,
x>ab>cd, (a+b)?=x+3ab, (c+d)*>=z+ 3cd.
By squaring, the desired inequality can be restated as
(z + 3ab)(x + 3cd) > 4(ab + cd)?.
It is true since

(x + 3ab)(x + 3cd) — 4(ab + cd)? > (ab + 3ab)(ab + 3cd) — 4(ab + cd)?
= 4ed(ab — ed) > 0.

The equality occurs for a = b = ¢ = d, and also for a = b = ¢ and d = 0 (or any cyclic
permutation).

]

P 2.81. Let a,b, c,d be nonnegative real numbers such that
a?—ab+ b= —cd+ d>

Prove that
1 1 8

< .
a2+b2+02—|—d2 ~ (a+b)?2+ (c+d)?

(Vasile Cirtoaje and Relic-93, 2021)

Solution. Let
r=a’>—ab+ b =% —cd+ &>

Without loss of generality, assume that ab > c¢d. Then, x > ab > ¢d and
A+ =x+ab, F+d=x+cd, (a+b)?*=x+3ab, (c+d)* =+ 3cd

The required inequality can be rewritten as

1 n 1 < 8 ’
r+ab  x+4+cd T 2x+ 3(ab+ cd)

3(a®b? + *d*) < 42* + 2abcd.

It is true if
3(a®V? + *d?) < 4a*b? + 2abcd,

which is equivalent to
(ab — cd)(ab + 3ed) > 0.

The equality occurs for a = b =c¢ = d.
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P 2.82. Let a,b, c,d be nonnegative real numbers such that
a> —ab+ b =c* —cd+ d>
Prove that

1 1
< .
a2~|—ab+62+02—|—cd+d2 ~ 3(a+b)(c+d)

Solution. Without loss of generality, assume that ab > cd. Let
r=a*—ab+ b =c*—cd+d*, y=ab, z=cd.
Then, x > y > z and
a>+ab+ b =242y, Ftcdt+d=2+22 (a+b)?=ux+3y,

The required inequality can be rewritten as F'(x,y, z) < 0, where

1 1 8
F(z,y,2) = + — .
(%,9,2) r+2y  x+2z  3\/(z+3y)(r+32)

We will show that
F(z,y,z) < F(z,z,z) < 0.

The left inequality is equivalent to

4 ( 1 1 )> r—y
Vi+3z\Vzr+3y 2vx) " z(z+2y)’

6(z —y) Ty
Va(r +3y)(x +32) 2z + Vo +32) — a(z+2y)
It is true if
6 S 1
V(@ +3y)(x +32) (2vz + Vo +32)  (z+2y)Va
Since x > y > z, we only need to show that
6 S 1
(z +3y) (2 +Viz) — (v +2y)Vz
which is clearly true.
The right inequality F(z,z,z) < 0 is equivalent to
1 1 4
— + S ,
3v w42z 7 3y/z(x + 3z2)

(22 + 2)%(z + 32) < da(z + 22)2

(Anhduy98, 2021)

(c+d)? =ux+3z
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It is true because
da(r +22)° — 2z + 2)*(z + 32) = 3(x — 2)2* > 0.

The equality occurs for a = b = ¢ = d, and also for a = b = ¢ and d = 0 (or any cyclic
permutation).

[]

P 2.83. Let a,b, c,d be nonnegative real numbers such that
a?—ab+ b = —cd+ d>.
Prove that

| 1 2
< .
(ac+bd) | (ad+b)t = (abtcd)

(Vasile Cirtoaje, 2021)

Solution. Due to homogeneity, we may set
a>—ab+ b= —cd+d*=1.

Let
r=ab, y=cd, s=zx+vy, p=uxy.

From 1 = a? — ab + b* > ab, we get < 1. Similarly, y < 1, hence p < 1. In addition, from
(I-2)l—y) >0,
we get
s<1+4p.

Since
(ac+ bd)(ad + be) = ab(c* + d*) + cd(a® +b*) = 2(1 +y) + y(1 + x) = s + 2p,

(ac+ bd)? + (ad + bc)* = (a® + b*)(c* + d?) + 4abed = (1 + x)(1 +y) + 42y = 1 + 5 + 5p,
(ac+ bd)* + (ad + be)* = [(ac+ bd)* + (ad + bc)2]2 — 2(ac + bd)*(ad + be)?
= (1+s+5p)" =2(s +2p)",

we need to show that
(14 s+5p)? —2(s + 2p)? <2

(s +2p)* st
that is equivalent to f(s,p) > g(s,p), where

?

f(s,p):2(1+2?p) , g(s,p) = (1 +s+5p)* —2(s +2p)? .
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Since
f(s,p) > f(1+p,p)

and
9(5,p) —g(1+p,p) = (s =1=p)B+s+11p) =2(s =1 = p)(1 + s+ 5p) = —(s — 1 —p)* <0,
it is enough to show that

fA+p,p)>g(1+p,p),

that is
2(1 + 3p)*

(1+p)*
p(1 = p)(1+3p)*(2 + 5p +p*) > 0.

The equality occurs for a = b = ¢ = d, and also for a = b = ¢ and d = 0 (or any cyclic
permutation).

> 2(1+ 3p)?,

O
P 2.84. Let a,b,c,d be nonnegative real numbers such that a > b > c¢ > d and
at+b+c+d=13, a> + 0+ + d* = 43.
Prove that
ab > cd + 3.
(PMO, 2021)

Solution (by Dozuantrong). From

1
B-a=++d*> (b+c+d)2:§(13—a)2,

W

we get
(a—4)(2a —5) <0,

5
hence 5 < a,b,c,d < 4. On the other hand, we write the required inequality as follows:

2ab > 2cd + 6,

(a+0)*— (@ +b*) > (c+d)* — (* + d*) +6,
(13—c—d)?— 43— —d*) > (c+d)*— (¢ +d*) +6,
&+ d* +60 > 13(c+d),
(c—d)? + (c+d)?+120 > 26(c + d),
(c—d)*> (c+d—6)(20 — c—d).
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Thus, it suffices to show that ¢ + d < 6, that is equivalent to a + b > 7. If a = 4, then

b d 13 —
a—l—chH—%:a—l— ¢

=T.

Consider further that ¢ < 4. From
(b—c)b—d) > 0,
we get
b — (c+ d)b+ cd > 0,

that is equivalent to
20> — 2(c+ d)b+ (c + d)* — (> + d*) > 0,

V4 (b—c—d)?—(*+d*) >0,
b + (a+2b — 13)* — (43 — a® — b*) > 0,
30* — 2(13 — a)b + a* — 13a + 63 > 0,
3b>13—a++/(4—a)(2a —5).

Note that we cannot have 3b < 13 —a — /(4 — a)(2a — 5) because this involves a contradic-
tion:

13—a=b+c+d<3b<13—a—+/(4—a)(2a—5) <13 —a.

From

3a>3b>13—a+ /(4 —a)(2a—5),

we get

4a — 13 > /(4 — a)(2a — 5),
(2a —7)(a—3) >0,

hence a > 7/2. As a consequence, we have

3(a+b—T7)=3a—T7)+3b>3(a—T7)+13—a+ /(4 —a)(2a—5)
3Vd—a (2a—7)

:\/4—a(\/2a—5—2\/4—a):

The equality occurs for a =4 and b=c=d = 3.

V2a—5+2v/4—a

Second solution (by KaiRain) To show that a +b > 7, the key is
24+ +E+dP46(ab+cd)=(a+b+c+d)’+2(a—c)(b—d)+2(a—d)(b—c)

> (a+b+c+d)?,

which gives
ab + cd > 21,

(a+b)*+ (c+d)?>a>+ b+ +d° + 42,
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(a+b)* + (13 —a — b)* > 85,
(a+b—6)(a+b—7)>0,
a+b>"1.

Hence,

+d> a2+b2—43_(a+b)2—43>

ab—cd > ab —
2

ab + 3.

P 2.85. Let a,b, c,d be nonnegative real numbers such that a > b > c¢ > d and
a+b+c+d=13, a> + 0+ 2+ d* = 43.

Prove that
83 < actbd < 169
— < ac —.
4 - - 8

(Vasile Cirtoaje, 2021)
Solution. As shown at P 2.84, we have

§§0L,b,c,al§4.
2
Since
2ac+bd) =(a+c)? +(b+d)?— (@ + b+ +d*) =(a+c)*+ (13 —a—c)* —43

=2(a+c)* — 26(a + c) + 126,

the left required inequality is equivalent to

13)°
(a%—c—?) >0,

and the right required inequality is equivalent to

8(a +¢)* — 104(a + ¢) + 335 > 0.

Since
a+b+c+d 13
at+c> —m— = — |
2 2
we only need yo show that
26 6
a+c§+T\/_.

From

(c=b)(c—d) <0,
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we get

A —(b+d)b+bd <0,

that is equivalent to
4+ (b+d—c)-b—-d*<0,

A+ (13—a—2)°+a*+c*—-43<0,
3¢ —2(13 —a)c+a*—13a+63 <0,

13—a++/(4—a)(2a—5)
3 .

c<C, C =

So, it suffices to show that

26 6
CL+C§+T\/_,

which is equivalent to

26 + 3v6 — 8a > 41/(4 — a)(2a — 5),
V6 — 2
2

(V6+2)(4—a) +

Clearly, the last inequality is true (by the AM-GM inequality).

(2a — 5) > 4+/(4 —a)(2a — 5) .

13 83
The left inequality is an equality for a+c=b+d = 5 and ac + bc = T while the right

13+ 6 13 13— 6
T,b—C—Zandd—T.

inequality is an equality for a =
P 2.86. If a,b,c,d are positive real numbers such that
a2+b2+c2+d2:4, a<b<c<d,

then )
—4+a+b+c+d=>5.
a

(Vasile Cirtoaje, 2021)

Solution. Write the inequality in the homogeneous form

a’> + b + 2 + d?
4

a? + 0% + ¢ + d?
; :

+a(a+b+c+d)25a\/

For fixed a, b, d, we need to prove that f(c) > 0, where

fle)=5a>+b*+ A +d® +4alb+c+d) —10aVa® + b2 + 2 +d2, cé€[bd.

From 10 10
F'(e) = 2c+ 4a — ac > da+ 2 — ——t
Va2 + b+ +d? 2(a? + c2)
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> 4v/2ac — 5v/ac = (4V2 — 5)v/ac > 0,

it follows that f(c) is increasing, hence f(c) > f(b). The inequality f(b) > 0 is equivalent to
5a% + 2b* + d* + 4a(2b + d) — 10ava? + 202 + d? > 0.
For fixed a and d, we need to show that g(b) > 0, where

g(b) = 5a” + 2b° + d” + 4a(2b + d) — 10aVa? + 262 + 2, b€ [a,d].

From 20ab 20ab
a a
'(b) = 4b + 8a — > b+ 8a — ——2__
g ) VEI W+ & VaZ 1 307
20v/ab
> 8vaab— 2V oy (ova— 2| Vab >0,
V2V3 V23

it follows that g(b) is increasing, hence g(b) > g(a), that is
g(b) > 150 + 4ad + d* — 10av/3a? + d2.
Thus, we only need to show that
15a* + 4ad + d* > 10av/3a? + d2.
Due to homogeneity, we may set a = 1, hence d > 1. We need to show that
(15 + 4d + d*)? > 100(3 + d?),

which is equivalent to
d* + 8d% — 54d? + 120d — 75 > 0,

(d — 1)(d® + 9d* — 45d + 75) > 0.
This is true because
d® 4 9d* — 45d + 75 > 9d* — 45d + 63 = 9(d* — 5d +7) > 0.
The equality holds for a =b=c=d = 1.
Remark. Similarly, we can prove the following stronger inequality

3 19
— b d>—.
4a+a+ +c+ad= 1

P 2.87. Ifa,b,c,d are real numbers, then
6(a®>+ b+ +d*) + (a+b+c+d)? > 12(ab+ be+ cd).
(Vasile Cirtoaje, 2005)
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Solution. Let
E(a,b,c,d) = 6(a®> +b* + A+ d*) + (a+ b+ c+d)* —12(ab + be + cd).

First Solution. We have
Ex+4+az+bx+c,z+d) =
=42 +4(2a — b — ¢+ 2d)x + T(a® + b* + ¢ + d*) + 2(ac + ad + bd) — 10(ab + bc + cd)
= (22 +2a —b—c+2d)* + 3(a® + 20> + 2¢* + d* — 2ab + 2ac — 2ad — 4bc + 2bd — 2cd)
=2r+2a—b—c+2d)?*+3(0b—c)’+3(a—b+c—d)>

For x = 0, we get
E(a,b,c,d) = (2a —b—c+2d)* +3(b—c)* +3(a—b+c—d)?*>0.
The equality holds for 2a = b = ¢ = 2d.

Second Solution. Let
r=a-—>b, y=c—d.

We have

E

[(a—b)>2+(c—d)?+ (a+b+c+d)? —12bc

(2® +v°) + [z +y+2(b+c)]* — 12bc
(x—y)?+3@+y)?’+r+y+20b+c)* —12bc
(r—y)?+4(z+y)? +4@+y)(b+c)+ (b+0)° +3(b—c)
( P+ 2z +2y+b+c)*+3(0b—c)*>0.

6
6
3
3
3

r—Yy

P 2.88. Ifa,b,c,d are positive real numbers, then

1 n 1 . 1 L 1 S 4
a?24+ab V2 +bc c24+cd d2+da T ac+bd

Solution. Write the inequality as follows:
bd
Z ac + +1 Z 87
a?+ ab

a(c+a)+b(d+ a)
Z a(a+b) =8,

c+a b(d+a)
Za—l—b—i_za(a—l—b) =8
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By the AM-GM inequality, we have

Zb(d+a) S 44 Hb(d+a)

ala+0b) ~ a(a +b)

Therefore, it suffices to prove the inequality

c+a
Za+bz4’

which is equivalent to

1 1 1 1
> 4.
(a+¢) (a+b+c+d>+<b+d) <b+c+d+a) 24

This inequality follows immediately from

1 N 1 4
a+b c+d = (a+b)+ (c+d)

and
1 n 1 S 4
b+c d+a~ (b+co)+(d+a)

The equality occurs for a =b=c =d.

P 2.89. Ifa,b,c,d are positive real numbers, then

1 1 1 1 16
+ + + > :
a(l+b)  b(l4+a) c(1+d)  dl+c) = 1+ 8Vabed

(Vasile Cirtoaje, 2007)

Solution. Let

r=Vab, y=Ved
Write the inequality as
a+ b+ 2ab c+d+ 2cd S 16

(I ta)1+b)  dlt(l+d) ~ 11 8vabed

We claim that +b+2ab 1
a a
Tz ab(1+a)(1+b) ~ ab’

and
a+ b+ 2ab 2

DA+ a)(1+0) ~ Vab+ab
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The first inequality is equivalent to ab > 1, while the second inequality is equivalent to
2
(1 - \/ab) (f . \/5> >0,

Similarly, we have

1 c+d—+ 2cd >i
V= cd(l+d)(1+d) ~ od

and
y<1 c+d—+ 2cd 2

cd(l1+d)(1+d) = Ved+cd
There are four cases to consider.

Case 1: x > 1,y > 1. It suffices to show that

Indeed, we have

Case 2: x <1,y < 1. It suffices to show that

2 n 2 S 16
r+x2 y+y? T 1+ 8xy

Putting s = z + y and p = /zy, this inequality becomes

52+ 5 — 2p? S 8
P(s+p*+1) = 1+8p?

(14 8p?)s* + s — 24p* — 10p* > 0.
Since s > 2p, we get
(1+8p?)s® + s — 24p* — 10p* > 4(1 + 8p?)p* + 2p — 24p™* — 10p*
=2p(p+1)(2p— 1) >0.
Case 3: x > 1, y < 1. It suffices to show that
1 2 16
>

+ .
z?  y+y? T 1+ 8xy

This inequality is equivalent in succession to
(14 8zy)(22% + y* +y) > 162%y(1 + y),

(14 8zy)(x — y)?* + 82y + 8xy? — 162y + 2xy + 2% +y > 0,
(1+8xy)(x —y)* + Sxy(x — 1)* + 8xy? + 2° + y > 6.
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The last inequality is true since the AM-GM inequality yields

8xy® + 2% +y > 33/8xy? - 22 -y = 3/8x3y3 = 6ay.

Case 4: x <1,y > 1. It suffices to show that

2 1 16
+— > ,
r+x2 Y2~ 1+ 8xy

which is equivalent to
(1 + 8zy)(z — y)* + 8xy(y — 1)* + 82y + y* + = > Bay.
As in the case 3, we have

82y +9? + x> 3/8x2y - y? - x = 33/8x3y3 = 6.

1
The proof is completed. The equality holds fora =b=c=d = 7

P 2.90. Ifa,b,c,d are positive real numbers such that a > b > c > d and
a+b+c+d=4,

then
ac+ bd < 2.

(Vasile Cirtoaje, 2019)
Solution. Write the inequality in the homogeneous form
(a+b+c+d)* > 8(ac+ bd).
We have
(a+b+c+d)?—8(ac+bd) =a®>+2(b+d—3c)a+ (b+c+d)*—8bd
=(a+b+d—3c)*—(b+d—3c)*+ (b+d+c)”—8bd

=(a+b+d—3c)*+8(b—c)(c—d)>0.
The equality holds for b=c=1and a +d = 2.
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P 2.91. Ifa,b,c,d are positive real numbers such that a > b > c > d and
a+b+c+d=4,
then
11 2 12, 2, 32
21=+=)>a"+b"+c +d°.
b d
(Vasile Cirtoaje, 2019)

Solution. Write the inequality in the homogeneous form

1 1
(a+b+c+d)? (3+3) —32(a* +b* + 2+ d*) > 0.

For fixed b, ¢, d, the inequality becomes f(a) > 0, with

f'(a) =3(a+b+c+d)? (% + é) — 64a.

Fora+b+c+d=4, whena=4—b—c—d<4—0b—2d, we have
1, 1 1
— > —+-=|—-4(4—-b-2
@23 (5 ) a2

:<%+%>+<3+&0—462M¢3+¢%)—®>0

Therefore, f(a) is increasing, hence f(a) > f(b). Similarly, for fixed a, b, d, the inequality
becomes g(c) > 0, with

gmg=3m+b+c+df(%+é)—6%2f%w>0

Therefore, g(c) is increasing, hence g(c) > g(d). As a consequence, it suffices to prove the
original inequality for a = b and ¢ = d. So, we only need to show that b 4 d = 2 involves

> b+ d?,

ISH

+

S =

which is equivalent to

(bd —1)* > 0.
The equality holds fora =b=c=d = 1.
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P 2.92. Let a,b, c,d be positive real numbers such that a > b > c¢ > d and
ab+ bc + cd + da = 3.

Prove that
a’bed < 4.

(Vasile Cirtoaje, 2012)
Solution. Write the desired inequality as
4(ab + be + cd + da)® > 27a’bed,

be + cd
a

3
4(b+d+ ) > 27bcd.

It suffices to show that
4(b + d)* > 27bcd.

Indeed, by the AM-GM inequality, we have

3 2
(b+d)* = (9+9+d> > 27 (g) g > 2bed.

2 2 -4

P 2.93. Let a,b,c,d be positive real numbers such that a > b > c > d and
ab+ bc + cd + da = 6.

Prove that
acd < 2.

(Vasile Cirtoaje, 2012)

Solution. Write the desired inequality in the homogeneous form
(a+ c)*(b+ d)® > 54ac*d>.

Since b > ¢, we only need to show that
(a4 c)3(c+d)® > 54a*c*d>.

By the AM-GM inequality, we have

(a+c)* = <g+g+c>3 > 27 (g) <g>c: 2—7a2c.

Thus, it suffices to show that
(c+d)* > 8ed®.

Indeed,
(c+d)* —8cd® = (c — d)(c* + 4ed — d*) > 0.

The equality holds fora =2 and b=c=d = 1.
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P 2.94. Let a,b, c,d be positive real numbers such that a > b > c¢ > d and
ab+ bc + cd + da = 9.

Prove that
abd < 4.

(Vasile Cirtoaje, 2012)
Solution. Write the desired inequality in the homogeneous form

2
(a+c)*(b+d)?* > 71—69a2b2d2.

Since ¢ > d, we only need to show that

2
a—+ + > —a )
d)3(b+ d)? 7169 2p2 2

By the AM-GM inequality, we have

= (§oged) 2o () (oo

and, similarly,
2
(b+d)* > {de

Multiplying these inequalities, the desired inequality holds. The equality occurs fora = b = 2
and c=d=1.
O

P 2.95. Let a,b, c,d be positive real numbers such that a > b > ¢ > d and
a? + b+ ¢ + d* = 10.

Prove that
2b +4d < 3¢+ 5.

(Vasile Cirtoaje, 2012)

Solution. Write the desired inequality in the homogeneous form

20 —3c+4d < \/g(a2+b2—|—c2+d2).

It is true if
5(a +b* + 2 + d*) > 2(2b — 3¢ + 4d)?.

Since a > b, it remains to show that

5(20% 4 ¢* 4 d*) > 2(2b — 3¢ + 4d)?,
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which is equivalent to

2b° + 24bc + 48cd > 13¢* + 27d* + 32bd.
Since d? < cd, it suffices to prove that

20% + 24bc + 48¢d > 13¢* + 27cd + 320bd,

which is equivalent to
20% + 24bc > 13¢® + (32b — 21c)d.

Since 32b — 21¢ > 0 and ¢ > d, it is enough to show that
20% + 24bc > 13¢? + (320 — 21c)c.
This reduces to the obvious inequality
2(b—2¢)* > 0.

The equality holds fora =b=2and c=d = 1.

P 2.96. Let a,b,c,d be positive real numbers such that a < b <c <d and

abed = 1.
Prove that ; p
a c
44 —4+-4+—-—4+-—>2 )
+b+c+d+a >2(a+0b)(c+d)
Solution. Since ; b -
bod_b_d _d=he=a)
c a ca
we only need to prove that
a b ¢ d
44—+ —4+—-—4+->2
—I—b+a+d+c >2(a+b)(c+d),

which is equivalent to
(a+b)? N (c+d)?

> 2(a + b)(c + d),

ab cd
2
(a_“’_ﬂ> > 0.
Vab  Ved

The proof is completed. The equality holds fora =b=c=d = 1.
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P 2.97. Let a,b, c,d be positive real numbers such that a > b > c¢ > d and
a®+ VP + P +d*) =(a+b+c+d)>

Prove that

a+d
< 2:
(¢) b+c —
2
) a+c§7+ \/6;
b+d 5
at+c _3++5
< .
(c) c+d — 2

(Vasile Cirtoage, 2010)

Solution. (a) Since

(a+d)(b+c)—2(ad+bc) = (a —b)(c—d)+ (a—c)(b—d) >0,

we have
a?+ 0+ +d*=(a+d)?*+ (b+c)* — 2(ad + be)
>(a+d)?+ (b+c)? —(a+d)(b+c),
hence )
“(a+b+c+d?>(a+d)?+ (b+c)—(a+d)(b+c),

a—l—d_2 a+d 1 <0,
b+ c b+c 2
from where the desired result follows. The equality holds for a/3 =b=c=d.

(b) From (a — d)(b — ¢) > 0 and the AM-GM inequality, we have

b+c+d)?
2Hac+be) < (a+d)(b+e) < O ZH ©

hence
A+ 0+ +d* = (a+c)+ (b+d)?* —2(ac+ bd)

b d)?

> (0t o)+ (bt ) - CHECED

1 b d2
glatbtetd’=(ato)’+(b+d’ - (a ZH )

<a+c 7+2\/6> <a+c 7—2\/6) <0

b+d 2 b+d 2

Y
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from where the desired result follows. The equality holds for
(3—V6la=b=c=(3+6)d
(c) Writing the hypothesis 3(a® + b* + 2 + d*) = (a+ b+ c+ d)? as
V¥ —(a+c+db+a®*+c+d> —ac—cd—da=0,

(2b — a — ¢ — d)* = 3(2ac + 2cd + 2da — a* — ¢ — d?),

it follows that
2ac + 2cd + 2da > o® + ¢ + &2,

a’? —2(c+d)a+ (c—d)* <0,
a<c+d+2Ved
Thus, it suffices to prove that

2c+d+2\/a< 3+5
c+d - 2 7

which is equivalent to

(V5 — e+ (VB + 1)d > 4ved.

This inequality follows immediately from the AM-GM inequality. The equality holds for

P 2.98. Let a,b,c,d be nonnegative real numbers such that a > b > c > d and
20>+ b+ +d*) = (a+b+c+d)>

Prove that
a>b+3c+ (2v3 - 1)d.

(Vasile Cirtoaje, 2010)

First Solution. For ¢ = d = 0, the desired inequality is an equality. Assume further that
¢ > 0. From the hypothesis 2(a* + b*> + ¢* + d?) = (a + b+ ¢ + d)?, we get

a=b+c+d=L2vVbe+ ed+ db.

It is not possible to have

a=b+c+d—2vVbc+ cd+ db,
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because this equality and a > b involve
¢ +d > 2vbe + cd + db,
(c —d)? > 4b(c+ d),
(c —d)* > 4c(c+d),
d* > 3c(c+ 2d),
which is not true. Thus, we have
a=b+c+d+2vVbe+ cd + db.
Using this equality, we can rewrite the desired inequality as
b+c+d—2Vbe+ cd+db > b+ 3c+ (2v3 — 1)d,
blc+d)+ecd>c+ (V3—1)d.
Since b > ¢, it suffices to show that

Vele+d) +ed>c+ (V3—1)d.

By squaring, we get the obvious inequality d(c — d) > 0. The equality holds for a = b and
a

c=d=0,for —=b=cand d=0, and for =b=c=d.
4 3+2v3

Second Solution (by Vo Quoc Ba Can). Write the hypothesis 2(a? + b* + ¢ + d?) =
(a+b+c+d)? as

(a—0)*+ (c—d)*>2(a+b)(c+d).

Since
a+b>(a—0b)+ 2,
we get
(@ =)+ (c—d)* > 2[(a — b) + 2c|(c + d),

which is equivalent to
(a —b)* = 2(c+d)(a—b) —3c* — 6cd + d* > 0.

From this, we get

a—b>c+d+ 2V + 2cd.

Thus, the desired inequality
a—b>3c+(2V3—1)d
is true if
c+d+2V+2cd > 3¢+ (2v/3 — 1)d,

that is,

VR +2ed > e+ (V3 —1)d.

By squaring, we get the obvious inequality d(c — d) > 0.
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P 2.99. Ifa,b,c,d, e are real numbers, then

ab + bc + cd + de < V3
a2+ +c2+d2+e2 - 27

Solution. Using the AM-GM inequality, we have

1 1 1, 2 1
a2+b2+c2+d2+62:(a2+§b2>+< b2+§2 +<§ +3d2)+<§d2+62)

> 2\/ —b2+2\/ —02+2\/ —d2 \/—d2 e?

> —(ab+bc+cd+da)

Ql

The equality holds for

aiag + aga3 + -+ -+ Gp_1Gn ™
2 2 2 < cos ’
a/1+a2+"'+axn n+1
with equality for
aq a9 Qp
o = nmw
sin -5 sin = sin %
Denoting
. 1
sin
01_2. i 1=1,2, ;n—1,
ST
we have
1
1 = COoS T 4ep_1 = —
COS i1
Ly i 1,2 2
— + ¢;41 = cos = . n—
401 (3 n + 17 ) ) Y )
hence
2 2 T
(a7 + a3+ ---+a;)cos =

1 1 1
_ (claf + 4—Cla§> + (Qa% + 4_02a§> . (Cn_lagl N 4%_1@2)
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1 1 1
> 2\/cla% : 4—Cla% + 2\/02a§ . 4—62a§ +- 4 2\/cn_1a%1 : 4cn_1a%

> a1a9 + asag + -+ ap_1a,.

[
P 2.100. Ifa,b,c,d, e are positive real numbers, then
a’b? N b2 c? N ca? 3abe
bd+ce cd+ae ad+be — d+e
Solution. Using the Cauchy-Schwarz inequality
a’b? N b2c? N ta? (ab+ be + ca)?
bd+ce cd+ae ad+be — (bd+ ce)+ (cd+ ae) + (ad + be)’
it suffices to show that
(ab + bc + ca)? 3abe
(bd + ce) + (cd + ae) + (ad +be) — d+¢’
which is equivalent to
2
(ab + be + ca) > 3abe.
a+b+c
a?(b—c)? +b*(c—a)* + c*(a—b)* > 0.
The equality holds for a = b = c.
O

P 2.101. Let a,b,c and x,y, z be positive real numbers such that
r+y+z=a+b+c

Prove that
az? + by® + ¢2® + xyz > 4abe.

(Vasile Cirtoaje, 1989)

First Solution. Write the inequality as £ > 0, where
E = az® + by® + c¢2® + zyz — dabe.

Among the numbers
zZ+x T4y

Y b Y )
2 2 2
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there are two of them with the same sign; let

pq = 0,
where
:b_ s q:C_ .
2 2
We have
b:p+ ) C:q+ y: a:$+y+2—b—c:y —p—q
2 2 9
Then,
+z r+z T+
E=(2-p—q)a®+ (p+ )2+ [+ 57 ) 22
y+z T+ z r+y
_4 o
+ xyz ( 9 p Q) (p+ 5 )<q+ 5 )
=4pq(p + q) + 2p*(x + y) + 2¢*(x + 2) + dpgx
=4’ (p+ T) + 4p? (q+ Ty) + 4pqx
=4(¢*b + p°c + pgz) > 0.
Theequalityholdsfora:y;Z,b:Z;x,c:x;y_

Second Solution. Consider the following two cases.
Case 1: 22 > 4bc. We have

az? + by? + c2* + xyz — dabe > ax® — 4abe > 0.

Case 2: 2% < 4bc. Let
u=z+y+z=a+b+c

Substituting
z=u—x—y, a=u—b—c,

the inequality can be restated as

Au? + Bu+C >0,

where

A=c,
B = (2* — 4bc) — 2¢(z +y) + w2y,
C = —(b+c)(x® — 4be) + by + c(z +y)* — zy(z +v).
Since the quadratic function Au? + Bu + C has the discriminant
D = (2° — 4bc)(2c —x — y)* <0,

the conclusion follows.
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P 2.102. Let a,b,c and x,y, z be positive real numbers such that
r+y+z=a+b+ec
Prove that

r(3x+a) yBy+b) z(3z+c¢)
+ +
bc ca ab

> 12.

(Vasile Cirtoaje, 1990)

Solution. Write the inequality as
1
az? + by? + c2* + g(a% + b%y + c¢*2) > 4abe.

Applying the Cauchy-Schwarz inequality, we have

a2x+b2y+02z2 (f+l)1+ 0)12 - a:yz(:z:—l—y—i—z)2
Sz TY + Yz + 2x
xT Yy =z

> 3xyz.

Therefore, it suffices to show that
az? + by* + c2* + xyz > 4abe,
which is just the inequality in the previous P 2.101. The equality holds for

r=y=z=a=b=c.

P 2.103. Let a,b, c be given positive numbers. Find the minimum value F(a,b,c) of

ax by cz

E(z,y,z) = + + :
y+z z+rxr TH+Y

where x,y, z are nonnegative real numbers, no two of which are zero.

(Vasile Cirtoage, 2006)

Solution. Assume that
a = max{a,b, c}.

There are two cases to consider.

Case 1: \/a < Vb+ \/c. Using the Cauchy-Schwarz inequality, we get

+y+2) —aly + 2)
E = 2: (@ yyizay z:ﬂ¢+y+@§: iZ—E:a

Z(:c+y+z)§:z<y\/_ —> a=Vab+Vbc+ ea - a+§+c
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The equality holds for
y+z z+r T+Y

va oovbp o e

that is, for

x B Y B 2
Vbve—va Vet va-vh o Jat Vb e
Case 2: \/a > Vb + \/c. Let us denote

A= (Vb+ Ve,
X:y—l—z’ Y:z+:c’ Z:x+y7
2 2 2
hence
r=Y+7-X, y=Z+X-Y, z=X+4+Y -2
We have

A b
p> 2 4 Y L =
y+z z+zx x+Yy

AV +Z-X) bZ+X-Y) cX+Y-2)

- 2X 2Y * 27
1 Y X 1/ Z Y 1/ X A

> VAb+ Ve + VeA — b — ¢ — Ve = 2Vbe.
The equality holds for z = 0 and L. \/g . Therefore, for a = max{a, b, c}, we have
z

a+b+c

\/%+\/b_c+\/a—T, Va < Vb4 /e
F(a,b,c) = i Vis Vit E

P 2.104. Let a,b,c and x,y, z be positive real numbers such that

Prove that

(a) x+y+z2\/4(a+b+c+\/%+\/%+@)+3€/abc;

(b) r+y+z>Va+b+Vb+ce+e+a.
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Solution. (a) Write the desired inequality in the form

b
(i+—+i) (x+y+z)224<a+b+c+\/%+\/b_c+\/a>+3\/3abc.

a b ¢ 2 o 9 x—ax? a(y? + 2?%)
(e s ) o - R

In addition, by the AM-GM inequality, we get

Z—>3\/E

Yz
2 2

ZM > 2(a+b+ o).
Yz

Therefore,

b
(1+—+i) (2% + 1> + 2%) > 3Vabc + 2(a + b+ ¢).
Yyz  Zr Xy

Adding this inequality to the Cauchy-Schwarz inequality

2<a +£+i> (yz+zx+my)22(\/5+\/a+\/5)2

@ zr  xy
yields the desired inequality. The equality holds for
x:y:z:v?)a:\/?)_:\/?)—c.

(b) According to the inequality in (a), it suffices to show that

4(a+b+c+\/%+\/5+\/a> > (\/a+b+\/b+c+\/c+a>2.

This inequality is equivalent to

<\/5+\/5+\/5>22 Via+b)(b+c)++/(b+c)(c+a)+/(ct+a)a+b),

which follows immediately from the inequality P 2.24 in Volume 2.

P 2.105. If a,b,c and x,y, z are nonnegative real numbers, then

2 . 2 n 2 S 9
b+c)y+2) (c+a)z+z) (a+b)(z+y) ~ b+c)z+(c+a)y+(a+b)z

(Ji Chen and Vasile Cirtoaje, 2010)
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Solution. Since
b+c)z+(c+a)y+ (a+b)z=aly+z)+ (b+ c)x + bz + cy,
we can write the inequality as

2a(y + z) + 2(b+ c)x + 2(bz + cy)
Z (b+c)(y+ 2)

2a 2(bz + cy)
b+c+zy+z_ _Z (b+c)(y+2)’
2a 2(bz + cy)
>6 l— —F—
b+c+zy+z +Z{ (b+c) y—l—z)}’
2a 2z (b—c)(y— 2)
+ >6+ )y ————.
b+c Zy—kz_ Z(b—l—C)(fU-Fz)
b—c)y—2) _1 b—c\> 1 y—2\"
ARAC A il
Z(b+c)(y+z)_2Z b+c +ZZ y+z) '
it suffices to show that
2a "‘Z Z b—c Z y—z 2
b+c y+z b+c y+z) '

which is equivalent to

297

Since

2a 2yz
b+c+zy+z_ _Z b+c _Z(y+z)2’

2a 2bc 2z 29z
>9
Z L)Jchr (b—l—c)21 +Z {y+z * (y+z)2] -
1
2(ab+bc+ca)zm+2(my+yz+zx)zm
This inequality can be obtained by summing the known inequalities (see P 1.72 in Volume
2, case k = 2)

1
4(ab+bc+ca)zm29,

1
A(zxy +yz + z1) Z P
The equality holds for a =b=cand x =y = z, and also fora =2z =0,b=cand y = z (or
any cyclic permutation).
Remark. For 2 = a, y = b and z = ¢, we get the known inequality (Iran 1996):
1 1 1 9
(a+b)? - (a+c)? * (b+c)? = 4(ab+ be + ca)
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P 2.106. Let a,b, c be the lengths of the sides of a triangle. If x,y, z are real numbers, then
(ya® 4 2b* + xc?)(za® + xb* + yc?) > (zvy + yz + 22)(a*b* + b*c + 2a?).
(Vasile Cirtoaje, 2001)

First Solution. Write the inequality as follows:
220*? + y?cta’ + 22a’h? > Z yza®(b* + ¢ — a?),

2202 + y2cta® + 22a’b? > 2abce Z yzacos A,

x? N y? N 2? - 29z cos A N 2zx cos B N 2xy cos C
a2 b2 2T be ca ab
2 2
(E—QCOSC—ECOSB> +<gsin0—zsinB> > 0.
a b c b c
The equality holds for
)

Second Solution. Write the inequality as
b2 — Br+C >0,
where
B = c*(a® +b* — )y + b*(a® = b* + )z,
C = a*[y? — (0* + & — a®)yz + b*27).
It suffices to show that
B? —4b**C <0,
which is equivalent to
APy — b%2)* >0,
where
A = 2a*b? + 20°¢* + 2¢%a® — ot — bt —
This inequality is true since

A=(a+b+c)a+b—c)(b+c—a)(c+a—101)>0.

Remark 1. For z = 1/b, y = 1/c and z = 1/a, we get the well-known inequality from P
1.168-(a):
a®b + b3c + Aa > a?b? + b2 + Pa’.
Remark 2. For x = 1/c¢% y = 1/a® and 2z = 1/b?, we get the elegant cyclic inequality of
Walker: - ) | . .
a c
3<—+—+§) > (a®+ b + %) (a—+—+—>.

2 b2 c2?
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P 2.107. If a,b, c are nonnegative real numbers such that
2(a+b+c)+ab+bc+ ca =9,
then

16
a+1

(a+1)bc+3(b+c) <
(Vasile Cirtoaje, 2021)
Solution. Assume that a is fixed, and denote

b+c
Tr =

Thus, we need to show that
(a+1)*y+6(a+1)x <16

for
9
2a+2)r+y=9-2a, 0<a<g, ?>y>0
From
2(a+2)x +2* > 9 — 2a,
we get

x> Ty, Tym=—a—2+Va®+ 2a+ 13,

with equality for 22 = g, and from
2(a+2)xr <9 —2aq,

we get
9—2a
2(a+2)’

with equality for y = 0. Write now the required inequality in the form

x < xp, Ty =

2(a+1)(a* +3a — Do+ 16 > (a + 1)*(9 — 2a).
Case 1: a? 4+ 3a — 1 > 0. It suffices to prove the required inequality for & = x,,, that is

for 2 = y. So, we need to show that (a + 1)?y + 6(a + 1)z < 16 for z? = y, when

9 —4x — z?
2 2 2=-9-2 == =
(a+2)x+x a, a 2T+ 7)

The inequality (a + 1)?z% + 6(a + 1)z < 16 is true if (a + 1) < 2, which is equivalent to

(11 — 2z — 2?)
2(1+2)

<2,

234222 —Tx+4>0,
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(x —1)*(z +4) >0.

Case 2: a®> + 3a — 1 < 0. It suffices to prove the required inequality for x = z,,, that is

for y = 0. So, we need to show that (a + 1)%y + 6(a + 1) < 16 for y = 0, when
2(a+2)r =9 — 2a.
We have
16 — (a+ 1)’y —6(a+ 1)z =16 — 6(a + 1)z
3(a+1)(9—2a) 6a*—5a+5
a+2 B a—+ 2

The equality holds for a =b=c=1.

=16 > 0.

P 2.108. If a,b,c are nonnegative real numbers such that
2(a+b+c)+ab+ bc+ca=9,

then
1 1 1 1

il acrd bid era

4
> —.
)
(Vasile Cirtoaje, 2021)
Solution. By the AM-HM inequality, we have
1 1 4 4

>
i b1 d @t )14 barl) 18

and
1 1 4

> .
ac+4 * c+4 " cla+1)+8
Thus, it suffices to show that

1 1
Hat ) +8  at)+8

1
>_>
-5

which is equivalent to
[b(a+1)+8][c(a+1)+ 8]
5 )

(a+1)%bc+ 8(a+1)(b+c) + 64
(a+1)(b+c)+162 5 )

16 > (a+1)%bc+ 3(a + 1)(b+¢),
16
a—+

The last inequality was proved at the previous P 2.107.
The equality holds for a =b=c = 1.

(a+1)(b+c)+16 >

> (a+1)bc+ 3(b+c).
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P 2.109. If a,b, c are nonnegative real numbers such that
6a* + 4a(b+ c) + be = 15,

then
4 1 1

> 3.
a2+1+b2+1+02+1_

(Vasile Cirtoaje, 2021)

Solution. For a = 0, the inequality is clearly true. Assume that a > 0 and b > ¢ > 0. For
fixed a, from

6a> + 8avbe + be < 15,

it follows that the product p = be has the maximum value when b = ¢ (for b+ ¢ = 2\/%),
and the minimum value when ¢ = 0. There are two cases to consider: p > 1 and p < 1.

Case 1: p > 1. Since

1 N 12 (b—c)*(bc — 1)
+1 2+1 bet+1  (B2+1)(c2+1)(be+1)

>0,

it suffices to show that A 5
> 3.
a’+1 + p+1~

For fixed a, p has the maximum value when b = ¢. Thus, we only need to consider the case
b = ¢, that is to show that 6a® + S8ab + b*> = 15 implies

4 2

> 3.
a2+1+b2+1_

Write the inequality in the homogeneous form

4 1 3
> .
21a? + 8ab + b2 + 3a? + 4ab + 82 — 6a2 + 8ab + b2

It suffices to prove this inequality for b = 0 and b = 1. For b = 0, the inequality is clearly
true, while for b = 1, it is equivalent to

(11a* + 8a + 11)(6a* + 8a + 1) > (21a* + 8a + 1)(3a® + 4a + 8),
3a* 4 28a” — 62a* + 28a + 3 > 0,
(a —1)*(3a® + 34a + 3) > 0.
Case 2: p < 1. Since

1 1 b+ +2 1—p?

= =1
Prl el RErlrlie +(1—p)2+(b+c)2’
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we may write the inequality in the form

1—]92 S a’? —1
(1—p)2+0+c)? ~ 2a®>+1)

For a < 1, the inequality is clearly true. For fixed a > 1, since

15 — 6a® —
ppom B=bl=p
4a

the inequality is equivalent to

32a*(1 — p?) a*—1

16a?(p —1)2+ (15— 6a® — p)? ~— a®>+ 1’
or
Ap* +Bp+C >0,

where

A= —-32d%a® + 1) — (a* — 1)(16a® + 1) = —(48a* + 17a* — 1).

Since A < 0 for a > 1, the polynomial Ap? + Bp + C has the minimum value when p is
minimum (when ¢ = 0) or maximum (when b = ¢). Thus, we only need to consider these
cases.

Sub-case 1: ¢ = 0. We need to show that

4 + L >2
a?+1 bP+1-
for ( 2
3(5b —2a 5
b= ——= 1<a®<=.
4a =3
The inequality is equivalent to
2 8a?

> 1

a? +1 + 36a4 — 164a2 + 225 — 7’

225 — 381a? 4 208a* — 36a° > 0,
(3 —2a*)%(25 — 9a*) > 0.

It is true since 45
25—9a2225—?>0.

Sub-case 2: b = c. As shown previously, for the nontrivial case b = ¢ > 0, the inequality
reduces to the obvious form

(a —1)*(3a® + 34a + 3) > 0.
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Theequalityholdsfora:b:c:1,fora:b:\/gandc:O,andfora:c: 3

2
and b = 0.

Remark. Similarly, we can prove the following generalization:

e Let a,b, c be nonnegative real numbers such that
k(k — 1)a* + 2ka(b + ¢) + 2bc = (k + 1)(k + 2),
where k > 1. Then

k n 1 n 1 >k+2
a2+1 b24+1 c24+1— 27

[k +2 [k +2
with equality fora =b=c=1, fora=>b= _kt and ¢ = 0, and for a =c = %

and b= 0.

O

P 2.110. Let ay, as, ..., a, be positive real numbers such that a; > 2as. Prove that
(5n —1)(a] + a3+ +a2) >5(a; +ag + -+ a,)*.
(Vasile Cirtoaje, 2009)

Solution. Let
a; = k?ag, k Z 2.
By the Cauchy-Schwarz inequality, we have

a+ay+-+a=k+1)a+a3+- - +ad

S (k4 Das+az+- +a,)> (a1 +az+--+a,)

> —
(122113 +n—2 k22i1+”_1
Therefore, it suffices to show that
5n —1 S 2k tn—1
5 T k241 ’

which is equivalent to the obvious inequality
(k—2)(2k—1)>0.
The equality holds if and only if £ = 2 and

3as +az+ -+ ay,)?
5a§+a§+~--+ai:< 2 s,

)

that is, if and only if
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P 2.111. If ay,as,...,a, are positive real numbers such that a; > 4as, then
1 1 1 1\?
(a1 +ax+-+a,) | —+—++— )= (n+5] .
ap Gz an 2

Solution. Setting
a; = kaQa k > 47

1+k 1 1 1\?
+— >(n+2) .
kas as an 2

the inequality becomes

[(1+/€)a2+a3—|—~--+an]( — + —

By the Cauchy-Schwarz inequality, we have

1+k 1 1 1+k 2
[(1—|—k)a2+a3+~~+an]( + +—+-~—|——)2(—+n—2> .

kas as Qn

Thus, we only need to show that

1+ k 1
L—i—ﬂ—QZn—l——,

NG 2

which reduces to

(VE—2) (2vk-1) > 0.

The equality holds if and only if £ = 4 and

ai
— =20 =a3 ="+ = a,.
5 2 3
O]
P 2.112. Supposen > 3 and aqy,as, ..., a, are nonnegative real numbers such that a1 < agy <

< ay,.
(a) Prove that

(102 + 303 + -+ Gna1 (a1+a2+-~+an1>2.

n n—1
(Vasile Cirtoaje, GM-B, 2, 2023)

(b) If k>k = ———= prove that
1+

n—2

102 + G203 + *+ - + ApQy > <ka1+a2+"'+an—1>2

n - n—2+k
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(Vasile Cirtoage, Recreatii Matematice, 2, 2023)

1
(c) If 0§k§k2:1+—n,pmfuethat
1+

n—2

(103 + a203 + -+ + An1 (a1 +'--+an_2+kan_1>2

n n—2+k

(Vasile Cirtoaje, Math. Reflections, 2, 2025)

Solution. Denote
S=ay+ -+ an_1, (n—2)a; <S5 < (n—2)ay,,

and write the inequality as follows:

n(ka; + S)?
ai1ag + asas + - - - + a,a; > m7

n(n — 1)(kay + S)?
(n —1)(a1ag + asas + - - - + ap—1a,) + (n — D)aya; > ( G +)7(L _12)2 ) .

Since the sequences (aj,as,...,a,1) and (ag,as,...,a,) are increasing, by Chebyshev’s
inequality we have

(n—1)(aras+aza3+- - -+an_10,) > (a1+as+---+an_1)(az+as+---+a,) = (a1 +5)(S+an).
Thus, it suffices to show that

n(n —1)(kay + 8)2‘

(a1 +9)(S + an) + (n — 1)aza; > Gin—27

Since a,, > 5 it is enough to prove that

n —

(a1 + ) <S+ an) L (n=DaiS _ nln - 1)(ka + 5)?

n—2 (k+n-—2)2
which is equivalent to

(n —2)(ka; + S)*

n
>
(a1+S)S+GIS_ (k+n—2)2 9

[S — (n — 2)a1](AS + nk?a;) > 0,

where
A=(k+n—-2-n(n—-2)=k*+2(n—2)k—2(n—2)>0.
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Clearly, the inequality holds if A > 0.
(a) For k =1, we have A = 1. The equality occurs for a3 = ay = -+ = a,.

(b) We have A > 0 for k > k;. The equality occurs for a; = ay = -+ = a,. If k = ky,
then the equality also occurs when a; = 0 and ay, = - -+ = a,,.

(¢) Since a,,_1a, > a>_; and a,a; > a,_1ay, it suffices to show that

n
a1ay + agaz + -+ ap_ja) +a:_ | > ——— (g ayg + ka, 1) (*F
(12 203 nll) ”1_(n—2+k)2(1 n—2 nl) ()
for aj,as,...,a,—2 € [0,a,_1], which is a weaker condition than the original 0 < a; < ay <
-+« < ap_q. For fixed a,_1, we write the inequality as F'(ay,aq, ..., a,_o) > 0, where
2 n 2
Flai, az,. .., ap—2) = a1az+asaz+- - ~+an71a1)+an,1—m'(a1+~ s Fln_pthan_1)’.
Since F'(ay,as,...,a, 2 is a concave function in each variable, it has the minimum value for
ap, g, ..., a,_2 € {0,a,}. So, due to symmetry, it suffices to prove (*) for
ap=--=a;=0, @j1=" = ap2=an1,

where j € {0,1,...,n—2}. For j = 0, the inequality (*) is an equality. For j € {1,...,n—2},
the inequality (*) is true if f(j) > 0, where

fGy=mn—-2+k?*n—j—-1)—nn—-2+k—j>=~

We will show that f(j) > 0 for all real j € [1,n — 2|. Since f is concave and j € [1,n — 2],
it suffices to show that f(1) > 0 and f(n —2) > 0. The inequality f(1) > 0 is equivalent to

>n(n — 3+ k)%, (n—2+kvVn—2>(n—-3+k)Vn,
(n—2)\/n—2—(n—3)\/ﬁ: Vvnn—2)—n+4
2

n—yvn—2

~—

(n—2+k)?*n—2

k<

I Oy SRR s

R AL S
2 V4 vn—2

The inequality f(n —2) > 0 is equivalent to

ks.

-2
(n — 2+ k)* > nk?, n—2+k>kyn, E<

SN

For n = 3, the last inequality is equivalent to k& < ks, while for n > 4 we have

n—2
vn—1

For 0 < k < ks, the equality occurs when a; = as = - -+ = a,,. For k = ks, the equality also
occurs when a; =0 and ay = - -+ = a,.
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Remark 1. Actually, k; is the least positive value of k£ such that such that

10 + Agaz + -+ + Aty (ka1~|—a2—|—---+an_1)2
- >

k+n—2

forn>3and all 0 <a; <ay <--- <a,. Indeed, fora; =0 and ay =a3 =---=a, =1,
the inequality leads to the necessary condition k& > k.

Remark 2. Actually, ks is the largest positive value of k such that such that

0103 + a203 + -+ + An1 (a1 +'--+an_2+kan_1>2

n n—2+k

form>3andall 0 < a; <ay <---<a,. Indeed, fora; =0and ay, =a3=--- =a, =1,
the inequality leads to the necessary condition & > ks.
m

P2113. If k> ky=7—2V6~2101 and a>b>c>d>e> f >0, then

(ka+b+c+d+e+f)2> ab+be+ cd +de +ef + fa
k+5 - 6 )

(Vasile Cirtoaje, Math. Reflections, 3,2025)

Solution. Since 5a —b—c—d—e— f >0 and

ka+b+c+d+e+ f S5a —b—c—d—e—f
= q —
k+5 k+5 ’

it suffices to prove the desired inequality, for k = ko, that is (k + 5)> = 24k. Write the
inequality in the homogeneous form F'(a,b,c,d,e) > 0, where

F(a,b,c,d,e) = (ka+b+c+d+e+ f)* —4k(ab+ bc+ cd + de + ef + fa).
We will show that
F(a,b,c,d,e, f) > F(S,S,S,d,e, f) > F(S,5,5,d,s,s) > 0,

where k ; F
a+b+c e+

- - - = S >d> s.

E+2 7 § 2 =a=3

We have

F(a,b,c,d,e, f)— F(S,S,S,d,e, f)
4k

=25*+d(S—c)— f(a—S) —ab— be
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>258%+d(S —c)—d(a—S) —ab—bc=25*+d(2S —a—c) — ab — be.

Since
2S_a_c:(k—2)a+2(b—c)>07
k+2
e et F(a,b,c,d,e, f) — F(S,S,S,d,e, f) E
o P e 2252—ab—bc:<k+2>2,
where

E =2(ka+b+c)* = (k+2)%b(a+c) = (2a* — ab — bc)k* +4c(a — b)k + 2(b+ ¢)* — 4b(a + ¢)
> 4(2a® — ab — be) +2(b+ ¢)? — 4b(a + ¢) = 4a(a — b) + (b—¢)* > 0.

We have

F(S,S,S,d,e, f)— F(S,S5,5,d,s,s)
4k
(e— 1)

T T 2

=52 —ef +d(s—e)+ S(s— f)

We have
F(S,S,S,d,s,s) = [(k+2)S +d+ 2s]* — 4k(25* + Sd + ds + s* + s5)

= —As® + B(S, d)S + 0(57 d)>

where A = 4(k—1). Since A > 0 and 0 < s < d, to prove the inequality F'(S, S, S,d, s,s) > 0,
it suffices to consider the cases s = 0 and s = d. For s = 0, we need to show that

[(k+2)S +d]* — 4k(2S* + Sd) > 0,

which is equivalent to
[(k—2)S —d]*>0.

For s = d, we need to show that
[(k+2)S + 3d> — 8k(S* 4 Sd + d*) > 0,

that is
(k —2)S? +2(6 — k)Sd — (8k — 9)d* > 0.

Indeed, we have
(k—2)S?4+2(6—k)Sd— (8k—9)d*> > (k—2)d*+2(6—k)d* — (8k—9)d* = (k*—14k+25)d* = 0.

The equality occurs fora =b=c=d =e = f. If k = 7T—2v/6, then the equality also occurs
for fora=b=c=d/(k—2)and e= f = 0.
O



504 Vasile Cirtoaje

P 2114. If a1 > ay > --- > a9 > 0, then

(4a1+a2—|—~~+a9)2> a1as + asas + - - - + agay
12 = 9 '

(Vasile Cirtoaje, Math. Reflections, 6, 2023)

Solution. Write the inequality as F'(ay, as,...,a9) > 0, where
F(ay,ay, ..., a9) = (4ay +ag + - -+ + ag)® — 16(ajas + agas + - - - + agay).
We will show that
F(ay,a9,a3,...,a9) > F(asg,as,as,...,a9) > -+ > Flas,as,...,as,a9) > F(ag,ag, ..., a9,a9) =0,
that is
Faj,...,a;,0i41,...,09) > F(aj11,. .., 011, Qir2,. .., a9), ie{l,2,...,8}.
Write this inequality as follows:
[(i + 3)a; + aiq + -+ ag)® — 16[(i — 1)a? + a;a;s1 + - - - + agay) >

> [(i + 4) a1 + Qiyo + -+ ag)® — 16[2'@?“ + Qip1Qipa + -+ Q9G]

(i +3)(a;i — ap1)[(i + 3)a; + (i + 5)aip1 + 2512 + - - - + 2a)

—16[(1 — 1)(a7 — a},y) + asp1(a; — @) + ag(a; — ai)] > 0,
(a; — aip1)E; >0,
where
E; = (i —5)%a; + (i* — 8i + 15) a1 + 2(i + 3)(ajye + - + ag) + 2(i — 5)ag.
Since
(i — 5)%a; + (i — 8i + 15)a;41 > (i — 5)%ap1 + (1* — 8i + 15) a1 = 2(i — 4)(i — 5)a;11 > 0,
it suffices to show that
(t+3)(ajp2+---+as)+ (i —5)ag > 0.
This is true for ¢« > 5, while for ¢ < 4 we have

(143) (a0t - ~+ag)+(i—5)ag > (i4+3)(7—i)ag+(i—5)ag > 3(i+3)ag+(i—5)ag = 4(i+1)ag > 0.
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The equality occurs for a; = as = --- = a9 = 1, and also for a; = --- = a5 = = and

ag = a7 = ag = ag = 0.

Remark. Similarly, we can prove the following generalization:

o Letn >4 be a perfect square. Then, kg = (\/n — 1)? is the least positive value of the
constant k such that

<ka1+a2—|—---+an)2> 10y + agas + - - + aua

k+n-—1 n
whenever a; > aq > - > a, > 0.
For ay = -+ = agy+1 = 1 and ag,42 = - -+ = a,, = 0, the inequality becomes
2
B L I
k+mn—1 n k+n—1 Vn

To show that kg is the least positive value of k, it suffices to prove the inequality for k& = kg,
that is to show that F'(ay,as,...,a,) > 0, where

F(ay,as, ... a,) =n(kay +ag+ -+ a,)* — (k+n—1?*(aray + azas + - - - + apay).

We will show that

F(ay,as,as,...,a,) > Flag,ag,as3,...,a,) > -
Z F(an—laan—la---aan—laan) Z F(an7ana'~->an>an) = 07
that is
F(ai,...,ai,aiﬂ,...,an) ZF(aiﬂ,...,ai+1,ai+2,...,an), 1€ {172,,’”—1}

Write this inequality as follows:
n[(i+k—1)a; + aips + - +ap)* — (k+n—1%( — Dal + aaips + - + apa) >
> n[(i + k)ai + aigo + -+ @) — (k+n = 1)2[ia},, + @iaaiso + -+ anai,

n(z + k— 1)(&, — ai+1)[(i + k— 1)(1, + (2 + k + 1)&1‘_;,_1 + 2(1,,'4_2 + -4 2(1n]
—(k+n— 16 — 1)(af — a7 1) + aiz1(a; — aiz1) + an(a; — aiz1)] > 0,

(a; — aip1)E; >0,

with

E;=Aja; + Ajrai +2n(i+k — 1)) (aa+ -+ an_q) +2n(i — k — 1)ay,,
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where

Ai=n(i+k—-12—(G—-Dk+n—13% Api=n(i+k—1)0G+k+1)—i(k+n—1)7>2

Since
(k+n—1)*=4(n — v/n)* = dnk,
we have
Ai=n(i+k—1)72—dnk(i—1)=n(i —k—1)* >0,
Aipr=n(i+k—-1)0G+k+1)—dnik=n(i—k—1)(i—k+1).
Since

Aja; + Airai > (A + Ai))ag =2n(i —k—1)(i — k) > 0,
it suffices to show that
2n(i+k—1) (a2 + - +ap1)+2n(i —k—1)a, > 0.
This is true for ¢ > k + 1, while for ¢ < k& we have
2n(i+k—1) a0+ +an1)+2n(i—k—1)a, > 2n(i+k—1)(n—i—2)a,+2n(i—k—1)a,
>2n(i+k—1)(n—k—2)a,+2n(i —k—1)a, =2n[(i —1)(n—k —1) + k(n — k — 3)]a,
> 2nk(n — k — 3)a, = 4nk(v/n —2) > 0.

For k = kg, the equality occurs when a; = ay = --- = a, = 1, and also for a; = -+ = a4
and agio =---=a, =0.

O

3
P 2.115. Prove that 1 is the least positive value of k such that

ka+b+c+d 2> ab + bc + cd + de + ea
k+3 - 5

whenevera >b>c>d>e> 0.
(Vasile Cirtoaje, Math. Reflections, 3, 2024)

Solution. Setting b = c =d = e = 1, which involves and a > 1, the inequality becomes

2 2
(k:cH—S) 22(1—1—3’ <ka+3) _122a+3_

1
k+3 5 k+3

)

(a —1)(5k*a + 3k* + 18k — 18) > 0.

It is true for a > 1 only if
5k*a + 3k* + 18k — 18 > 0.
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3
Setting a = 1, we get the necessary condition (4k —3)(k+3) >0, i.e. k> T To show that

3 3
1 is the least positive value of k, we need to prove the original inequality for k£ = T Since

ab + be + cd + de + ea < ab + be + ¢d + d* + da,
it suffices to prove that F'(a,b,c,d) > 0, where
F(a,b,c,d) = (3a + 4b + 4c + 4d)? — 45(ab + be + cd + d* + da).

We will show that
F(a,b,c,d) > F(a,b,s,s) >0,

c+d

, s > Ved > d. We have

where s =

F(a,b,c,d) — F(a,b,s,s)

T = (ab+ bs + s* + s* + sa) — (ab + bc + cd + d* + da)

c—d)(a—0)

:b(s—c)+(32—cd)+(32—d2)—l—a(s—d)Zb(s—c)+a(s—d):( > 0.

5 >
Next, for fixed a and b, we write the inequality F'(a,b,s,s) > 0 as f(s) > 0, where
f(s) = (3a + 4b + 8s)* — 45[25% 4 (a + b)s + ab).
Since f(s) is concave and s € [0, b], it suffices to show that f(0) > 0 and f(b) > 0. Indeed,
£(0) = (3a + 4b)? — 45ab = (3a — 4b)* + 3ab > 0

and
f(b) = (3a + 12b)* — 45(2ab + 3b*) = 9(a — b)* > 0.

3
For k = 7 the equality occurs whena=b=c=d=¢ > 0.

P 2.116. If a1 > ay > --- > ag > 0, then
(2(11 +ags+ -+ a7)2 > 8(a1a2 + azxas + -+ + aga,l).

(Vasile Cirtoaje, Mathproblems, 1, 2024)
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Solution. Since
aias + asas + - - -+ aga; < ajag + asas + - - - + agar + a? + araq,
it suffices to prove that F(ay,as,...,a7) > 0, where
F(ay,as,...,a7) = (2a; + as + - - - + a7)* — 8(aray + agas + - - - —I—a6a7+a$ + aray).
We will show that
F(a1,as,as,ay,as,ag,a7) > F(ag, as, as, aq, as, ag,a7) > - -+ > F(ag, ag, ag, ag, ag, ag, a7) > 0.
Since
F(ag, as, as, ag, ag, ag, a7) = (Tag + ar)* — 8(5ag + 2agar + a2) = (ag — a7)(9ag + Taz) > 0,
we only need to show that
F(ag,...,a;,Gi11, 040, 07) > Faii1, ..., 001,01, Qivo, ..., aQ7)
for i =1,...,5. Write the inequality as follows:
(i 4+ 1)a; + a1+ aipo + - +a7)® = 8[(i — 1)a; + a;ai11 + aii1Gi2 + - -+ agay + a2 + aza;] >

> [(i 4 2)ait1 + Giva + -+ a7)® — 8[iaz,, + aip1ai42 + - + agar + az + aza; 1),

(i4+1)(a; —aip1)[(t+1)a; + (i4+3)aip1 +2ai0+- - -+ 2a7] > 8(a; —aip1)[(¢ — 1)a; +ia; +aql.
Since a; — a;11 > 0, the inequality holds if
(t+ D[+ 1)a; + (i +3)ajy1 + 2a;40 + -+ - + 2a7] > 8[(i — 1)a; + ia; 41 + arl,
that is
(i —3)%a; + (i — 1)(i — 3)ajs1 +2(i + 1) (a0 + - -~ +ag) + 2(i — 3)a; > 0.
This inequality is clearly true for ¢+ > 3. It also holds for ¢ = 1 and ¢ = 2, because

(i —3)%a;+ (i —1)(i — 3)ai1 > (i — 3) %1 + (i — 1)(i — 3)ai1 = 22— 1) (3 —4)a >0

and

2(i+ 1)ag + 2(i — 3)ay > 2(i + 1)ay + 2(i — 3)ay = 4(i — 1)a; > 0.
The equality occurs when a; = as = -+ = ag, and also when a1 = ay, = az and ay = --- =
ag = 0.

Remark. Similarly, we can prove the following generalization:
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e Let n > 3 be an integer such that 2n is a perfect square. Then, kg = (\/n — 2)? is the
least positive value of the constant k such that

(ka1+a2—|—---+an_1)2 L 3+ G305 + -+ G

k+n—2 n

whenever a; > ag > -+ > a, > 0.

Setting a1 = as = -+ = agy41 = 1 and ag42 = -+ = a, = 0, the desired inequality
becomes )
k+k0 Z@’ k+k0 2\/__\/57 k‘Zko
k+mn—2 n E+n—2 Vn

To show that kg is the smallest positive value of k£, we need to show that the original inequality
holds for &k = ky. Since
(k+n—2)* =4kn

and
2
araz + azasz + - - -+ aya; < ajag + agaz + - -+ ap_20,-1 + a,_; + ap_1a1,

it suffices to prove that F'(a,as,...,a,_1) > 0, where
F(ay,ag, ... a,-1) = (kay+ag+ - Aan_ota,_1)?—4k(aiao+asas+- - +ap_o0,_1+a2_ | +ap_1a1).
We will show that

F(ay,as,as3,...,a,_1) > F(as,as,as,...,a,_1) > -+ > Flay_2,a,_2, "+ ,ap_2,a,_1) > 0.
Since

F(an_2,0n 2, ,an_9,0n_1) = [(n—=3+k)an_o+a, 1)* —4k[(n—3)a2_o+2a, 20, 1+a’_,]

= (a2 — p_1)[(n — 3 — k)a,_o + (4k — 1)a,_1] >0,

we only need to show that
F(ag, -+ ,ai,ai11, oy ey Qu1) = Flaiir, -+ Qi1 Gty Gigoy ooy Q1)
fori =1,...,n — 3. Write the inequality as follows:
[(i—14k)ai+a;1+aipo+- - '+an71]2_4k[(i_1)a?+@iai+1+ai+lai+2+' : '+an72an71+ai_1+anflai] >

> [(i+k)aiy1 + Giga+ -+ + an71]2 - 4k[ia?+1 + Ai1Qiq2 + -+ Ap—2Gp—1 + @i,1 + an-1Gi41),

(i—14k)(ai—ai1) [(i—14+k)a;+(i+1+k) a1 20500+ - A2an-1] > 4k(a;—ai1)[(i—1)(ai+air1)Fan_1],

((Ii—CLH_l)[(i—l—k)Qai+(i—1—k?) (z+1—k)a,+1+2(z—1+k)a,+2+ : -+2(i—1+k‘)an_2+2(i—1—k)an_1] Z 0.
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Since

(i—1—k)?a;+(i—1—k)(i+1—k)a 1 > (i—1—k)?a;+(i—1—k)(i+1-k)a; 1 = 2(i—k—1)(i—k)a;;1 > 0
and

20—1+k)apo+20—1—Fk)ap—1 >2(t — 1+ k)ap_1 +2(0 — 1 — k)a,—1 =4(i — D)a,_1,

the last inequality is true and the proof is completed. For k = kg, the equality occurs when
ay =as =--+ = a,, and also when a1 = as = --- = agy1 and ag10 =--- =a, = 0.
O

P 2.117. Let a,b,c,d be nonnegative real numbers such that ab + bc + c¢d = 7. Prove that

1 n 1 . 1 N 1 >3
a+1 b+1 c+1 d+1—2

(Vasile Cirtoaje, Crux Mathematicorum, 1, 2025)

Solution. By the Cauchy-Schwarz inequality, we have

[(a+1)b+ (d+ 1)c] <ﬁ + dL—i—l) > (Vb + Vo),
1 L b+ ¢+ 2vbe

a1 dF1 bte—berT
So, it suffices to show that

1 1 b+ c+2vVbe _ 3
+ + > -
b+1 c¢+1 b+ec—bec+7 2
Let b
s = —12_6, p:\/%, s> p.
We need to show that
25 42 25+ 2p

3
>
25 +p?+1 +23—p2+7 -2’
which is equivalent to ' > 0, where
F=45+8(p—1)s+3p* +4p* —22p* +4p + 7
=4(s+p—1)%+3p* +4p® — 26p* + 12p + 3.

1
For p < 50 We have

F > 3p* +4p® — 26p* + 12p+3 > —28p* + 12p + 1 = (1 — 2p)(1 + 14p) > 0.
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1
For p > 57 We have s+p—12>2p—1 > 0, therefore

F>4(2p—1)* +3p* +4p® — 26p* + 12p + 3

=3p* +4p® —10p* —dp+T=(p—1*(p+1)Bp+7) > 0.
The equality occurs fora=d =3 and b=c = 1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If aq,as,...,a, are nonnegative real numbers, then
ar+as+ -+ a, >nYaias - ap,
with equality if and only if a1 = ay =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY
Let p1,po, ..., p, be positive real numbers satisfying
prtpet--+pn=1
If ay,as,...,a, are nonnegative real numbers, then
p1 P2

p1a1 + Pado + - - 4 ppay, > aytay’ - abr,

with equality if and only if a; = ay = -+ = a,,.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If ay,as,...,a, are positive real numbers, then
1 1 1 9
(ar+ag+---+a,) | —+—+--+— ) >n7,
aq a9 Ay

with equality if and only if ay = ay = --- = a,,.

513
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers ay, as, ..., a,,

1
abtak . tak \
( 1 zn n , k 7& 0

Mk: )
Yajag - Qy, E=0

is an increasing function with respect to £ € R. For instant, My > M; > My > M_4 is
equivalent to

2 2. 2
\/a1+a2+ +an2a1+a2+ +an2"a1a2"'an2 1 1 . I
a1 a2 n
5. BERNOULLI’S INEQUALITY
For any real number x > —1, we have
a) (1+z)" >1+rzforr>1andr <O0;
b) (1+z)" <1+4rxfor0<r<I1.
If ai,as,...,a, are real numbers such that either ay,as,...,a, >0 or

—-1<ay,as,...,a, <0,

then
(1+a))(I+az) --(1+ap) >14+a+ay+---+ap.

6. SCHUR’S INEQUALITY
For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality holds
a"(a —b)(a—c)+b°(b—c)(b—a)+ "(c—a)(c—b) >0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k =1, we get the third degree Schur’s inequality, which can be rewritten as follows

a® +b* + ¢ + 3abe > ab(a + b) + be(b + ¢) + ca(c+ a),

(a+b+¢)* + 9abe > 4(a + b+ c)(ab + be + ca),
a2—|—b2+c2+9a—bc > 2(ab + be + ca),
a+b+c

(b—c)?(b+c—a)+ (c—a)*(c+a—"0b)+ (a—b)*(a+b—c) > 0.



Noncyclic Inequalities 515

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real numbers
a, b, c, and can be rewritten as follows

at + 0"+ +abe(a + b+ c) > ab(a® + b*) + be(b* + ¢2) + ca(c + a?),
a' + b + ¢t — a*V? — v*c® — *a® > (ab + be + ca)(a® + b® + ¢ — ab — be — ca),
(b—c)*(b+c—a)+(c—a)*(c+a—b)?+(a—b)*a+b—c) >0,
6abcp > (p* —q)(4qg — p*), p=a+b+ec, q=ab+bc+ ca.

A generalization of the fourth degree Schur’s inequality, which holds for any real numbers
a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a —mc)(a—b)(a—c) >0,

where the equality holds for a = b = ¢, and for a/m = b = ¢ (or any cyclic permutation).
This inequality is equivalent to

Za4 +m(m+ 2) Za2b2 +(1- mZ)acha > (m+1) Zab(a2 + b%),

> (b—c)’(b+c—a—ma)’ >0
A more general result is given by the following theorem ( Vasile Cirtoaje, 2004).

Theorem. Let

fa(a,b,c) = Za4 + az a’b® + Babcz a— vz ab(a® + b%),
where o, B,y are real constants such that 1+ a4+ = 2vy. Then,
(a)  fila,b,¢) >0 for all a,b,c € R if and only if
1+a> 7%
(b)  fala,b,¢) >0 for all a,b,c > 0 if and only if

a> (y—1)max{2,v+ 1}.

7. CAUCHY-SCHWARZ INEQUALITY

If ai,as,...,a, and by, b, ..., b, are real numbers, then
(af + a3+ +ap)(bf + b5+ -+ b7) = (arby + agby + -+ + anby)?,

with equality for
ap Gz an

b b by
Notice that the equality conditions are also valid for a; = b; = 0, where 1 <17 < n.
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8. HOLDER’S INEQUALITY

If ;; (¢ =1,2,---,m;j =1,2,---n) are nonnegative real numbers, then
H < l‘z‘j) =
i=1 \j=1
9. CHEBYSHEV’S INEQUALITY
Let a; > ay > -+ > a, be real numbers.
a) If by > by > -+ - by, then
3oz (3a) ()
i=1 i=1 i=1
b) If by < by <--- <b,, then
s (3a) (S00).
i=1 i=1 i=1
10. REARRANGEMENT INEQUALITY
(1) If a1, aq,...,a, and by, by, ..., b, are two increasing (or decreasing) real sequences,
and (iy,14s, - ,i,) is an arbitrary permutation of (1,2,--- n), then

a1by + agby + - - - + anby, > arb;, + asby, + -+ ayb;,.
(2) If ay, as, . .., a, is decreasing and by, bs, ..., b, is increasing, then
arby + aghy + -+ + apby, < arby + agby, + -+ + apby,.
(3) Let by, bs,...,b, and ¢y, ¢a, ..., ¢, be two real sequences such that
by 4+ +bpy>ei 4 top k=12 .n.
Ifa; >ay>--->a, >0, then

a1by + agby + - - - + apb, > arcy + axcy + - -+ ancy.

11. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

flaz + By) < af(z) + Bf(y)



Noncyclic Inequalities 517

for all x, y € [ and any «, 8 > 0 with o + 3 = 1. If the inequality is reversed, then f is said
to be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f is (strictly)
increasing. If f” > 0 on I, then f is convex on I. Also, if f” > 0 on (a, b) and f is continuous
on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let pi,po,...,p, be positive real numbers. If f is a convex
function on a real interval 1, then for any aq, as, ..., a, € 1, the inequality holds

pif(ar) +pafas) + -+ puflay) > g (p1a1 + poag + - - —|—pnan)
p+prt+ o, - p+pat+ 4o, '

For p; = py = - = p,, Jensen’s inequality becomes

f<a1)+f(a2)+"'+f(an)2nf(a1+a2+"'+an)'

n

12. SQUARE PRODUCT INEQUALITY
Let a, b, ¢ be real numbers, and let

p=a+b+c, qg=ab+bc+ca, r=abc,

s=+/p?*—3¢=Va®+b2+c%—ab— bc— ca.
From the identity
(@ =0)*(b = c)*(c — a)* = =271 + 2(9pq — 2p°)r + p°¢* — 4¢°,
it follows that

—20° +9pg = 200" = 39)v/P* =3¢ _ _ —20° 4+ 9pq +2(p” — 3¢)VP* — 3¢
27 = 27 !

IN

which is equivalent to

p® — 3ps? — 253 p? — 3ps? + 283
r .
27 27

IA
IA

Therefore, for constant p and ¢, the product r is minimal and maximal when two of a, b, c
are equal.

13. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A:(al,ag,...,an), a; €1,
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majorizes a decreasingly ordered sequence

B = (by,by,...,b,), b€l

then
flar) + flaz) + -+ flan) = f(b1) + f(b2) + -+ + f(bn).
We say that a sequence A = (ay,as,...,a,) with a1 > ay > -+ > a, majorizes a
sequence B = (by, by, ..., b,) with by > by > --- > b, and write it as
A B,
if
ai 2 bh

a1+a22b1+b2,

artag+- -t a1 >br+br+ -+ by,
@+ s+ = by by + by

14. VASC’S CYCLIC INEQUALITY

The following theorem gives Vasc’s cyclic inequality ( Vasile Cirtoage, 1991).

Theorem 1. If a,b, c are real numbers, then
(a* +b* + ¢*)* > 3(a®b + bc + Pa),
with equality for a = b = ¢, and also for

a b c
2

sin? 4™ sin? & sin z
(or any cyclic permutation).

A generalization of Vasc’s inequality is the following ( Vasile Cirtoaje, 2009).
Theorem 2. Let

fala,b,c) = Za4 +A2a2b2 + BachcH- CZa3b+DZab3,
where A, B,C, D are real constants such that
1+A+B+C+ D =0.
The inequality fi(a,b,c) > 0 holds for all real numbers a,b, c if and only if

3(14+A) > C*+CD + D%
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Notice that

4 — D\?
§f4(a,b,c) :(U+V+C’+D)2+3(U—V+C3 )
4
+§(3+3A—C2—CD—D2),

S = Z a’b? — Z a’be,

S ath - a’be

U= ;
S

Sab® =Y a’be

V= :
S

For A=B=0,C=—-2and D =1, we get the following inequality

where

a* + b 4+t + ab® + be + ca® > 2(a’b + bPe + Pa),
with equality for a = b = ¢, and also for

a b c

Nz Z & 7
Sln9 sm 9 sm 9

(or any cyclic permutation) - Vasile Cirtoaje, 1991.

15. CYCLIC INEQUALITIES OF DEGREE THREE AND FOUR

Consider the third degree cyclic homogeneous polynomial

3(a, b, c) Za —|—Babc—|—C’Z 2b—sz:abQ

where B, C, D are real constants. The following theorem holds.

Theorem 1. The cyclic inequality fs(a,b,c) > 0 holds for all nonnegative numbers
a, b, c if and only if
f3<1a 17 1) Z 0

and
f3(a'7 170) 2 0

for all a > 0.

Consider now the fourth degree cyclic homogeneous polynomial

1(a, b, c) Za +AZa2b2+Bacha+CZa3b+DZab?’

where A, B, C, D are real constants.



520 Vasile Cirtoaje

The following theorem states the necessary and sufficient conditions that fy(a,b,c) >0
for all real numbers a, b, c.

Theorem 2 (Vasile Cirtoaje, 2012).  The inequality fi(a,b,c) > 0 holds for all real
numbers a,b, ¢ if and only if g4(t) > 0 for all t > 0, where

gi(t) =324+A-C—-D)t'—Ft* +34—-B+C+ D)’ +1+A+B+C+ D,

F=./271(C-D)?+FE? FE=8-4A+2B—-C—D.
Note that in the special case f4(1,1,1) =0 (when 1+ A+ B+ C+ D = 0), Theorem 1 yields

Theorem 0 from the preceding section 21.

The following theorem states some strong sufficient conditions that fy(a,b,c) > 0 for all
real numbers a, b, c.

Theorem 3 (Vasile Cirtoaje, 2012).  The inequality fi(a,b,c) > 0 holds for all real
numbers a, b, c if the following two conditions are satisfied:

(a) 1+ A+B+C+D >0;

(b) there exists a real number t € (—/3,+/3) such that f(t) >0, where

f(t) =2Gt* — (6 +2A+ B +3C+3D)t* +2(1+C + D)Gt + H,

G=V1+A+B+C+D, H=24+2A-B-C-D-C?-CD - D"

The following theorem states the necessary and sufficient conditions that fy(a,b,c¢) >0
for all a,b,c > 0.

Theorem 4 (Vasile Cirtoaje, 2013). Let

E=8—-4A+2B—-C—-D, F=,/27(C—D)?+ E?,
g(t) =32+ A-C—-D)t' - Ft* +34—-B+C+ D) +1+A+B+C+ D,

2F

For F =0, the inequality fi(a,b,c) > 0 holds for all a,b,c > 0 if and only if g4(t) > 0
for all t €0, 1].

For F # 0, the inequality fi(a,b,c) > 0 holds for all a,b,c > 0 if and only if the
following two conditions are satisfied:

(a) g4(t) >0 for allt € [0,t,], where t; € [1/2,1] such that g3(t;) = 0;

(b) fi(a,1,0) >0 for all a > 0.

The following theorem states some strong sufficient conditions that fy(a,b,c) > 0 for all
a,b,c > 0.
Theorem 5 ( Vasile Cirtoaje, 2013). The inequality fi(a,b,c) > 0 holds for all a,b,c >
0 if
1+4A+B+C+D>0
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and one of the following two conditions is satisfied:
(a) 3(14+A) > C*+CD + D%

(b) 3(1+ A) < C?+CD + D? and there exists t > 0 such that
(C+2D)? + 6t +20 + D > 2y/(t4 + 2+ 1)(C2+ CD + D? — 3 — 3A).

16. VASC’S EXPONENTIAL INEQUALITY

Let 0 < k <e.
(a) Ifa,b> 0, then (Vasile Cirtoaje, 2006)

aka + bkb > akb + bka;
(b) Ifa,be (0,1], then (Vasile Cirtoaje, 2010)
2V akapkb > gk 4 pka,
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