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Chapter 1

Cyclic Inequalities

1.1 Applications

1.1. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 ≤ 4.

1.2. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(ab+ bc+ ca)(ab2 + bc2 + ca2) ≤ 9.

1.3. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) ab2 + bc2 + ca2 ≤ abc+ 2;

(b)
a

b+ 2
+

b

c+ 2
+

c

a+ 2
≤ 1.

1.4. If a, b, c ≥ 1, then

(a) 2(ab2 + bc2 + ca2) + 3 ≥ 3(ab+ bc+ ca);

(b) ab2 + bc2 + ca2 + 6 ≥ 3(a+ b+ c).
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1.5. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≥ b ≥ c,

then

(a) a2b+ b2c+ c2a ≥ ab+ bc+ ca;

(b) 8(ab2 + bc2 + ca2) + 3abc ≤ 27;

(c)
18

a2b+ b2c+ c2a
≤ 1

abc
+ 5.

1.6. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≥ b ≥ c,

then

ab2 + bc2 + ca2 ≤ 3

4
(ab+ bc+ ca+ 1).

1.7. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

a2b3 + b2c3 + c2a3 ≤ 3.

1.8. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a4b2 + b4c2 + c4a2 + 4 ≥ a3b3 + b3c3 + c3a3.

1.9. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a) ab2 + bc2 + ca2 + abc ≤ 4;

(b)
a

4− b
+

b

4− c
+

c

4− a
≤ 1;

(c) ab3 + bc3 + ca3 + (ab+ bc+ ca)2 ≤ 12;

(d)
ab2

1 + a+ b
+

bc2

1 + b+ c
+

ca2

1 + c+ a
≤ 1.

1.10. If a, b, c are positive real numbers, then

1

a(a+ 2b)
+

1

b(b+ 2c)
+

1

c(c+ 2a)
≥ 3

ab+ bc+ ca
.
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1.11. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

b2 + 2c
+

b

c2 + 2a
+

c

a2 + 2b
≥ 1.

1.12. If a, b, c are positive real numbers such that a+ b+ c ≥ 3, then

a− 1

b+ 1
+
b− 1

c+ 1
+
c− 1

a+ 1
≥ 0.

1.13. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
1

a2b+ 2
+

1

b2c+ 2
+

1

c2a+ 2
≥ 1;

(b)
1

a3b+ 2
+

1

b3c+ 2
+

1

c3a+ 2
≥ 1.

1.14. If a, b, c are positive real numbers such that a+ b+ c = 3, then

ab

9− 4bc
+

bc

9− 4ca
+

ca

9− 4ab
≤ 3

5
.

1.15. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
a2

2a+ b2
+

b2

2b+ c2
+

c2

2c+ a2
≥ 1;

(b)
a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c+ 2a2
≥ 1.

1.16. Let a, b, c be positive real numbers such that a+ b+ c = 3. Then,

1

a+ b2 + c3
+

1

b+ c2 + a3
+

1

c+ a2 + b3
≤ 1.

1.17. If a, b, c are positive real numbers, then

1 + a2

1 + b+ c2
+

1 + b2

1 + c+ a2
+

1 + c2

1 + a+ b2
≥ 2.
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1.18. If a, b, c are nonnegative real numbers, then

a

4a+ 4b+ c
+

b

4b+ 4c+ a
+

c

4c+ 4a+ b
≤ 1

3
.

1.19. If a, b, c are positive real numbers, then

a+ b

a+ 7b+ c
+

b+ c

b+ 7c+ a
+

c+ a

c+ 7a+ b
≥ 2

3
.

1.20. If a, b, c are positive real numbers, then

a+ b

a+ 3b+ c
+

b+ c

b+ 3c+ a
+

c+ a

c+ 3a+ b
≥ 6

5
.

1.21. If a, b, c are positive real numbers, then

2a+ b

2a+ c
+

2b+ c

2b+ a
+

2c+ a

2c+ b
≥ 3.

1.22. If a, b, c are positive real numbers, then

a(a+ b)

a+ c
+
b(b+ c)

b+ a
+
c(c+ a)

c+ b
≤ 3(a2 + b2 + c2)

a+ b+ c
.

1.23. If a, b, c are real numbers, then

a2 − bc
4a2 + b2 + 4c2

+
b2 − ca

4b2 + c2 + 4a2
+

c2 − ab
4c2 + a2 + 4b2

≥ 0.

1.24. If a, b, c are real numbers, then

(a) a(a+ b)3 + b(b+ c)3 + c(c+ a)3 ≥ 0;

(b) a(a+ b)5 + b(b+ c)5 + c(c+ a)5 ≥ 0.

1.25. If a, b, c are real numbers, then

3(a4 + b4 + c4) + 4(a3b+ b3c+ c3a) ≥ 0.
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1.26. If a, b, c are positive real numbers, then

(a− b)(2a+ b)

(a+ b)2
+

(b− c)(2b+ c)

(b+ c)2
+

(c− a)(2c+ a)

(c+ a)2
≥ 0.

1.27. If a, b, c are positive real numbers, then

(a− b)(2a+ b)

a2 + ab+ b2
+

(b− c)(2b+ c)

b2 + bc+ c2
+

(c− a)(2c+ a)

c2 + ca+ a2
≥ 0.

1.28. If a, b, c are positive real numbers, then

(a− b)(3a+ b)

a2 + b2
+

(b− c)(3b+ c)

b2 + c2
+

(c− a)(3c+ a)

c2 + a2
≥ 0.

1.29. Let a, b, c be positive real numbers such that abc = 1. Then,

1

1 + a+ b2
+

1

1 + b+ c2
+

1

1 + c+ a2
≤ 1.

1.30. Let a, b, c be positive real numbers such that abc = 1. Then,

a

(a+ 1)(b+ 2)
+

b

(b+ 1)(c+ 2)
+

c

(c+ 1)(a+ 2)
≥ 1

2
.

1.31. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

(a+ 2b)(b+ 2c)(c+ 2a) ≥ 27.

1.32. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

a

a+ a3 + b
+

b

b+ b3 + c
+

c

c+ c3 + a
≤ 1.

1.33. If a, b, c are positive real numbers such that a ≥ b ≥ c and ab+ bc+ ca = 3, then

1

a+ 2b
+

1

b+ 2c
+

1

c+ 2a
≥ 1.
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1.34. If a, b, c ∈ [0, 1], then

a

4b2 + 5
+

b

4c2 + 5
+

c

4a2 + 5
≥ 1

3
.

1.35. If a, b, c ∈
[

1

3
, 3

]
, then

a

a+ b
+

b

b+ c
+

c

c+ a
≥ 7

5
.

1.36. If a, b, c ∈
[

1√
2
,
√

2

]
, then

3

a+ 2b
+

3

b+ 2c
+

3

c+ 2a
≥ 2

a+ b
+

2

b+ c
+

2

c+ a
.

1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then

4abc

ab2 + bc2 + ca2 + abc
+
a2 + b2 + c2

ab+ bc+ ca
≥ 2.

1.38. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1

ab2 + 8
+

1

bc2 + 8
+

1

ca2 + 8
≥ 1

3
.

1.39. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab

bc+ 3
+

bc

ca+ 3
+

ca

ab+ 3
≤ 3

4
.

1.40. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
a

b2 + 3
+

b

c2 + 3
+

c

a2 + 3
≥ 3

4
;

(b)
a

b3 + 1
+

b

c3 + 1
+

c

a3 + 1
≥ 3

2
.
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1.41. Let a, b, c be positive real numbers, and let

x = a+
1

b
− 1, y = b+

1

c
− 1, z = c+

1

a
− 1.

Prove that
xy + yz + zx ≥ 3.

1.42. Let a, b, c be positive real numbers such that abc = 1. Prove that(
a− 1

b
−
√

2

)2

+

(
b− 1

c
−
√

2

)2

+

(
c− 1

a
−
√

2

)2

≥ 6.

1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that∣∣∣∣1 + a− 1

b

∣∣∣∣+

∣∣∣∣1 + b− 1

c

∣∣∣∣+

∣∣∣∣1 + c− 1

a

∣∣∣∣ > 2.

1.44. If a, b, c are different positive real numbers, then∣∣∣∣1 +
a

b− c

∣∣∣∣+

∣∣∣∣1 +
b

c− a

∣∣∣∣+

∣∣∣∣1 +
c

a− b

∣∣∣∣ > 2.

1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that(
2a− 1

b
− 1

2

)2

+

(
2b− 1

c
− 1

2

)2

+

(
2c− 1

a
− 1

2

)2

≥ 3

4
.

1.46. Let

x = a+
1

b
− 5

4
, y = b+

1

c
− 5

4
, z = c+

1

a
− 5

4
,

where a ≥ b ≥ c > 0. Prove that

xy + yz + zx ≥ 27

16
.

1.47. Let a, b, c be positive real numbers, and let

E =

(
a+

1

a
−
√

3

)(
b+

1

b
−
√

3

)(
c+

1

c
−
√

3

)
;

F =

(
a+

1

b
−
√

3

)(
b+

1

c
−
√

3

)(
c+

1

a
−
√

3

)
.

Prove that E ≥ F .
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1.48. If a, b, c are positive real numbers such that
a

b
+
b

c
+
c

a
= 5, then

b

a
+
c

b
+
a

c
≥ 17

4
.

1.49. If a, b, c are positive real numbers, then

(a) 1 +
a

b
+
b

c
+
c

a
≥ 2

√
1 +

b

a
+
c

b
+
a

c
;

(b) 1 + 2

(
a

b
+
b

c
+
c

a

)
≥

√
1 + 16

(
b

a
+
c

b
+
a

c

)
;

(c) 3 +
a

b
+
b

c
+
c

a
≥ 2

√
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
.

1.50. If a, b, c are positive real numbers, then

a2

b2
+
b2

c2
+
c2

a2
+ 15

(
b

a
+
c

b
+
a

c

)
≥ 16

(
a

b
+
b

c
+
c

a

)
.

1.51. If a, b, c are positive real numbers such that abc = 1, then

(a)
a

b
+
b

c
+
c

a
≥ a+ b+ c;

(b)
a

b
+
b

c
+
c

a
≥ 3

2
(a+ b+ c− 1);

(c)
a

b
+
b

c
+
c

a
+ 2 ≥ 5

3
(a+ b+ c).

1.52. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

(a)
a

b
+
b

c
+
c

a
≥ 2 +

3

ab+ bc+ ca
;

(b)
a

b
+
b

c
+
c

a
≥ 9

a+ b+ c
.

1.53. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

6

(
a

b
+
b

c
+
c

a

)
+ 5(ab+ bc+ ca) ≥ 33.
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1.54. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a) 6

(
a

b
+
b

c
+
c

a

)
+ 3 ≥ 7(a2 + b2 + c2);

(b)
a

b
+
b

c
+
c

a
≥ a2 + b2 + c2.

1.55. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
+ 2 ≥ 14(a2 + b2 + c2)

(a+ b+ c)2
.

1.56. Let a, b, c be positive real numbers such that a+ b+ c = 3, and let

x = 3a+
1

b
, y = 3b+

1

c
, z = 3c+

1

a
.

Prove that
xy + yz + zx ≥ 48.

1.57. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a+ 1

b
+
b+ 1

c
+
c+ 1

a
≥ 2(a2 + b2 + c2).

1.58. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

b
+
b2

c
+
c2

a
+ 3 ≥ 2(a2 + b2 + c2).

1.59. If a, b, c are positive real numbers, then

a3

b
+
b3

c
+
c3

a
+ 2(ab+ bc+ ca) ≥ 3(a2 + b2 + c2).

1.60. If a, b, c are positive real numbers such that a4 + b4 + c4 = 3, then

(a)
a2

b
+
b2

c
+
c2

a
≥ 3;

(b)
a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ 3

2
.
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1.61. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
≥ 3(a3 + b3 + c3)

a2 + b2 + c2
.

1.62. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
+ a+ b+ c ≥ 2

√
(a2 + b2 + c2)

(
a

b
+
b

c
+
c

a

)
.

1.63. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
+ 32

(
a

a+ b
+

b

b+ c
+

c

c+ a

)
≥ 51.

1.64. Find the largest positive real number K such that the inequalities below hold for any
positive real numbers a, b, c:

(a)
a

b
+
b

c
+
c

a
− 3 ≥ K

(
a

b+ c
+

b

c+ a
+

c

a+ b
− 3

2

)
;

(b)
a

b
+
b

c
+
c

a
− 3 +K

(
a

2a+ b
+

b

2b+ c
+

c

2c+ a
− 1

)
≥ 0.

1.65. If a, b, c ∈
[

1

2
, 2

]
, then

(a) 8

(
a

b
+
b

c
+
c

a

)
≥ 5

(
b

a
+
c

b
+
a

c

)
+ 9;

(b) 20

(
a

b
+
b

c
+
c

a

)
≥ 17

(
b

a
+
c

b
+
a

c

)
.

1.66. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a

b
+
b

c
+
c

a
≥ 2a

b+ c
+

2b

c+ a
+

2c

a+ b
.
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1.67. Let a, b, c be positive real numbers such that abc = 1.

(a) If a ≤ b ≤ c, then
a

b
+
b

c
+
c

a
≥ a3/2 + b3/2 + c3/2;

(b) If a ≤ 1 ≤ b ≤ c, then

a

b
+
b

c
+
c

a
≥ a

√
3 + b

√
3 + c

√
3.

1.68. If k and a, b, c are positive real numbers, then

1

(k + 1)a+ b
+

1

(k + 1)b+ c
+

1

(k + 1)c+ a
≥ 1

ka+ b+ c
+

1

kb+ c+ a
+

1

kc+ a+ b
.

1.69. If a, b, c are positive real numbers, then

(a)
a√

2a+ b
+

b√
2b+ c

+
c√

2c+ a
≤
√
a+ b+ c;

(b)
a√

a+ 2b
+

b√
b+ 2c

+
c√

c+ 2a
≥
√
a+ b+ c.

1.70. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a

√
a+ 2b

3
+ b

√
b+ 2c

3
+ c

√
c+ 2a

3
≤ 3.

1.71. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
√

1 + b3 + b
√

1 + c3 + c
√

1 + a3 ≤ 5.

1.72. If a, b, c are positive real numbers such that abc = 1, then

(a)

√
a

b+ 3
+

√
b

c+ 3
+

√
c

a+ 3
≥ 3

2
;

(b) 3

√
a

b+ 7
+ 3

√
b

c+ 7
+ 3

√
c

a+ 7
≥ 3

2
.
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1.73. If a, b, c are positive real numbers, then(
1 +

4a

a+ b

)2

+

(
1 +

4b

b+ c

)2

+

(
1 +

4c

c+ a

)2

≥ 27.

1.74. If a, b, c are positive real numbers, then√
2a

a+ b
+

√
2b

b+ c
+

√
2c

c+ a
≤ 3.

1.75. If a, b, c are nonnegative real numbers, then√
a

4a+ 5b
+

√
b

4b+ 5c
+

√
c

4c+ 5a
≤ 1.

1.76. If a, b, c are positive real numbers, then

a√
4a2 + ab+ 4b2

+
b√

4b2 + bc+ 4c2
+

c√
4c2 + ca+ 4a2

≤ 1.

1.77. If a, b, c are positive real numbers, then√
a

a+ b+ 7c
+

√
b

b+ c+ 7a
+

√
c

c+ a+ 7b
≥ 1.

1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)

√
a

3b+ c
+

√
b

3c+ a
+

√
c

3a+ b
≥ 3

2
;

(b)

√
a

2b+ c
+

√
b

2c+ a
+

√
c

2a+ b
≥ 4
√

8.

1.79. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

(a)
1

(a+ b)(3a+ b)
+

1

(b+ c)(3b+ c)
+

1

(c+ a)(3c+ a)
≥ 3

8
;

(b)
1

(2a+ b)2
+

1

(2b+ c)2
+

1

(2c+ a)2
≥ 1

3
.
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1.80. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 15(a3b+ b3c+ c3a) ≥ 47

4
(a2b2 + b2c2 + c2a2).

1.81. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3b+ b3c+ c3a ≤ 27.

1.82. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 =
10

3
(ab+ bc+ ca).

Prove that

a4 + b4 + c4 ≥ 82

27
(a3b+ b3c+ c3a).

1.83. If a, b, c are positive real numbers, then

a3

2a2 + b2
+

b3

2b2 + c2
+

c3

2c2 + a2
≥ a+ b+ c

3
.

1.84. If a, b, c are positive real numbers, then

a4

a3 + b3
+

b4

b3 + c3
+

c4

c3 + a3
≥ a+ b+ c

2
.

1.85. If a, b, c are positive real numbers such that abc = 1, then

(a) 3

(
a2

b
+
b2

c
+
c2

a

)
+ 4

(
b

a2
+

c

b2
+
a

c2

)
≥ 7(a2 + b2 + c2);

(b) 8

(
a3

b
+
b3

c
+
c3

a

)
+ 5

(
b

a3
+

c

b3
+
a

c3

)
≥ 13(a3 + b3 + c3).

1.86. If a, b, c are positive real numbers, then

ab

b2 + bc+ c2
+

bc

c2 + ca+ a2
+

ca

a2 + ab+ b2
≤ a2 + b2 + c2

ab+ bc+ ca
.
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1.87. If a, b, c are positive real numbers, then

a− b
b(2b+ c)

+
b− c

c(2c+ a)
+

c− a
a(2a+ b)

≥ 0.

1.88. If a, b, c are positive real numbers, then

(a)
a2 + 6bc

ab+ 2bc
+
b2 + 6ca

bc+ 2ca
+
c2 + 6ab

ca+ 2ab
≥ 7;

(b)
a2 + 7bc

ab+ bc
+
b2 + 7ca

bc+ ca
+
c2 + 7ab

ca+ ab
≥ 12.

1.89. If a, b, c are positive real numbers, then

(a)
ab

2b+ c
+

bc

2c+ a
+

ca

2a+ b
≤ a2 + b2 + c2

a+ b+ c
;

(b)
ab

b+ c
+

bc

c+ a
+

ca

a+ b
≤ 3(a2 + b2 + c2)

2(a+ b+ c)
;

(c)
ab

4b+ 5c
+

bc

4c+ 5a
+

ca

4a+ 5b
≤ a2 + b2 + c2

3(a+ b+ c)
.

1.90. If a, b, c are positive real numbers, then

(a) a
√
b2 + 8c2 + b

√
c2 + 8a2 + c

√
a2 + 8b2 ≤ (a+ b+ c)2;

(b) a
√
b2 + 3c2 + b

√
c2 + 3a2 + c

√
a2 + 3b2 ≤ a2 + b2 + c2 + ab+ bc+ ca.

1.91. If a, b, c are positive real numbers, then

(a)
1

a
√
a+ 2b

+
1

b
√
b+ 2c

+
1

c
√
c+ 2a

≥
√

3

abc
;

(b)
1

a
√
a+ 8b

+
1

b
√
b+ 8c

+
1

c
√
c+ 8a

≥
√

1

abc
.

1.92. If a, b, c are positive real numbers, then

a√
5a+ 4b

+
b√

5b+ 4c
+

c√
5c+ 4a

≤
√
a+ b+ c

3
.
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1.93. If a, b, c are positive real numbers, then

(a)
a√
a+ b

+
b√
b+ c

+
c√
c+ a

≥
√
a+
√
b+
√
c√

2
;

(b)
a√
a+ b

+
b√
b+ c

+
c√
c+ a

≥ 4

√
27(ab+ bc+ ca)

4
.

1.94. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
√

3a+ b2 +
√

3b+ c2 +
√

3c+ a2 ≥ 6.

1.95. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
√
a2 + b2 + 2bc+

√
b2 + c2 + 2ca+

√
c2 + a2 + 2ab ≥ 2(a+ b+ c).

1.96. If a, b, c are nonnegative real numbers, then
√
a2 + b2 + 7bc+

√
b2 + c2 + 7ca+

√
c2 + a2 + 7ab ≥ 3

√
3(ab+ bc+ ca).

1.97. If a, b, c are positive real numbers, then

a2 + 3ab

(b+ c)2
+
b2 + 3bc

(c+ a)2
+
c2 + 3ca

(a+ b)2
≥ 3.

1.98. If a, b, c are positive real numbers, then

a2b+ 1

a(b+ 1)
+
b2c+ 1

b(c+ 1)
+
c2a+ 1

c(a+ 1)
≥ 3.

1.99. If a, b, c are positive real numbers such that a+ b+ c = 3, then
√
a3 + 3b+

√
b3 + 3c+

√
c3 + 3a ≥ 6.

1.100. If a, b, c are positive real numbers such that abc = 1, then√
a

a+ 6b+ 2bc
+

√
b

b+ 6c+ 2ca
+

√
c

c+ 6a+ 2ab
≥ 1.
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1.101. If a, b, c are positive real numbers such that abc = 1, then(
a+

1

b

)2

+

(
b+

1

c

)2

+

(
c+

1

a

)2

≥ 6(a+ b+ c− 1).

1.102. If a, b, c are positive real numbers, then

a

a+ b
+

b

b+ c
+

c

c+ a
≥ a+ b+ c

a+ b+ c− 3
√
abc

.

1.103. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
√
b2 + b+ 1 + b

√
c2 + c+ 1 + c

√
a2 + a+ 1 ≤ 3

√
3.

1.104. If a, b, c are positive real numbers, then

1

b(a+ 2b+ 3c)2
+

1

c(b+ 2c+ 3a)2
+

1

a(c+ 2a+ 3b)2
≤ 1

12abc
.

1.105. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

(a)
a2 + 9b

b+ c
+
b2 + 9c

c+ a
+
c2 + 9a

a+ b
≥ 15;

(b)
a2 + 3b

a+ b
+
b2 + 3c

b+ c
+
c2 + 3a

c+ a
≥ 6.

1.106. If a, b, c ∈ [0, 1], then

(a)
bc

2ab+ 1
+

ca

2bc+ 1
+

ab

2ca+ 1
≤ 1.

(b)
a

ab+ 1
+

b

bc+ 1
+

c

ca+ 1
≤ 3

2
.

1.107. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 5(a3b+ b3c+ c3a) ≥ 6(a2b2 + b2c2 + c2a2).
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1.108. If a, b, c are positive real numbers, then

a5 + b5 + c5 − a4b− b4c− c4a ≥ 2abc(a2 + b2 + c2 − ab− bc− ca).

1.109. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a

1 + b
+

b

1 + c
+

c

1 + a
≥ 3

2
.

1.110. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
√
a+ b+ b

√
b+ c+ c

√
c+ a ≥ 3

√
2.

1.111. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

2b2 + c
+

b

2c2 + a
+

c

2a2 + b
≥ 1.

1.112. If a, b, c are positive real numbers such that a+ b+ c = ab+ bc+ ca, then

1

a2 + b+ 1
+

1

b2 + c+ 1
+

1

c2 + a+ 1
≤ 1.

1.113. If a, b, c are positive real numbers, then

1

(a+ 2b+ 3c)2
+

1

(b+ 2c+ 3a)2
+

1

(c+ 2a+ 3b)2
≤ 1

4(ab+ bc+ ca)
.

1.114. If a, b, c are positive real numbers, then√
a

a+ b+ 2c
+

√
b

b+ c+ 2a
+

√
c

c+ a+ 2b
≤ 3

2
.

1.115. If a, b, c are positive real numbers, then√
5a

a+ b+ 3c
+

√
5b

b+ c+ 3a
+

√
5c

c+ a+ 3b
≤ 3.
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1.116. If a, b, c ∈ [0, 1], then

ab2 + bc2 + ca2 +
5

4
≥ a+ b+ c.

1.117. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ b ≤ 1 ≤ c,

then
a2b+ b2c+ c2a ≤ 3.

1.118. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1 ≤ b ≤ c.

Prove that

(a) a2b+ b2c+ c2a ≥ ab+ bc+ ca;

(b) a2b+ b2c+ c2a ≥ abc+ 2;

(c)
1

abc
+ 2 ≥ 9

a2b+ b2c+ c2a
;

(d) ab2 + bc2 + ca2 ≥ 3.

1.119. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1 ≤ b ≤ c,

then

(a)
5− 2a

1 + b
+

5− 2b

1 + c
+

5− 2c

1 + a
≥ 9

2
;

(b)
3− 2b

1 + a
+

3− 2c

1 + b
+

3− 2a

1 + c
≤ 3

2
.

1.120. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a2b+ b2c+ c2a ≥ 3;

(b) ab2 + bc2 + ca2 + 3(
√

3− 1)abc ≥ 3
√

3.
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1.121. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a2b+ b2c+ c2a ≥ 2abc+ 1;

(b) 2(ab2 + bc2 + ca2) ≥ 3abc+ 3.

1.122. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ b ≤ 1 ≤ c,

then
ab2 + bc2 + ca2 + 3abc ≥ 6.

1.123. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1 ≤ c,

then
2(a2b+ b2c+ c2a) ≤ 3abc+ 3.

1.124. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1 ≤ c,

then
2(a3b+ b3c+ c3a) ≤ abc+ 5.

1.125. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3b+ b3c+ c3a).

1.126. If a, b, c are real numbers, then

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3b+ b3c+ c3a).
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1.127. If a, b, c are positive real numbers, then

(a)
a2

ab+ 2c2
+

b2

bc+ 2a2
+

c2

ca+ 2b2
≥ 1;

(b)
a3

a2b+ 2c3
+

b3

b2c+ 2a3
+

c3

c2a+ 2b3
≥ 1.

1.128. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

ab+ 1
+

b

bc+ 1
+

c

ca+ 1
≥ 3

2
.

1.129. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

3a+ b2
+

b

3b+ c2
+

c

3c+ a2
≤ 3

2
.

1.130. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

b2 + c
+

b

c2 + a
+

c

a2 + b
≥ 3

2
.

1.131. If a, b, c are positive real numbers such that abc = 1, then

a

b3 + 2
+

b

c3 + 2
+

c

a3 + 2
≥ 1.

1.132. Let a, b, c be positive real numbers such that

am + bm + cm = 3,

where m > 0. Prove that
am−1

b
+
bm−1

c
+
cm−1

a
≥ 3.

1.133. If a, b, c are positive real numbers, then

(a)
1

4a
+

1

4b
+

1

4c
+

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

(
1

3a+ b
+

1

3b+ c
+

1

3c+ a

)
;

(b)
1

4a
+

1

4b
+

1

4c
+

1

a+ 3b
+

1

b+ 3c
+

1

c+ 3a
≥ 2

(
1

3a+ b
+

1

3b+ c
+

1

3c+ a

)
.
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1.134. If a, b, c are positive real numbers such that a6 + b6 + c6 = 3, then

a5

b
+
b5

c
+
c5

a
≥ 3.

1.135. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a3

a+ b5
+

b3

b+ c5
+

c3

c+ a5
≥ 3

2
.

1.136. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2b+ b2c+ c2a+ 3 ≥ a+ b+ c+ ab+ bc+ ca.

1.137. If a, b, c are positive real numbers such that a+ b+ c = 3, then

12

a2b+ b2c+ c2a
≤ 3 +

1

abc
.

1.138. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

a2

b
+
b2

c
+
c2

a
≥ a2 + b2 + c2.

1.139. If a, b, c are positive real numbers such that a+ b+ c = 3, then

24

a2b+ b2c+ c2a
+

1

abc
≥ 9.

1.140. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc+ ca).

Prove that

(a) 8(a4 + b4 + c4) ≥ 17(a3b+ b3c+ c3a);

(b) 16(a4 + b4 + c4) ≥ 34(a3b+ b3c+ c3a) + 81abc(a+ b+ c).
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1.141. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc+ ca).

Prove that

(a) 2(a3b+ b3c+ c3a) ≥ a2b2 + b2c2 + c2a2 + abc(a+ b+ c);

(b) 11(a4 + b4 + c4) ≥ 17(a3b+ b3c+ c3a) + 129abc(a+ b+ c);

(c) a3b+ b3c+ c3a ≤ 14 +
√

102

8
(a2b2 + b2c2 + c2a2).

1.142. If a, b, c are real numbers such that

a3b+ b3c+ c3a ≤ 0,

then
a2 + b2 + c2 ≥ k(ab+ bc+ ca),

where

k =
1 +

√
21 + 8

√
7

2
≈ 3.7468.

1.143. If a, b, c are real numbers such that

a3b+ b3c+ c3a ≥ 0,

then
a2 + b2 + c2 + k(ab+ bc+ ca) ≥ 0,

where

k =
−1 +

√
21 + 8

√
7

2
≈ 2.7468.

1.144. If a, b, c are real numbers such that

k(a2 + b2 + c2) = ab+ bc+ ca, k ∈
(
−1

2
, 1

)
,

then

αk ≤
a3b+ b3c+ c3

(a2 + b2 + c2)2
≤ βk,

where

27αk = 1 + 13k − 5k2 − 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
,

27βk = 1 + 13k − 5k2 + 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
.
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1.145. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

4a+ b2
+

b2

4b+ c2
+

c2

4c+ a2
≥ 3

5
.

1.146. If a, b, c are positive real numbers, then

a2 + bc

a+ b
+
b2 + ca

b+ c
+
c2 + ab

c+ a
≤ (a+ b+ c)3

3(ab+ bc+ ca)
.

1.147. If a, b, c are positive real numbers such that a+ b+ c = 3, then
√
ab2 + bc2 +

√
bc2 + ca2 +

√
ca2 + ab2 ≤ 3

√
2.

1.148. If a, b, c are positive real numbers such that a5 + b5 + c5 = 3, then

a2

b
+
b2

c
+
c2

a
≥ 3.

1.149. Let P (a, b, c) be a cyclic homogeneous polynomial of degree three. The inequality

P (a, b, c) ≥ 0

holds for all a, b, c ≥ 0 if and only if the following two conditions are fulfilled:

(a) P (1, 1, 1) ≥ 0;

(b) P (0, b, c) ≥ 0 for all b, c ≥ 0.

1.150. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

8(a2b+ b2c+ c2a) + 9 ≥ 11(ab+ bc+ ca).

1.151. If a, b, c are nonnegative real numbers such that a+ b+ c = 6, then

a3 + b3 + c3 + 8(a2b+ b2c+ c2a) ≥ 166.

1.152. If a, b, c are positive real numbers such that abc ≥ 1, then

a
a
b b

b
c c

c
a ≥ 1.
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1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a

b+ c
+

b

c+ a
+

c

a+ b
+ 7 ≥ 17

3

(
a

a+ b
+

b

b+ c
+

c

c+ a

)
.

1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 ≤ k ≤ 5, then

ka+ b

a+ c
+
kb+ c

b+ a
+
kc+ a

c+ b
≥ 3

2
(k + 1).

1.155. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≤ 23

8
, then

ka+ b

2a+ c
+
kb+ c

2b+ a
+
kc+ a

2c+ b
≥ k + 1.

1.156. Let a, b, c be nonnegative real numbers. Prove that

(a) if k ≤ 1− 2

5
√

5
, then

ka+ b

2a+ b+ c
+

kb+ c

a+ 2b+ c
+

kc+ a

a+ b+ 2c
≥ 3

4
(k + 1).

(b) if k ≥ 1 +
2

5
√

5
, then

ka+ b

2a+ b+ c
+

kb+ c

a+ 2b+ c
+

kc+ a

a+ b+ 2c
≤ 3

4
(k + 1).

1.157. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a

b
+
b

c
+
c

a
+ 3 ≥ 2

(
a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b

)
.

1.158. If a ≥ b ≥ c ≥ 0, then

3a+ b

2a+ c
+

3b+ c

2b+ a
+

3c+ a

2c+ b
≥ 4.
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1.159. If a ≥ b ≥ c ≥ 0 and ab+ bc+ ca = 2 , then

√
a+ ab+

√
b+ bc+

√
c+ ca ≥ 3.

1.160. If a ≥ b ≥ c are nonnegative numbers such that ab+ bc+ ca = 3 , then

√
a+ 2ab+

√
b+ 2bc+

√
c+ 2ca ≥ 4.

1.161. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

√
a+ 3b+

√
b+ 3c+

√
c+ 3a ≥ 6.

1.162. If a, b, c are the lengths of the sides of a triangle, then

10

(
a

b
+
b

c
+
c

a

)
> 9

(
b

a
+
c

b
+
a

c

)
.

1.163. If a, b, c are the lengths of the sides of a triangle, then

a

3a+ b− c
+

b

3b+ c− a
+

c

3c+ a− b
≥ 1.

1.164. If a, b, c are the lengths of the sides of a triangle, then

a2 − b2

a2 + bc
+
b2 − c2

b2 + ca
+
c2 − a2

c2 + ab
≤ 0.

1.165. If a, b, c are the lengths of the sides of a triangle, then

a2(a+ b)(b− c) + b2(b+ c)(c− a) + c2(c+ a)(a− b) ≥ 0.

1.166. If a, b, c are the lengths of the sides of a triangle, then

a2b+ b2c+ c2a ≥
√
abc(a+ b+ c)(a2 + b2 + c2).
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1.167. If a, b, c are the lengths of the sides of a triangle, then

a2
(
b

c
− 1

)
+ b2

( c
a
− 1
)

+ c2
(a
b
− 1
)
≥ 0.

1.168. If a, b, c are the lengths of the sides of a triangle, then

(a) a3b+ b3c+ c3a ≥ a2b2 + b2c2 + c2a2;

(b) 3(a3b+ b3c+ c3a) ≥ (ab+ bc+ ca)(a2 + b2 + c2);

(c)
a3b+ b3c+ c3

3
≥
(
a+ b+ c

3

)4

.

1.169. If a, b, c are the lengths of the sides of a triangle, then

2

(
a2

b2
+
b2

c2
+
c2

a2

)
≥ b2

a2
+
c2

b2
+
a2

c2
+ 3.

1.170. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then

a2

a2 − b2
+

b2

b2 − c2
+

c2

c2 − a2
≤ 0.

1.171. If a, b, c are the lengths of the sides of a triangle, then

a

b
+
b

c
+
c

a
+ 3 ≥ 2

(
a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b

)
.

1.172. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 2, then

akb(a− b) + bkc(b− c) + cka(c− a) ≥ 0.

1.173. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 1, then

3(ak+1b+ bk+1c+ ck+1a) ≥ (a+ b+ c)(akb+ bkc+ cka).
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1.174. Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 4. Prove that

a

3 + b
+

b

3 + c
+

c

3 + d
+

d

3 + a
≥ 1.

1.175. Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 4. Prove that

a

1 + b2
+

b

1 + c2
+

c

1 + d2
+

d

1 + a2
≥ 2.

1.176. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then

a2bc+ b2cd+ c2da+ d2ab ≤ 4.

1.177. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then

a(b+ c)2 + b(c+ d)2 + c(d+ a)2 + d(a+ b)2 ≤ 16.

1.178. If a, b, c, d are positive real numbers, then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ a

+
d− a
a+ b

≥ 0.

1.179. If a, b, c, d are positive real numbers, then

(a)
a− b

a+ 2b+ c
+

b− c
b+ 2c+ d

+
c− d

c+ 2d+ a
+

d− a
d+ 2a+ b

≥ 0;

(b)
a

2a+ b+ c
+

b

2b+ c+ d
+

c

2c+ d+ a
+

d

2d+ a+ b
≤ 1.

1.180. If a, b, c, d are positive real numbers such that abcd = 1, then

1

a(a+ b)
+

1

b(b+ c)
+

1

c(c+ d)
+

1

d(d+ a)
≥ 2.

1.181. If a, b, c, d are positive real numbers, then

1

a(1 + b)
+

1

b(1 + c)
+

1

c(1 + d)
+

1

d(1 + a)
≥ 16

1 + 8
√
abcd

.
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1.182. If a, b, c, d are nonnegative real numbers such that a2 + b2 + c2 + d2 = 4, then

(a) 3(a+ b+ c+ d) ≥ 2(ab+ bc+ cd+ da) + 4;

(b) a+ b+ c+ d− 4 ≥ (2−
√

2)(ab+ bc+ cd+ da− 4).

1.183. Let a, b, c, d be positive real numbers.

(a) If a, b, c, d ≥ 1, then(
a+

1

b

)(
b+

1

c

)(
c+

1

d

)(
d+

1

a

)
≥ (a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
;

(b) If abcd = 1, then(
a+

1

b

)(
b+

1

c

)(
c+

1

d

)(
d+

1

a

)
≥ (a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
.

1.184. If a, b, c, d are positive real numbers, then(
1 +

a

a+ b

)2

+

(
1 +

b

b+ c

)2

+

(
1 +

c

c+ d

)2

+

(
1 +

d

d+ a

)2

> 7.

1.185. If a, b, c, d are positive real numbers, then

a2 − bd
b+ 2c+ d

+
b2 − ca

c+ 2d+ a
+

c2 − db
d+ 2a+ b

+
d2 − ac
a+ 2b+ c

≥ 0.

1.186. If a, b, c, d are positive real numbers such that a ≤ b ≤ c ≤ d, then√
2a

a+ b
+

√
2b

b+ c
+

√
2c

c+ d
+

√
2d

d+ a
≤ 4.

1.187. Let a, b, c, d be nonnegative real numbers, and let

x =
a

b+ c
, y =

b

c+ d
, z =

c

d+ a
, t =

d

a+ b
.

Prove that

(a)
√
xz +

√
yt ≤ 1;

(b) x+ y + z + t+ 4(xz + yt) ≥ 4.
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1.188. If a, b, c, d are nonnegative real numbers, then(
1 +

2a

b+ c

)(
1 +

2b

c+ d

)(
1 +

2c

d+ a

)(
1 +

2d

a+ b

)
≥ 9.

1.189. Let a, b, c, d be nonnegative real numbers. If k > 0, then(
1 +

ka

b+ c

)(
1 +

kb

c+ d

)(
1 +

kc

d+ a

)(
1 +

kd

a+ b

)
≥ (1 + k)2.

1.190. If a, b, c, d are positive real numbers such that a+ b+ c+ d = 4, then

1

ab
+

1

bc
+

1

cd
+

1

da
≥ a2 + b2 + c2 + d2.

1.191. If a, b, c, d are positive real numbers, then

a2

(a+ b+ c)2
+

b2

(b+ c+ d)2
+

c2

(c+ d+ a)2
+

d2

(d+ a+ b)2
≥ 4

9
.

1.192. If a, b, c, d are positive real numbers such that a+ b+ c+ d = 3, then

ab(b+ c) + bc(c+ d) + cd(d+ a) + da(a+ b) ≤ 4.

1.193. If a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c+ d = 2, then

ab(b+ c) + bc(c+ d) + cd(d+ a) + da(a+ b) ≤ 1.

1.194. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 4. If k ≥ 37

27
,

then
ab(b+ kc) + bc(c+ kd) + cd(d+ ka) + da(a+ kb) ≤ 4(1 + k).

1.195. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then√
3a

b+ 2
+

√
3b

c+ 2
+

√
3c

d+ 2
+

√
3d

a+ 2
≤ 4.
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1.196. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d. Prove that

2

(
a

b
+
b

c
+
c

d
+
d

a

)
≥ 4 +

a

c
+
c

a
+
b

d
+
d

b
.

1.197. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that
a

b
+
b

c
+
c

d
+
d

a
≥ ab+ bc+ cd+ da.

1.198. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that

4 +
a

b
+
b

c
+
c

d
+
d

a
≥ 2(a+ b+ c+ d).

1.199. Let A = {a1, a2, a3, a4} be a set of real numbers such that

a1 + a2 + a3 + a4 = 0.

Prove that there exists a permutation {a, b, c, d} of A such that

a2 + b2 + c2 + d2 + 3(ab+ bc+ cd+ da) ≥ 0.

1.200. If a, b, c, d, e are positive real numbers, then

a

a+ 2b+ 2c
+

b

b+ 2c+ 2d
+

c

c+ 2d+ 2e
+

d

d+ 2e+ 2a
+

e

e+ 2a+ 2b
≥ 1.

1.201. Let a, b, c, d, e be positive real numbers such that a+ b+ c+ d+ e = 5. Prove that

a

b
+
b

c
+
c

d
+
d

e
+
e

a
≤ 1 +

4

abcde
.

1.202. If a, b, c, d, e are real numbers such that a+ b+ c+ d+ e = 0, then

−
√

5− 1

4
≤ ab+ bc+ cd+ de+ ea

a2 + b2 + c2 + d2 + e2
≤
√

5− 1

4
.
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1.203. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that

a2

b+ c+ d
+

b2

c+ d+ e
+

c2

d+ e+ a
+

d2

e+ a+ b
+

e2

a+ b+ c
≥ 5

3
.

1.204. Let a, b, c, d, e be nonnegative real numbers such that a + b + c + d + e = 5. Prove
that

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + e2)(e2 + a2) ≤ 729

2
.

1.205. If a, b, c, d, e ∈ [1, 5], then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ e

+
d− e
e+ a

+
e− a
a+ b

≥ 0.

1.206. If a, b, c, d, e, f ∈ [1, 3], then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ e

+
d− e
e+ f

+
e− f
f + a

+
f − a
a+ b

≥ 0.

1.207. If a1, a2, . . . , an (n ≥ 3) are positive real numbers, then

n∑
i=1

ai
ai−1 + 2ai + ai+1

≤ n

4
,

where a0 = an and an+1 = a1.

1.208. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers such that a1a2 · · · an = 1. Prove
that

1

n− 2 + a1 + a2
+

1

n− 2 + a2 + a3
+ · · ·+ 1

n− 2 + an + a1
≤ 1.

1.209. If a1, a2, ..., an ≥ 1, then∏(
a1 +

1

a2
+ n− 2

)
≥ nn−2(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
;
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1.210. If a1, a2, ..., an ≥ 1, then(
a1 +

1

a1

)(
a2 +

1

a2

)
· · ·
(
an +

1

an

)
+ 2n ≥ 2

(
1 +

a1
a2

)(
1 +

a2
a3

)
· · ·
(

1 +
an
a1

)
.

1.211. Let k and n be positive integers with k < n, and let a1, a2, . . . , an be real numbers
such that a1 ≤ a2 ≤ · · · ≤ an. Then

(a1 + a2 + · · ·+ an)2 ≥ n(a1ak+1 + a2ak+2 + · · ·+ anan+k)

(where an+i = ai for any positive integer i) in the following cases:

(a) n = 2k;

(b) n = 4k.

1.212. If a1, a2, . . . , an ∈ [1, 2], then

n∑
i=1

3

ai + 2ai+1

≥
n∑
i=1

2

ai + ai+1

,

where an+1 = a1.

1.213. If a1, a2, . . . , an (n ≥ 3) are real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1a2 + a2a3 + · · ·+ ana1 = n,

then
(3− a1)2 + (3− a2)2 + · · ·+ (3− an)2 ≥ 4n.

1.214. Let a, b, c, d be positive real numbers such that ab+ bc+ cd+ da = 4.

(a) If a ≥ b ≥ 1 ≥ c ≥ d, then

1

a
+

1

b
+

1

c
+

1

d
+ 8 ≥ 3(a+ b+ c+ d).

(b) If a ≥ b ≥ c ≥ 1 ≥ d, then the inequality above holds true.

1.215. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
4

3
≤ 1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≤ 3

2
.
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1.216. If n ≥ 6 and a1 ≥ 1 ≥ a2 ≥ · · · ≥ an such that a1a2 + a2a3 + · · ·+ ana1 = n, then

1

a1 + 3
+

1

a2 + 3
+ · · ·+ 1

an + 3
≥ n

4
.

1.217. If x1, x2, x3, x4, x5 are nonnegative real numbers such that

x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5,

then
1

5x1 + 4
+

1

5x2 + 4
+

1

5x3 + 4
+

1

5x4 + 4
+

1

5x5 + 4
≥ 5

9
.

1.218. If a, b, c, d, e are nonnegative real numbers such that

ab+ bc+ cd+ de+ ea = 5,

then
1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
+

1

e+ 1
≥ 5

2
.

1.219. If a1, a2, . . . , a8 are nonnegative real numbers such that a1a2 + a2a3 + · · ·+ a8a1 = 8,
then

1

5a1 + 3
+

1

5a2 + 3
+ · · ·+ 1

5a8 + 3
≥ 1.

1.220. If a, b, c, d, e are nonnegative real numbers such that

ab+ bc+ cd+ de+ ea = 5, a ≥ b ≥ c ≥ 1 ≥ d ≥ e,

then
1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥ 5

4
.

1.221. Prove that 3 is the largest positive value of the constant k such that

1

a+ k
+

1

b+ k
+

1

c+ k
+

1

d+ k
+

1

e+ k
≥ 5

1 + k

for any a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 satisfying ab+ bc+ cd+ de+ ea = 5.
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1.222. If a, b, c, d are nonnegative real numbers such that

ab+ ac+ ad+ bc+ bd+ cd = 6,

then
1

ab+ 3
+

1

bc+ 3
+

1

cd+ 3
+

1

da+ 3
≥ 1.

1.223. If a, b, c, d are nonnegative real numbers such that

ab+ ac+ ad+ bc+ bd+ cd = 6, a ≥ b ≥ c ≥ d,

then
1

ab+ 5
+

1

bc+ 5
+

1

cd+ 5
+

1

da+ 5
≥ 2

3
.

1.224. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
1

ab+ 4
+

1

ac+ 4
+

1

ad+ 4
+

1

bc+ 4
+

1

bd+ 4
+

1

cd+ 4
≥ 6

5
.

1.225. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
1

ab+ 7
+

1

ac+ 7
+

1

ad+ 7
+

1

bc+ 7
+

1

bd+ 7
+

1

cd+ 7
≥ 3

4
.

1.226. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4,

then
4
√

2

3
≤ 1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
+

1

d2 + 1
< 3.

1.227. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ 1 ≥ c ≥ d,

then
1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
+

1

d2 + 1
≥ 2.
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1.228. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4,

then

2 ≤ 1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
≤ 3.

1.229. If a, b, c, d, e are nonnegative real numbers such that ab+ bc+ cd+ de+ ea = 1, then

3 <
1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
+

1

e+ 1
≤ 4.

1.230. If a, b, c, d, e, f are nonnegative real numbers such that

ab+ bc+ cd+ de+ ef + fa = 6,

then

(2a+ 1)2 + (2b+ 1)2 + (2c+ 1)2 + (2d+ 1)2 + (2e+ 1)2 + (2f + 1)2 ≥ 54.

1.231. Prove that 4 is the largest positive value of the constant k such that

a21 + a22 + · · ·+ a2n − n ≥ k(a1 + a2 + · · ·+ an − n)

for all odd integers n ≥ 3 and nonnegative real numbers ai which satisfy a1a2 + a2a3 + · · ·+
ana1 = n.

1.232. If a, b, c, d, e are positive real numbers such that

ab+ bc+ cd+ de+ ea = 5,

then

5

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
≥ 4(a+ b+ c+ d+ e) + 5.

1.233. If a, b, c, d, e are positive real numbers such that

ab+ bc+ cd+ de+ ea = 5, a ≥ b ≥ c ≥ 1 ≥ d ≥ e,

then
1

a
+

1

b
+

1

c
+

1

d
+

1

e
+ 10 ≥ 3(a+ b+ c+ d+ e).
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1.234. For given n ≥ 3, prove that 3 is the largest positive value of the constant k such that

1

a1
+

1

a2
+ · · ·+ 1

an
− n ≥ k(a1 + a2 + · · ·+ an − n)

for any a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 1 ≥ an > 0 with a1a2 + a2a3 + · · ·+ an−1an + ana1 = n.

1.235. If a, b, c, d, e, f are nonnegative real numbers such that

ab+ bc+ cd+ de+ ef + fa = 6, a ≥ b ≥ c ≥ d ≥ e ≥ f,

then
1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
+

1

f + 3
≥ 3

2
.

1.236. Let a1, a2, . . . , an be positive real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n, a1 ≥ a2 ≥ · · · ≥ an.

Prove that:
1

a1
+

1

a2
+ · · ·+ 1

an
≥ a1 + a2 + · · ·+ an.

1.237. If n ≥ 3 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then√
1

n

∑
cyclic

a1a2 ≥ n−1

√
1

n

∑
cyclic

a1a2 · · · an−1.

1.238. Let a, b, c, d, e be nonnegative real numbers satisfying ab + bc + cd + de + ea = 5.
Prove that:

(a) (a+ 2)2 + (b+ 2)2 + (c+ 2)2 + (d+ 2)2 + (e+ 2)2 ≥ 45.

(b) a3/2 + b3/2 + c3/2 + d3/2 + e3/2 ≥ 5.

1.239. If a, b, c, d are nonnegative real numbers such that ab+ bc+ cd+ da ≥ 4, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1) ≥ (a+ b+ c+ d)2.
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1.240. Let a, b, c, d, e be real numbers such that a ≥ b ≥ c ≥ d ≥ e ≥ 0 and ab + bc + cd +
de+ ea = 5. Prove that

a5/4 + b5/4 + c5/4 + d5/4 + e5/4 ≥ 5.

1.241. If a1 ≥ 1 ≥ a2 ≥ · · · ≥ an ≥ 0 such that a1 + a2 + · · ·+ an = n, then

a1a2 + a2a3 + · · ·+ ana1 ≤ n.

1.242. If 0 ≤ a1 ≤ 1 ≤ a2 ≤ · · · ≤ an such that a1 + a2 + · · ·+ an = n, then

a1a2 + a2a3 + · · ·+ ana1 ≤ n.

1.243. Suppose n ≥ 4 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If a1 = a2 and an−1 = an, then

n(a1a2 + a2a3 + · · ·+ ana1) ≥ (a1 + a2 + · · ·+ an)2.

1.244. If a, b, c, d, e are positive real numbers such that a ≥ b ≥ c ≥ d ≥ e and ab + bc +
cd+ de+ ea = 5, then

a2 + b2 + c2 + d2 + e2 + 5(a+ b+ c+ d+ e) ≥ 30.

1.245. If a ≥ b ≥ 1 ≥ c ≥ d ≥ e ≥ f ≥ 0 such that ab+ bc+ cd+ de+ ef + fa = 6, then

(2a+ 3)2 + (2b+ 3)2 + (2c+ 3)2 + (2d+ 3)2 + (2e+ 3)2 + (2f + 3)2 ≥ 150.

1.246. If a ≥ b ≥ c ≥ d ≥ e ≥ 0, then√
ab+ bc+ cd+ de+ ea

5
≥ 3

√
abc+ bcd+ cde+ dea+ eab

5
.

1.247. Let a, b, c, d be nonnegative real numbers such that

1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
= 1.

Prove that there is a permutation (x1, x2, x3, x4) of the sequence (a, b, c, d) such that

x1x2 + x2x3 + x3x4 + x4x1 ≥ 4.
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1.248. Let a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0 such that a1 + a2 + · · ·+ a9 = 2. Prove that

a1a2 + a2a3 + · · ·+ a9a1 ≤ 1.

1.249. Let n be a natural number, n ≥ 3. Prove that there is a real number qn > 1 such
that

a1
a2 + a3

+
a2

a3 + a4
+ · · ·+ an

a1 + a2
≥ n

2

for any real numbers a1, a2, . . . , an ∈ [1/qn, qn].

1.250. If a, b, c, d are positive real numbers and 0 ≤ x ≤ 1, then∑
cyclic

a

a+ (3− x)b+ xc
≥ 1.

1.251. Prove that 18 is the largest positive value of the constant k such that

1

ab2 + k
+

1

bc2 + k
+

1

ca2 + k
≥ 3

1 + k

for all a ≥ b ≥ c ≥ 0 such that a+ b+ c = 3.

1.252. Let a = b ≥ c ≥ d ≥ 0 such that ab+ bc+ cd+ da = 4. Prove that

a2 + b2 + c2 + d2 + 28 ≥ 8(a+ b+ c+ d).

1.253. If x1, x2, x3, x4, x5 are positive real numbers such that

x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5,

then
1

x1
+

1

x2
+

1

x3
+

1

x4
+

1

x5
+

25

x1 + x2 + x3 + x4 + x5
≥ 10.

1.254. Prove that
7

6
is the least positive value of the power exponent k such that

xk1 + xk2 + xk3 + xk4 + xk5 ≥ 5

for any nonnegative real numbers xi with at most one xi < 1 and x1x2 +x2x3 +x3x4 +x4x5 +
x5x1 = 5.
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1.255. Let a, b, c, d be nonnegative real numbers such that at most one of them is larger
than 1 and ab+ bc+ cd+ da ≤ 4. Prove that

a2 + b2 + c2 + d2 + 16 ≥ 5(a+ b+ c+ d).

1.256. Prove that [−32, 17] is the range of values of the real constant k such that

(a+ b+ c+ d)4 + 4k(a+ b+ c+ d) ≥ (16 + k)(a+ b)2(c+ d)2

for all nonnegative real numbers a, b, c, d with a ≥ b ≥ c ≥ d and abc+ bcd+ cda+ dab = 4.
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1.2 Solutions

P 1.1. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 ≤ 4.

(Canada, 1999)

First Solution. Assume that a = max{a, b, c}. Since

ab2 + bc2 + ca2 ≤ ab · a+ b

2
+ abc+ ca2 =

a(a+ b)(b+ 2c)

2
,

it suffices to show that
a(a+ b)(b+ 2c) ≤ 8.

By the AM-GM inequality, we have

a(a+ b)(b+ 2c) ≤
[
a+ (a+ b) + (b+ 2c)

3

]3
= 8

(
a+ b+ c

3

)3

= 8.

The equality holds for a = 2, b = 0, c = 1 (and any cyclic permutation).

Second Solution. Let (x, y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.

Since
xy ≥ zx ≥ yz,

by the rearrangement inequality, we have

ab2 + bc2 + ca2 = b · ab+ c · bc+ a · ca
≤ x · xy + y · zx+ z · yz
= y(x2 + xz + z2).

Using this result and the AM-GM inequality, we get

ab2 + bc2 + ca2 ≤ y(x+ z)2 = 4y · x+ z

2
· x+ z

2

≤ 4

(
y + x+z

2
+ x+z

2

3

)3

= 4

(
x+ y + z

3

)3

= 4.

Third Solution. Without loss of generality, assume that b is between a and c; that is,

(b− a)(b− c) ≤ 0, b2 + ac ≤ b(a+ c).
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Since

ab2 + bc2 + ca2 = a(b2 + ac) + bc2 ≤ ab(a+ c) + bc2 = b(a2 + ac+ c2)

≤ b(a+ c)2 = b(3− b)2,

it suffices to show that

b(3− b)2 ≤ 4.

Indeed,

b(3− b)2 − 4 = (b− 1)2(b− 4) ≤ (b− 1)2(b− 3) = −(b− 1)2(a+ c) ≤ 0.

Fourth Solution. Write the inequality in the homogeneous form

4(a+ b+ c)3 ≥ 27(ab2 + bc2 + ca2),

which is equivalent to

4(a3 + b3 + c3) + 12(a+ b)(b+ c)(c+ a) ≥ 27(ab2 + bc2 + ca2),

4
∑

a3 + 12
(∑

a2b+
∑

ab2 + 2abc
)
≥ 27

∑
ab2,

4
∑

a3 + 12
∑

a2b+ 24abc ≥ 15
∑

ab2.

On the other hand, the obvious inequality∑
a(2a− pb− qc)2 ≥ 0

is equivalent to

4
∑

a3 + (q2 − 4p)
∑

a2b+ 6pqabc ≥ (4q − p2)
∑

ab2.

Setting p = 1 and q = 4 leads to the desired inequality; in addition,

4(a+ b+ c)3 − 27(ab2 + bc2 + ca2) =
∑

a(2a− b− 4c)2 ≥ 0.

P 1.2. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(ab+ bc+ ca)(ab2 + bc2 + ca2) ≤ 9.
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Solution. Let (x, y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. As shown in the
second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2).

Consequently, it suffices to show that

y(xy + yz + zx)(x2 + xz + z2) ≤ 9.

By the AM-GM inequality, we get

4(xy + yz + zx)(x2 + xz + z2) ≤ (xy + yz + zx+ x2 + xz + z2)2

= (x+ z)2(x+ y + z)2 = 9(x+ z)2.

Thus, we still have to show that
y(x+ z)2 ≤ 4.

This follows from the AM-GM inequality, as follows:

2y(x+ z)2 ≤
[

2y + (x+ z) + (x+ z)

3

]3
= 8.

The equality holds for a = b = c = 1.

P 1.3. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) ab2 + bc2 + ca2 ≤ abc+ 2;

(b)
a

b+ 2
+

b

c+ 2
+

c

a+ 2
≤ 1.

(Vasile Cı̂rtoaje, 2005)

Solution. (a) First Solution. Without loss of generality, assume that b is between a and
c; that is,

(b− a)(b− c) ≤ 0, b2 + ac ≤ b(a+ c).

Since
ab2 + bc2 + ca2 = a(b2 + ac) + bc2 ≤ ab(a+ c) + bc2 = b(a2 + c2) + abc,

it suffices to show that
b(a2 + c2) ≤ 2.

We have
2− b(a2 + c2) = 2− b(3− b2) = (b− 1)2(b+ 2) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c =
√

2 (or any cyclic
permutation).
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Second Solution. Let (x, y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. As shown
in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2).

Therefore, it suffices to show that

y(x2 + xz + z2) ≤ xyz + 2,

which can be written as
y(x2 + z2) ≤ 2.

Indeed,
2− y(x2 + z2) = 2− y(3− y2) = (y − 1)2(y + 2) ≥ 0.

(b) Write the inequality as follows:∑
a(a+ 2)(c+ 2) ≤ (a+ 2)(b+ 2)(c+ 2),

ab2 + bc2 + ca2 + 2(a2 + b2 + c2) ≤ abc+ 8,

ab2 + bc2 + ca2 ≤ abc+ 2.

The last inequality is just the inequality in (a).

P 1.4. If a, b, c ≥ 1, then

(a) 2(ab2 + bc2 + ca2) + 3 ≥ 3(ab+ bc+ ca);

(b) ab2 + bc2 + ca2 + 6 ≥ 3(a+ b+ c).

Solution. (a) First Solution. From

a(b− 1)2 + b(c− 1)2 + c(a− 1)2 ≥ 0,

we get
ab2 + bc2 + ca2 ≥ 2(ab+ bc+ ca)− (a+ b+ c).

Using this inequality gives

2(ab2 + bc2 + ca2) + 3− 3(ab+ bc+ ca) ≥ (ab+ bc+ ca)− 2(a+ b+ c) + 3

= (a− 1)(b− 1) + (b− 1)(c− 1) + (c− 1)(a− 1) ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. From ∑
b(a− 1)(b− 1) ≥ 0,
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we get
ab2 + bc2 + ca2 ≥ a2 + b2 + c2 + ab+ bc+ ca− (a+ b+ c).

Thus, it suffices to show that

2(a2 + b2 + c2) + 2(ab+ bc+ ca)− 2(a+ b+ c) + 3 ≥ 3(ab+ bc+ ca),

which is equivalent to

2(a2 + b2 + c2)− 2(a+ b+ c) + 3 ≥ ab+ bc+ ca,

(a− 1)2 + (b− 1)2 + (c− 1)2 + (a2 + b2 + c2 − ab− bc− ca) ≥ 0,

2(a− 1)2 + 2(b− 1)2 + 2(c− 1)2 + (a− b)2 + (b− c)2 + (c− a)2 ≥ 0.

(b) The inequality in (b) follows by summing the inequality in (a) and the obvious
inequality

3(a− 1)(b− 1) + 3(b− 1)(c− 1) + 3(c− 1)(a− 1) ≥ 0.

The equality holds for a = b = c = 1.

P 1.5. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≥ b ≥ c,

then

(a) a2b+ b2c+ c2a ≥ ab+ bc+ ca;

(b) 8(ab2 + bc2 + ca2) + 3abc ≤ 27;

(c)
18

a2b+ b2c+ c2a
≤ 1

abc
+ 5.

Solution. (a) Write the inequality in the homogeneous form

3(a2b+ b2c+ c2a) ≥ (a+ b+ c)(ab+ bc+ ca),

which is equivalent to

a2b+ b2c+ c2a− 3abc ≥ ab2 + bc2 + ca2 − a2b− b2c− c2a.

This inequality is true because

a2b+ b2c+ c2a− 3abc ≥ 0

(by the AM-GM inequality) and

ab2 + bc2 + ca2 − a2b− b2c− c2a = (a− b)(b− c)(c− a) ≤ 0.
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The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0.

(b) Write the inequality in the homogeneous form

(a+ b+ c)3 ≥ 8(ab2 + bc2 + ca2) + 3abc,∑
a3 + 3abc+ 3

∑
a2b ≥ 5

∑
ab2,∑

a3 + 3abc−
(∑

ab2 +
∑

a2b
)
≥ 4

(∑
ab2 −

∑
a2b
)
,∑

a3 + 3abc−
∑

ab(a+ b) ≥ 4(a− b)(b− c)(c− a).

The inequality is true since
(a− b)(b− c)(c− a) ≤ 0

and, by Schur’s inequality of degree three,∑
a3 + 3abc−

∑
ab(a+ b) ≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 3/2 and c = 0.

(c) Since

ab2 + bc2 + ca2 − a2b− b2c− c2a = (a− b)(b− c)(c− a) ≤ 0,

it suffices to prove the symmetric inequality

36

(a2b+ b2c+ c2a) + (ab2 + bc2 + ca2)
≤ 1

abc
+ 5,

which is equivalent to

36

(a+ b+ c)(ab+ bc+ ca)− 3abc
≤ 1

abc
+ 5,

12

ab+ bc+ ca− abc
≤ 1

abc
+ 5,

12

a(b+ c)− (a− 1)bc
≤ 1

a · bc
+ 5,

12

a(3− a)− (a− 1)bc
≤ 1

a · bc
+ 5.

Since a− 1 ≥ 0 and
4bc ≤ (b+ c)2 = (3− a)2,

it suffices to show that

48

4a(3− a)− (a− 1)(3− a)2
≤ 4

a(3− a)2
+ 5,
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which is equivalent to
48

(3− a)(3 + a2)
≤ 4

a(3− a)2
+ 5,

5a5 − 30a4 + 60a3 − 38a2 − 9a+ 12 ≥ 0,

(a− 1)2(5a3 − 20a2 + 15a+ 12) ≥ 9.

We need to show that 1 ≤ a ≤ 3 involves

5a3 − 20a2 + 15a+ 12 ≥ 0.

If 1 ≤ a ≤ 2, then

5a3 − 20a2 + 15a+ 12 = 5a(a− 2)2 + (12− 5a) > 0.

If 2 ≤ a ≤ 3, then

5a3 − 20a2 + 15a+ 12 = 5(a− 2)3 + 10a2 − 45a+ 52 ≥ 10a2 − 45a+ 52 > 0

= 10

(
a− 9

4

)2

+
11

8
> 0.

The equality holds for a = b = c = 1.

P 1.6. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≥ b ≥ c,

then

ab2 + bc2 + ca2 ≤ 3

4
(ab+ bc+ ca+ 1).

Solution. Let us denote

p = a+ b+ c, q = ab+ bc+ ca.

From a2 + b2 + c2 = 3, it follows that

2q = p2 − 3.

In addition, from the known inequalities

(a+ b+ c)2 ≥ a2 + b2 + c2

and
3(a2 + b2 + c2) ≥ (a+ b+ c)2,
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we get √
3 ≤ p ≤ 3.

Since
ab2 + bc2 + ca2 − a2b− b2c− c2a = (a− b)(b− c)(c− a) ≤ 0,

it suffices to show that

ab2 + bc2 + ca2 + (a2b+ b2c+ c2a) ≤ 3

2
(ab+ bc+ ca+ 1).

which is equivalent to

pq ≤ 3abc+
3

2
(q + 1),

6abc+ 3(q + 1) ≥ 2pq.

Consider two cases:
√

3 ≤ p ≤ 12

5
and

12

5
≤ p ≤ 3.

Case 1:
√

3 ≤ p ≤ 12

5
. Since

6abc+ 3(q + 1)− 2pq ≥ 3(q + 1)− 2pq = 3− (2p− 3)q =
1

2
[6− (2p− 3)(p2 − 3)],

it suffices to show that
(2p− 3)(p2 − 3) ≤ 6.

Indeed, we have

(2p− 3)(p2 − 3) ≤
(

24

5
− 3

)(
144

25
− 3

)
=

621

125
< 6.

Case 2:
12

5
≤ p ≤ 3. According to Schur’s inequality of degree three, we have

p3 + 9abc ≥ 4pq.

Thus, it suffices to prove that

2(4pq − p3) + 9(q + 1) ≥ 6pq,

which is equivalent to
(2p+ 9)q − 2p3 + 9 ≥ 0,

(2p+ 9)(p2 − 3)− 4p3 + 18 ≥ 0,

−2p3 + 9p2 − 6p− 9 ≥ 0,

(3− p)(2p2 − 3p− 3) ≥ 0.

This inequality is true since 3− p ≥ 0 and

2p2 − 3p− 3 ≥ 24

5
p− 3p− 3 =

9

5
p− 3 ≥ 9

5
· 12

5
− 3 > 0.

The equality holds for a = b = c = 1.
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P 1.7. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

a2b3 + b2c3 + c2a3 ≤ 3.

(Vasile Cı̂rtoaje, 2005)

Solution. Let (x, y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.

Since
x2y2 ≥ z2x2 ≥ y2z2,

the rearrangement inequality yields

a2b3 + b2c3 + c2a3 = b · a2b2 + c · b2c2 + a · c2a2 ≤ x · x2y2 + y · z2x2 + z · y2z2

= y(x3y + z2x2 + yz3) ≤ y

(
x2 · x

2 + y2

2
+ z2x2 + z2 · y

2 + z2

2

)
=
y(x2 + z2)(x2 + y2 + z2)

2
=

3y(x2 + z2)

2
.

Thus, it suffices to show that
y(x2 + z2) ≤ 2

for x2 + y2 + z2 = 3. By the AM-GM inequality, we get

6 = 2y2 + (x2 + z2) + (x2 + z2) ≥ 3 3
√

2y2(x2 + z2)2.

The equality holds for a = b = c = 1.

P 1.8. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a4b2 + b4c2 + c4a2 + 4 ≥ a3b3 + b3c3 + c3a3.

Solution. Write the inequality as

a2(a2b2 + c4 − ab3 − ac3) + 4 ≥ b2c2(bc− b2).

Since

2
∑

(a2b2 + c4 − ab3 − ac3) =
∑

[a4 + b4 + 2a2b2 − 2ab(a2 + b2)]

=
∑

(a2 + b2)(a− b)2 ≥ 0,
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we may assume (without loss of generality) that

a2b2 + c4 − ab3 − ac3 ≥ 0.

Thus, it suffices to show that
4 ≥ b2c2(bc− b2).

Since

bc− b2 ≤ c2

4
,

it is enough to prove that
16 ≥ b2c4.

From

3 = a+ b+ c ≥ b+
c

2
+
c

2
≥ 3

3

√
b
( c

2

)2
,

the conclusion follows. The equality holds for a = 0, b = 1, c = 2 (or any cyclic permutation).

P 1.9. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a) ab2 + bc2 + ca2 + abc ≤ 4;

(b)
a

4− b
+

b

4− c
+

c

4− a
≤ 1;

(c) ab3 + bc3 + ca3 + (ab+ bc+ ca)2 ≤ 12;

(d)
ab2

1 + a+ b
+

bc2

1 + b+ c
+

ca2

1 + c+ a
≤ 1.

Solution. (a) First Solution. Without loss of generality, assume that b is between a and
c; that is,

(b− a)(b− c) ≤ 0, b2 + ca ≤ b(c+ a).

Using this result and the AM-GM inequality, we have

ab2 + bc2 + ca2 + abc = a(b2 + ca) + bc2 + abc ≤ ab(c+ a) + bc2 + abc

= b(a+ c)2 =
1

2
· 2b · (a+ c) · (a+ c) ≤ 1

2

[
2b+ (a+ c) + (a+ c)

3

]3
= 4.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

Second Solution. Let (x, y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.
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As shown in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2);

hence
ab2 + bc2 + ca2 + abc ≤ y(x+ z)2.

Thus, it suffices to show that x+ y + z = 3 involves

y(x+ z)2 ≤ 4.

According to the AM-GM inequality, we have

1

4
y(x+ z)2 = y · x+ z

2
· x+ z

2
≤

y +
x+ z

2
+
x+ z

2
3


3

= 1.

Third Solution. Write the inequality in the homogeneous form

4(a+ b+ c)3 ≥ 27(ab2 + bc2 + ca2 + abc).

Without loss of generality, suppose that a = min{a, b, c}. Putting b = a+ x and c = a+ y,
where x, y ≥ 0, the inequality can be restated as

9(x2 − xy + y2)a+ (2x− y)2(x+ 4y) ≥ 0,

which is obviously true.

(b) First Solution. Write the inequality in the homogeneous form∑ a

4a+ b+ 4c
≤ 1

3
.

Multiplying by a+ b+ c, the inequality becomes as follows:∑ a2 + ab+ ac

4a+ b+ 4c
≤ a+ b+ c

3
,

∑(
a2 + ab+ ac

4a+ b+ 4c
− a

4

)
≤ a+ b+ c

12
,

∑ 9ab

4a+ b+ 4c
≤ a+ b+ c.

Since

9

4a+ b+ 4c
=

9

(2a+ c) + (2a+ c) + (2c+ b)
≤ 1

2a+ c
+

1

2a+ c
+

1

2c+ b

=
2

2a+ c
+

1

2c+ b
,
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we have ∑ 9ab

4a+ b+ 4c
≤
∑ 2ab

2a+ c
+
∑ ab

2c+ b
=
∑ 2ab

2a+ c
+
∑ bc

2a+ c

=
∑ 2ab+ bc

2a+ c
=
∑

b = a+ b+ c.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

Second Solution. Write the inequality as follows:∑
a(4− a)(4− c) ≤ (4− a)(4− b)(4− c),

32 +
∑

ab2 + abc ≤ 4
(∑

a2 + 2
∑

ab
)
,

32 +
∑

ab2 + abc ≤ 4
(∑

a
)2
,

ab2 + bc2 + ca2 + abc ≤ 4.

The last inequality is just the inequality in (a).

(c) Using the inequality in (a), we get

(a+ b+ c)(ab2 + bc2 + ca2 + abc) ≤ 12,

which is equivalent to the desired inequality

ab3 + bc3 + ca3 + (ab+ bc+ ca)2 ≤ 12.

(d) Let q = ab+ bc+ ca. Since∑
ab2(1 + b+ c)(1 + c+ a) =

∑
ab2(4 + q + c+ c2) = (4 + q)

∑
ab2 + (3 + q)abc

and ∏
(1 + a+ b) = 1 +

∑
(a+ b) +

∑
(b+ c)(c+ a) +

∏
(a+ b)

= 7 + 3q +
∑

c2 + (3q − abc) = 16 + 4q − abc,

the inequality is equivalent to

(4 + q)
∑

ab2 + (3 + q)abc ≤ 16 + 4q − abc,

(4 + q)
(∑

ab2 + abc− 4
)
≤ 0.

According to (a), the desired inequality is clearly true.

Remark. The following statement is also valid:
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• If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 + abc+ (a− 1)2(b− 1)2(c− 1)2 ≤ 4,

with equality for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic permutation).

Having in view the second solution of (a), it is enough to show that

(a− 1)2(b− 1)2(c− 1)2 ≤ (4− b)(1− b)2,

where b is between a and c. This is true if

|(a− 1)(c− 1)| ≤
√

4− b.

Assuming that a ≤ c (hence a ≤ b ≤ c, a ≤ 1, c ≥ 1), the inequality can be written as
follows:

(1− a)(c− 1) ≤
√

4− b,
a+ c− 1 ≤ ac+

√
4− b,

2− b ≤ ac+
√

4− b.
This is true if

2− b ≤
√

4− b.
Indeed,

√
4− b− (2− b) =

4− b− (2− b)2√
4− b+ 2− b

=
b(3− b)√

4− b+ 2− b

=
b(a+ c)√

4− b+ 2− b
) ≥ 0.

P 1.10. If a, b, c are positive real numbers, then

1

a(a+ 2b)
+

1

b(b+ 2c)
+

1

c(c+ 2a)
≥ 3

ab+ bc+ ca
.

First Solution. Write the inequality as∑ a(b+ c) + bc

a(a+ 2b)
≥ 3,

∑ b+ c

a+ 2b
+
∑ bc

a(a+ 2b)
≥ 3.

It suffices to show that ∑ b+ c

a+ 2b
≥ 2
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and ∑ bc

a(a+ 2b)
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ b+ c

a+ 2b
≥ [

∑
(b+ c)]2∑

(b+ c)(a+ 2b)
=

4 (
∑
a)2

2
∑
a2 + 4

∑
ab

= 2

and ∑ bc

a(a+ 2b)
≥ (

∑
bc)2

abc
∑

(a+ 2b)
=

(
∑
bc)2

3abc
∑
a

= 1 +

∑
a2(b− c)2

6abc
∑
a
≥ 1.

The equality holds for a = b = c.

Second Solution. We apply the Cauchy-Schwarz inequality in the following way

∑ 1

a(a+ 2b)
≥ (

∑
c)2∑

ac2(a+ 2b)
=

(
∑
a)2∑

a2b2 + 2abc
∑
a
.

Thus, it suffices to show that

(
∑
a)2∑

a2b2 + 2abc
∑
a
≥ 3∑

ab
,

which is equivalent to(∑
ab
)(∑

a2 + 2
∑

ab
)
≥ 3

∑
a2b2 + 6abc

∑
a,

∑
ab(a2 + b2) ≥

∑
a2b2 + abc

∑
a.

The latter inequality follows by summing the obvious inequalities∑
ab(a2 + b2) ≥ 2

∑
a2b2

and ∑
a2b2 ≥ abc

∑
a.

P 1.11. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

b2 + 2c
+

b

c2 + 2a
+

c

a2 + 2b
≥ 1.



Cyclic Inequalities 55

Solution. Using the Cauchy-Schwarz inequality, we get

∑ a

b2 + 2c
≥ (

∑
a)2∑

a(b2 + 2c)
= 1 +

∑
a2 −

∑
ab2∑

ab2 + 2
∑
ab
.

Thus, it suffices to show that ∑
a2 −

∑
ab2 ≥ 0.

Write this inequality in the homogeneous form

(a+ b+ c)(a2 + b2 + c2) ≥ 3(ab2 + bc2 + ca2),

which is equivalent to the obvious inequality

a(a− c)2 + b(b− a)2 + c(c− b)2 ≥ 0.

The equality holds for a = b = c = 1.

P 1.12. If a, b, c are positive real numbers such that a+ b+ c ≥ 3, then

a− 1

b+ 1
+
b− 1

c+ 1
+
c− 1

a+ 1
≥ 0.

Solution. Write the inequality as

(a2 − 1)(c+ 1) + (b2 − 1)(a+ 1) + (c2 − 1)(b+ 1) ≥ 0,

ab2 + bc2 + ca2 + a2 + b2 + c2 ≥ a+ b+ c+ 3.

From

a(b− 1)2 + b(c− 1)2 + c(a− 1)2 ≥ 0,

we get

ab2 + bc2 + ca2 ≥ 2(ab+ bc+ ca)− (a+ b+ c).

Using this inequality yields

ab2 + bc2 + ca2 + a2 + b2 + c2 − a− b− c− 3 ≥ (a+ b+ c)2 − 2(a+ b+ c)− 3

= (a+ b+ c− 3)(a+ b+ c+ 1) ≥ 0.

The equality holds for a = b = c = 1.
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P 1.13. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
1

a2b+ 2
+

1

b2c+ 2
+

1

c2a+ 2
≥ 1;

(b)
1

a3b+ 2
+

1

b3c+ 2
+

1

c3a+ 2
≥ 1.

Solution. By the AM-GM inequality, we have

1 =

(
a+ b+ c

3

)3

≥ abc.

On the other hand, according to the inequality in P 1.9-(a):

ab2 + bc2 + ca2 ≤ 4− abc.

(a) By expanding, the inequality can be restated as

a3b3c3 + abc(ab2 + bc2 + ca2) ≤ 4.

It is true if
a3b3c3 + abc(4− abc) ≤ 4,

which is equivalent to
(abc− 1)(a2b2c2 + 4) ≥ 0.

The equality occurs for a = b = c = 1.

(b) By expanding, the inequality becomes

a4b4c4 + abc(a2b3 + b2c3 + c2a3) ≤ 4.

Let p = a+ b+ c, q = ab+ bc+ ca and r = abc. Using the inequality from P 1.9-(a), we have

a2b3 + b2c3 + c2a3 = (ab2 + bc2 + ca2)(ab+ bc+ ca)− abc(a2 + b2 + c2 + ab+ bc+ ca)

≤ (4− r)q − r(9− q) = 4q − 9r.

Thus, it suffices to show that
r4 + r(4q − 9r) ≤ 4.

By Schur’s inequality, we have

4q ≤ p3 + 9r

p
= 9 + 3r.

Therefore,

r4 + r(4q − 9r))− 4 ≤ r4 + r(9− 6r)− 4 = r4 − 6r2 + 9r − 4 = (r − 1)(r3 + r2 − 5r + 4)
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= (r − 1)[r3 + (1− r)(4− r)] ≤ 0.

The equality occurs for a = b = c = 1.

Remark 1. We can generalize the inequality in (a) as follows (see P 1.38):

• If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then the inequality

1

a2b+ k
+

1

b2c+ k
+

1

c2a+ k
≥ 3

1 + k

holds for 0 ≤ k ≤ 8, with equality for a = b = c = 1. If k = 8, then the equality occurs again
for a = 0, b = 1, c = 2 (or any cyclic permutation).

Remark 2. We claim that the following open generalization of the inequality in (b) is true:

• If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then the inequality

1

a3b+ k
+

1

b3c+ k
+

1

c3a+ k
≥ 3

1 + k

holds for 0 ≤ k ≤ k0, where k0 =
1458

473
≈ 3.08245. For k = k0, the equality occurs when

a = b = c = 1, and also when a =
9

4
, b =

3

4
and c = 0 (or any cyclic permutation).

P 1.14. If a, b, c are positive real numbers such that a+ b+ c = 3, then

ab

9− 4bc
+

bc

9− 4ca
+

ca

9− 4ab
≤ 3

5
.

Solution. We have∑ ab

9− 4bc
≤
∑ ab

9− (b+ c)2
=
∑ b

3 + b+ c
=
∑ b

a+ 2b+ 2c

=
1

2

∑[
1− a+ 2c

a+ 2b+ 2c

]
=

3

2
− 1

2

∑ a+ 2c

a+ 2b+ 2c
.

Thus, it suffices to show that ∑ a+ 2c

a+ 2b+ 2c
≥ 9

5
.

Using the Cauchy-Schwarz inequality, we get∑ a+ 2c

a+ 2b+ 2c
≥ [

∑
(a+ 2c)]2∑

(a+ 2c)(a+ 2b+ 2c)
=

9(a+ b+ c)2

5(a+ b+ c)2
=

9

5
.

The equality holds for a = b = c = 1.
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P 1.15. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
a2

2a+ b2
+

b2

2b+ c2
+

c2

2c+ a2
≥ 1;

(b)
a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c+ 2a2
≥ 1.

Solution. (a) By the Cauchy-Schwarz inequality, we have

∑ a2

2a+ b2
≥ (

∑
a2)

2∑
a2(2a+ b2)

=

∑
a4 + 2

∑
a2b2

2
∑
a3 +

∑
a2b2

.

Thus, it suffices to prove that ∑
a4 +

∑
a2b2 ≥ 2

∑
a3,

which is equivalent to the homogeneous inequalities

3
∑

a4 + 3
∑

a2b2 ≥ 2
(∑

a
)(∑

a3
)
,∑

a4 + 3
∑

a2b2 − 2
∑

ab(a2 + b2) ≥ 0,∑
(a− b)4 ≥ 0.

The equality holds for a = b = c = 1.

(b) By the Cauchy-Schwarz inequality, we get

∑ a2

a+ 2b2
≥ (

∑
a2)

2∑
a2(a+ 2b2)

=

∑
a4 + 2

∑
a2b2∑

a3 + 2
∑
a2b2

.

Thus, it suffices to prove that ∑
a4 ≥

∑
a3.

We have ∑
a4 −

∑
a3 =

∑
(a4 − a3 − a+ 1) =

∑
(a− 1)(a3 − 1) ≥ 0.

The equality holds for a = b = c = 1.

P 1.16. Let a, b, c be positive real numbers such that a+ b+ c = 3. Then,

1

a+ b2 + c3
+

1

b+ c2 + a3
+

1

c+ a2 + b3
≤ 1.

(Vasile Cı̂rtoaje, 2009)
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Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

∑ 1

a+ b2 + c3
≤
∑ a3 + b2 + c

(a2 + b2 + c2)2
=

∑
a3 +

∑
a2 + 3

(a2 + b2 + c2)2
.

Therefore, it suffices to show that

(a2 + b2 + c2)2 ≥ a3 + b3 + c3 + (a2 + b2 + c2) + 3,

or, equivalently,

(a2 + b2 + c2)2 +
∑

a2(3− a) ≥ 4(a2 + b2 + c2) + 3.

Let us denote t = a2 + b2 + c2. Applying again the Cauchy-Schwarz inequality, we get∑
a2(3− a) ≥ [

∑
a(3− a)]2∑
(3− a)

=
(9− a2 − b2 − c2)2

6
.

Thus, it is enough to show that

t2 +
(9− t)2

6
≥ 4t+ 3.

This inequality reduces to (t− 3)2 ≥ 0. The equality occurs for a = b = c = 1.

P 1.17. If a, b, c are positive real numbers, then

1 + a2

1 + b+ c2
+

1 + b2

1 + c+ a2
+

1 + c2

1 + a+ b2
≥ 2.

Solution. From

1 + b+ c2 ≤ 1 +
1 + b2

2
+ c2,

we have
1 + a2

1 + b+ c2
≥ 2(1 + a2)

1 + b2 + 2(1 + c2)
.

Thus, it suffices to show that

x

y + 2z
+

y

z + 2x
+

z

x+ 2y
≥ 1,

where

x = 1 + a2, y = 1 + b2, z = 1 + c2.
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Using the Cauchy-Schwarz inequality gives

x

y + 2z
+

y

z + 2x
+

z

x+ 2y
≥ (x+ y + z)2

x(y + 2z) + y(z + 2x) + z(x+ 2y)

=
(x+ y + z)2

3(xy + yz + zx)
≥ 1.

The equality occurs for a = b = c = 1.

P 1.18. If a, b, c are nonnegative real numbers, then

a

4a+ 4b+ c
+

b

4b+ 4c+ a
+

c

4c+ 4a+ b
≤ 1

3
.

(Pham Kim Hung, 2007)

Solution. If two of a, b, c are zero, then the inequality is trivial. Otherwise, multiplying by
4(a+ b+ c), the inequality becomes as follows:∑ 4a(a+ b+ c)

4a+ 4b+ c
≤ 4

3
(a+ b+ c),

∑[
4a(a+ b+ c)

4a+ 4b+ c
− a
]
≤ 1

3
(a+ b+ c),

∑ ca

4a+ 4b+ c
≤ 1

9
(a+ b+ c).

By the AM-HM inequality, we get

9

4a+ 4b+ c
=

9

(2b+ c) + 2(2a+ b)
≤ 1

2b+ c
+

2

2a+ b
.

Therefore, ∑ ca

4a+ 4b+ c
≤ 1

9

∑
ca

(
1

2b+ c
+

2

2a+ b

)
=

1

9

(∑ ca

2b+ c
+
∑ 2ab

2b+ c

)
=

1

9

∑
a,

as desired. The equality occurs for a = b = c, and also for a = 2b and c = 0 (or any cyclic
permutation).

P 1.19. If a, b, c are positive real numbers, then

a+ b

a+ 7b+ c
+

b+ c

b+ 7c+ a
+

c+ a

c+ 7a+ b
≥ 2

3
.
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Solution. Write the inequality as∑(
a+ b

a+ 7b+ c
− 1

k

)
≥ 2

3
− 3

k
, k > 0,

∑ (k − 1)a+ (k − 7)b− c
a+ 7b+ c

≥ 2k − 9

3
.

Consider that all fractions in the left hand side are nonnegative and apply the Cauchy-
Schwarz inequality, as follows:∑ (k − 1)a+ (k − 7)b− c

a+ 7b+ c
≥ [(k − 1)

∑
a+ (k − 7)

∑
b−

∑
c]2∑

(a+ 7b+ c)[(k − 1)a+ (k − 7)b− c]

=
(2k − 9)2 (

∑
a)2

(8k − 51)
∑
a2 + 2(5k − 15)

∑
ab
.

We choose k = 12 to have 8k − 51 = 5k − 15, hence

(8k − 51)
∑

a2 + 2(5k − 15)
∑

ab = 45
(∑

a
)2
.

For this value of k, the desired inequality∑ (k − 1)a+ (k − 7)b− c
a+ 7b+ c

≥ 2k − 9

3

can be restated as ∑ 11a+ 5b− c
a+ 7b+ c

≥ 5.

Without loss of generality, assume that a = max{a, b, c}. Consider further two cases.

Case 1: 11b+ 5c− a ≥ 0. By the Cauchy-Schwarz inequality, we have∑ 11a+ 5b− c
a+ 7b+ c

≥ [
∑

(11a+ 5b− c)]2∑
(a+ 7b+ c)(11a+ 5b− c)

=
225 (

∑
a)2

45 (
∑
a)2

= 5.

Case 2: 11b+ 5c− a < 0. We have∑ a+ b

a+ 7b+ c
>

a+ b

a+ 7b+ c
=

2

3
+
a− 11b− 2c

3(a+ 7b+ c)
>

2

3
.

Thus, the proof is completed. The equality holds for a = b = c.

P 1.20. If a, b, c are positive real numbers, then

a+ b

a+ 3b+ c
+

b+ c

b+ 3c+ a
+

c+ a

c+ 3a+ b
≥ 6

5
.

(Vasile Cı̂rtoaje, 2007)
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Solution. Due to homogeneity, we may assume that

a+ b+ c = 1,

when the inequality becomes ∑ 1− c
1 + 2b

≥ 6

5
,

5
∑

(1− c)(1 + 2c)(1 + 2a) ≥ 6(2a+ 1)(2b+ 1)(2c+ 1),

5
(

4 + 6
∑

ab− 4
∑

a2b
)

= 6
(

3 + 4
∑

ab+ 8abc
)
,

1 + 3
∑

ab ≥ 10
∑

a2b+ 24abc,

(a+ b+ c)3 + 3(a+ b+ c)(ab+ bc+ ca) ≥ 10(a2b+ b2c+ ca) + 24abc,∑
a3 + 6

∑
ab2 ≥ 4

∑
a2b+ 9abc,[

2
∑

a3 −
∑

ab(a+ b)
]

+ 3
[∑

ab(a+ b)− 6abc
]

+ 10
(∑

ab2 −
∑

a2b
)
≥ 0,∑

(a+ b)(a− b)2 + 3
∑

c(a− b)2 + 10
(∑

ab2 −
∑

a2b
)
≥ 0,∑

(a+ b+ 3c)(a− b)2 + 10(a− b)(b− c)(c− a) ≥ 0.

Assume that

a = min{a, b, c},

and use the substitution

b = a+ x, c = a+ y, x, y ≥ 0.

The inequality becomes

(5a+ x+ 3y)x2 + (5a+ x+ y)(x− y)2 + (5a+ 3x+ y)y2 − 10xy(x− y) ≥ 0.

Clearly, it suffices to consider the case a = 0, when the inequality becomes

x3 − 4x2y + 6xy2 + y3 ≥ 0.

Indeed, we have

x3 − 4x2y + 6xy2 + y3 = x(x− 2y)2 + 2xy2 + y3 ≥ 0.

The equality holds for a = b = c.
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P 1.21. If a, b, c are positive real numbers, then

2a+ b

2a+ c
+

2b+ c

2b+ a
+

2c+ a

2c+ b
≥ 3.

(Pham Kim Hung, 2007)

Solution. Without loss of generality, assume that a = max{a, b, c}. There are two cases to
consider.

Case 1: a ≤ 2b+ 2c. Write the inequality as∑(
2a+ b

2a+ c
− 1

2

)
≥ 3

2
,

∑ 2a+ 2b− c
2a+ c

≥ 3.

Since
2a+ 2b− c > 0, 2b+ 2c− a ≥ 0, 2c+ 2a− b > 0,

we may apply the Cauchy-Schwarz inequality to get∑ 2a+ 2b− c
2a+ c

≥ [
∑

(2a+ 2b− c)]2∑
(2a+ 2b− c)(2a+ c)

=
9 (
∑
a)2

3 (
∑
a)2

= 3.

Case 2: a > 2b+ 2c. Since

2a+ c− (2b+ a) = (a− 2b− 2c) + 3c > 0,

we have
2a+ b

2a+ c
+

2b+ c

2b+ a
>

2a+ b

2a+ c
+

2b+ c

2a+ c
= 1 +

3b

2a+ c
> 1.

Therefore, it suffices to show that
2c+ a

2c+ b
≥ 2.

Indeed,
2c+ a

2c+ b
>

2c+ 2b+ 2c

2c+ b
= 2.

Thus, the proof is completed. The equality holds for a = b = c.

P 1.22. If a, b, c are positive real numbers, then

a(a+ b)

a+ c
+
b(b+ c)

b+ a
+
c(c+ a)

c+ b
≤ 3(a2 + b2 + c2)

a+ b+ c
.

(Pham Huu Duc, 2007)
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Solution. Write the inequality as∑ a(a+ b)(a+ b+ c)

a+ c
≤ 3(a2 + b2 + c2),

∑ ab(a+ b) + a(a+ b)(a+ c)

a+ c
≤ 3(a2 + b2 + c2),∑ ab(a+ b)

a+ c
≤ 2(a2 + b2 + c2)− (ab+ bc+ ca).

Let (x, y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. Since

x+ y ≥ z + x ≥ y + z

and
xy(x+ y) ≥ zx(z + x) ≥ yz(y + z),

by the rearrangement inequality, we have∑ ab(a+ b)

a+ c
≤ xy(x+ y)

y + z
+
zx(z + x)

z + x
+
yz(y + z)

x+ y
.

Consequently, it suffices to show that

xy(x+ y)

y + z
+
yz(y + z)

x+ y
≤ 2(x2 + y2 + z2)− xy − yz − 2zx.

Write this inequality as follows:

xy

(
x+ y

y + z
− 1

)
+ yz

(
y + z

x+ y
− 1

)
≤ 2(x2 + y2 + z2 − xy − yz − zx),

xy(x− z)

y + z
+
yz(z − x)

x+ y
≤ (x− y)2 + (y − z)2 + (z − x)2,

y(x+ y + z)(z − x)2

(x+ y)(y + z)
≤ (x− y)2 + (y − z)2 + (z − x)2.

Since
y(x+ y + z) < (x+ y)(y + z),

the last inequality is clearly true. The equality holds for a = b = c.

P 1.23. If a, b, c are real numbers, then

a2 − bc
4a2 + b2 + 4c2

+
b2 − ca

4b2 + c2 + 4a2
+

c2 − ab
4c2 + a2 + 4b2

≥ 0.

(Vasile Cı̂rtoaje, 2006)



Cyclic Inequalities 65

Solution. Since
4(a2 − bc)

4a2 + b2 + 4c2
= 1− (b+ 2c)2

4a2 + b2 + 4c2
,

we may rewrite the inequality as

(b+ 2c)2

4a2 + b2 + 4c2
+

(c+ 2a)2

4b2 + c2 + 4a2
+

(a+ 2b)2

4c2 + a2 + 4b2
≤ 3.

Using the Cauchy-Schwarz inequality gives

(b+ 2c)2

4a2 + b2 + 4c2
=

(b+ 2c)2

(2a2 + b2) + 2(2c2 + a2)
≤ b2

2a2 + b2
+

2c2

2c2 + a2
.

Therefore,∑ (b+ 2c)2

4a2 + b2 + 4c2
≤
∑ b2

2a2 + b2
+
∑ 2c2

2c2 + a2
=
∑ b2

2a2 + b2
+
∑ 2a2

2a2 + b2
= 3.

The equality occurs when

a(2b2 + c2) = b(2c2 + a2) = c(2a2 + b2);

that is, when a = b = c, and also when a = 2b = 4c (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be real numbers. If k > 0, then

a2 − bc
2ka2 + b2 + k2c2

+
b2 − ca

2kb2 + c2 + k2a2
+

c2 − ab
2kc2 + a2 + k2b2

≥ 0,

with equality for a = b = c, and also for a = kb = k2c (or any cyclic permutation).

P 1.24. If a, b, c are real numbers, then

(a) a(a+ b)3 + b(b+ c)3 + c(c+ a)3 ≥ 0;

(b) a(a+ b)5 + b(b+ c)5 + c(c+ a)5 ≥ 0.
(Vasile Cı̂rtoaje, 1989)

Solution. (a) Using the substitution

b+ c = 2x, c+ a = 2y, a+ b = 2z,

which are equivalent to

a = y + z − x, b = z + x− y, c = x+ y − z,
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the inequality becomes in succession

x4 + y4 + z4 + xy3 + yz3 + zx3 ≥ x3y + y3z + z3x,∑
(x4 + 2xy3 − 2x3y + y4) ≥ 0,∑

(x2 − xy − y2)2 +
∑

x2y2 ≥ 0,

the last being clearly true. The equality occurs for a = b = c = 0.

(b) Using the same substitution, the inequality turns into

x6 + y6 + z6 + xy5 + yz5 + zx5 ≥ x5y + y5z + z5x,

which is equivalent to ∑
[x6 + y6 − 2xy(x4 − y4)] ≥ 0,∑

[(x2 + y2)(x4 − x2y2 + y4)− 2xy(x2 + y2)(x2 − y2)] ≥ 0,∑
(x2 + y2)(x2 − xy − y2)2 ≥ 0.

The equality occurs for a = b = c = 0.

P 1.25. If a, b, c are real numbers, then

3(a4 + b4 + c4) + 4(a3b+ b3c+ c3a) ≥ 0.

(Vasile Cı̂rtoaje, 2005)

Solution. If a, b, c are nonnegative, then the inequality is trivial. Since the inequality
remains unchanged by replacing a, b, c with −a,−b,−c, respectively, it suffices to consider
the case when only one of a, b, c is negative; let c < 0. Replacing now c with −c, the
inequality can be restated as

3(a4 + b4 + c4) + 4a3b ≥ 4(b3c+ c3a),

where a, b, c ≥ 0. It is enough to prove that

3(a4 + b4 + c4 + a3b) ≥ 4(b3c+ c3a).

Case 1: a ≤ b. Since a3b ≥ a4, it suffices to show that

6a4 + 3b4 + 3c4 ≥ 4(b3c+ ac3).

Using the AM-GM inequality yields

3b4 + c4 ≥ 4
4
√
b12c4 = 4b3c.
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Therefore, it suffices to show that

6a4 + 2c4 ≥ 4ac3.

Indeed, we have

3a4 + c4 = 3a4 +
1

3
c4 +

1

3
c4 +

1

3
c4 ≥ 4

4

√
a4c12

9
=

4√
3
ac3 ≥ 2ac3.

Case 2: a ≥ b. Since 3a3b ≥ 3b4, it suffices to show that

3a4 + 6b4 + 3c4 ≥ 4(b3c+ ac3).

By the AM-GM inequality, we get

6b4 +
c4

8
= 2b4 + 2b4 + 2b4 +

c4

8
≥ 4

4
√
b12c4 = 4b3c.

Thus, we still have to show that

3a4 +
23

8
c4 ≥ 4ac3.

We will prove the sharper inequality

3a4 +
5

2
c4 ≥ 4ac3.

Indeed, we have

3a4 +
5

2
c4 = 3a4 +

5

6
c4 +

5

6
c4 +

5

6
c4 ≥ 4

4

√
125a4c12

72
≥ 4ac3.

The equality occurs for a = b = c = 0.

P 1.26. If a, b, c are positive real numbers, then

(a− b)(2a+ b)

(a+ b)2
+

(b− c)(2b+ c)

(b+ c)2
+

(c− a)(2c+ a)

(c+ a)2
≥ 0.

(Vasile Cı̂rtoaje, 2006)

Solution. Since

(a− b)(2a+ b)

(a+ b)2
=

2a2 − b(a+ b)

(a+ b)2
=

2a2

(a+ b)2
− b

a+ b
,
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we can write the inequality as

2
∑(

a

a+ b

)2

−
∑ b

a+ b
≥ 0.

According to P 1.1 in Volume 2, we have

2
∑(

a

a+ b

)2

=
∑(

a

a+ b

)2

+
∑(

b

b+ c

)2

=
∑[

1

(1 + b/a)2
+

1

(1 + c/b)2

]
≥
∑ 1

1 + c/a
=
∑ a

a+ c
=
∑ b

b+ a
.

Therefore,

2
∑(

a

a+ b

)2

−
∑ b

a+ b
≥
∑ b

b+ a
−
∑ b

a+ b
= 0.

The equality holds for a = b = c.

P 1.27. If a, b, c are positive real numbers, then

(a− b)(2a+ b)

a2 + ab+ b2
+

(b− c)(2b+ c)

b2 + bc+ c2
+

(c− a)(2c+ a)

c2 + ca+ a2
≥ 0.

(Vasile Cı̂rtoaje, 2006)

Solution. Since

(a− b)(2a+ b)

a2 + ab+ b2
=

3a2 − (a2 + ab+ b2)

a2 + ab+ b2
=

3a2

a2 + ab+ b2
− 1,

we can write the inequality as ∑ a2

a2 + ab+ b2
≥ 1,

∑ 1

1 + b/a+ (b/a)2
≥ 1.

Clearly, this inequality follows immediately from P 1.45 in Volume 2. The equality holds for
a = b = c.
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P 1.28. If a, b, c are positive real numbers, then

(a− b)(3a+ b)

a2 + b2
+

(b− c)(3b+ c)

b2 + c2
+

(c− a)(3c+ a)

c2 + a2
≥ 0.

(Vasile Cı̂rtoaje, 2006)

Solution. Since
(a− b)(3a+ b) = (a− b)2 + 2(a2 − b2),

we can write the inequality as∑ (a− b)2

a2 + b2
+ 2

∑ a2 − b2

a2 + b2
≥ 0.

Using the identity ∑ a2 − b2

a2 + b2
+
∏ a2 − b2

a2 + b2
= 0,

the inequality becomes ∑ (a− b)2

a2 + b2
≥ 2

∏ a2 − b2

a2 + b2
.

By the AM-GM inequality, we have∑ (a− b)2

a2 + b2
≥ 3

3

√∏ (a− b)2
a2 + b2

.

Thus, it suffices to show that

3
3

√∏ (a− b)2
a2 + b2

≥ 2
∏ a2 − b2

a2 + b2
,

which is equivalent to

27
∏ (a− b)2

a2 + b2
≥ 8

∏ (a2 − b2)3

(a2 + b2)3
.

This inequality is true if

27
∏

(a2 + b2)2 ≥
∏

(a− b)(a+ b)3.

Assume that a = max{a, b, c}. For the nontrivial case a > c > b, we can get this inequality
by multiplying the inequalities

3(a2 + b2)2 ≥ 2(a− b)(a+ b)3,

3(c2 + b2)2 ≥ 2(c− b)(c+ b)3,

3(a2 + c2)2 ≥ 2(a− c)(a+ c)3.

These inequalities are true because

3(a2 + b2)2 − 2(a− b)(a+ b)3 = a2(a− 2b)2 + b2(2a2 + 4ab+ 5b2) > 0.

The equality holds for a = b = c.
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P 1.29. Let a, b, c be positive real numbers such that abc = 1. Then,

1

1 + a+ b2
+

1

1 + b+ c2
+

1

1 + c+ a2
≤ 1.

(Vasile Cı̂rtoaje, 2005)

Solution. Using the substitution

a = x3, b = y3, c = z3,

we have to show that xyz = 1 involves

1

1 + x3 + y6
+

1

1 + y3 + z6
+

1

1 + z3 + x6
≤ 1.

By the Cauchy-Schwarz inequality, we have

∑ 1

1 + x3 + y6
≤
∑ z4 + x+ y−2

(z2 + x2 + y2)2
=

∑
(z4 + x2yz + x2z2)

(x2 + y2 + z2)2
.

So, it remains to show that

(x2 + y2 + z2)2 ≥
∑

x4 + xyz
∑

x+
∑

x2y2,

which is equivalent to the known inequality∑
x2y2 ≥ xyz

∑
x.

The equality occurs for a = b = c = 1.

Remark. Actually, the following generalization holds:

• Let a, b, c be positive real numbers such that abc = 1. If k ≥ 0, then

1

1 + a+ bk
+

1

1 + b+ ck
+

1

1 + c+ ak
≤ 1.

P 1.30. Let a, b, c be positive real numbers such that abc = 1. Then,

a

(a+ 1)(b+ 2)
+

b

(b+ 1)(c+ 2)
+

c

(c+ 1)(a+ 2)
≥ 1

2
.
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Solution. Using the substitution

a =
x

y
, b =

y

z
, c =

z

x
,

where x, y, z are positive real numbers, the inequality can be restated as

zx

(x+ y)(y + 2z)
+

xy

(y + z)(z + 2x)
+

yz

(z + x)(x+ 2y)
≥ 1

2
.

By the Cauchy-Schwarz inequality, we have

∑ zx

(x+ y)(y + 2z)
≥ (

∑
zx)2∑

zx(x+ y)(y + 2z)
=

1

2
.

The equality occurs for a = b = c = 1.

P 1.31. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

(a+ 2b)(b+ 2c)(c+ 2a) ≥ 27.

(Michael Rozenberg, 2007)

Solution. Write the inequality in the homogeneous form

A+B ≥ 0,

where

A = (a+ 2b)(b+ 2c)(c+ 2a)− 3(a+ b+ c)(ab+ bc+ ca)

= (a− b)(b− c)(c− a)

and
B = 3(ab+ bc+ ca)[a+ b+ c−

√
3(ab+ bc+ ca)].

Since

B =
3(ab+ bc+ ca)[(a− b)2 + (b− c)2 + (c− a)2]

2(a+ b+ c+
√

3(ab+ bc+ ca)]

≥ 3(ab+ bc+ ca)[(a− b)2 + (b− c)2 + (c− a)2]

4(a+ b+ c)
,

it suffices to show that

4(a+ b+ c)(a− b)(b− c)(c− a) + 3(ab+ bc+ ca)[(a− b)2 + (b− c)2 + (c− a)2] ≥ 0.
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Consider c = min{a, b, c}, and use the substitution

a = c+ x, b = c+ y, x, y ≥ 0.

The inequality becomes

−4xy(x− y)(3c+ x+ y) + 6(x2 − xy + y2)[3c2 + 2(x+ y)c+ xy] ≥ 0,

which is equivalent to

9(x2 − xy + y2)c2 + 6Cc+D ≥ 0,

where

C = x3 − x2y + xy2 + y3 ≥ x(x2 − xy + y2),

D = xy(x2 + 5y2 − 3xy) ≥ (2
√

5− 3)x2y2.

Since C ≥ 0 and D ≥ 0, the inequality is obvious. The equality holds for a = b = c = 1.

P 1.32. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

a

a+ a3 + b
+

b

b+ b3 + c
+

c

c+ c3 + a
≤ 1.

(Andrei Ciupan, 2005)

Solution. Write the inequality as

1

1 + a2 + b/a
+

1

1 + b2 + c/b
+

1

1 + c2 + a/c
≤ 1.

By the Cauchy-Schwarz inequality, we have

∑ 1

1 + a2 + b/a
≤
∑ c2 + 1 + ab

(c+ a+ b)2
= 1.

The equality holds for a = b = c = 1.

P 1.33. If a, b, c are positive real numbers such that a ≥ b ≥ c and ab+ bc+ ca = 3, then

1

a+ 2b
+

1

b+ 2c
+

1

c+ 2a
≥ 1.
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Solution. According to the well known inequality

x+ y + z ≥
√

3(xy + yz + zx),

where x, y, z are positive real numbers, it suffices to prove that

1

(a+ 2b)(b+ 2c)
+

1

(b+ 2c)(c+ 2a)
+

1

(c+ 2a)(a+ 2b)
≥ 1

3
.

This is equivalent to the following inequalities

9(a+ b+ c) ≥ (a+ 2b)(b+ 2c)(c+ 2a),

3(a+ b+ c)(ab+ bc+ ca) ≥ (a+ 2b)(b+ 2c)(c+ 2a),

a2b+ b2c+ c2a ≥ ab2 + bc2 + ca2,

(a− b)(b− c)(a− c) ≥ 0.

The last inequality is clearly true for a ≥ b ≥ c. The equality occurs for a = b = c = 1.

P 1.34. If a, b, c ∈ [0, 1], then

a

4b2 + 5
+

b

4c2 + 5
+

c

4a2 + 5
≤ 1

3
.

Solution. Let

E(a, b, c) =
a

4b2 + 5
+

b

4c2 + 5
+

c

4a2 + 5
.

We have

E(a, b, c)− E(1, b, c) =
a− 1

4b2 + 5
+ c

(
1

4a2 + 5
− 1

9

)
= (1− a)

[
4c(1 + a)

9(4a2 + 5)
− 1

4b2 + 5

]
≤ (1− a)

[
4(1 + a)

9(4a2 + 5)
− 1

9

]
=
−(1− a)(1− 2a)2

9(4a2 + 5)
≤ 0,

and, similarly,

E(a, b, c)− E(a, 1, c) ≤ 0, E(a, b, c)− E(a, b, 1) ≤ 0.

Therefore,

E(a, b, c) ≤ E(1, b, c) ≤ E(1, 1, c) ≤ E(1, 1, 1) =
1

3
.

The equality occurs for a = b = c = 1, and also for a =
1

2
and b = c = 1 (or any cyclic

permutation).
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P 1.35. If a, b, c ∈
[

1

3
, 3

]
, then

a

a+ b
+

b

b+ c
+

c

c+ a
≥ 7

5
.

Solution. Assume that a = max{a, b, c} and show that

E(a, b, c) ≥ E(a, b,
√
ab ) ≥ 7

5
,

where

E(a, b, c) =
a

a+ b
+

b

b+ c
+

c

c+ a
.

We have

E(a, b, c)− E(a, b,
√
ab ) =

b

b+ c
+

c

c+ a
− 2

√
b

√
a+
√
b

=

(√
a−
√
b
)(√

ab− c
)2

(b+ c)(c+ a)
(√

a+
√
b
) ≥ 0.

Substituting x =

√
a

b
, the hypothesis a, b, c ∈

[
1

3
, 3

]
involves x ∈

[
1

3
, 3

]
. Then,

E(a, b,
√
ab)− 7

5
=

a

a+ b
+

2
√
b

√
a+
√
b
− 7

5

=
x2

x2 + 1
+

2

x+ 1
− 7

5

=
3− 7x+ 8x2 − 2x3

5(x+ 1)(x2 + 1)

=
(3− x)[x2 + (1− x)2]

5(x+ 1)(x2 + 1)
≥ 0.

The equality holds for a = 3, b =
1

3
and c = 1 (or any cyclic permutation).

P 1.36. If a, b, c ∈
[

1√
2
,
√

2

]
, then

3

a+ 2b
+

3

b+ 2c
+

3

c+ 2a
≥ 2

a+ b
+

2

b+ c
+

2

c+ a
.
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Solution. Write the inequality as∑(
3

a+ 2b
− 2

a+ b
+

1

ka
− 1

kb

)
≥ 0, k > 0,

∑ −(a− b)[a2 − (k − 3)ab+ 2b2]

kab(a+ 2b)(a+ b)
≥ 0.

Choosing k = 6, the inequality becomes∑ (a− b)2(2b− a)

6ab(a+ 2b)(a+ b)
≥ 0.

Since

2b− a ≥ 2√
2
−
√

2 = 0,

the conclusion follows. The equality holds for a = b = c.

P 1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then

4abc

ab2 + bc2 + ca2 + abc
+
a2 + b2 + c2

ab+ bc+ ca
≥ 2.

(Vo Quoc Ba Can, 2009)

First Solution. Without loss of generality, assume that b is between a and c; that is,

b2 + ca ≤ b(c+ a).

Then,

ab2 + bc2 + ca2 + abc = a(b2 + ca) + bc2 + abc

≤ ab(c+ a) + bc2 + abc

= b(a+ c)2,

and it suffices to prove that

4ac

(a+ c)2
+
a2 + b2 + c2

ab+ bc+ ca
≥ 2.

This inequality is equivalent to

[a2 + c2 − b(a+ c)]2 ≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic permutation).
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Second Solution. Let (x, y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. As we
have shown in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2);

hence
ab2 + bc2 + ca2 + abc ≤ y(x+ z)2.

Thus, it suffices to prove that

4xyz

y(x+ z)2
+

x2 + y2 + z2

xy + yz + zx
≥ 2,

which is equivalent to
x2 + y2 + z2

xy + yz + zx
≥ 2(x2 + z2)

x+ z)2
,

(x2 + z2)2 − 2y(x+ z)(x2 + z2) + y2(x+ z)2 ≥ 0,

(x2 + z2 − xy − yz)2 ≥ 0.

P 1.38. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1

ab2 + 8
+

1

bc2 + 8
+

1

ca2 + 8
≥ 1

3
.

(Vasile Cı̂rtoaje, 2007)

Solution. By expanding, we can write the inequality as

64 ≥ r3 + 16A+ 5rB,

64 ≥ r3 + (16− 5r)A+ 5r(A+B),

where
r = abc, A = ab2 + bc2 + ca2, B = a2b+ b2c+ c2a.

By the AM-GM inequality, we have

r ≤
(
a+ b+ c

3

)3

= 1.

On the other hand, by the inequality (a) in P 1.9, we get

A ≤ 4− r,

and by Schur’s inequality, we have

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc+ ca),
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which is equivalent to

A+B ≤ 27− 3r

4
.

Therefore, it suffices to prove that

64 ≥ r3 + (16− 5r)(4− r) +
5r(27− 3r)

4
.

We can write this inequality in the obvious form

r(1− r)(9 + 4r) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

P 1.39. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab

bc+ 3
+

bc

ca+ 3
+

ca

ab+ 3
≤ 3

4
.

(Vasile Cı̂rtoaje, 2008)

Solution. Using the inequality (a) in P 1.9, namely

a2b+ b2c+ c2a ≤ 4− abc,

we have ∑
ab(ca+ 3)(ab+ 3) = abc

∑
a2b+ 9abc+ 3

∑
a2b2 + 9

∑
ab

≤ 13abc− a2b2c2 + 3
∑

a2b2 + 9
∑

ab.

On the other hand,

(ab+ 3)(bc+ 3)(ca+ 3) = a2b2c2 + 9abc+ 9
∑

ab+ 27.

Therefore, it suffices to prove that

4
(

13abc− a2b2c2 + 3
∑

a2b2 + 9
∑

ab
)
≤ 3

(
a2b2c2 + 9abc+ 9

∑
ab+ 27

)
,

which is equivalent to

7a2b2c2 + 81 ≥ 25abc+ 12
∑

a2b2 + 9
∑

ab,

7r2 + 47r ≥ 3(q + 3)(4q − 9),
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where
q = ab+ bc+ ca, r = abc, q ≤ 3, r ≤ 1.

Since
7r2 + 47r ≥ 9r2 + 45r,

it suffices to show that
3r2 + 15r ≥ (q + 3)(4q − 9).

Consider the non-trivial case
9

4
< q ≤ 3,

and apply the fourth degree Schur’s inequality

r ≥ (p2 − q)(4q − p2)
6p

=
(9− q)(4q − 9)

18
.

It remains to show that

(9− q)2(4q − 9)2

108
+

5(9− q)(4q − 9)

6
≥ (q + 3)(4q − 9),

which is equivalent to
(4q − 9)(3− q)(69q − 4q2 − 81) ≥ 0.

This is true because

69q − 4q2 − 81 = (3− q)(4q − 9) + 6(8q − 9) > 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3

2
(or any cyclic

permutation).

P 1.40. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
a

b2 + 3
+

b

c2 + 3
+

c

a2 + 3
≥ 3

4
;

(b)
a

b3 + 1
+

b

c3 + 1
+

c

a3 + 1
≥ 3

2
.

(Vasile Cı̂rtoaje and Bin Zhao, 2005)

Solution. (a) By the AM-GM inequality, we have

b2 + 3 = b2 + 1 + 1 + 1 ≥ 4
4
√
b2 · 13 = 4

√
b.

Therefore,
3a

b2 + 3
= a− ab2

b2 + 3
≥ a− ab2

4
√
b

= a− 1

4
ab
√
b.
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Taking account of this inequality and the similar ones, it suffices to prove that

ab
√
b+ bc

√
c+ ca

√
a ≤ 3.

This inequality follows immediately by replacing a, b, c with
√
a,
√
b,
√
c in the inequality in

P 1.7. The equality holds for a = b = c = 1.

(b) Using the AM-GM Inequality gives

a

b3 + 1
= a− ab3

b3 + 1
≥ a− ab3

2b
√
b

= a− 1

2
ab
√
b,

and, similarly,
b

c3 + 1
≥ b− 1

2
bc
√
c,

c

a3 + 1
≥ c− 1

2
ca
√
a.

Thus, it suffices to show that

ab
√
b+ bc

√
c+ ca

√
a ≤ 3,

which follows from the inequality in P 1.7. The equality holds for a = b = c = 1.

Open problem. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If

0 < k ≤ 3 + 2
√

3,

then
a

b2 + k
+

b

c2 + k
+

c

a2 + k
≥ 3

1 + k
.

For k = 3 + 2
√

3, the equality occurs when a = b = c = 1, and again when a = 0, b = 3−
√

3
and c =

√
3 (or any cyclic permutation thereof ).

P 1.41. Let a, b, c be positive real numbers, and let

x = a+
1

b
− 1, y = b+

1

c
− 1, z = c+

1

a
− 1.

Prove that
xy + yz + zx ≥ 3.

(Vasile Cı̂rtoaje, 1991)

First Solution. Among x, y, z, there are two numbers either less than or equal to 1, or
larger than or equal to 1. Let y and z be these numbers; that is,

(y − 1)(z − 1) ≥ 0.

Since
xy + yz + zx− 3 = (y − 1)(z − 1) + (x+ 1)(y + z)− 4,
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it suffices to show that
(x+ 1)(y + z) ≥ 4.

Since

y + z = b+
1

a
+ c+

1

c
− 2 ≥ b+

1

a
,

we have

(x+ 1)(y + z)− 4 ≥ (x+ 1)

(
b+

1

a

)
− 4 = ab+

1

ab
− 2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Without loss of generality, assume that x = max{x, y, z}. Then,

x ≥ 1

3
(x+ y + z) =

1

3

[(
a+

1

a

)
+

(
b+

1

b

)
+

(
c+

1

c

)
− 3

]
≥ 1

3
(2 + 2 + 2− 3) = 1.

On the other hand, from

(x+ 1)(y + 1)(z + 1) = abc+
1

abc
+ a+ b+ c+

1

a
+

1

b
+

1

c

≥ 2 + a+ b+ c+
1

a
+

1

b
+

1

c
= 5 + x+ y + z,

we get
xyz + xy + yz + zx ≥ 4.

Since

y + z =
1

a
+ b+

(c− 1)2

c
> 0,

two cases are possible: yz ≤ 0 and y, z > 0.

Case 1: yz ≤ 0. Since xyz ≤ 0, it follows that

xy + yz + zx ≥ 4− xyz ≥ 4 > 3.

Case 2: y, z > 0. We need to show that d ≥ 1, where

d =

√
xy + yz + zx

3
.

By the AM-GM inequality, we have d3 ≥ xyz. Thus, from xyz + xy + yz + zx ≥ 4, we get

d3 + 3d2 ≥ 4,

(d− 1)(d+ 2)2 ≥ 0,

hence d ≥ 1.
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P 1.42. Let a, b, c be positive real numbers such that abc = 1. Prove that(
a− 1

b
−
√

2

)2

+

(
b− 1

c
−
√

2

)2

+

(
c− 1

a
−
√

2

)2

≥ 6.

Solution (by Nguyen Van Quy). Using the substitution

a =
y

x
, b =

x

z
, c =

z

y
, x, y, z > 0,

the inequality becomes as follows:(
y − z
x
−
√

2

)2

+

(
z − x
y
−
√

2

)2

+

(
x− y
z
−
√

2

)2

≥ 6,

(
y − z
x

)2

+

(
z − x
y

)2

+

(
x− y
z

)2

− 2
√

2

(
y − z
x

+
z − x
y

+
x− y
z

)
≥ 0,(

y − z
x

)2

+

(
z − x
y

)2

+

(
x− y
z

)2

+
2
√

2(y − z)(z − x)(x− y)

xyz
≥ 0.

Assume that x = max{x, y, z}. For x ≥ z ≥ y, the inequality is clearly true. Consider
further that x ≥ y ≥ z and write the desired inequality as

u2 + v2 + w2 ≥ 2
√

2 uvw,

where

u =
y − z
x
≥ 0, v =

x− z
y
≥ 0, w =

x− y
z
≥ 0.

In addition, we have

uv =

(
1− z

y

)(
1− z

x

)
< 1 · 1 = 1.

According to the AM-GM inequality, we get

u2 + v2 + w2 ≥ 2uv + w2 ≥ 2u2v2 + w2 ≥ 2
√

2 uvw.

This completes the proof. The equality holds for a = b = c.

P 1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that∣∣∣∣1 + a− 1

b

∣∣∣∣+

∣∣∣∣1 + b− 1

c

∣∣∣∣+

∣∣∣∣1 + c− 1

a

∣∣∣∣ > 2.
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Solution. Using the substitution

a =
y

x
, b =

x

z
, c =

z

y
, x, y, z > 0,

the inequality can be restated as∣∣∣∣1 +
y − z
x

∣∣∣∣+

∣∣∣∣1 +
x− y
z

∣∣∣∣+

∣∣∣∣1 +
z − x
y

∣∣∣∣ > 2.

Without loss of generality, assume that x = max{x, y, z}. We have∣∣∣∣1 +
y − z
x

∣∣∣∣+

∣∣∣∣1 +
x− y
z

∣∣∣∣+

∣∣∣∣1 +
z − x
y

∣∣∣∣− 2 ≥
∣∣∣∣1 +

y − z
x

∣∣∣∣+

∣∣∣∣1 +
x− y
z

∣∣∣∣− 2

=
x+ y − z

x
+
z + x− y

z
− 2 =

y − z
x

+
x− y
z
≥ y − z

x
+
x− y
x

=
x− z
x
≥ 0.

P 1.44. If a, b, c are different positive real numbers, then∣∣∣∣1 +
a

b− c

∣∣∣∣+

∣∣∣∣1 +
b

c− a

∣∣∣∣+

∣∣∣∣1 +
c

a− b

∣∣∣∣ > 2.

(Vasile Cı̂rtoaje, 2012)

Solution. Without loss of generality, assume that a = max{a, b, c}. It suffices to show that∣∣∣∣1 +
a

b− c

∣∣∣∣+

∣∣∣∣1 +
c

a− b

∣∣∣∣ > 2,

which is equivalent to
a+ b− c
|b− c|

+
a− b+ c

a− b
> 2.

For b > c, this inequality is true since

a+ b− c
|b− c|

+
a− b+ c

a− b
>
a+ b− c
|b− c|

=
a

b− c
+ 1 > 1 + 1 = 2.

Also, for b < c, we have

a+ b− c
|b− c|

+
a− b+ c

a− b
=
a+ b− c
c− b

+
a− b+ c

a− b

=
a

c− b
+

c

a− b
>

a

c− b
+
c− b
a− b

≥ 2

√
a

a− b
> 2.
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P 1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that(
2a− 1

b
− 1

2

)2

+

(
2b− 1

c
− 1

2

)2

+

(
2c− 1

a
− 1

2

)2

≥ 3

4
.

(Vasile Cı̂rtoaje, 2012)

Solution. Using the substitution

x = 2a− 1

b
, y = 2b− 1

c
, z = 2c− 1

a
,

we can write the inequality as

x2 + y2 + z2 ≥ x+ y + z.

From

x+ y + z = 2
∑

a−
∑ 1

a
and

xyz = 7− 4
∑

a+ 2
∑ 1

a
,

it follows that
2(x+ y + z) + xyz = 7.

In addition, from

2(|x|+ |y|+ |z|) +

(
|x|+ |y|+ |z|

3

)3

≥ 2(|x|+ |y|+ |z|) + |xyz|

≥ 2(x+ y + z) + xyz = 7,

we get
|x|+ |y|+ |z| ≥ 3.

Therefore, we have

x2 + y2 + z2 ≥ 1

3
(|x|+ |y|+ |z|)2 ≥ |x|+ |y|+ |z| ≥ x+ y + z.

The equality holds for a = b = c = 1.

P 1.46. Let

x = a+
1

b
− 5

4
, y = b+

1

c
− 5

4
, z = c+

1

a
− 5

4
,

where a ≥ b ≥ c > 0. Prove that

xy + yz + zx ≥ 27

16
.

(Vasile Cı̂rtoaje, 2011)



84 Vasile Ĉırtoaje

Solution. Write the inequality as∑(
ab+

1

ab

)
+
∑ b

a
− 5

2

∑(
a+

1

a

)
+ 6 ≥ 0.

Since ∑ b

a
−
∑ a

b
=

(a− b)(b− c)(a− c)
abc

≥ 0,

we have

2
∑ b

a
≥
∑ b

a
+
∑ a

b
=
(∑

a
)(∑ 1

a

)
− 3.

Thus, it suffices to prove the symmetric inequality

2
∑(

ab+
1

ab

)
+
(∑

a
)(∑ 1

a

)
− 5

∑(
a+

1

a

)
+ 9 ≥ 0.

Setting
p = a+ b+ c, q = ab+ bc+ ca, r = abc,

we need to show that
(2q − 5p+ 9)r + pq − 5q + 2p ≥ 0

for all a, b, c > 0. For fixed p and q, the linear function

f(r) = (2q − 5p+ 9)r + pq − 5q + 2p

is minimum when r is either minimum or maximum. Thus, according to P 3.57 in Volume
1, it suffices to prove that f(r) ≥ 0 for a = 0 and for b = c.

For a = 0, we need to show that

(b+ c)bc− 5bc+ 2(b+ c) ≥ 0.

Indeed, putting x =
√
bc, we have

(b+ c)bc− 5bc+ 2(b+ c) ≥ 2x3 − 5x2 + 4x > 0.

For b = c, since
p = a+ 2b, q = 2ab+ b2, r = ab2,

the inequality f(r) ≥ 0 becomes

(4ab+ 2b2 − 5a− 10b+ 9)ab2 + (a+ 2b)(2ab+ b2)− 10ab− 5b2 + 2a+ 4b ≥ 0;

that is,
Aa2 + 2Ba+ C ≥ 0,

where

A = b(4b2 − 5b+ 2) > 0, B = b4 − 5b3 + 7b2 − 5b+ 1, C = b(2b2 − 5b+ 4) > 0.
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Let

x = b+
1

b
, x ≥ 2.

The inequality B ≥ 0 is equivalent to

b2 +
1

b2
− 5

(
b+

1

b

)
+ 7 ≥ 0,

x2 − 5x+ 5 ≥ 0,

x ≥ 5 +
√

5

2
.

Consider two cases.

Case 1: x ≥ 5 +
√

5

2
. Since A > 0, B ≥ 0, C > 0, we have Aa2 + 2Ba+ C > 0.

Case 2: 2 ≤ x <
5 +
√

5

2
. Since A > 0, B < 0, C > 0 and

Aa2 + 2Ba+ C = (Aa2 + C) + 2Ba ≥ 2a(
√
AC +B),

we need to show that AC ≥ B2, which is equivalent to

8

(
b2 +

1

b2

)
− 30

(
b+

1

b

)
+ 45 ≥

[
b2 +

1

b2
− 5

(
b+

1

b

)
+ 7

]2
,

8x2 − 30x+ 29 ≥ (x2 − 5x+ 5)2,

(x− 2)2(x2 − 6x− 1) ≤ 0.

This inequality is true for x ≤ 3 +
√

10, therefore for x < (5 +
√

5)/2. Thus, the proof is
completed. The equality holds for a = b = c = 1.

P 1.47. Let a, b, c be positive real numbers, and let

E =

(
a+

1

a
−
√

3

)(
b+

1

b
−
√

3

)(
c+

1

c
−
√

3

)
;

F =

(
a+

1

b
−
√

3

)(
b+

1

c
−
√

3

)(
c+

1

a
−
√

3

)
.

Prove that E ≥ F .
(Vasile Cı̂rtoaje, 2011)
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Solution. By expanding, the inequality becomes∑
(a2 − bc) +

∑
bc(bc− a2) ≥

√
3
∑

ab(b− c).

Since ∑
(a2 − bc) =

∑
a2 −

∑
ab ≥ 0

and ∑
bc(bc− a2) =

∑
a2b2 − abc

∑
a ≥ 0,

by the AM-GM inequality, we have

∑
(a2 − bc) +

∑
bc(bc− a2) ≥ 2

√[∑
(a2 − bc)

] [∑
bc(bc− a2)

]
.

Thus, it suffices to show that

2

√[∑
(a2 − bc)

] [∑
bc(bc− a2)

]
≥
√

3
∑

ab(b− c),

which is equivalent to

2

√[∑
(a2 − bc)

] [∑(
1

a2
− 1

bc

)]
≥
√

3

(
a

b
+
b

c
+
c

a
− 3

)
,

√√√√[(a+ c− 2b)2 + 3(c− a)2]

[
3

(
1

b
− 1

c

)2

+

(
2

a
− 1

b
− 1

c

)2
]
≥

≥ 2
√

3

(
a

b
+
b

c
+
c

a
− 3

)
.

Applying the Cauchy-Schwarz inequality, it suffices to show that

(a+ c− 2b)

(
1

b
− 1

c

)
+ (c− a)

(
2

a
− 1

b
− 1

c

)
≥ 2

(
a

b
+
b

c
+
c

a
− 3

)
,

which is an identity. Thus, the proof is completed. The equality holds when the following
two equations are satisfied:

a2 + b2 + c2 − ab− bc− ca = a2b2 + b2c2 + c2a2 − abc(a+ b+ c)

and

3 +
a

b
+
b

c
+
c

a
= 2

(
b

a
+
c

b
+
a

c

)
.
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P 1.48. If a, b, c are positive real numbers such that
a

b
+
b

c
+
c

a
= 5, then

b

a
+
c

b
+
a

c
≥ 17

4
.

(Vasile Cı̂rtoaje, 2007)

Solution. Making the substitution

x =
a

b
, y =

b

c
, z =

c

a
,

we need to show that if x, y, z are positive real numbers satisfying

xyz = 1, x+ y + z = 5,

then
1

x
+

1

y
+

1

z
≥ 17

4
.

From (y + z)2 ≥ 4yz, we get

(5− x)2 ≥ 4

x
;

therefore,

(5− x) + (5− x) +
x

4
≥ 3 3

√
(5− x)2

x

4
≥ 3,

which involves x ≤ 4. We have

1

x
+

1

y
+

1

z
− 17

4
=

1

x
+
y + z

yz
− 17

4
=

1

x
+ x(5− x)− 17

4

=
4− 17x+ 20x2 − 4x3

4x
=

(4− x)(1− 2x)2

4x
≥ 4.

The equality holds when one of x, y, z is 4 and the others are
1

2
; that is, when

a = 4b = 2c

(or any cyclic permutation).

P 1.49. If a, b, c are positive real numbers, then

(a) 1 +
a

b
+
b

c
+
c

a
≥ 2

√
1 +

b

a
+
c

b
+
a

c
;

(b) 1 + 2

(
a

b
+
b

c
+
c

a

)
≥

√
1 + 16

(
b

a
+
c

b
+
a

c

)
;
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(c) 3 +
a

b
+
b

c
+
c

a
≥ 2

√
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
.

(Vasile Cı̂rtoaje, 2007)

Solution. Let

x =
a

b
, y =

b

c
, z =

c

a

and

p = x+ y + z, q = xy + yz + zx.

By the AM-GM inequality, we have

p ≥ 3 3
√
xyz = 3.

(a) We need to show that xyz = 1 involves

1 + x+ y + z ≥ 2
√

1 + xy + yz + zx,

which is equivalent to

(1 + p)2 ≥ 4 + 4q

or

p+ 3 ≥ 2
√
p+ q + 3.

First Solution. By Schur’s inequality of degree three, we have

p3 + 9 ≥ 4pq.

Thus,

(1 + p)2 − 4− 4q ≥ 1 + p)2 − 4−
(
p2 +

9

p

)
=

(p− 3)(2p+ 3)

p
≥ 0.

The equality holds for a = b = c.

Second Solution. Without loss of generality, assume that b is between a and c. By the
AM-GM inequality, we have

2
√
p+ q + 3 = 2

√
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≤ a+ b+ c

b
+ b

(
1

a
+

1

b
+

1

c

)
.

Therefore,

p+ 3− 2
√
p+ q + 3 ≥ a

b
+
b

c
+
c

a
+ 3− a+ b+ c

b
− b
(

1

a
+

1

b
+

1

c

)
=

(a− b)(b− c)
ab

≥ 0.
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(b) We have to show that xyz = 1 involves

1 + 2(x+ y + z) ≥
√

1 + 16(xy + yz + zx),

which is equivalent to
p2 + p ≥ 4q.

By Schur’s inequality of degree three, we have

p3 + 9 ≥ 4pq.

Thus,

p2 + p− 4q ≥ p2 + p−
(
p2 +

9

p

)
=

(p− 3)(p+ 3)

9
≥ 0.

The equality holds for a = b = c.

(c) Write the inequality as follows:

(3 + x+ y + z)2 ≥ 4(3 + x+ y + z + xy + yz + zx),

(x+ y + z)2 + 2(x+ y + z) ≥ 3 + 4(xy + yz + zx),

(1 + x+ y + z)2 ≥ 4(1 + xy + yz + zx),

1 + x+ y + z ≥ 2
√

1 + xy + yz + zx,

1 +
a

b
+
b

c
+
c

a
≥ 2

√
1 +

b

a
+
c

b
+
a

c
.

Thus, the inequality is equivalent to the inequality in (a).

P 1.50. If a, b, c are positive real numbers, then

a2

b2
+
b2

c2
+
c2

a2
+ 15

(
b

a
+
c

b
+
a

c

)
≥ 16

(
a

b
+
b

c
+
c

a

)
.

Solution. Making the substitution

x =
a

b
, y =

b

c
, z =

c

a
,

we have to show that xyz = 1 involves

x2 + y2 + z2 + 15(xy + yz + zx) ≥ 16(x+ y + z),

which is equivalent to

(x+ y + z)2 − 16(x+ y + z) + 13(xy + yz + zx) ≥ 0.
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According to P 3.58 in Volume 1, for fixed x+ y + z and xyz = 1, the expression

xy + yz + zx

is minimum when two of x, y, z are equal. Therefore, due to symmetry, it suffices to consider
that x = y. We need to show that

(2x+ z)2 − 16(2x+ z) + 13(x2 + 2xz) ≥ 0

for x2z = 1. Write this inequality as

17x6 − 32x5 + 30x3 − 16x2 + 1 ≥ 0,

or
(x− 1)2g(x) ≥ 0, g(x) = 17x4 + 2x3 − 13x2 + 2x+ 1.

Since
g(x) = (2x− 1)4 + x(x3 + 34x2 − 37x+ 10),

it suffices to show that
x3 + 34x2 − 37x+ 10 ≥ 0.

There are two cases to consider.

Case 1: x ∈
(

0,
1

2

]
∪
[

10

17
,∞
)

. We have

x3 + 34x2 − 37x+ 10 > 34x2 − 37x+ 10 = (2x− 1)(17x− 10) ≥ 0.

Case 2: x ∈
(

1

2
,
10

17

)
. We have

2(x3 + 34x2 − 37x+ 10) > 2

(
1

2
x2 + 34x2 − 37x+ 10

)
= 69x2 − 74x+ 20.

Since 69x2 − 74x + 20 > 0 for all real x, the proof is completed. The equality holds for
a = b = c.

P 1.51. If a, b, c are positive real numbers such that abc = 1, then

(a)
a

b
+
b

c
+
c

a
≥ a+ b+ c;

(b)
a

b
+
b

c
+
c

a
≥ 3

2
(a+ b+ c− 1);

(c)
a

b
+
b

c
+
c

a
+ 2 ≥ 5

3
(a+ b+ c).
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Solution. (a) We write the inequality as(
2
a

b
+
b

c

)
+

(
2
b

c
+
c

a

)
+
(

2
c

a
+
a

b

)
≥ 3(a+ b+ c).

In virtue of the AM-GM inequality, we get(
2
a

b
+
b

c

)
+

(
2
b

c
+
c

a

)
+
(

2
c

a
+
a

b

)
≥ 3

3

√
a2

bc
+ 3

3

√
b2

ca
+ 3

3

√
c2

ab
= 3(a+ b+ c).

The equality holds for a = b = c = 1.

(b) Using the substitution

a =
y

x
, b =

z

y
, c =

x

z
,

where x, y, z > 0, the inequality can be restated as

2(x3 + y3 + z3) + 3xyz ≥ 3(x2y + y2z + z2x).

First Solution. We get the desired inequality by summing Schur’s inequality of degree
three

x3 + y3 + z3 + 3xyz ≥ (x2y + y2z + z2x) + (xy2 + yz2 + zx2)

and
x3 + y3 + z3 + xy2 + yz2 + zx2 ≥ 2(x2y + y2z + z2x).

The latter inequality is equivalent to

x(x− y)2 + y(y − z)2 + z(z − x)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Multiplying by x+ y + z, the desired inequality in x, y, z turns into

2
∑

x4 −
∑

x3y − 3
∑

x2y2 + 2
∑

xy3 ≥ 0.

Write this inequality as∑
[(1 + k)x4 − x3y − 3x2y2 + 2xy3 + (1− k)y4] ≥ 0,∑

(x− y)[x3 − 3xy2 − y3 + k(x3 + x2y + xy2 + y3)] ≥ 0.

Choosing k =
3

4
, we get the obvious inequality

∑
(x− y)2(7x2 + 10xy + y2) ≥ 0.
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(c) Making the substitution

a =
y

x
, b =

z

y
, c =

x

z
, x, y, z > 0,

we need to show that

3(x3 + y3 + z3) + 6xyz ≥ 5(x2y + y2z + z2x).

Assuming that x = min{x, y, z} and substituting

y = x+ p, z = x+ q, p, q ≥ 0,

the inequality turns into

(p2 − pq + q2)x+ 3p3 + 3q3 − 5p2q ≥ 0.

This is true since, by the AM-GM inequality, we get

6p3 + 6q3 = 3p3 + 3p3 + 6q3 ≥ 3 3
√

3p3 · 3p3 · 6q3 = 9
3
√

2 p2q ≥ 10p2q.

The equality holds for a = b = c = 1.

Remark. The following stronger inequality holds for abc = 1:

a

b
+
b

c
+
c

a
≥
√

3(a2 + b2 + c2).

By squaring, the inequality becomes

a2

b2
+
b2

c2
+
c2

a2
+ 2

(
a

c
+
b

a
+
c

b

)
≥ 3(a2 + b2 + c2).

By the AM-GM inequality, we have

a2

b2
+ 2

a

c
≥ 3

3

√
a4

b2c2
= 3a2,

b2

c2
+ 2

b

a
≥ 3b2,

c2

a2
+ 2

c

b
≥ 3c2.

Summing this inequalities, the conclusion follows.

P 1.52. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

(a)
a

b
+
b

c
+
c

a
≥ 2 +

3

ab+ bc+ ca
;

(b)
a

b
+
b

c
+
c

a
≥ 9

a+ b+ c
.
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Solution. (a) By the Cauchy-Schwarz inequality, we have

a

b
+
b

c
+
c

a
≥ (a+ b+ c)2

ab+ bc+ ca
= 2 +

3

ab+ bc+ ca
.

The equality holds for a = b = c = 1.

(b) Using the inequality in (a), it suffices to show that

2 +
3

ab+ bc+ ca
≥ 9

a+ b+ c
.

Let

t =
a+ b+ c

3
, t ≤ 1.

Since
2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2) = 9t2 − 3,

the inequality becomes

2 +
2

3t2 − 1
≥ 3

t
,

(t− 1)2(2t+ 1) ≥ 0.

The equality holds for a = b = c = 1.

P 1.53. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

6

(
a

b
+
b

c
+
c

a

)
+ 5(ab+ bc+ ca) ≥ 33.

Solution. Write the inequality in the homogeneous form

a

b
+
b

c
+
c

a
− 3 ≥ 5

2

(
1− ab+ bc+ ca

a2 + b2 + c2

)
.

We will prove the sharper inequality

a

b
+
b

c
+
c

a
− 3 ≥ m

(
1− ab+ bc+ ca

a2 + b2 + c2

)
,

where

m = 4
√

2− 3 >
5

2
.

Write this inequality as follows:(∑
a2
)(∑

ab2
)

+mabc
∑

ab− (m+ 3)abc
∑

a2 ≥ 0,
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∑
ab4 +

∑
a3b2 + (m+ 1)abc

∑
ab− (m+ 3)abc

∑
a2 ≥ 0,∑

ab4 +
∑

a3b2 + 2(2
√

2− 1)abc
∑

ab− 4
√

2 abc
∑

a2 ≥ 0,

On the other hand, from ∑
a(a− b)2(b− kc)2 ≥ 0,

we get ∑
ab4 +

∑
a3b2 + (k2 − 2)

∑
a2b3 + k(4− k)abc

∑
ab− 4kabc

∑
a2 ≥ 0.

Choosing k =
√

2, we get the desired inequality. The equality holds for a = b = c = 1.

P 1.54. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a) 6

(
a

b
+
b

c
+
c

a

)
+ 3 ≥ 7(a2 + b2 + c2);

(b)
a

b
+
b

c
+
c

a
≥ a2 + b2 + c2.

Solution. (a) Write the inequality in the homogeneous form

2
(∑

a
)2 (∑

ab2
)

+ abc
(∑

a
)2
≥ 21abc

∑
a2,

which is equivalent to∑
ab4 +

∑
a3b2 + 2

∑
a2b3 + 4abc

∑
ab− 8abc

∑
a2 ≥ 0.

On the other hand, from ∑
a(a− b)2(b− kc)2 ≥ 0,

we get ∑
ab4 +

∑
a3b2 + (k2 − 2)

∑
a2b3 + k(4− k)abc

∑
ab− 4kabc

∑
a2 ≥ 0.

Choosing k = 2, we get the desired inequality. The equality holds for a = b = c = 1.

(b) We get the desired inequality by adding the inequality in (a) and the obvious in-
equality

a2 + b2 + c2 ≥ 3.

The equality holds for a = b = c = 1.
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P 1.55. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
+ 2 ≥ 14(a2 + b2 + c2)

(a+ b+ c)2
.

(Vo Quoc Ba Can, 2010)

Solution. By expanding, the inequality becomes as follows:(∑ a

b

)(∑
a2 + 2

∑
ab
)

+ 4
∑

ab ≥ 12
∑

a2,

∑ a3

b
+
∑ a2b

c
+ 2

∑ ab2

c
+ 7

∑
ab ≥ 10

∑
a2,

A+B ≥ 10
∑

a2 − 10
∑

ab,

where

A =
∑ a3

b
+
∑ a2b

c
− 2

∑ ab2

c
, B = 4

∑ ab2

c
− 3

∑
ab.

Since

A =
∑(

b3

c
+
a2b

c
− 2ab2

c

)
=
∑ b(a− b)2

c

and

B =
∑(

4ca2

b
− 12ca+ 9bc

)
=
∑ c(2a− 3b)2

b
,

we get

A+B =
∑[

b(a− b)2

c
+
c(2a− 3b)2

b

]
≥ 2

∑
(a− b)(2a− 3b) = 10

∑
a2 − 10

∑
ab.

Thus, the proof is completed. For a ≥ b ≥ c, the equality holds for

b(a− b) = c(2a− 3b), c(b− c) = a(2b− 3c), a(c− a) = b(2c− 3a),

which are equivalent to

a
√

7− tan
π

7

=
b

√
7− tan

2π

7

=
c

√
7− tan

4π

7

.

Notice that the equality conditions involve

a2 + b2 + c2 = 2ab+ 2bc+ 2ca,

hence √
a =
√
b+
√
c.
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Remark. Using the inequality in P 1.55, we can prove the weaker inequality

a

b
+
b

c
+
c

a
+

7(ab+ bc+ ca)

a2 + b2 + c2
≥ 17

2
,

with equality for the same conditions. It suffices to show that

14(a2 + b2 + c2)

(a+ b+ c)2
− 2 ≥ 17

2
− 7(ab+ bc+ ca)

a2 + b2 + c2

which is equivalent to
(a2 + b2 + c2 − 2ab− 2bc− 2ca)2 ≥ 0.

Actually, the following statement is valid.

If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
≥ 19(a2 + b2 + c2) + 2(ab+ bc+ ca)

a2 + b2 + c2 + 6(ab+ bc+ ca)
,

with equality for a = b = c, and also for

a
√

7− tan
π

7

=
b

√
7− tan

2π

7

=
c

√
7− tan

4π

7

(or any cyclic permutation).

This inequality is stronger than the inequality in P 1.55.

P 1.56. Let a, b, c be positive real numbers such that a+ b+ c = 3, and let

x = 3a+
1

b
, y = 3b+

1

c
, z = 3c+

1

a
.

Prove that
xy + yz + zx ≥ 48.

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality as follows:

3(ab+ bc+ ca) +
1

abc
+

(
b

a
+
c

b
+
a

c

)
≥ 13.

We get this inequality by adding the inequality P 1.54-(a), namely

6

(
b

a
+
c

b
+
a

c

)
+ 3 ≥ 7(a2 + b2 + c2),
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and the inequality

18(ab+ bc+ ca) +
6

abc
+ 7(a2 + b2 + c2) ≥ 81.

Since
a2 + b2 + c2 = 9− 2(ab+ bc+ ca),

the latter inequality is equivalent to

2(ab+ bc+ ca) +
3

abc
≥ 9.

By the known inequality

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c),

we get
1

abc
≥ 9

(ab+ bc+ ca)2
.

Thus, it suffices to show that

2q +
27

q2
≥ 9,

where q = ab+ bc+ ca. Indeed, by the AM-GM inequality, we have

2q +
27

q2
= q + q +

27

q2
≥ 3 3

√
q · q · 27

q2
= 9.

The equality holds for a = b = c = 1.

P 1.57. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a+ 1

b
+
b+ 1

c
+
c+ 1

a
≥ 2(a2 + b2 + c2).

Solution. We get the desired inequality by summing the inequality in P 1.54-(a), namely

6

(
a

b
+
b

c
+
c

a

)
+ 3 ≥ 7(a2 + b2 + c2),

and the inequality

6

(
1

a
+

1

b
+

1

c

)
≥ 5(a2 + b2 + c2) + 3.

Write the latter inequality as F (a, b, c) ≥ 0, where

F (a, b, c) = 6

(
1

a
+

1

b
+

1

c

)
− 5(a2 + b2 + c2)− 3,
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then assume that
a = max{a, b, c}, b+ c ≤ 2.

and show that

F (a, b, c) ≥ F

(
a,
b+ c

2
,
b+ c

2

)
≥ 0.

Indeed, we have

F (a, b, c)− F
(
a,
b+ c

2
,
b+ c

2

)
= 6

(
b+ c

bc
− 4

b+ c

)
− 5

[
b2 + c2 − 1

2
(b+ c)2

]

= (b− c)2
[

6

bc(b+ c)
− 5

2

]
≥ (b− c)2

[
24

(b+ c)3
− 5

2

]
≥ 0.

Also,

F

(
a,
b+ c

2
,
b+ c

2

)
= F

(
a,

3− a
2

,
3− a

2

)
=

3(a− 1)2(12− 15a+ 5a2)

2a(3− a)
≥ 0.

The equality holds for a = b = c = 1.

P 1.58. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

b
+
b2

c
+
c2

a
+ 3 ≥ 2(a2 + b2 + c2).

(Pham Huu Duc, 2007)

First Solution. Assume that
a = max{a, b, c},

then homogenize the inequality and write it as follows:

a2

b
+
b2

c
+
c2

a
+ a+ b+ c ≥ 6(a2 + b2 + c2)

a+ b+ c
,

∑(
b2

c
− 2b+ c

)
≥ 6

(
a2 + b2 + c2

a+ b+ c
− a+ b+ c

3

)
,

∑ (b− c)2

c
≥ 2

a+ b+ c

∑
(b− c)2,

(b− c)2A+ (c− a)2B + (a− b)2C ≥ 0,

where

A =
a+ b

c
− 1 > 0, B =

b+ c

a
− 1, C =

c+ a

b
− 1 > 0.
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By the Cauchy-Schwarz inequality, we have

(b− c)2A+ (a− b)2C ≥ [(b− c) + (a− b)]2
1

A
+

1

C

=
AC

A+ C
(a− c)2.

Therefore, it suffices to show that

AC

A+ C
+B ≥ 0.

Indeed, by the third degree Schur’s inequality, we get

AB +BC + CA = 3 +
a3 + b3 + c3 + 3abc− ab(a+ b)− bc(b+ c)− ca(c+ a)

abc
≥ 3.

The equality holds for a = b = c = 1.

Second Solution (by Michael Rozenberg). Write the inequality in the homogeneous form(∑
a
)(∑

ab3
)

+ abc
(∑

a
)2
≥ 6abc

∑
a2.

By expanding, we get ∑
(ab4 + a2b3 + 2ab2c2 − 4a3bc) ≥ 0,

which is equivalent to ∑
a(b2 − 2bc+ ac)2 ≥ 0.

P 1.59. If a, b, c are positive real numbers, then

a3

b
+
b3

c
+
c3

a
+ 2(ab+ bc+ ca) ≥ 3(a2 + b2 + c2).

(Michael Rozenberg, 2010)

Solution. Write the inequality as∑(
a3

b
+ ab− 2a2

)
≥ a2 + b2 + c2 − ab− bc− ca,

a(a− b)2

b
+
b(b− c)2

c
+
c(c− a)2

a
≥ a2 + b2 + c2 − ab− bc− ca.

Assume that a = max{a, b, c}.
Case 1: a ≥ b ≥ c. By the Cauchy-Schwarz inequality, we have

a(a− b)2

b
+
b(b− c)2

c
≥ [(a− b) + (b− c)]2

b
a

+ c
b

=
ab(a− c)2

b2 + ac
.
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On the other hand,

a2 + b2 + c2 − ab− bc− ca = (a− c)2 + (b− a)(b− c) ≤ (a− c)2.

Therefore, it suffice to show that

ab(a− c)2

b2 + ac
+
c(a− c)2

a
≥ (a− c)2,

which is true if
ab

b2 + ac
+
c

a
≥ 1.

This inequality is equivalent to

a2b+ b2c+ c2a− ab2 − ca2 ≥ 0,

bc2 − (a− b)(b− c)(c− a) ≥ 0.

Case 2: a ≥ c ≥ b. By the Cauchy-Schwarz inequality, we have

b(b− c)2

c
+
c(c− a)2

a
≥ [(b− c) + (c− a)]2

c
b

+ a
c

=
bc(a− b)2

c2 + ab
.

On the other hand,

a2 + b2 + c2 − ab− bc− ca = (a− b)2 + (c− a)(c− b) ≤ (a− b)2.

Therefore, it suffice to show that

a(a− b)2

b
+
bc(a− b)2

c2 + ab
≥ (a− b)2,

which is equivalent to

(a− b)2(a2b+ b2c+ c2a− ab2 − bc2) ≥ 0,

(a− b)2[ab(a− b) + b2c+ c2(a− b)] ≥ 0.

The equality holds for a = b = c.

P 1.60. If a, b, c are positive real numbers such that a4 + b4 + c4 = 3, then

(a)
a2

b
+
b2

c
+
c2

a
≥ 3;

(b)
a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ 3

2
.

(Alexey Gladkich, 2005)
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Solution. (a) By Hölder’s inequality, we have(∑ a2

b

)(∑ a2

b

)(∑
a2b2

)
≥
(∑

a2
)3
.

Therefore, it suffices to show that (∑
a2
)3
≥ 9

∑
a2b2,

which has the homogeneous form(∑
a2
)3
≥ 3

(∑
a2b2

)√
3
∑

a4.

Using the notation

x =
∑

a2, y =
∑

a2b2,

the inequality can be restated as

x3 ≥ 3y
√

3(x2 − 2y).

By squaring, the inequality becomes

x6 − 27x2y2 + 54y3 ≥ 0,

which is true because

x6 − 27x2y2 + 54y3 = (x2 − 3y)2(x2 + 6y) ≥ 0.

The equality holds for a = b = c = 1.

(b) By Hölder’s inequality, we have(∑ a2

b+ c

)(∑ a2

b+ c

)[∑
a2(b+ c)2

]
≥
(∑

a2
)3
.

Thus, it suffices to prove that (∑
a2
)3
≥ 9

4

∑
a2(b+ c)2.

Using the inequality from the proof of (a), namely(∑
a2
)3
≥ 9

∑
a2b2,

we still have to show that ∑
a2b2 ≥ 1

4

∑
a2(b+ c)2.

This inequality is equivalent to ∑
a2(b− c)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 1.61. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
≥ 3(a3 + b3 + c3)

a2 + b2 + c2
.

(Vo Quoc Ba Can, 2010)

Solution (by Ta Minh Hoang). Assume that

a = max{a, b, c},

and write the inequality as follows:

a2

b
+
b2

c
+
c2

a
− a− b− c ≥ 3(a3 + b3 + c3)

a2 + b2 + c2
− a− b− c,

∑ (a− b)2

b
≥ 1

a2 + b2 + c2

∑
(a+ b)(a− b)2,

(b− c)2A+ (c− a)2B + (a− b)2C ≥ 0,

where

A =
a2 + b2 − bc

c
> 0, B =

b2 + c2 − ca
a

, C =
c2 + a2 − ab

b
> 0.

Consider the nontrivial case B < 0; that is,

ac− b2 − c2 > 0.

From
ac− b2 − c2 = c(a− 2b)− (b− c)2,

it follows that
c(a− 2b) > (b− c)2 ≥ 0,

hence
a > 2b.

By the Cauchy-Schwarz inequality, we have

(b− c)2A+ (a− b)2C ≥ [(b− c) + (a− b)]2
1

A
+

1

C

=
AC

A+ C
(a− c)2.

Therefore, it suffices to show that
AC

A+ C
+B ≥ 0; that is,

1

A
+

1

B
+

1

C
≤ 0, or

c

a2 + b2 − bc
+

b

c2 + a2 − ab
≤ a

ca− b2 − c2
.
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Case 1: a ≥ b ≥ c. Since

a2 + b2 − bc− (ca− b2 − c2) > a2 + b2 − bc− ca
= a(a− c) + b(b− c) ≥ 0,

and

c2 + a2 − ab− (ca− b2 − c2) > a2 + b2 − a(b+ c)

≥ a2 + bc− a(b+ c)

= (a− b)(a− c) ≥ 0,

it suffices to show that c+ b ≤ a. Indeed, we have a > 2b ≥ b+ c.

Case 2: a ≥ c ≥ b. Replacing b and c by c and b, respectively, we need to show that
a ≥ b ≥ c involves

a2

c
+
c2

b
+
b2

a
≥ 3(a3 + b3 + c3)

a2 + b2 + c2
.

According to the previous case, we have

a2

b
+
b2

c
+
c2

a
≥ 3(a3 + b3 + c3)

a2 + b2 + c2
.

Therefore, it suffices to show that

a2

c
+
c2

b
+
b2

a
≥ a2

b
+
b2

c
+
c2

a
.

This inequality is equivalent to

(a+ b+ c)(a− b)(b− c)(a− c) ≥ 0,

which is clearly true for a ≥ b ≥ c.
The proof is completed. The equality holds for a = b = c = 1.

Remark. A similar inequality is the following:

a2

b
+
b2

c
+
c2

a
≥ (a+ b+ c)(a2 + b2 + c2)

ab+ bc+ ca
.

By expending, the inequality becomes

ab3

c
+
bc3

a
+
ca3

b
≥ a2b+ b2c+ c2a.

a2(b2 − ca)2 + b2(c2 − ab)2 + c2(a2 − bc)2 ≥ 0.
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P 1.62. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
+ a+ b+ c ≥ 2

√
(a2 + b2 + c2)

(
a

b
+
b

c
+
c

a

)
.

(Pham Huu Duc, 2006)

Solution. Without loss of generality, we may assume that b is between a and c; that is,

(b− a)(b− c) ≤ 0.

Since

2

√
(a2 + b2 + c2)

(
a

b
+
b

c
+
c

a

)
= 2

√
a2 + b2 + c2

b

(
a+

b2

c
+
bc

a

)
≤ a2 + b2 + c2

b
+ a+

b2

c
+
bc

a

=
a2

b
+
b2

c
+ a+ b+

bc

a
+
c2

b
,

it suffices to prove that
c2

a
+ c ≥ bc

a
+
c2

b
.

This is true because
c2

a
+ c− bc

a
− c2

b
=
c(a− b)(b− c)

ab
≥ 0.

The proof is completed. The equality holds for a = b = c.

P 1.63. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
+ 32

(
a

a+ b
+

b

b+ c
+

c

c+ a

)
≥ 51.

(Vasile Cı̂rtoaje, 2009)

Solution. Write the inequality as

a

b
+
b

c
+
c

a
+ 45 ≥ 32

(
b

a+ b
+

c

b+ c
+

a

c+ a

)
.

Using the substitution

x =
a

b
, y =

b

c
, z =

c

a
,



Cyclic Inequalities 105

which involves xyz = 1, the inequality becomes

x+ y + z + 45− 32

(
1

x+ 1
+

1

y + 1
+

1

z + 1

)
≥ 0.

We get this inequality by summing the inequalities

x− 32

x+ 1
+ 15 ≥ 9 lnx,

y − 32

y + 1
+ 15 ≥ 9 ln y,

z − 32

z + 1
+ 15 ≥ 9 ln z.

Let

f(x) = x− 32

x+ 1
+ 15− 9 lnx, x > 0.

From the derivative

f ′(x) = 1 +
32

(x+ 1)2
− 9

x
=

(x− 1)(x− 3)2

x(x+ 1)2
,

it follows that f(x) is decreasing for 0 < x ≤ 1 and increasing for x ≥ 1. Therefore, we have
f(x) ≥ f(1) = 0. The equality holds for a = b = c.

P 1.64. Find the largest positive real number K such that the inequalities below hold for any
positive real numbers a, b, c:

(a)
a

b
+
b

c
+
c

a
− 3 ≥ K

(
a

b+ c
+

b

c+ a
+

c

a+ b
− 3

2

)
;

(b)
a

b
+
b

c
+
c

a
− 3 +K

(
a

2a+ b
+

b

2b+ c
+

c

2c+ a
− 1

)
≥ 0.

(Vasile Cı̂rtoaje, 2008)

Solution. (a) For
a = x3, b = x, c = 1,

the inequality becomes

x2 + x+
1

x3
− 3 ≥ K

(
x3

x+ 1
+

x

1 + x3
+

1

x3 + x
− 3

2

)
,

(1−K)x3

x+ 1
+

x2

x+ 1
+ x+

1

x3
− 3−K

(
x

1 + x3
+

1

x3 + x
− 3

2

)
≥ 0.
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For x → ∞, we get the necessary condition 1 − K ≥ 0. We will show that the original
inequality is true for K = 1; that is,

a

b
+
b

c
+
c

a
≥ 3

2
+

a

b+ c
+

b

c+ a
+

c

a+ b
.

Write the inequality as(
c

a
− c

a+ b

)
+

(
a

b
− a

b+ c

)
+

(
b

c
− b

c+ a

)
≥ 3

2
,

bc

a(a+ b)
+

ca

b(b+ c)
+

ab

c(c+ a)
≥ 3

2
.

By the Cauchy-Schwarz inequality, we have

bc

a(a+ b)
+

ca

b(b+ c)
+

ab

c(c+ a)
≥ (bc+ ca+ ab)2

abc(a+ b) + abc(b+ c) + abc(c+ a)

=
(bc+ ca+ ab)2

2abc(a+ b+ c)
≥ 3

2
.

The equality holds for a = b = c.

(b) For b = 1 and c = a2, the inequality becomes

2a+
1

a2
− 3 +K

(
2a

2a+ 1
+

1

a2 + 2
− 1

)
≥ 0,

(a− 1)2(2a+ 1)

a2
− K(a− 1)2

(2a+ 1)(a2 + 2)
≥ 0.

This inequality holds for any positive a if and only if

2a+ 1

a2
− K

(2a+ 1)(a2 + 2)
≥ 0.

For a = 1, this inequality involves K ≤ 27. We will show that the original inequality is true
for K = 27. Using the substitution

x =
a

b
, y =

b

c
, z =

c

a
,

which involves xyz = 1, the inequality can be restated as

x+ y + z − 3− 27

2

(
1

2x+ 1
+

1

2y + 1
+

1

2z + 1
− 1

)
≥ 0.

First Solution. We get the desired inequality by summing the inequalities

x− 27

2(2x+ 1)
+

7

2
≥ 4 lnx,
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y − 27

2(2y + 1)
+

7

2
≥ 4 ln y,

z − 27

2(2z + 1)
+

7

2
≥ 4 ln z.

Let

f(x) = x− 27

2(2x+ 1)
+

7

2
− 4 lnx, x > 0.

From the derivative

f ′(x) = 1 +
27

(2x+ 1)2
− 4

x
=

4(x− 1)3

x(2x+ 1)2
,

it follows that f(x) is decreasing for 0 < x ≤ 1 and increasing for x ≥ 1. Therefore, we have
f(x) ≥ f(1) = 0. The equality holds for a = b = c.

Second Solution. Replacing x, y, z by ex, ey, ez, respectively, we need to show that

x+ y + z = 0

involves

f(x) + f(y) + f(z) ≥ 3f

(
x+ y + z

3

)
,

where

f(u) = eu − 27

2(2eu + 1)
.

If f is convex on R, then this inequality is just Jensen’s inequality. Indeed, f is convex
because

e−uf ′′(u) = 1 +
27(1− 2eu)

(2eu + 1)3
=

4(eu − 1)2(2eu + 7)

(2eu + 1)3
≥ 0.

P 1.65. If a, b, c ∈
[

1

2
, 2

]
, then

(a) 8

(
a

b
+
b

c
+
c

a

)
≥ 5

(
b

a
+
c

b
+
a

c

)
+ 9;

(b) 20

(
a

b
+
b

c
+
c

a

)
≥ 17

(
b

a
+
c

b
+
a

c

)
.

(Vasile Cı̂rtoaje, 2008)

Solution. Without loss of generality, assume that

a = max{a, b, c}.
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Let

t =

√
a

c
, 1 ≤ t ≤ 2.

(a) Let

E(a, b, c) = 8

(
a

b
+
b

c
+
c

a

)
− 5

(
b

a
+
c

b
+
a

c

)
− 9.

We will show that

E(a, b, c) ≥ E(a,
√
ac, c) ≥ 0.

We have

E(a, b, c)− E(a,
√
ac, c) = 8

(
a

b
+
b

c
− 2

√
a

c

)
− 5

(
b

a
+
c

b
− 2

√
c

a

)

=
(b−

√
ac)2(8a− 5c)

abc
≥ 0.

Also,

E(a,
√
ac, c) = 8

(
2

√
a

c
+
c

a
− 3

)
− 5

(
2

√
c

a
+
a

c
− 3

)
= 8

(
2t+

1

t2
− 3

)
− 5

(
2

t
+ t2 − 3

)
=

8

t2
(t− 12(2t+ 1)− 5

t
(t− 1)2(t+ 2)

=
(t− 1)2(4 + 5t)(2− t)

t2
≥ 0.

The equality holds for a = b = c, and also for a = 2, b = 1 and c =
1

2
(or any cyclic

permutation).

(b) Let

E(a, b, c) = 20

(
a

b
+
b

c
+
c

a

)
− 17

(
b

a
+
c

b
+
a

c

)
.

We will show that

E(a, b, c) ≥ E(a,
√
ac, c) ≥ 0.

We have

E(a, b, c)− E(a,
√
ac, c) = 20

(
a

b
+
b

c
− 2

√
a

c

)
− 17

(
b

a
+
c

b
− 2

√
c

a

)

=
(b−

√
ac)2(20a− 17c)

abc
≥ 0.
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Also, we have

E(a,
√
ac, c) = 20

(
2

√
a

c
+
c

a

)
− 17

(
2

√
c

a
+
a

c

)
= 20

(
2t+

1

t2

)
− 17

(
2

t
+ t2

)
=

20− 34t+ 40t3 − 17t4

t2

=
(2− t)(17t3 − 6t2 − 12t+ 10)

t2
.

We need to show that 17t3 − 6t2 − 12t+ 10 ≥ 0 for 1 ≤ t ≤ 2. Indeed, we have

17t3 − 6t2 − 12t+ 10 ≥ 11t2 − 12t+ 10 > 4t2 − 12t+ 9 = (2t− 3)2 ≥ 0.

The equality holds for a = 2, b = 1 and c =
1

2
(or any cyclic permutation).

P 1.66. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a

b
+
b

c
+
c

a
≥ 2a

b+ c
+

2b

c+ a
+

2c

a+ b
.

First Solution. Since

a

b
+
b

c
+
c

a
−
(
b

a
+
c

b
+
a

c

)
=
(a
b
− 1
)(b

c
− 1

)( c
a
− 1
)
≥ 0,

it suffices to show that(
a

b
+
b

c
+
c

a

)
+

(
b

a
+
c

b
+
a

c

)
≥ 4a

b+ c
+

4b

c+ a
+

4c

a+ b
.

This inequality is equivalent to

a

(
1

b
+

1

c
− 4

b+ c

)
+ b

(
1

c
+

1

a
− 4

c+ a

)
+ c

(
1

a
+

1

b
− 4

a+ b

)
≥ 0,

a2(b− c)2

b+ c
+
b2(c− a)2

c+ a
+
c2(a− b)2

a+ b
≥ 0.

The equality holds for a = b = c.

Second Solution. The inequality is equivalent to

a(c− b)
b(b+ c)

− b(c− a)

c(c+ a)
+
c(b− a)

a(a+ b)
≥ 0.



110 Vasile Ĉırtoaje

Taking account of

b(c− a) = c(b− a) + a(c− b),

we may rewrite the inequality as

c(b− a)

[
1

a(a+ b)
− 1

c(c+ a)

]
+ a(c− b)

[
1

b(b+ c)
− 1

c(c+ a)

]
≥ 0.

Since
1

a(a+ b)
− 1

c(c+ a)
=
c2 − a2 + a(c− b)
ac(a+ b)(c+ a)

≥ c− b
c(a+ b)(c+ a)

and
1

b(b+ c)
− 1

c(c+ a)
=
c2 − b2 + c(a− b)
bc(b+ c)(c+ a)

≥ a− b
b(b+ c)(c+ a)

,

it suffices to show that

c(b− a)(c− b)
c(a+ b)(c+ a)

+
a(c− b)(a− b)
b(b+ c)(c+ a)

≥ 0.

This inequality is true if
1

a+ b
− a

b(b+ c)
≥ 0.

Indeed,
1

a+ b
− a

b(b+ c)
≥ 1

a+ b
− 1

b+ c
=

c− a
(a+ b)(b+ c)

≥ 0.

P 1.67. Let a, b, c be positive real numbers such that abc = 1.

(a) If a ≤ b ≤ c, then

a

b
+
b

c
+
c

a
≥ a3/2 + b3/2 + c3/2;

(b) If a ≤ 1 ≤ b ≤ c, then

a

b
+
b

c
+
c

a
≥ a

√
3 + b

√
3 + c

√
3.

(Vasile Cı̂rtoaje, 2008)
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Solution. (a) Since

a

b
+
b

c
+
c

a
−
(
b

a
+
c

b
+
a

c

)
=
(a
b
− 1
)(b

c
− 1

)( c
a
− 1
)
≥ 0,

it suffices to show that(
a

b
+
b

c
+
c

a

)
+

(
b

a
+
c

b
+
a

c

)
≥ 2(a3/2 + b3/2 + c3/2).

Indeed, by the AM-GM inequality, we have∑ a

b
+
∑ b

a
=
∑

a

(
1

b
+

1

c

)
≥
∑ 2a√

bc
= 2

∑
a3/2.

The equality holds for a = b = c = 1.

(b) Let k =
√

3 and

E(a, b, c) =
a

b
+
b

c
+
c

a
− ak − bk − ck.

We will show that
E(a, b, c) ≥ E(a,

√
bc,
√
bc) ≥ 0;

that is,

E(
1

bc
, b, c) ≥ E(

1

bc
,
√
bc,
√
bc) ≥ 0.

Substituting
t =
√
bc, t ≥ 1,

we rewrite the right inequality as f(t) ≥ 0, where

f(t) =
1

t3
+ 1 + t3 − 1

t2k
− 2tk.

We have the derivative

f ′(t)

t2
= g(t), g(t) =

−3

t6
+ 3 +

2k

t2k+3
− 2k

t3−k
.

Since
1

2
t2k+4g′(t) = 9t2k−3 − k(2k + 3) + k(3− k)t3k

≥ 9− k(2k + 3) + k(3− k) = 9− 3k2 = 0,

g(t) is increasing for t ≥ 1. Therefore, g(t) ≥ g(1) = 0, f ′(t) ≥ 0, f(t) is increasing for t ≥ 1,
hence f(t) ≥ f(1) = 0.

Substituting b = x2 and c = y2, where 1 ≤ x ≤ y, the left inequality becomes

E

(
1

x2y2
, x2, y2

)
≥ E

(
1

x2y2
, xy, xy

)
,
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or, equivalently,
1

x4y2
+
x2

y2
+ x2y4 − 1

x3y3
− 1− x3y3 ≥ (yk − xk)2.

We write this inequality as

(y − x)

(
x2y3 +

1

x4y3
− x+ y

y2

)
≥ (yk − xk)2,

and then show that

(y − x)

(
x2y3 +

1

x4y3
− x+ y

y2

)
≥ (y − x)(y3 − x3) ≥ (yk − xk)2. (*)

The left inequality (*) is true if f(x, y) ≥ 0, where

f(x, y) = x2y3 +
1

x4y3
− x+ y

y2
− y3 + x3.

We will show that
f(x, y) ≥ f(1, y) ≥ 0.

Since 1 ≤ x ≤ y, we have

f(x, y)− f(1, y) = x3 − 1 + y3(x2 − 1)− 1

y2
(x− 1)− 1

y3

(
1− 1

x4

)
≥ x3 − 1 + (x2 − 1)− (x− 1)−

(
1− 1

x4

)
= (x2 − 1)

[(
x− 1

x2

)
+

(
1− 1

x4

)]
≥ 0

and

f(1, y) =
1

y3
− 1 + y

y2
+ 1 =

(1 + y)(1− y)2

y3
≥ 0.

In order to prove the right inequality (*), we will prove that

(y − x)(y3 − x3) ≥ 3

4
(y2 − x2)2 ≥ (yk − xk)2.

We have
4(y − x)(y3 − x3)− 3(y2 − x2)2 = (y − x)4 ≥ 0.

To complete the proof, we only need to show that

k

2
(y2 − x2) ≥ yk − xk, k =

√
3.

For fixed y, let

g(x) = xk − yk +
k

2
(y2 − x2), 1 ≤ x ≤ y.



Cyclic Inequalities 113

Since
g′(x) = kx(xk−2 − 1) ≤ 0,

g(x) is decreasing, hence g(x) ≥ g(y) = 0. The equality in (b) is an equality if and only if
a = b = c = 1.

P 1.68. If k and a, b, c are positive real numbers, then

1

(k + 1)a+ b
+

1

(k + 1)b+ c
+

1

(k + 1)c+ a
≥ 1

ka+ b+ c
+

1

kb+ c+ a
+

1

kc+ a+ b
.

(Vasile Cı̂rtoaje, 2011)

First Solution. For k = 1, we need to show that

1

2a+ b
+

1

2b+ c
+

1

2c+ a
≥ 3

a+ b+ c
.

This follows immediately from the AM-HM inequality, as follows:

1

2a+ b
+

1

2b+ c
+

1

2c+ a
≥ 9

(2a+ b) + (2b+ c) + (2c+ a)

=
3

a+ b+ c
.

Further, consider two cases: k > 1 and 0 < k < 1.

Case 1: k > 1. By the Cauchy-Schwarz inequality, we have

k − 1

(k + 1)a+ b
+

1

kc+ a+ b
≥ [(k − 1) + 1]2

(k − 1)[(k + 1)a+ b] + (kc+ a+ b)

=
k

ka+ b+ c
.

Adding this inequality and the similar ones yields the desired inequality.

Case 2: 0 < k < 1. By the Cauchy-Schwarz inequality, we have

1− k
(k + 1)a+ b

+
k

ka+ b+ c
≥ [(1− k) + k]2

(1− k)[(k + 1)a+ b] + k(ka+ b+ c)

=
1

kc+ a+ b
.

Adding this inequality and the similar ones yields the desired inequality.
The equality holds for a = b = c.

Second Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

1

(k + 1)a+ b
+

k

(k + 1)b+ c
+

k2

(k + 1)c+ a
≥
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≥ (1 + k + k2)2

[(k + 1)a+ b] + k[(k + 1)b+ c] + k2[(k + 1)c+ a]

=
1 + k + k2

kc+ a+ b
.

Therefore, we get in succession∑ 1

(k + 1)a+ b
+
∑ k

(k + 1)b+ c
+
∑ k2

(k + 1)c+ a
≥
∑ 1 + k + k2

kc+ a+ b
,

(1 + k + k2)
∑ 1

(k + 1)a+ b
≥ (1 + k + k2)

∑ 1

ka+ b+ c
,

∑ 1

(k + 1)a+ b
≥
∑ 1

ka+ b+ c
.

Third Solution. We have

1

(k + 1)a+ b
− 1

ka+ b+ c
=

c− a
(ka+ a+ b)(ka+ b+ c)

≥ c− a
(kc+ a+ b)(ka+ b+ c)

=
1

k − 1

(
1

ka+ b+ c
− 1

kc+ a+ b

)
,

hence∑ 1

(k + 1)a+ b
−
∑ 1

ka+ b+ c
≥ 1

k − 1

(∑ 1

ka+ b+ c
−
∑ 1

kc+ a+ b

)
= 0.

P 1.69. If a, b, c are positive real numbers, then

(a)
a√

2a+ b
+

b√
2b+ c

+
c√

2c+ a
≤
√
a+ b+ c;

(b)
a√

a+ 2b
+

b√
b+ 2c

+
c√

c+ 2a
≥
√
a+ b+ c.

Solution. (a) By the Cauchy-Schwarz inequality, we have

∑ a√
2a+ b

=
∑(√

a ·
√

a

2a+ b

)
≤

√(∑
a
)(∑ a

2a+ b

)
.

Therefore, it suffices to show that ∑ a

2a+ b
≤ 1.
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This inequality is equivalent to ∑ b

2a+ b
≥ 1.

Applying the Cauchy-Schwarz inequality, we get∑ b

2a+ b
≥ (

∑
b)2∑

b(2a+ b)
= 1.

The equality holds for a = b = c.

(b) By Hölder’s inequality, we have(∑ a√
a+ 2b

)2

≥ (
∑
a)3∑

a(a+ 2b)
=
∑

a.

From this, the desired inequality follows. The equality holds for a = b = c.

P 1.70. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a

√
a+ 2b

3
+ b

√
b+ 2c

3
+ c

√
c+ 2a

3
≤ 3.

First Solution. By the Cauchy-Schwarz inequality, we have

∑
a

√
a+ 2b

3
≤

√(∑
a
)[∑ a(a+ 2b)

3

]
=

√
(
∑
a)3

3
= 3.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any cyclic
permutation).

Second Solution. Applying Jensen’s inequality to the concave function f(x) =
√
x, x ≥ 0,

we have
a
√
a+ 2b+ b

√
b+ 2c+ c

√
c+ 2a ≤

≤ (a+ b+ c)

√
a(a+ 2b) + b(b+ 2c) + c(c+ 2a)

a+ b+ c

= (a+ b+ c)
√
a+ b+ c = 3

√
3.

P 1.71. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
√

1 + b3 + b
√

1 + c3 + c
√

1 + a3 ≤ 5.

(Pham Kim Hung, 2007)
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Solution. Using the AM-GM inequality yields

√
1 + b3 =

√
(1 + b)(1− b+ b2) ≤ (1 + b) + (1− b+ b2)

2
= 1 +

b2

2
.

Therefore, ∑
a
√

1 + b3 ≤
∑

a

(
1 +

b2

2

)
= 3 +

ab2 + bc2 + ca2

2
.

To complete the proof, it remains to show that

ab2 + bc2 + ca2 ≤ 4.

But this is just the inequality in P 1.1. The equality occurs for a = 0, b = 1 and c = 2 (or
any cyclic permutation).

P 1.72. If a, b, c are positive real numbers such that abc = 1, then

(a)

√
a

b+ 3
+

√
b

c+ 3
+

√
c

a+ 3
≥ 3

2
;

(b) 3

√
a

b+ 7
+ 3

√
b

c+ 7
+ 3

√
c

a+ 7
≥ 3

2
.

Solution. (a) Putting

a =
x

y
, b =

z

x
, c =

y

z
,

the inequality can be restated as

x√
y(3x+ z)

+
y√

z(3y + x)
+

z√
x(3z + y)

≥ 3

2
.

By Hölder’s inequality, we have[∑ x√
y(3x+ z)

]2 [∑
xy(3x+ z)

]
≥
(∑

x
)3
.

Therefore, it suffices to show that

4(x+ y + z)3 ≥ 27(x2y + y2z + z2x+ xyz).

This is just the inequality (a) in P 1.9. The equality holds for a = b = c = 1.

(b) Putting

a =
x4

y4
, b =

z4

x4
, c =

y4

z4
,
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the inequality becomes ∑
3

√
x8

y4(7x4 + z4)
≥ 3

2
.

By Hölder’s inequality, we have[∑
3

√
x8

y4(7x4 + z4)

]3 [∑
(7x4 + z4)

]
≥
(∑ x2

y

)4

.

Since
∑

(7x4 + z4) = 8
∑
x4, it is enough to show that(
x2

y
+
y2

z
+
z2

x

)4

≥ 27(x4 + y4 + z4),

which is just the inequality in P 1.60-(a). The equality holds for a = b = c = 1.

P 1.73. If a, b, c are positive real numbers, then(
1 +

4a

a+ b

)2

+

(
1 +

4b

b+ c

)2

+

(
1 +

4c

c+ a

)2

≥ 27.

(Vasile Cı̂rtoaje, 2012)

Solution. Let

x =
a− b
a+ b

, y =
b− c
b+ c

, z =
c− a
c+ a

.

We have
−1 < x, y, z < 1

and
x+ y + z + xyz = 0.

Since
2a

a+ b
= x+ 1,

2b

b+ c
= y + 1,

2c

c+ a
= z + 1,

we can write the inequality as follows:

(2x+ 3)2 + (2y + 3)2 + (2z + 3)2 ≥ 27,

x2 + y2 + z2 + 3(x+ y + z) ≥ 0,

x2 + y2 + z2 ≥ 3xyz.

By the AM-GM inequality, we have

x2 + y2 + z2 ≥ 3 3
√
x2y2z2.

Thus, it suffices to show that |xyz| ≤ 1, which is clearly true. The equality holds for
a = b = c.



118 Vasile Ĉırtoaje

P 1.74. If a, b, c are positive real numbers, then√
2a

a+ b
+

√
2b

b+ c
+

√
2c

c+ a
≤ 3.

(Vasile Cı̂rtoaje, 1992)

First Solution. By the Cauchy-Schwarz inequality, we have

∑√
2a

a+ b
≤

√[∑ 2a

(a+ b)(a+ c)

] [∑
(a+ c)

]
.

Thus, it suffices to show that∑ a

(a+ b)(a+ c)
≤ 9

4(a+ b+ c)
,

which is equivalent to

a(b− c)2 + b(c− a)2 + c(a− b)2 ≥ 0.

The equality occurs for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

∑√
2a

a+ b
≤

√[∑ 1

(a+ b)(b+ c)

] [∑
2a(b+ c)

]
.

Thus, it suffices to show that∑ 1

(a+ b)(b+ c)
≤ 9

4(ab+ bc+ ca)
,

which is equivalent to

a(b− c)2 + b(c− a)2 + c(a− b)2 ≥ 0.

P 1.75. If a, b, c are nonnegative real numbers, then√
a

4a+ 5b
+

√
b

4b+ 5c
+

√
c

4c+ 5a
≤ 1.

(Vasile Cı̂rtoaje, 2004)



Cyclic Inequalities 119

Solution. If one of a, b, c is zero, then the inequality is clearly true. Otherwise, using the
substitution

u =
b

a
, v =

c

b
, w =

a

c
,

we need to show that uvw = 1 involves

1√
4 + 5u

+
1√

4 + 5v
+

1√
4 + 5w

≤ 1.

Using the contradiction method, it suffices to show that

1√
4 + 5u

+
1√

4 + 5v
+

1√
4 + 5w

> 1

involves uvw < 1. Let

x =
1√

4 + 5u
, y =

1√
4 + 5v

, z =
1√

4 + 5w
,

where x, y, z ∈
(

0,
1

2

)
. Since

u =
1− 4x2

5x2
, v =

1− 4y2

5y2
, w =

1− 4z2

5z2
,

we have to prove that x+ y + z > 1 involves

(1− 4x2)(1− 4y2)(1− 4z2) < 125x2y2z2.

Since
1− 4x2 < (x+ y + z)2 − 4x2 = (−x+ y + z)(3x+ y + z),

it suffices to prove the homogeneous inequality

(3x+ y + z)(3y + z + x)(3z + x+ y)(−x+ y + z)(−y + z + x)(−z + x+ y) ≤ 125x2y2z2.

By the AM-GM inequality, we have

(3x+ y + z)(3y + z + x)(3z + x+ y) ≤ 125

(
x+ y + z

3

)3

.

Therefore, it is enough to show that(
x+ y + z

3

)3

(−x+ y + z)(−y + z + x)(−z + x+ y) ≤ x2y2z2.

Using the substitution

a = −x+ y + z, b = −y + z + x, c = −z + x+ y,
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where a, b, c > 0, the inequality can be restated as

64abc(a+ b+ c)3 ≤ 27(b+ c)2(c+ a)2(a+ b)2.

The known inequality

9(b+ c)(c+ a)(a+ b) ≥ 8(a+ b+ c)(ab+ bc+ ca),

equivalent to
a(b− c)2 + b(c− a)2 + c(a− b)2 ≥ 0,

involves
81(b+ c)2(c+ a)2(a+ b)2 ≥ 64(a+ b+ c)2(ab+ bc+ ca)2.

Thus, it suffices to show that

3abc(a+ b+ c) ≤ (ab+ bc+ ca)2.

which is also a known inequality, equivalent to

a2(b− c)2 + b2(c− a)2 + c2(a− b)2 ≥ 0.

Thus, the proof is completed. The equality occurs for a = b = c.

P 1.76. If a, b, c are positive real numbers, then

a√
4a2 + ab+ 4b2

+
b√

4b2 + bc+ 4c2
+

c√
4c2 + ca+ 4a2

≤ 1.

(Bin Zhao, 2006)

Solution. By the AM-GM inequality, we have

ab+ 4b2 ≥ 5
5
√
ab · b8 = 5

5
√
ab9,

a√
4a2 + ab+ 4b2

≤ a√
4a2 + 5

5
√
ab9

=

√
a9/5

4a9/5 + 5b9/5
.

Therefore, it suffices to show that√
a9/5

4a9/5 + 5b9/5
+

√
b9/5

4b9/5 + 5c9/5
+

√
c9/5

4c9/5 + 5a9/5
≤ 1.

Replacing a9/5, b9/5, c9/5 by a, b, c, respectively, we get the inequality in P 1.75. The equality
holds for a = b = c.
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P 1.77. If a, b, c are positive real numbers, then√
a

a+ b+ 7c
+

√
b

b+ c+ 7a
+

√
c

c+ a+ 7b
≥ 1.

(Vasile Cı̂rtoaje, 2006)

Solution. Substituting

x =

√
a

a+ b+ 7c
, y =

√
b

b+ c+ 7a
, z =

√
c

c+ a+ 7b
,

we have 
(x2 − 1)a+ x2b+ 7x2c = 0

(y2 − 1)b+ y2c+ 7y2a = 0 ,

(z2 − 1)c+ z2a+ 7z2b = 0

which involves ∣∣∣∣∣∣
x2 − 1 x2 7x2

7y2 y2 − 1 y2

z2 7z2 z2 − 1

∣∣∣∣∣∣ = 0 ;

that is,
F (x, y, z) = 0,

where
F (x, y, z) = 324x2y2z2 + 6

∑
x2y2 +

∑
x2 − 1.

We need to show that F (x, y, z) = 0 involves x + y + z ≥ 1, where x, y, z > 0. To do this,
we use the contradiction method. Assume that x+ y + z < 1 and show that F (x, y, z) < 0.
Since F (x, y, z) is strictly increasing in each of its arguments, it is enough to prove that
x+ y + z = 1 involves F (x, y, z) ≤ 0. We have

F (x, y, z) = 324x2y2z2 + 6
(∑

xy
)2
− 12xyz

∑
x+

(∑
x
)2
− 2

∑
xy − 1

= 324x2y2z2 + 6
(∑

xy
)2
− 12xyz − 2

∑
xy

= 12xyz(27xyz − 1) + 2
(∑

xy
)(

3
∑

xy − 1
)
.

Because

27xyz ≤
(∑

x
)3

= 1

and

3
∑

xy ≤
(∑

x
)2

= 1,

the conclusion follows. The equality occurs for a = b = c.
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P 1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)

√
a

3b+ c
+

√
b

3c+ a
+

√
c

3a+ b
≥ 3

2
;

(b)

√
a

2b+ c
+

√
b

2c+ a
+

√
c

2a+ b
≥ 4
√

8.

(Vasile Cı̂rtoaje and Pham Kim Hung, 2006)

Solution. Consider the inequality√
(k + 1)a

kb+ c
+

√
(k + 1)b

kc+ a
+

√
(k + 1)c

ka+ b
≥ Ak, k > 0,

and use the substitution

x =

√
(k + 1)a

kb+ c
, y =

√
(k + 1)b

kc+ a
, z =

√
(k + 1)c

ka+ b
.

From the identity

(kb+ c)(kc+ a)(ka+ b) = (k3 + 1)abc+ kbc(kb+ c) + kca(kc+ a) + kab(ka+ b),

written as

kb+ c

(k + 1)a
· kc+ a

(k + 1)b
· ka+ b

(k + 1)c
=
k2 − k + 1

(k + 1)2
+

k

(k + 1)2

[
kb+ c

(k + 1)a
+

kc+ a

(k + 1)b
+

ka+ b

(k + 1)c

]
,

we get
1

x2y2z2
=
k2 − k + 1

(k + 1)2
+

k

(k + 1)2

(
1

x2
+

1

y2
+

1

z2

)
,

which is equivalent to F (x, y, z) = 0, where

F (x, y, z) = k(x2y2 + y2z2 + z2x2) + (k2 − k + 1)x2y2z2 − (k + 1)2.

So, we need to show that F (x, y, z) = 0 yields x + y + z ≥ Ak. To do this, we use the
contradiction method. Assume that x + y + z < Ak and show that F (x, y, z) < 0. Since
F (x, y, z) is strictly increasing in each of its variables, it suffices to prove that x+y+z = Ak
involves F (x, y, z) ≤ 0. Let

k1 =
49 + 9

√
17

32
≈ 2.691.

(a) We need to show that F (x, y, z) ≤ 0 for x+y+z = Ak = 3 and k = 3. We will show
a more general inequality, namely F (x, y, z) ≤ 0 for k ≥ k1 and all nonnegative numbers
x, y, z satisfying x+ y+ z = 3. The AM-GM inequality x+ y+ z ≥ 3 3

√
xyz involves xyz ≤ 1.

On the other hand, by Schur’s inequality

(x+ y + z)3 + 9xyz ≥ 4(x+ y + z)(xy + yz + zx)
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we get
4(xy + yz + zx) ≤ 9 + 3xyz,

hence

(xy + yz + zx)2 − 9 ≤ (9 + 3xyz)2

16
− 9 =

9

16
(xyz − 1)(xyz + 7).

Therefore,

F (x, y, z) = k[(xy + yz + zx)2 − 6xyz] + (k2 − k + 1)x2y2z2 − (k + 1)2

= k[(xy + yz + zx)2 − 9] + (k2 − k + 1)(x2y2z2 − 1)− 6k(xyz − 1)

≤ 9k

16
(xyz − 1)(xyz + 7) + (k2 − k + 1)(x2y2z2 − 1)− 6k(xyz − 1)

=
1

16
(xyz − 1)

[
(16k2 − 7k + 16)xyz + 16k2 − 49k + 16

]
≤ 0.

Since xyz − 1 ≤ 0 and 16k2 − 7k + 16 > 0, it suffices to show that 16k2 − 49k + 16 ≥ 0;
indeed, this inequality is true for k ≥ k1.
The equality occurs for a = b = c. In addition, when k = k1, the equality also occurs for
a = 0 and b/c =

√
k (or any cyclic permutation).

(b) We need to show that F (x, y, z) ≤ 0 for Ak = 4
√

72 and k = 2. We will show a more
general inequality, that F (x, y, z) ≤ 0 for 1 ≤ k ≤ k1 and all nonnegative numbers x, y, z
satisfying

x+ y + z = Ak = 2
4

√
(k + 1)2

k
.

From

F (x, y, z) = k(x2y2 + y2z2 + z2x2) + (k2 − k + 1)x2y2z2 − (k + 1)2

= k(xy + yz + zx)2 − 2kAkxyz + (k2 − k + 1)x2y2z2 − (k + 1)2,

it follows that for fixed xyz, F (x, y, z) is maximum when xy+ yz + zx is maximum; that is,
according to P 3.58 in Volume 1, when two of x, y, z are equal. Due to symmetry, we only
need to show that F (x, y, z) ≤ 0 for y = z. Write the inequality F (x, y, z) ≤ 0 as follows:

k(x2y2 + y2z2 + z2x2) + (k2 − k + 1)x2y2z2 − k
(
x+ y + z

2

)4

≤ 0,

k

[(
x+ y + z

2

)4

− x2y2 − y2z2 − z2x2
]
≥ (k2 − k + 1)x2y2z,

k
√
k (x+ y + z)2

[
(x+ y + z)4 − 16(x2y2 + y2z2 + z2x2

]
≥ 64(k3 + 1)x2y2z2.

Due to homogeneity, we may only consider the cases y = z = 0 and y = z = 1. In the
non-trivial case y = z = 1, the inequality becomes

k
√
k x(x+ 2)2(x3 + 8x2 − 8x+ 32) ≥ 64(k3 + 1)x2.
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This is true because

297k
√
k ≥ 64(k3 + 1)

for 1 ≤ k ≤ k1, and

x(x+ 2)2(x3 + 8x2 − 8x+ 32) ≥ 297x2.

Notice that

x(x+ 2)2(x3 + 8x2 − 8x+ 32)− 297x2 = x(x− 1)2(x3 + 14x2 + 55x+ 128) ≥ 0.

If 1 ≤ k < k1, then the equality occurs only for a = 0 and b/c =
√
k (or any cyclic

permutation). Therefore, if k = 2, then the equality holds for a = 0 and b/c =
√

2 (or any
cyclic permutation).

Remark. From the proof above, it follows that the following more general statement holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0, then√
a

kb+ c
+

√
b

kc+ a
+

√
c

ka+ b
≥ min

{
3√
k + 1

,
2
4
√
k

}
.

For k = 1, we get the known inequality√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
≥ 2,

with equality for a = 0 and b = c (or any cyclic permutation). We can get this inequality by
summing the inequalities√

a

b+ c
≥ 2a

a+ b+ c
,

√
b

c+ a
≥ 2b

a+ b+ c
,

√
c

a+ b
≥ 2c

a+ b+ c
.

P 1.79. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

(a)
1

(a+ b)(3a+ b)
+

1

(b+ c)(3b+ c)
+

1

(c+ a)(3c+ a)
≥ 3

8
;

(b)
1

(2a+ b)2
+

1

(2b+ c)2
+

1

(2c+ a)2
≥ 1

3
.

(Vasile Cı̂rtoaje and Pham Kim Hung, 2007)
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Solution. (a) Using the Cauchy-Schwarz inequality and the inequality in P 1.78-(a) gives∑ 1

(a+ b)(3a+ b)
=
∑ 1

(b+ c)(3b+ c)

≥

(∑√
a

3b+c

)2∑
a(b+ c)

≥ 9

8(ab+ bc+ ca)
=

3

8
.

The equality holds for a = b = c.

(b) We consider two cases (Vo Quoc Ba Can).

Case 1: 4(ab+ bc+ ca ≥ a2 + b2 + c2. By the Cauchy-Schwarz inequality, we get

∑ 1

(2a+ b)2
≥ 9 (

∑
a)2∑

(2a+ b)2(b+ 2c)2
.

Thus, it suffices to show that

9p2q ≥
∑

(2a+ b)2(b+ 2c)2,

where p = a+ b+ c, q = ab+ bc+ ca. Since

(2a+ b)(b+ 2c) = pb+ q + 3ac,

we have ∑
(2a+ b)2(b+ 2c)2 = p2

∑
a2 + 3q2 + 9

∑
a2b2 + 2p2q + 18abcp+ 6q2

= p2(p2 − 2q) + 9q2 + 9(q2 − 2abcp) + 2p2q + 18abcp = p4 + 18q2,

and the inequality becomes
9p2q ≥ p4 + 18q2,

(p2 − 3q)(6q − p2) ≥ 0.

The latter inequality is true since p2 − 3q ≥ 0 and

6q − p2 = 4(ab+ bc+ ca)− a2 − b2 − c2 ≥ 0.

Case 2: 4(ab+ bc+ ca < a2 + b2 + c2. Assume that a = max{a, b, c}. From

a2 − 4(b+ c)a+ (b+ c)2 > 6bc > 0,

we get
a > (2 +

√
3)(b+ c) > 2(b+ c).
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Since

1

(2a+ b)2
+

1

(2b+ c)2
+

1

(2c+ a)2
>

1

(2b+ c)2
+

1

(2c+ a)2
≥ 2

(2b+ c)(2c+ a)
,

it suffices to show that
2

(2b+ c)(2c+ a)
≥ 1

ab+ bc+ ca
.

This is equivalent to the obvious inequality

c(a− 2b− 2c) ≥ 0.

The proof is completed. The equality holds for a = b = c.

Open problem. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

(a)
1

(a+ b)(ka+ b)
+

1

(b+ c)(kb+ c)
+

1

(c+ a)(kc+ a)
≥ 9

2(k + 1)(ab+ bc+ ca)
;

(b)
1

(ka+ b)2
+

1

(kb+ c)2
+

1

(kc+ a)2
≥ 9

(k + 1)2(ab+ bc+ ca)
.

For k = 1, from (a) and (b), we get the well-known inequality (Iran 96):

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
≥ 9

4(ab+ bc+ ca)
.

P 1.80. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 15(a3b+ b3c+ c3a) ≥ 47

4
(a2b2 + b2c2 + c2a2).

(Vasile Cı̂rtoaje, 2011)

Solution. Without loss of generality, assume that a = min{a, b, c}. There are two cases to
consider: a ≤ b ≤ c and a ≤ c ≤ b.

Case 1: a ≤ b ≤ c. For a = 0, the inequality is true because is equivalent to

b4 + c4 + 15b3c− 47

4
b2c2 ≥ 0,(

b− c

2

)2
(b2 + 16bc+ 4c2) ≥ 0.

Based on this result, it suffices to prove that

a4 + 15(a3b+ c3a) ≥ 47

4
a2(b2 + c2).
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This inequality is true if

a3b+ c3a ≥ a2(b2 + c2).

Indeed,

a2b+ c3 − a(b2 + c2) = c2(c− a)− ab(b− a) ≥ c2(b− a)− ab(b− a)

= (c2 − ab)(b− a) ≥ 0.

Case 2: a ≤ c ≤ b. It suffices to show that

a3b+ b3c+ c3a ≥ a2b2 + b2c2 + c2a2.

Since

ab3 + bc3 + ca3 − (a3b+ b3c+ c3a) = (a+ b+ c)(a− b)(b− c)(c− a) ≤ 0,

we have ∑
a3b ≥ 1

2
(
∑

a3b+
∑

ab3) =
1

2

∑
ab(a2 + b2) ≥

∑
a2b2.

The equality holds for a = 0 and 2b = c (or any cyclic permutation).

P 1.81. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3b+ b3c+ c3a ≤ 27.

Solution. Assume that a = max{a, b, c}. There are two possible cases: a ≥ b ≥ c and
a ≥ c ≥ b.

Case 1: a ≥ b ≥ c. Using the AM-GM inequality gives

3(a3b+ b3c+ c3a) ≤ 3ab(a2 + ac+ c2) ≤ 3ab(a+ c)2

= a · 3b · (a+ c) · (a+ c) ≤
[
a+ 3b+ (a+ c) + (a+ c)

4

]4
=

(
3a+ 3b+ 2c

4

)4

≤
(

3a+ 3b+ 3c

4

)4

= 81.

Case 2: a ≥ c ≥ b. Since

ab3 + bc3 + ca3 − (a3b+ b3c+ c3a) = (a+ b+ c)(a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

a3b+ b3c+ c3a+ (ab3 + bc3 + ca3) ≤ 54.
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Indeed, ∑
a3b+

∑
ab3 ≤ (a2 + b2 + c2)(ab+ bc+ ca)

≤ 1

8
[a2 + b2 + c2 + 2(ab+ bc+ ca)]2

=
1

8
(a+ b+ c)4 = 32 < 54.

The equality holds for a = 3, b = 1 and c = 0 (or any cyclic permutation).

Remark. The following sharper inequality holds (Michael Rozenberg).

• If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3b+ b3c+ c3a+
473

64
abc ≤ 27,

with equality for a = b = c = 4/3, and also for a = 3, b = 1 and c = 0 (or any cyclic
permutation).

Write the inequality in the homogeneous form

27(a+ b+ c)4 ≥ 256(a3b+ b3c+ c3a) + 473abc(a+ b+ c).

Assuming that c = min{a, b, c} and using the substitution

a = c+ p, b = c+ q, p, q ≥ 0,

this inequality can be restated as

Ac2 +Bc+ C ≥ 0,

where
A = 217(p2 − pq + q2) ≥ 0,

B = 68p3 − 269p2q + 499pq2 + 68q3 ≥ 60p(p2 − 5pq + 8q2) ≥ 0,

C = (p− 3q)2(27p2 + 14pq + 3q2) ≥ 0.

P 1.82. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 =
10

3
(ab+ bc+ ca).

Prove that

a4 + b4 + c4 ≥ 82

27
(a3b+ b3c+ c3a).

(Vasile Cı̂rtoaje, 2011)
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Solution (by Vo Quoc Ba Can). We see that the equality holds for a = 3, b = 1, c = 0.
From

a4 + b4 + c4 + 2(ab+ bc+ ca)2 = (a2 + b2 + c2)2 + 4abc(a+ b+ c),

we get

a4 + b4 + c4 ≥ (a2 + b2 + c2)2 − 2(ab+ bc+ ca)2

=
82

9
(ab+ bc+ ca)2.

Therefore, it suffices to show that

3(ab+ bc+ ca)2 ≥ a3b+ b3c+ c3a.

In addition, since

ab+ bc+ ca =
3(a2 + b2 + c2) + 6(ab+ bc+ ca)

16
= 3

(
a+ b+ c

4

)2

,

it suffices to show that

27

(
a+ b+ c

4

)4

≥ a3b+ b3c+ c3a,

which is the inequality from the previous P 1.81. The equality holds for a = 3b and c = 0
(or any cyclic permutation).

P 1.83. If a, b, c are positive real numbers, then

a3

2a2 + b2
+

b3

2b2 + c2
+

c3

2c2 + a2
≥ a+ b+ c

3
.

(Vasile Cı̂rtoaje, 2005)

Solution. We write the inequality as(
a3

2a2 + b2
− a

3

)
+

(
b3

2b2 + c2
− b

3

)
+

(
c3

2c2 + a2
− c

3

)
≥ 0,

a(a2 − b2)
2a2 + b2

+
b(b2 − c2)
2b2 + c2

+
c(c2 − a2)
2c2 + a2

≥ 0.

Taking into account that

a(a2 − b2)
2a2 + b2

− b(a2 − b2)
2b2 + a2

=
(a+ b)(a− b)2(a2 − ab+ b2)

(2a2 + b2)(2b2 + a2)
≥ 0,

it suffices to show that

b(a2 − b2)
2b2 + a2

+
b(b2 − c2)
2b2 + c2

+
c(c2 − a2)
2c2 + a2

≥ 0.
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Since
b(a2 − b2)
2b2 + a2

+
b(b2 − c2)
2b2 + c2

=
3b2(a2 − c2)

(2b2 + a2)(2b2 + c2)
,

the last inequality is equivalent to

(c2 − a2)(c− b)[a2(3b2 + bc+ c2) + 2b2c(c− 2b)] ≥ 0. (*)

Similarly, the desired inequality is true if

(a2 − b2)(a− c)[b2(3c2 + ca+ a2) + 2c2a(a− 2c)] ≥ 0. (**)

Without loss of generality, assume that

c = max{a, b, c}.

According to (*), the desired inequality is true if

a2(3b2 + bc+ c2) + 2b2c(c− 2b) ≥ 0.

We claim that this inequality holds for a ≥ b, and also for 2ac ≥
√

3 b2. If a ≥ b, then

a2(3b2 + bc+ c2) + 2b2c(c− 2b) ≥ b2(3b2 + bc+ c2) + 2b2c(c− 2b)

= 3b2[b2 + c(c− b)] > 0;

also, if 2ac ≥
√

3 b2, then

a2(3b2 + bc+ c2) + 2b2c(c− 2b) ≥ 3b4

4c2
(3b2 + bc+ c2) + 2b2c(c− 2b)

=
b2

4c2
(8c4 − 16bc3 + 3b2c2 + 3b3c+ 9b4)

=
b2

4c2
[2c(c+ b)(2c− 3b)2 + 9b2(c− b)2 + 3b3c] > 0.

Consequently, we only need to consider that a < b ≤ c and
√

3 b2 > 2ac. According to (**),
the desired inequality is true if

b2(3c2 + ca+ a2) + 2c2a(a− 2c) ≥ 0.

We have

b2(3c2 + ca+ a2) + 2c2a(a− 2c) >
4ac

3
(3c2 + ca+ a2) + 2c2a(a− 2c)

=
2a2c(2a+ 5c)

3
> 0.

This completes the proof. The equality occurs for a = b = c.
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P 1.84. If a, b, c are positive real numbers, then

a4

a3 + b3
+

b4

b3 + c3
+

c4

c3 + a3
≥ a+ b+ c

2
.

(Vasile Cı̂rtoaje, 2005)

Solution (by Vo Quoc Ba Can). Multiplying by a3 + b3 + c3, the inequality becomes∑
a4 +

∑ a4c3

a3 + b3
≥ 1

2

(∑
a
)(∑

a3
)
.

By the Cauchy-Schwarz inequality, we have∑ a4c3

a3 + b3
≥ (

∑
a2c2)

2∑
c(a3 + b3)

=
(
∑
a2b2)

2∑
a(b3 + c3)

.

According to the inequality
x2

y
≥ x− y

4
, x, y > 0,

we have
(
∑
a2b2)2∑

a(b3 + c3)
≥
∑

a2b2 − 1

4

∑
a(b3 + c3).

Therefore, it suffices to show that∑
a4 +

∑
a2b2 − 1

4

∑
a(b3 + c3) ≥ 1

2

(∑
a
)(∑

a3
)
,

which is equivalent to

2
∑

a4 + 4
∑

a2b2 ≥ 3
∑

ab(a2 + b2),∑
[a4 + b4 + 4a2b2 − 3ab(a2 + b2)] ≥ 0,∑

(a− b)2(a2 − ab+ b2) ≥ 0.

This completes the proof. The equality occurs for a = b = c.

P 1.85. If a, b, c are positive real numbers such that abc = 1, then

(a) 3

(
a2

b
+
b2

c
+
c2

a

)
+ 4

(
b

a2
+

c

b2
+
a

c2

)
≥ 7(a2 + b2 + c2);

(b) 8

(
a3

b
+
b3

c
+
c3

a

)
+ 5

(
b

a3
+

c

b3
+
a

c3

)
≥ 13(a3 + b3 + c3).

(Vasile Cı̂rtoaje, 1992)
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Solution. (a) We use the AM-GM inequality, as follows:

3
∑ a2

b
+ 4

∑ b

a2
=
∑(

3
a2

b
+

c

b2
+ 3

a

c2

)
≥ 7

∑
7

√(
a2

b

)3

· c
b2
·
( a
c2

)3
= 7

∑
7

√
a9

b5c5
= 7

∑
a2.

The equality holds for a = b = c = 1.

(b) By the AM-GM inequality, we have

8
∑ a3

b
+ 5

∑ b

a3
=
∑(

8
a3

b
+

c

b3
+ 4

a

c3

)
≥ 13

∑
13

√(
a3

b

)8

· c
b3
·
( a
c3

)4
= 13

∑
13

√
a28

b11c11
= 13

∑
a3.

The equality holds for a = b = c = 1.

P 1.86. If a, b, c are positive real numbers, then

ab

b2 + bc+ c2
+

bc

c2 + ca+ a2
+

ca

a2 + ab+ b2
≤ a2 + b2 + c2

ab+ bc+ ca
.

(Tran Quoc Anh, 2007)

Solution. Write the inequality as follows:∑(
a2

ab+ bc+ ca
− ab

b2 + bc+ c2

)
≥ 0,

∑ ac(ac− b2)
b2 + bc+ c2

≥ 0,∑[
ac(ac− b2)
b2 + bc+ c2

+ ac

]
≥
∑

ac,

∑ ac2(a+ b+ c)

b2 + bc+ c2
≥
∑

ac,∑ ac2

b2 + bc+ c2
≥ ab+ bc+ ca

a+ b+ c
.

By the Cauchy-Schwarz inequality, we have∑ ac2

b2 + bc+ c2
≥ (

∑
ac)2∑

a(b2 + bc+ c2)
=
ab+ bc+ ca

a+ b+ c
.

The equality holds for a = b = c.
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P 1.87. If a, b, c are positive real numbers, then

a− b
b(2b+ c)

+
b− c

c(2c+ a)
+

c− a
a(2a+ b)

≥ 0.

Solution. Write the inequality as follows:∑ ac(a− b)
2b+ c

≥ 0,

∑[
ac(a− b)

2b+ c
+ ac

]
≥ ab+ bc+ ca,

∑ ac

2b+ c
≥ ab+ bc+ ca

a+ b+ c
.

By the Cauchy-Schwarz inequality, we have

∑ ac

2b+ c
≥ (

∑
ac)2∑

ac(2b+ c)
=

(
∑
ab)2

6abc+
∑
a2b

.

Thus, it suffices to prove that ∑
ab

6abc+
∑
a2b
≥ 1∑

a
,

which is equivalent to ∑
ab2 ≥ 3abc.

Clearly, the latter inequality follows immediately from the AM-GM inequality. The equality
holds for a = b = c.

P 1.88. If a, b, c are positive real numbers, then

(a)
a2 + 6bc

ab+ 2bc
+
b2 + 6ca

bc+ 2ca
+
c2 + 6ab

ca+ 2ab
≥ 7;

(b)
a2 + 7bc

ab+ bc
+
b2 + 7ca

bc+ ca
+
c2 + 7ab

ca+ ab
≥ 12.

(Vasile Cı̂rtoaje, 2012)

Solution. (a) Write the inequality as follows:∑
ac(a2 + 6bc)(b+ 2a)(c+ 2b) ≥ 7abc(a+ 2c)(b+ 2a)(c+ 2b),

2
∑

a2b4 + abc
(

72abc+ 4
∑

a3 + 26
∑

a2b+ 7
∑

ab2
)
≥
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≥ 7abc
(

9abc+ 4
∑

a2b+ 2
∑

ab2
)
,

2
(∑

a2b4 − abc
∑

a2b
)

+ abc
(

4
∑

a3 + 9abc− 7
∑

ab2
)
≥ 0.

Since
2
(∑

a2b4 − abc
∑

a2b
)

=
∑

(ab2 − bc2)2 ≥ 0,

it suffices to show that
4
∑

a3 + 9abc− 7
∑

ab2 ≥ 0.

Assume that a = min{a, b, c}. Using the substitution

b = a+ x, c = a+ y, x, y ≥ 0,

we have

4
∑

a3 + 9abc− 7
∑

ab2 = 5(x2 − xy + y2)a+ 4x3 + 4y3 − 7xy2 ≥ 0,

since
4x3 + 4y3 = 4x3 + 2y3 + 2y3 ≥ 3 3

√
4x3 · 2y3 · 2y3 = 6

3
√

2 xy2 ≥ 7xy2.

The equality holds for a = b = c.

(b) Write the inequality as follows:∑
ac(a2 + 7bc)(b+ a)(c+ b) ≥ 12abc(a+ c)(b+ a)(c+ b),∑
a2b4 + abc

(
21abc+

∑
a3 + 15

∑
a2b+ 8

∑
ab2
)
≥

≥ 12abc
(

2abc+
∑

a2b+
∑

ab2
)
,(∑

a2b4 − abc
∑

a2b
)

+ abc
(∑

a3 − 3abc+ 4
∑

a2b− 4
∑

ab2
)
≥ 0.

Since ∑
a2b4 − abc

∑
a2b =

1

2

∑
(ab2 − bc2)2 ≥ 0,

it suffices to show that ∑
a3 − 3abc+ 4

∑
a2b− 4

∑
ab2 ≥ 0,

which is equivalent to

1

2
(a+ b+ c)

∑
(a− b)2 − 4(a− b)(b− c)(c− a) ≥ 0.

Assume that a = min{a, b, c}. Making the substitution

b = a+ x, c = a+ y, x, y ≥ 0,
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we have
1

2
(a+ b+ c)

∑
(a− b)2 − 4(a− b)(b− c)(c− a) =

= (x2 − xy + y2)(3a+ x+ y) + 4xy(x− y)

= 3(x2 − xy + y2)a+ x3 + y3 + 4xy(x− y)

= 3(x2 − xy + y2)a+ x3 + y(2x− y)2 ≥ 0.

The equality holds for a = b = c.

P 1.89. If a, b, c are positive real numbers, then

(a)
ab

2b+ c
+

bc

2c+ a
+

ca

2a+ b
≤ a2 + b2 + c2

a+ b+ c
;

(b)
ab

b+ c
+

bc

c+ a
+

ca

a+ b
≤ 3(a2 + b2 + c2)

2(a+ b+ c)
;

(c)
ab

4b+ 5c
+

bc

4c+ 5a
+

ca

4a+ 5b
≤ a2 + b2 + c2

3(a+ b+ c)
.

(Vasile Cı̂rtoaje, 2012)

Solution. (a) First Solution. Since

2ab

2b+ c
= a− ac

2b+ c
,

we can write the inequality as∑ ac

2b+ c
+

2(a2 + b2 + c2)

a+ b+ c
≥ a+ b+ c.

By the Cauchy-Schwarz inequality,

∑ ac

2b+ c
≥ (

∑√
ac)

2∑
(2b+ c)

=
(
√
ab+

√
bc+

√
ca)2

3(a+ b+ c)
.

Then, it suffices to show that

(
√
ab+

√
bc+

√
ca)2 + 6(a2 + b2 + c2)

3(a+ b+ c)
≥ a+ b+ c,

which is equivalent to

3(a2 + b2 + c2) + 2
√
abc
(√

a+
√
b+
√
c
)
≥ 5(ab+ bc+ ca).
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Using the substitution
x =
√
a, y =

√
b, z =

√
c,

the inequality can be restated as

3(x4 + y4 + z4) + 2xyz(x+ y + z) ≥ 5(x2y2 + y2z2 + z2x2).

We can get it by summing Schur’s inequality of degree four

2(x4 + y4 + z4) + 2xyz(x+ y + z) ≥ 2
∑

xy(x2 + y2)

and
x4 + y4 + z4 + 2

∑
xy(x2 + y2) ≥ 5(x2y2 + y2z2 + z2x2),

the latter being equivalent to the obvious inequality

(x4 + y4 + z4 − x2y2 − y2z2 − z2x2) + 2
∑

xy(x− y)2 ≥ 0.

The equality holds for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

1

2b+ c
=

1

b+ b+ c
≤ a2/b+ b+ c

(a+ b+ c)2
=

a2 + b2 + bc

b(a+ b+ c)2
,

ab

2b+ c
≤ a(a2 + b2 + bc)

(a+ b+ c)2
,

∑ ab

2b+ c
≤
∑
a3 +

∑
ab2 + 3abc

(a+ b+ c)2
.

Since 3abc ≤
∑
a2b (by the AM-GM inequality), we get

∑ ab

2b+ c
≤
∑
a3 +

∑
ab2 +

∑
a2b

(a+ b+ c)2
=
a2 + b2 + c2

a+ b+ c
.

Third Solution. Write the inequality as∑ ab(a+ b+ c)

2b+ c
≤ a2 + b2 + c2.

Since
2ab(a+ b+ c) = (a2 + 2ab)(2b+ c)− 2ab2 − a2c,

we can write the inequality as∑ 2ab2

2b+ c
+
∑ a2c

2b+ c
+ p ≥ 2q,
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where
p = a2 + b2 + c2, q = ab+ bc+ ca, p ≥ q.

By the Cauchy-Schwarz inequality, we have∑ ab2

2b+ c
≥ (

∑
ab)2∑

a(2b+ c)
=
q

3

and ∑ a2c

2b+ c
≥ (

∑
ac)2∑

c(2b+ c)
=

q2

p+ 2q
.

Thus, it suffices to show that

2q

3
+

q2

p+ 2q
+ p ≥ 2q,

which is equivalent to the obvious inequality

(p− q)(3p+ 5q) ≥ 0.

(b) Write the inequality as

3

2
(a2 + b2 + c2) ≥

∑ ab(a+ b+ c)

b+ c
.

Since
ab(a+ b+ c)

b+ c
=

a2b

b+ c
+ ab = a2 + ab− a2c

b+ c
,

the inequality can be written as∑ a2c

b+ c
+

1

2
(a2 + b2 + c2) ≥ ab+ bc+ ca.

By the Cauchy-Schwarz inequality,∑ a2c

b+ c
≥ (

∑
ac)2∑

c(b+ c)
=

q2

p+ q
,

where
p = a2 + b2 + c2, q = ab+ bc+ ca, p ≥ q.

Therefore, we have∑ a2c

b+ c
+

1

2
(a2 + b2 + c2)− (ab+ bc+ ca) ≥ q2

p+ q
+
p

2
− q =

p(p− q)
2(p+ q)

≥ 0.

The equality holds for a = b = c.

(c) Since
4ab

4b+ 5c
= a− 5ac

4b+ 5c
,
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we can write the inequality as

5
∑ ac

4b+ 5c
+

4(a2 + b2 + c2)

3(a+ b+ c)
≥ a+ b+ c.

By the Cauchy-Schwarz inequality,∑ ac

4b+ 5c
≥ (

∑
ac)2∑

ac(4b+ 5c)
=

(ab+ bc+ ca)2

12abc+ 5(a2b+ b2c+ c2a)
.

Therefore, it suffices to show that

5(ab+ bc+ ca)2

12abc+ 5(a2b+ b2c+ c2a)
+

4(a2 + b2 + c2)

3(a+ b+ c)
≥ a+ b+ c.

Due to homogeneity, we may assume that a+ b+ c = 3. Using the notation

q = ab+ bc+ ca, q ≤ 3,

this inequality becomes

5q2

5(a2b+ b2c+ c2a+ abc) + 7abc
+

4(9− 2q)

9
≥ 3.

According to the inequality (a) in P 1.9, we have

a2b+ b2c+ c2a+ abc ≤ 4.

On the other hand, from

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c),

we get

abc ≤ q2

9
.

Thus, it suffices to prove that

5q2

20 + 7q2/9
+

4(9− 2q)

9
≥ 3,

which is equivalent to
(q − 3)(14q2 − 75q + 135) ≤ 0.

This is true since q − 3 ≤ 0 and

14q2 − 75q + 135 > 3(4q2 − 25q + 39) = 3(3− q)(13− 4q) ≥ 0.

The equality holds for a = b = c.
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P 1.90. If a, b, c are positive real numbers, then

(a) a
√
b2 + 8c2 + b

√
c2 + 8a2 + c

√
a2 + 8b2 ≤ (a+ b+ c)2;

(b) a
√
b2 + 3c2 + b

√
c2 + 3a2 + c

√
a2 + 3b2 ≤ a2 + b2 + c2 + ab+ bc+ ca.

(Vo Quoc Ba Can, 2007)

Solution. (a) By the AM-GM inequality, we have

√
b2 + 8c2 =

√
(b2 + 8c2)(b+ 2c)2

b+ 2c
≤ (b2 + 8c2) + (b+ 2c)2

2(b+ 2c)

=
b2 + 2bc+ 6c2

b+ 2c
= b+ 3c− 3bc

b+ 2c
,

hence

a
√
b2 + 8c2 ≤ ab+ 3ac− 3abc

b+ 2c
,∑

a
√
b2 + 8c2 ≤ 4

∑
ab− 3abc

∑ 1

b+ 2c
.

Therefore, it suffices to show that(∑
a
)2

+ 3abc
∑ 1

b+ 2c
≥ 4

∑
ab.

Since ∑ 1

b+ 2c
≥ 9∑

(b+ 2c)
=

3∑
a
,

it is enough to prove that (∑
a
)3

+ 9abc ≥ 4
(∑

a
)(∑

ab
)
.

This is Shur’s inequality of degree three. The equality holds for a = b = c.

(b) Similarly, we have

√
b2 + 3c2 =

√
(b2 + 3c2)(b+ c)2

b+ c
≤ (b2 + 3c2) + (b+ c)2

2(b+ c)

=
b2 + bc+ 2c2

b+ c
= b+ 2c− 2bc

b+ c
,

hence

a
√
b2 + 3c2 ≤ ab+ 2ac− 2abc

b+ c
,∑

a
√
b2 + 3c2 ≤ 3

∑
ab− 2abc

∑ 1

b+ c
.
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Thus, it suffices to show that(∑
a
)2

+ 2abc
∑ 1

b+ c
≥ 4

∑
ab.

Since ∑ 1

b+ c
≥ 9∑

(b+ c)
=

9

2
∑
a
,

it is enough to prove that (∑
a
)3

+ 9abc ≥ 4
(∑

a
)(∑

ab
)
,

which is just Shur’s inequality of degree three. The equality holds for a = b = c.

P 1.91. If a, b, c are positive real numbers, then

(a)
1

a
√
a+ 2b

+
1

b
√
b+ 2c

+
1

c
√
c+ 2a

≥
√

3

abc
;

(b)
1

a
√
a+ 8b

+
1

b
√
b+ 8c

+
1

c
√
c+ 8a

≥
√

1

abc
.

(Vasile Cı̂rtoaje, 2007)

Solution. (a) Write the inequality as

∑√
bc

3a(a+ 2b)
≥ 1.

Replacing a, b, c by
1

x
,

1

y
,
1

z
, respectively, the inequality can be restated as

∑ x√
3z(2x+ y)

≥ 1.

Since √
3z(2x+ y) ≤ 3z + (2x+ y)

2
,

it suffices to show that ∑ x

2x+ y + 3z
≥ 1

2
.

Indeed, using the Cauchy-Schwarz inequality gives∑ x

2x+ y + 3z
≥
∑ (

∑
x)2∑

x(2x+ y + 3z)
=

1

2
.
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The equality holds for a = b = c.

(b) Write the inequality as

∑√
bc

a(a+ 8b)
≥ 1.

Replacing a, b, c by
1

x2
,

1

y2
,

1

z2
, respectively, the inequality becomes

∑ x2

z
√

8x2 + y2
≥ 1.

Applying the Cauchy-Schwarz inequality yields∑ x2

z
√

8x2 + y2
≥ (

∑
x)2∑

z
√

8x2 + y2
.

Therefore, it suffices to show that∑
z
√

8x2 + y2 ≤ (x+ y + z)2,

which is just the inequality in P 1.90-(a). The equality holds for a = b = c.

P 1.92. If a, b, c are positive real numbers, then

a√
5a+ 4b

+
b√

5b+ 4c
+

c√
5c+ 4a

≤
√
a+ b+ c

3
.

(Vasile Cı̂rtoaje, 2012)

Solution. By the Cauchy-Schwarz inequality, we have(∑ a√
5a+ 4b

)2

≤
(∑ a

4a+ 4b+ c

)(∑ a(4a+ 4b+ c)

5a+ 4b

)
.

It suffices to show that ∑ a

4a+ 4b+ c
≤ 1

3

and ∑ a(4a+ 4b+ c)

5a+ 4b
≤ a+ b+ c.

The first is just the inequality in P 1.18, while the second is equivalent to∑
a

(
1− 4a+ 4b+ c

5a+ 4b

)
≥ 0,
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∑ a(a− c)
5a+ 4b

≥ 0,∑
a(a− c)(5b+ 4c)(5c+ 4a) ≥ 0,∑
a2b2 + 4

∑
ab3 ≥ 5abc

∑
a.

The last inequality follows from the well-known inequality∑
a2b2 ≥ abc

∑
a

and the known inequality ∑
ab3 ≥ abc

∑
a,

which follows from the Cauchy-Schwarz inequality, as follows:(∑
c
)(∑

ab3
)
≥
(∑√

ab3c
)2

= abc
(∑

b
)2
.

The equality holds for a = b = c.

P 1.93. If a, b, c are positive real numbers, then

(a)
a√
a+ b

+
b√
b+ c

+
c√
c+ a

≥
√
a+
√
b+
√
c√

2
;

(b)
a√
a+ b

+
b√
b+ c

+
c√
c+ a

≥ 4

√
27(ab+ bc+ ca)

4
.

(Lev Buchovsky - 1995, Pham Huu Duc - 2007)

Solution. (a) By squaring, the inequality becomes∑ a2

a+ b
+ 2

∑ ab√
(a+ b)(b+ c)

≥ 1

2

∑
a+

∑√
ab.

The sequences {
1√
a+ b

,
1√
b+ c

,
1√
c+ a

}
and {

ab√
a+ b

,
bc√
b+ c

,
ca√
c+ a

}
are always reversely ordered; therefore, according to the rearrangement inequality, we have

1√
a+ b

· ab√
a+ b

+
1√
b+ c

· bc√
b+ c

+
1√
c+ a

· ca√
c+ a

≤
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≤ 1√
a+ b

· ca√
c+ a

+
1√
b+ c

· ab√
a+ b

+
1√
c+ a

· bc√
b+ c

,

∑ ab

a+ b
≤
∑ ab√

(a+ b)(b+ c)
.

Thus, it suffices to show that∑ a2

a+ b
+ 2

∑ ab

a+ b
≥ 1

2

∑
a+

∑√
ab.

Since ∑ a2

a+ b
+
∑ ab

a+ b
=
∑

a,

the inequality becomes as follows:∑
a+

∑ ab

a+ b
≥ 1

2

∑
a+

∑√
ab,

∑ a+ b

2
+
∑ 2ab

a+ b
≥ 2

∑√
ab,

∑(√
a+ b

2
−
√

2ab

a+ b

)2

≥ 0.

The equality holds for a = b = c.

(b) By Hölder’s inequality, we have(∑ a√
a+ b

)2∑
a(a+ b) ≥

(∑
a
)3
.

Thus, it suffices to show that(∑
a
)3
≥ 3

2

(∑
a2 +

∑
ab
)√

3(ab+ bc+ ca),

which is equivalent to
2p3 + q3 ≥ 3p2q,

where p = a+ b+ c and q =
√

3(ab+ bc+ ca). By the AM-GM inequality, we have

2p3 + q3 ≥ 3 3
√
p6q3 = 3p2q.

The equality holds for a = b = c.

P 1.94. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
√

3a+ b2 +
√

3b+ c2 +
√

3c+ a2 ≥ 6.
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First Solution. Assume that a = max{a, b, c}. We can get the desired inequality by
summing the inequalities

√
3b+ c2 +

√
3c+ a2 ≥

√
3a+ c2 + b+ c

and √
3a+ b2 +

√
3a+ c2 ≥ 2a+ b+ c.

By squaring two times, the first inequality becomes in succession√
(3b+ c2)(3c+ a2) ≥ (b+ c)

√
3a+ c2,

[b(a+ b+ c) + c2][c(a+ b+ c) + a2] ≥ (b+ c)2[a(a+ b+ c) + c2],

b(a− b)(a− c)(a+ b+ c) ≥ 0.

Similarly, the second inequality becomes√
(3a+ b2)(3a+ c2) ≥ (a+ b)(a+ c),

[a(a+ b+ c) + b2][a(a+ b+ c) + c2] ≥ (a+ b)2(a+ c)2,

a(a+ b+ c)(b− c)2 ≥ 0.

The original inequality becomes an equality when a = b = c, and also when two of a, b, c are
zero.

Second Solution. Write the inequality as
√
X +

√
Y +
√
Z ≤

√
A+
√
B +

√
C,

where
X = (b+ c)2, Y = (c+ a)2, Z = (a+ b)2,

A = 3a+ b2, B = 3b+ c2, C = 3c+ a2.

According to Lemma from the proof of P 2.11 in Volume 2, since

X + Y + Z = A+B + C,

it suffices to show that

max{X, Y, Z} ≥ max{A,B,C}, min{X, Y, Z} ≤ min{A,B,C}.

To show that max{X, Y, Z} ≥ max{A,B,C}, we assume that

a = min{a, b, c}, max{X, Y, Z} = X.

From
X − A = (c2 − a2) + b(c− a) + c(b− a) ≥ 0,

X −B = b(c− a) ≥ 0,
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X − C = (b2 − a2) + c(b− a) ≥ 0,

the conclusion follows. Similarly, to show that min{X, Y, Z} ≤ min{A,B,C}, we assume
that

a = max{a, b, c}, min{X, Y, Z} = X,

when
A−X = (a2 − c2) + b(a− c) + c(a− b) ≥ 0,

B −X = b(a− c) ≥ 0,

C −X = (a2 − b2) + c(a− b) ≥ 0.

P 1.95. If a, b, c are nonnegative real numbers, then
√
a2 + b2 + 2bc+

√
b2 + c2 + 2ca+

√
c2 + a2 + 2ab ≥ 2(a+ b+ c).

(Vasile Cı̂rtoaje, 2012)

First Solution (by Nguyen Van Quy). Assume that a = max{a, b, c}. We can get the
desired inequality by summing the inequalities

√
a2 + b2 + 2bc+

√
b2 + c2 + 2ca ≥

√
a2 + b2 + 2ca+ b+ c

and √
c2 + a2 + 2ab+

√
a2 + b2 + 2ca ≥ 2a+ b+ c.

By squaring two times, the first inequality becomes√
(a2 + b2 + 2bc)(b2 + c2 + 2ca) ≥ (b+ c)

√
a2 + b2 + 2ca,

c(a− b)(a2 − c2) ≥ 0.

Similarly, the second inequality becomes√
(c2 + a2 + 2ab)(a2 + b2 + 2ca) ≥ (a+ b)(a+ c),

a(b+ c)(b− c)2 ≥ 0.

The original inequality becomes an equality when a = b = c, and also when two of a, b, c are
zero.

Second Solution. Let {x, y, z} be a permutation of {ab, bc, ca}. We will prove that

2(a+ b+ c) ≤
√
b2 + c2 + 2x+

√
c2 + a2 + 2y +

√
a2 + b2 + 2z.

Due to symmetry, assume that a ≥ b ≥ c. Using the substitution

X = a2 + b2 + 2ab, Y = c2 + a2 + 2ca, Z = b2 + c2 + 2bc,
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A = b2 + c2 + 2x, B = c2 + a2 + 2y, C = a2 + b2 + 2z,

we can write the inequality as
√
X +

√
Y +
√
Z ≤

√
A+
√
B +

√
C.

Since X + Y + Z = A+B + C, X ≥ Y ≥ Z and

X ≥ max{A,B,C}, Z ≤ min{A,B,C},

the conclusion follow by Lemma from the proof of P 2.11 in Volume 2.

P 1.96. If a, b, c are nonnegative real numbers, then
√
a2 + b2 + 7bc+

√
b2 + c2 + 7ca+

√
c2 + a2 + 7ab ≥ 3

√
3(ab+ bc+ ca).

(Vasile Cı̂rtoaje, 2012)

Solution. Assume that a = max{a, b, c}. We can get the desired inequality by summing
the inequalities

√
a2 + b2 + 7bc+

√
b2 + c2 + 7ca ≥

√
a2 + b2 + 7ca+

√
b2 + c2 + 7bc

and √
a2 + c2 + 7ab+

√
a2 + b2 + 7ac ≥ 3

√
3(ab+ bc+ ca)−

√
b2 + c2 + 7bc.

By squaring, the first inequality becomes

(a2 + b2 + 7b)(b2 + c2 + 7ca) ≥ (a2 + b2 + 7ca)(b2 + c2 + 7bc),

c(a− b)(a2 − c2) ≥ 0.

Similarly, the second inequality becomes

a2 +
√
E + 3

√
3F ≥ 10a(b+ c) + 17bc,

where

E = (a2 + c2 + 7ab)(a2 + b2 + 7ac)

= a4 + 7(b+ c)a3 + (b2 + c2 + 49bc)a2 + 7(b3 + c3)a+ b2c2

and
F = (ab+ bc+ ca)(b2 + c2 + 7bc).

Due to homogeneity, we may assume that b+ c = 1. Let us denote x = bc. We need to show

that f(x) ≥ 0 for 0 ≤ x ≤ 1

4
and a ≥ 1

2
, where

f(x) = a2 − 10a− 17x+
√
g(x) + 3

√
3h(x),
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with

g(x) = a4 + 7a3 + (1 + 47x)a2 + 7(1− 3x)a+ x2

= x2 + a(47a− 21)x+ a4 + 7a3 + a2 + 7a,

h(x) = (a+ x)(1 + 5x) = 5x2 + (5a+ 1)x+ a.

We have the derivatives

f ′(x) = −17 +
g′

2
√
g

+
3
√

3h′

2
√
h

= −17 +
2x+ a(47a− 21)

2
√
g

+
3
√

3(10x+ 5a+ 1)

2
√
h

,

f ′′(x) =
2g′′g − (g′)2

4g
√
g

+
3
√

3[2h′′h− (h′)2]

4h
√
h

=
a(28− 45a)(7a− 1)2

4g
√
g

− 3
√

3(5a− 1)2

4h
√
h

.

We will show that g ≥ 3h. Since 0 ≤ x ≤ 1

4
and a ≥ 1

2
, we have

g − 3h = −14x2 + (47a2 − 36a− 3)x+ a4 + 7a3 + a2 + 4a

≥ −7

8
+ (47a2 − 36a− 3)x+ a4 + 7a3 + a2 + 4a.

For the non-trivial case 47a2 − 36a− 3 < 0, we get

g − 3h ≥ −7

8
+

47a2 − 36a− 3

4
+ a4 + 7a3 + a2 + 4a

=
(2a− 1)(4a3 + 30a2 + 66a+ 13)

8
≥ 0.

We will prove now that f ′′(x) < 0. This is clearly true for a ≥ 28

45
. Otherwise, for

1

2
≤ a ≤

28

45
, we have

f ′′(x) ≤ a(28− 45a)(7a− 1)2 − 27(5a− 1)2

4g
√
g

< 0,

since

a(28− 45a)(7a− 1)2 − 27(5a− 1)2 <

(
28− 45

2

)
(7a− 1)2 − 27(5a− 1)2

<
27

4
(7a− 1)2 − 27(5a− 1)2 =

27(1− 3a)(17a− 3)

4
< 0.
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Since f is concave, it suffices to show that f(0) ≥ 0 and f

(
1

4

)
≥ 0.

From

f(0) =
√
a
(
a
√
a− 10

√
a+ 3

√
3 +
√
a3 + 7a2 + a+ 7

)
,

it follows that f(0) ≥ 0 for all a ≥ 1

2
if and only if

√
a3 + 7a2 + a+ 7 ≥ −a

√
a+ 10

√
a− 3

√
3.

This is true if

a3 + 7a2 + a+ 7 ≥ (−a
√
a+ 10

√
a− 3

√
3)2,

which is equivalent to

(
√

3a− 2)2(9a+ 10
√
a− 5) ≥ 0.

Clearly, this inequality holds for a ≥ 1

2
.

Since

g

(
1

4

)
=

(
4a2 + 14a+ 1

4

)2

and

h

(
1

4

)
=

9(4a+ 1)

16
,

we get

f

(
1

4

)
=

8a2 − 26a− 16 + 9
√

3(4a+ 1)

4
.

Using the substitution

x =

√
4a+ 1

3
, x ≥ 1,

we find

f

(
1

4

)
=

9x4 − 45x2 + 54x− 18

8
=

(x− 1)2(9x2 + 18x− 18)

8
≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for 3a = 4b and
c = 0 (or any cyclic permutation).

P 1.97. If a, b, c are positive real numbers, then

a2 + 3ab

(b+ c)2
+
b2 + 3bc

(c+ a)2
+
c2 + 3ca

(a+ b)2
≥ 3.
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Solution. Write the inequality as∑ a(a+ b)

(b+ c)2
+ 2

∑ ab

(b+ c)2
≥ 3.

The sequences
{bc, ca, ab}

and {
1

(b+ c)2
,

1

(c+ a)2
,

1

(a+ b)2

}
are reversely ordered. Thus, by the rearrangement inequality, we have∑ bc

(b+ c)2
≤
∑ ab

(b+ c)2
.

Therefore, it suffices to show that∑ a(a+ b)

(b+ c)2
+
∑ b(c+ a)

(b+ c)2
≥ 3,

which is equivalent to ∑
a

[
a+ b

(b+ c)2
+
∑ b+ c

(a+ b)2

]
≥ 3.

By the AM-GM inequality, we have

a+ b

(b+ c)2
+

b+ c

(a+ b)2
≥ 2√

(a+ b)(b+ c)
≥ 4

(a+ b) + (b+ c)
.

Thus, it is enough to prove that ∑ a

a+ 2b+ c
≥ 3

4
.

Indeed, by the Cauchy-Schwarz inequality, we get∑ a

a+ 2b+ c
≥ (

∑
a)2∑

a(a+ 2b+ c)
=

∑
a2 + 2

∑
ab∑

a2 + 3
∑
ab
≥ 3

4
.

The equality holds for a = b = c.

P 1.98. If a, b, c are positive real numbers, then

a2b+ 1

a(b+ 1)
+
b2c+ 1

b(c+ 1)
+
c2a+ 1

c(a+ 1)
≥ 3.
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Solution. By the Cauchy-Schwarz inequality, we have

(a2b+ 1)

(
1

b
+ 1

)
≥ (a+ 1)2,

hence
a2b+ 1

a(b+ 1)
≥ b(a+ 1)2

a(b+ 1)2
.

Therefore, it suffices to prove that ∑ b(a+ 1)2

a(b+ 1)2
≥ 3.

This inequality follows immediately from the AM-GM inequality:

∑ b(a+ 1)2

a(b+ 1)2
≥ 3 3

√∏ b(a+ 1)2

a(b+ 1)2
= 3.

The equality holds for a = b = c = 1.

P 1.99. If a, b, c are positive real numbers such that a+ b+ c = 3, then

√
a3 + 3b+

√
b3 + 3c+

√
c3 + 3a ≥ 6.

Solution. By the Cauchy-Schwarz inequality, we have

(a3 + 3b)(a+ 3b) ≥ (a2 + 3b)2.

Thus, it suffices to show that ∑ a2 + 3b√
a+ 3b

≥ 6.

By Hölder’s inequality, we have(∑ a2 + 3b√
a+ 3b

)2 [∑
(a2 + 3b)(a+ 3b)

]
≥
[∑

(a2 + 3b)
]3

=
(∑

a2 + 9
)3
.

Therefore, it is enough to show that(∑
a2 + 9

)3
≥ 36

∑
(a2 + 3b)(a+ 3b).

Let
p = a+ b+ c = 3, q = ab+ bc+ ca, q ≤ 3.
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We have ∑
a2 + 9 = p2 − 2q + 9 = 2(9− q),

∑
(a2 + 3b)(a+ 3b) =

∑
a3 + 3

∑
a2b+ 9

∑
a2 + 3

∑
ab

= (p3 − 3pq + 3abc) + 3
∑

a2b+ 9(p2 − 2q) + 3q

= 108− 24q + 3
(
abc+

∑
a2b
)
.

Since abc+
∑
a2b ≤ 4 (see the inequality (a) in P 1.9), we get∑

(a2 + 3b)(a+ 3b) ≤ 24(5− q).

Thus, it suffices to show that
(9− q)3 ≥ 108(5− q),

which is equivalent to
(3− q)2(21− q) ≥ 0.

The equality holds for a = b = c = 1.

P 1.100. If a, b, c are positive real numbers such that abc = 1, then√
a

a+ 6b+ 2bc
+

√
b

b+ 6c+ 2ca
+

√
c

c+ 6a+ 2ab
≥ 1.

(Nguyen Van Quy and Vasile Cı̂rtoaje, 2013)

Solution. By Hölder’s inequality, we have(∑√
a

a+ 6b+ 2bc

)2 [∑
a(a+ 6b+ 2bc)

]
≥
(∑

a2/3
)3
.

Therefore, it suffices to show that(∑
a2/3

)3
≥
∑

a2 + 6
∑

ab+ 6,

which is equivalent to

3
∑

(ab)2/3(a2/3 + b2/3) ≥ 6
∑

ab.

Since
a2/3 + b2/3 ≥ 2(ab)1/3,

the desired conclusion follows. The equality holds for a = b = c = 1.
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P 1.101. If a, b, c are positive real numbers such that abc = 1, then(
a+

1

b

)2

+

(
b+

1

c

)2

+

(
c+

1

a

)2

≥ 6(a+ b+ c− 1).

(Marius Stanean, 2014)

Solution (by Michael Rozenberg). By the AM-GM inequality, we have

∑(
a+

1

b

)2

+ 6 =
∑

(a+ ac)2 + 6

=
∑

(a2 + a2c2 + 2a2c) + 6

=
∑

(a2 + a2b2 + 2a2c+ 2)

≥ 6
∑

6
√
a2 · a2b2 · a2c · a2c · 1 · 1 = 6

∑
a.

The equality holds for a = b = c = 1.

P 1.102. If a, b, c are positive real numbers, then

a

a+ b
+

b

b+ c
+

c

c+ a
≥ a+ b+ c

a+ b+ c− 3
√
abc

.

(Michael Rozenberg, 2014)

Solution. There are two cases to consider.

Case 1: ab+ bc+ ca ≥ 3
√
abc (a+ b+ c). By the Cauchy-Schwarz inequality, we have

∑ a

a+ b
≥ (

∑
a)2∑

a(a+ b)
=

(a+ b+ c)2

(a+ b+ c)2 − (ab+ bc+ ca)
.

Therefore, it suffices to show that

(a+ b+ c)2

(a+ b+ c)2 − (ab+ bc+ ca)
≥ a+ b+ c

a+ b+ c− 3
√
abc

,

which is equivalent to
ab+ bc+ ca− 3

√
abc (a+ b+ c) ≥ 0.

Case 2: 3
√
abc (a+ b+ c) ≥ ab+ bc+ ca. By the Cauchy-Schwarz inequality, we have

∑ a

a+ b
≥ (

∑
ac)2∑

ac2(a+ b)
=

(ab+ bc+ ca)2

(ab+ bc+ ca)2 − abc(a+ b+ c)
.
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Thus, it suffices to show that

(ab+ bc+ ca)2

(ab+ bc+ ca)2 − abc(a+ b+ c)
≥ a+ b+ c

a+ b+ c− 3
√
abc

,

which is equivalent to [
3
√
abc (a+ b+ c)

]2
≥ (ab+ bc+ ca)2,

3
√
abc (a+ b+ c) ≥ ab+ bc+ ca.

The proof is completed. The equality does not hold.

P 1.103. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
√
b2 + b+ 1 + b

√
c2 + c+ 1 + c

√
a2 + a+ 1 ≤ 3

√
3.

(Nguyen Van Quy, 2014)

Solution. From
4(b2 + b+ 1) = 2(b+ 1)2 + 2(b2 + 1) ≥ 3(b+ 1)2,

we get
√
b2 + b+ 1 ≥

√
3

2
(b+ 1),

hence ∑
a
√
b2 + b+ 1 =

∑ a(b2 + b+ 1)√
b2 + b+ 1

≤
∑ 2a(b2 + b+ 1)√

3(b+ 1)
.

Therefore, it suffices to prove that∑ a(b2 + b+ 1)

b+ 1
≤ 9

2
,

which is equivalent to ∑ ab2

b+ 1
≤ 3

2
.

In addition, since b+ 1 ≥ 2
√
b, it is enough to show that∑

ab3/2 ≤ 3.

Replacing a, b, c by a2, b2, c2, respectively, we need to show that a2 + b2 + c2 = 3 involves
a2b3 + b2c3 + c2a3 ≤ 3, which is just the inequality in P 1.7. The equality holds for a = b = c.
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P 1.104. If a, b, c are positive real numbers, then

1

b(a+ 2b+ 3c)2
+

1

c(b+ 2c+ 3a)2
+

1

a(c+ 2a+ 3b)2
≤ 1

12abc
.

(Vo Quoc Ba Can, 2012)

Solution. Assume that a = max{a, b, c}, and write the inequality as

ca

(a+ 2b+ 3c)2
+

ab

(b+ 2c+ 3a)2
+

bc

(c+ 2a+ 3b)2
≤ 1

12
.

Case 1: a ≥ b ≥ c. By the AM-GM inequality, we have

(a+ 2b+ 3c)2 ≥ 4(2b+ c)(2c+ a);

thus, it suffices to show that ∑ ca

(2b+ c)(2c+ a)
≤ 1

3
,

which is equivalent to

3
∑

ca(2a+ b) ≤ (2a+ b)(2b+ c)(2c+ a),

ab2 + bc2 + ca2 ≤ a2b+ b2c+ c2a,

(a− b)(b− c)(c− a) ≤ 0.

Clearly, the last inequality is true.

Case 2: a ≥ c ≥ b. Since, by the AM-GM inequality,

(a+ 2b+ 3c)2 ≥ 12c(a+ 2b),

(b+ 2c+ 3a)2 ≥ 4(2a+ b)(2c+ a),

(c+ 2a+ 3b)2 ≥ 4(a+ 2b)(a+ b+ c),

it suffices to show that

a

3(a+ 2b)
+

ab

(2a+ b)(2c+ a)
+

bc

(a+ 2b)(a+ b+ c)
≤ 1

3
,

which is equivalent to

ab

(2a+ b)(2c+ a)
+

bc

(a+ 2b)(a+ b+ c)
≤ 2b

3(a+ 2b)
,

a

(2a+ b)(2c+ a)
+

c

(a+ 2b)(a+ b+ c)
≤ 2

3(a+ 2b)
,
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a(a+ 2b)

(2a+ b)(2c+ a)
+

c

a+ b+ c
≤ 2

3
,

a(a+ 2b)

2a+ b
+
c(2c+ a)

a+ b+ c
≤ 2(2c+ a)

3
,

c(2c+ a)

a+ b+ c
− 2(2c+ a)

3
≤ 3a2

2a+ b
− 2a,

f(c) ≤ f(a),

where

f(x) =
x(2x+ a)

a+ b+ x
− 2(2x+ a)

3
.

We have

f(a)− f(c) =(a− c)
[

3a2 + 4ac+ b(3a+ 2c)

(a+ b+ c)(2a+ b)
− 4

3

]
=

(a− c)[a2 − 3ab− 4b2 + 2c(2a+ b)]

3(a+ b+ c)(2a+ b)
≥ 0,

because

a2 − 3ab− 4b2 + 2c(2a+ b) ≥ a2 − 3ab− 4b2 + 2b(2a+ b) = (a− b)(a+ 2b) ≥ 0.

The equality holds for a = b = c.

P 1.105. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

(a)
a2 + 9b

b+ c
+
b2 + 9c

c+ a
+
c2 + 9a

a+ b
≥ 15;

(b)
a2 + 3b

a+ b
+
b2 + 3c

b+ c
+
c2 + 3a

c+ a
≥ 6.

Solution. (a) Write the inequality as follows:∑ a2 + 3b(a+ b+ c)

b+ c
≥ 5(a+ b+ c),

∑[
a2 + 3b(a+ b+ c)

b+ c
− 3b

]
≥ 2(a+ b+ c),

∑ a2 + 3ab

b+ c
≥ 2(a+ b+ c),

∑(
a2 + 3ab

b+ c
− 2a

)
≥ 0,
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∑ a(a+ b− 2c)

b+ c
≥ 0,∑ a(a− c)

b+ c
+
∑ a(b− c)

b+ c
≥ 0,∑ a(a− c)

b+ c
+
∑ b(c− a)

c+ a
≥ 0,∑

(a− c)
(

a

b+ c
− b

c+ a

)
≥ 0,

(a+ b+ c)
∑ (a− b)(a− c)

(b+ c)(c+ a)
≥ 0.

Therefore, we need to show that ∑
(a2 − b2)(a− c) ≥ 0,

which is equivalent to the obvious inequality∑
a(a− c)2 ≥ 0.

The equality holds for a = b = c.

(b) Write the inequality as follows:∑ a2 + b(a+ b+ c)

a+ b
≥ 2(a+ b+ c),

∑ a2 + bc

a+ b
≥ a+ b+ c,

∑(
a2 + bc

a+ b
− a
)
≥ 0,

∑ b(c− a)

a+ b
≥ 0,∑ bc

a+ b
≥
∑ ab

a+ b
.

Since the sequences
{ab, bc, ca}

and {
1

a+ b
,

1

b+ c
,

1

c+ a

}
are reversely ordered, the inequality follows from the rearrangement inequality. The equality
holds for a = b = c.
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P 1.106. If a, b, c ∈ [0, 1], then

(a)
bc

2ab+ 1
+

ca

2bc+ 1
+

ab

2ca+ 1
≤ 1.

(b)
a

ab+ 1
+

b

bc+ 1
+

c

ca+ 1
≤ 3

2
.

(Vasile Cı̂rtoaje, 2010)

Solution. (a) First Solution. It suffices to prove that

bc

2abc+ 1
+

ca

2abc+ 1
+

ab

2abc+ 1
≤ 1;

that is,
2abc+ 1 ≥ ab+ bc+ ca,

1− bc ≥ a(b+ c− 2bc).

Since a ≤ 1 and
b+ c− 2bc = b(1− c) + c(1− b) ≥ 0,

it suffices to show that
1− bc ≥ b+ c− 2bc,

which is equivalent to
(1− b)(1− c) ≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 1 (or any cyclic
permutation).

Second Solution. Assume that a = max{a, b, c}. It suffices to show that

bc

2bc+ 1
+

ca

2bc+ 1
+

ab

2bc+ 1
≤ 1;

that is,
a(b+ c) ≤ 1 + bc.

We have
1 + bc− a(b+ c) ≥ 1 + bc− (b+ c) = (1− b)(1− c) ≥ 0.

(b) We will show that

E(a, b, c) ≤ E(1, b, c) ≤ E(1, 1, c) =
3

2
,

where

E(a, b, c) =
a

ab+ 1
+

b

bc+ 1
+

c

ca+ 1
.
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Write the inequality E(a, b, c) ≤ E(1, b, c) as follows:

a

ab+ 1
+

c

ca+ 1
≤ 1

b+ 1
+

c

c+ 1
,

(1− a)

[
1

(b+ 1)(ab+ 1)
− c2

(c+ 1)(ca+ 1)

]
≥ 0,

(1− a)[(c+ 1)(ca+ 1)− (b+ 1)(ab+ 1)c2] ≥ 0.

Since 1− a ≥ 0 and c ≤ 1, it suffices to show that

(c+ 1)(ca+ 1)− (b+ 1)(ab+ 1)c ≥ 0,

which is true because

(c+ 1)(ca+ 1)− (b+ 1)(ab+ 1)c ≥ (c+ 1)(ca+ 1)− 2(a+ 1)c

= (1− c)(1− ac) ≥ 0.

Setting a = 1 in the similar inequality

E(a, b, c) ≤ E(a, 1, c),

it follows that
E(1, b, c) ≤ E(1, 1, c).

Finally,

E(1, 1, c) =
1

2
+

1

c+ 1
+

c

c+ 1
=

3

2
.

The equality holds for a = b = 1 (or any cyclic permutation).

P 1.107. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 5(a3b+ b3c+ c3a) ≥ 6(a2b2 + b2c2 + c2a2).

Solution. Assume that a = min{a, b, c} and use the substitution

b = a+ p, c = a+ q, p, q ≥ 0.

The inequality becomes
9Aa2 + 3Ba+ C ≥ 0,

where
A = p2 − pq + q2, B = 3p3 + p2q − 4pq2 + 3q3,

C = p4 + 5p3q − 6p2q2 + q4.
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Since
A ≥ 0,

B = 3p(p− q)2 + q(7p2 − 7pq + 3q2) ≥ 0,

C = (p− q)4 + pq(3p− 2q)2 ≥ 0,

the inequality is obviously true. The equality occurs for a = b = c.

P 1.108. If a, b, c are positive real numbers, then

a5 + b5 + c5 − a4b− b4c− c4a ≥ 2abc(a2 + b2 + c2 − ab− bc− ca).

(Vasile Cı̂rtoaje, 2006)

Solution. Since

5
(∑

a5 −
∑

a4b
)

=
∑

(4a5 + b5 − 5a4b) =
∑

(a− b)2(4a3 + 3a2b+ 2ab2 + b3)

and
2
(∑

a2 −
∑

ab
)

=
∑

(a− b)2,

we can write the inequality in the form

A(a− b)2 +B(b− c)2 + C(c− a)2 ≥ 0,

where
A = 4a3 + 3a2b+ 2ab2 + b3 − 5abc,

B = 4b3 + 3b2c+ 2bc2 + c3 − 5abc,

C = 4c3 + 3c2a+ 2ca2 + a3 − 5abc.

Without loss of generality, assume that a = max{a, b, c}. We have

A > a(4a2 + 3ab− 5bc) > a(4c2 + 3b2 − 5bc) > 0,

C > a(3c2 + 2ca+ a2 − 5bc) > a(3c2 − 3ca+ a2) > 0,

A+B > 4a3 + 5b3 + c3 + 3a2b+ 2bc2 − 10abc

≥ 3
3
√

4a3 · 5b3 · c3 + 2
√

3a2b · 2bc2 − 10abc

= (3
3
√

20 + 2
√

6− 10)abc > 0,

B + C > a3 + 4b3 + 5c3 + 3b2c+ 2ca2 − 10abc

≥ 3
3
√
a3 · 4b3 · 5c3 + 2

√
3b2c · 2ca2 − 10abc

= (3
3
√

20 + 2
√

6− 10)abc > 0.
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If a ≥ b ≥ c, then∑
A(a− b)2 ≥ B(b− c)2 + C(a− c)2 ≥ (B + C)(b− c)2 ≥ 0.

If a ≥ c ≥ b, then∑
A(a− b)2 ≥ A(a− b)2 +B(c− b)2 ≥ (A+B)(c− b)2 ≥ 0.

The equality holds for a = b = c.

P 1.109. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a

1 + b
+

b

1 + c
+

c

1 + a
≥ 3

2
.

(Vasile Cı̂rtoaje, 2005)

Solution. Let
p = a+ b+ c, q = ab+ bc+ ca, p2 = 3 + 2q.

First Solution. By the Cauchy-Schwarz inequality, we have∑ a

1 + b
≥ (

∑
a)2∑

a(1 + b)
=

3 + 2q

p+ q
.

Thus, it suffices to prove that
6 + q ≥ 3p.

Indeed,
2(6 + q − 3p) = 12 + (p2 − 3)− 6p = (p− 3)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. By the AM-GM inequality, we have∑ a

1 + b
=
∑ a(a+ c)

(1 + b)(a+ c)
≥
∑ 4a(a+ c)

[(1 + b) + (a+ c)]2

=
4 (
∑
a2 +

∑
ac)

(1 + p)2
=

4(3 + q)

(1 + p)2
=

6 + 2p2

(1 + p)2
.

Therefore, it suffices to show that
6 + 2p2

(1 + p)2
≥ 3

2
,

which is equivalent to (p− 3)2 ≥ 0.

Open problem. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a

5 + 4b
+

b

5 + 4c
+

c

5 + 4a
≥ 1

3
.
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P 1.110. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
√
a+ b+ b

√
b+ c+ c

√
c+ a ≥ 3

√
2.

(Hong Ge Chen, 2011)

First Solution. Denote

q =

√
ab+ bc+ ca

3
, q ≤ 1.

By squaring, the inequality turns into∑
a3 +

∑
a2b+ 2

∑
ac
√
a2 + 3q2 ≥ 18.

Since
2
√
a2 + 3q2 ≥ a+ 3q,

we have
2
∑

ac
√
a2 + 3q2 ≥

∑
ac(a+ 3q) =

∑
ab2 + 9q3.

Thus, it suffices to show that∑
a3 +

∑
ab(a+ b) + 9q3 ≥ 18,

which is equivalent to
(a+ b+ c)(a2 + b2 + c2) + 9q3 ≥ 18,

3(9− 6q2) + 9q3 ≥ 0,

1− 2q2 + q3 ≥ 0,

(1− q2)2 + q3(1− q) ≥ 0.

Clearly, the last inequality is true. The equality holds for a = b = c = 1.

Second Solution. Using the substitution√
a+ b

2
=
x+ y

2
,

√
b+ c

2
=
y + z

2
,

√
c+ a

2
=
z + x

2

gives

x =

√
a+ b

2
+

√
a+ c

2
−
√
b+ c

2
≥ 0,

a =

(
x+ y

2

)2

+

(
x+ z

2

)2

−
(
y + z

2

)2

=
x(x+ y + z)− yz

2
.

In addition, a+ b+ c = 3 involves

x2 + y2 + z2 + xy + yz + zx = 6,
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which is equivalent to
p2 − q = 6,

where
p = x+ y + z, q = xy + yz + zx.

From

18− 2p2 = 3(x2 + y2 + z2 + xy + yz + zx)− 2(x+ y + z)2

= x2 + y2 + z2 − xy − yz − zx ≥ 0,

it follows that
p ≤ 3.

The desired inequality is equivalent to∑
(xp− yz)(x+ y) ≥ 12,

p
∑

(x2 + xy) ≥ 3xyz +
∑

y2z + 12,

6p ≥ 3xyz +
∑

y2z + 12,

6p+
∑

yz2 ≥ pq + 12.

Since (∑
yz2
)(∑

y
)
≥
(∑

yz
)2

(by the Cauchy-Schwarz inequality), it suffices to show that

6p+
q2

p
≥ pq + 12.

Indeed,

6p+
q2

p
− pq =

p2(6− q) + q2

p
=

(6 + q)(6− q) + q2

p
=

36

p
≥ 12.

Open problem. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
√

4a+ 5b+ b
√

4b+ 5c+ c
√

4c+ 5a ≥ 9.

P 1.111. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

2b2 + c
+

b

2c2 + a
+

c

2a2 + b
≥ 1.

(Vasile Cı̂rtoaje and Nguyen Van Quy, 2007)
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Solution. By the Cauchy-Schwarz inequality, we have

∑ a

2b2 + c
≥

(∑
a
√
a+ c

)2∑
a(a+ c)(2b2 + c)

.

Since
∑
a
√
a+ c ≥ 3

√
2 (see the previous P 1.110), it suffices to prove that∑

a(a+ c)(2b2 + c) ≤ 18,

which is equivalent to

2
∑

a2b2 + 6abc+
∑

ac(a+ c) ≤ 18,

2
∑

a2b2 + 3abc+
(∑

a
)(∑

ab
)
≤ 18.

Denoting
q = ab+ bc+ ca,

the inequality becomes
9abc+ 18 ≥ 2q2 + 3q.

This inequality is true for q < 2 because 18 > 2q2 + 3q. Since q ≤ p2/3 = 3, consider further
the case 2 ≤ q ≤ 3. By Schur’s inequality of degree three, we have

9abc ≥ 4pq − p3 = 12q − 27.

Therefore,

9abc+ 18− (2q2 + 3q) ≥ (12q − 27) + 18− (2q2 + 3q)

= −2q2 + 9q − 9 = (3− q)(2q − 3) ≥ 0.

This completes the proof. The equality holds for a = b = c = 1.

P 1.112. If a, b, c are positive real numbers such that a+ b+ c = ab+ bc+ ca, then

1

a2 + b+ 1
+

1

b2 + c+ 1
+

1

c2 + a+ 1
≤ 1.

Solution. By the Cauchy-Schwarz inequality, we have

1

a2 + b+ 1
≤ 1 + b+ c2

(a+ b+ c)2
,

hence ∑ 1

a2 + b+ 1
≤
∑ 1 + b+ c2

(a+ b+ c)2
=

3 + a+ b+ c+ a2 + b2 + c2

(a+ b+ c)2
.
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It suffices to show that
3 + a+ b+ c ≤ 2(ab+ bc+ ca),

which is equivalent to
a+ b+ c ≥ 3.

We can get this inequality from the known inequality

(a+ b+ c)2 ≥ 3(ab+ bc+ ca).

The equality holds for a = b = c = 1.

P 1.113. If a, b, c are positive real numbers, then

1

(a+ 2b+ 3c)2
+

1

(b+ 2c+ 3a)2
+

1

(c+ 2a+ 3b)2
≤ 1

4(ab+ bc+ ca)
.

Solution. By the AM-GM inequality, we have

(a+ 2b+ 3c)2 = [(a+ c) + 2(b+ c)]2 = (a+ c)2 + 4(b+ c)2 + 4(a+ c)(b+ c)

≥ 3(b+ c)2 + 6(a+ c)(b+ c) = 3(b+ c)(2a+ b+ 3c).

Thus, it suffices to show that∑ 1

(b+ c)(2a+ b+ 3c)
≤ 3

4(ab+ bc+ ca)
.

Write this inequality as follows:

3

4
−
∑ ab+ bc+ ca

(b+ c)(2a+ b+ 3c)
≥ 0,

∑[
1− 2(ab+ bc+ ca)

(b+ c)(2a+ b+ 3c)

]
≥ 3

2
,

∑ (b+ c)2 + 2c2

(b+ c)(2a+ b+ 3c)
≥ 3

2
,

∑ b+ c

2a+ b+ 3c
+
∑ 2c2

(b+ c)(2a+ b+ 3c)
≥ 3

2
.

Applying the Cauchy-Schwarz inequality, we get∑ b+ c

2a+ b+ 3c
≥ [

∑
(b+ c)]2∑

(b+ c)(2a+ b+ 3c)
=

4 (
∑
a)2

4 (
∑
a)2

= 1

and ∑ c2

(b+ c)(2a+ b+ 3c)
≥ (

∑
c)2∑

(b+ c)(2a+ b+ 3c)
=

1

4
,

from where the conclusion follows. The equality holds for a = b = c.
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P 1.114. If a, b, c are positive real numbers, then√
a

a+ b+ 2c
+

√
b

b+ c+ 2a
+

√
c

c+ a+ 2b
≤ 3

2
.

Solution. Apply the Cauchy-Schwarz inequality as follows:(∑√
a

a+ b+ 2c

)2

≤
[∑

(b+ c+ 2a)
] [∑ a

(b+ c+ 2a)(a+ b+ 2c)

]
=

4 (
∑
a) [
∑
a(c+ a+ 2b)]

(b+ c+ 2a)(c+ a+ 2b)(a+ b+ 2c)
.

Thus, it suffices to show that

16
(∑

a
) [∑

a(c+ a+ 2b)
]
≤ 9(b+ c+ 2a)(c+ a+ 2b)(a+ b+ 2c).

Denoting

p = a+ b+ c, q = ab+ bc+ ca,

the inequality becomes

16p(p2 + q) ≤ 9(p+ a)(p+ b)(p+ c),

16p(p2 + q) ≤ 9(2p3 + pq + abc),

2p3 − 7pq + 9abc ≥ 0.

Using Schur’s inequality of degree three

p3 + 9abc ≥ 4pq,

we have

2p3 − 7pq + 9abc = (p3 + 9abc− 4pq) + p(p2 − 3q) ≥ 0.

The equality holds for a = b = c.

P 1.115. If a, b, c are positive real numbers, then√
5a

a+ b+ 3c
+

√
5b

b+ c+ 3a
+

√
5c

c+ a+ 3b
≤ 3.
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Solution. Substituting

x =

√
5a

a+ b+ 3c
, y =

√
5b

b+ c+ 3a
, z =

√
5c

c+ a+ 3b
,

we have 
(x2 − 5)a+ x2b+ 3x2c = 0

3y2a+ (y2 − 5)b+ y2c = 0 ,

z2a+ 3z2b+ (z2 − 5)c = 0

which involves ∣∣∣∣∣∣
x2 − 5 x2 3x2

3y2 y2 − 5 y2

z2 3z2 z2 − 5

∣∣∣∣∣∣ = 0 ;

that is,
F (x, y, z) = 0,

where
F (x, y, z) = 4x2y2z2 + 2

∑
x2y2 + 5

∑
x2 − 25.

We need to show that F (x, y, z) = 0 involves x+ y + z ≤ 3, where x, y, z > 0. According to
the contradiction method, assume that x + y + z > 3 and show that F (x, y, z) > 0. Since
F (x, y, z) is strictly increasing in each of its arguments, it is enough to prove that

x+ y + z = 3

involves
F (x, y, z) ≥ 0.

Denote
q = xy + yz + zx, r = xyz.

Since ∑
x2y2 = q2 − 6r,

∑
x2 = 9− 2q,

we have

F (x, y, z) = 4r2 + 2(q2 − 6r) + 5(9− 2q)− 25 = 2(2r2 − 6r + q2 − 5q + 10),

1

2
F (x, y, z) = 2(r − 1)2 + q2 − 5q + 8− 2r.

It suffices to show that
q2 − 5q + 8 ≥ 2r.

From the known inequality

(xy + yz + zx)2 ≥ 3xyz(x+ y + z),
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it follows that q2 ≥ 9r. Therefore, it suffices to prove that

q2 − 5q + 8 ≥ 2q2

9
,

which is equivalent to
(3− q)(24− 7q) ≥ 0.

Since

q ≤ 1

3
(x+ y + z)2 = 3,

the conclusion follows. The original inequality is an equality for a = b = c.

P 1.116. If a, b, c ∈ [0, 1], then

ab2 + bc2 + ca2 +
5

4
≥ a+ b+ c.

(Ji Chen, 2007)

Solution. We use the substitution

a = 1− x, b = 1− y, c = 1− z,

where x, y, z ∈ [0, 1]. Since∑
a(1− b2) =

∑
y(1− x)(2− y) =

∑
y(2− 2x− y + xy)

= 2
∑

x−
(∑

x
)2

+
∑

xy2,

the inequality can be written as

5

4
≥ 2

∑
x−

(∑
x
)2

+
∑

xy2.

According to the known inequality in P 1.1, we have∑
xy2 ≤ 4

27

(∑
x
)3
.

Thus, it suffices to prove the following inequality

5

4
≥ 2t− t2 +

4

27
t3,

where
t = x+ y + z ≤ 3.

This inequality is equivalent to

(15− 4t)(3− 2t)2 ≥ 0,

which is obviously true for t ≤ 3. The proof is completed. The equality occurs for a = 0,

b = 1 and c =
1

2
(or any cyclic permutation thereof).
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P 1.117. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ b ≤ 1 ≤ c,

then

a2b+ b2c+ c2a ≤ 3.

Solution. Since

ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

a2b+ b2c+ c2 + (ab2 + bc2 + ca2) ≤ 6;

that is,

(a+ b+ c)(ab+ bc+ ca)− 3abc ≤ 6,

ab+ bc+ ca− abc ≤ 2,

1− (a+ b+ c) + ab+ bc+ ca− abc ≤ 0,

(1− a)(1− b)(1− c) ≤ 0.

The equality occurs for a = b = c = 1.

P 1.118. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1 ≤ b ≤ c.

Prove that

(a) a2b+ b2c+ c2a ≥ ab+ bc+ ca;

(b) a2b+ b2c+ c2a ≥ abc+ 2;

(c)
1

abc
+ 2 ≥ 9

a2b+ b2c+ c2a
;

(d) ab2 + bc2 + ca2 ≥ 3.

(Vasile Cı̂rtoaje, 2008)
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Solution. (a) We have

a2b+ b2c+ c2a− ab− bc− ca = ab(a− 1) + bc(b− 1) + ca(c− 1)

= −ab[(b− 1) + (c− 1)] + bc(b− 1) + ca(c− 1)

= b(b− 1)(c− a) + a(c− 1)(c− b) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

(b) Since
a(b− a)(b− c) ≤ 0,

we have

a2b+ b2c+ c2a ≥ a2b+ b2c+ c2a+ a(b− a)(b− c)
= b2(a+ c) + ac(a+ c− b).

Thus, it suffices to prove that

b2(a+ c) + ac(a+ c− b) ≥ abc+ 2.

This inequality is equivalent to

b2(a+ c)− 2 ≥ ac(2b− a− c),

b2(3− b)− 2 ≥ ac(3b− 3).

From (b− a)(b− c) ≤ 0, it follows that

ac ≤ b(a+ c− b) = b(3− 2b).

Thus, it suffices to show that

b2(3− b)− 2 ≥ b(3− 2b)(3b− 3),

which is equivalent to the obvious inequality

(5b− 2)(b− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

(c) According to the inequality in (a), it suffices to show that

1

abc
+ 2 ≥ 9

abc+ 2
,

which is equivalent to
(abc− 1)2 ≥ 0.

The equality holds for a = b = c = 1.
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(d) Since

ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2b+ b2c+ c2) ≥ 6;

that is,
(a+ b+ c)(ab+ bc+ ca)− 3abc ≥ 6,

ab+ bc+ ca− abc ≥ 2,

1− (a+ b+ c) + ab+ bc+ ca− abc ≥ 0,

(1− a)(1− b)(1− c) ≥ 0.

The equality holds for a = b = c = 1.

Remark 1. For
a+ b+ c = 3, 0 < a ≤ 1 ≤ b ≤ c,

the following open inequality holds

1

abc
+ 6 ≥ 21

a2b+ b2c+ c2a
,

which is sharper than the inequality in (c).

Remark 2. From the proof of the inequality in (d), the following identity follows for
a+ b+ c = 3:

2(ab2 + bc2 + ca2 − 3) = 3(1− a)(1− b)(1− c) + (a− b)(b− c)(c− a).

P 1.119. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1 ≤ b ≤ c,

then

(a)
5− 2a

1 + b
+

5− 2b

1 + c
+

5− 2c

1 + a
≥ 9

2
;

(b)
3− 2b

1 + a
+

3− 2c

1 + b
+

3− 2a

1 + c
≤ 3

2
.

(Vasile Cı̂rtoaje, 2008)
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Solution. (a) Write the inequality as follows:

2
∑

(5− 2a)(1 + c)(1 + a) ≥ 9(1 + a)(1 + b)(1 + c),

2
(

21 + 7
∑

ab− 2
∑

ab2
)
≥ 9

(
4 +

∑
ab+ abc

)
,

6 + 5
∑

ab ≥ 9abc+ 4
∑

ab2.

By P 1.9-(a), we have ∑
ab2 ≤ 4− abc.

Therefore, it suffices to prove that

6 + 5
∑

ab ≥ 9abc+ 4(4− abc),

which is equivalent to ∑
ab ≥ 2 + abc,

(1− a)(1− b)(1− c) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2.

(b) Write the inequality as follows:

2
∑

(3− 2b)(1 + b)(1 + c) ≤ 3(1 + a)(1 + b)(1 + c),

2
(

3 + 5
∑

ab− 2
∑

a2b
)
≤ 3

(
4 +

∑
ab+ abc

)
,

6 + 3abc+ 4
∑

a2b ≥ 7
∑

ab,

6 + 3abc+ 4
∑

ab(a+ b) ≥ 7
∑

ab+ 4
∑

ab2,

6 + 3abc+ 4
(∑

a
)(∑

ab
)
− 12abc ≥ 7

∑
ab+ 4

∑
ab2,

6 + 5
∑

ab ≥ 9abc+ 4
∑

ab2.

By P 1.9-(a), we have ∑
ab2 ≤ 4− abc.

Therefore, it suffices to prove that

6 + 5
∑

ab ≥ 9abc+ 4(4− abc),

which is equivalent to ∑
ab ≥ 2 + abc,

(1− a)(1− b)(1− c) ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2.
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P 1.120. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a2b+ b2c+ c2a ≥ 3;

(b) ab2 + bc2 + ca2 + 3(
√

3− 1)abc ≥ 3
√

3.

(Vasile Cı̂rtoaje, 2008)

Solution. (a) Since
a(b− a)(b− c) ≤ 0,

we have

a2b+ b2c+ c2a ≥ a2b+ b2c+ c2a+ a(b− a)(b− c)
= b2(a+ c) + ac(a+ c− b).

Thus, it suffices to prove that

b2(a+ c) + ac(a+ c− b) ≥ 3.

Denote
x = a+ c.

From ab+ bc+ ca = 3, we get
ac = 3− bx

and

x =
3− ac
b
≤ 3

b
≤ 3.

Thus, we need to show that
b2x+ (3− bx)(x− b) ≥ 3,

2b2x− (x2 + 3)b+ 3x− 3 ≥ 0.

Since

2b2x− (x2 + 3)b+ 3x− 3 = 2(b2 − 2b+ 1)x+ 2(2b− 1)x− (x2 + 3)b+ 3x− 3

= 2(b− 1)2x+ (3− x)(bx− b− 1)

≥ (3− x)(bx− b− 1),

it is enough to prove that
bx− b− 1 ≥ 0.

From the inequality (b− a)(b− c) ≤ 0, we get

bx ≥ b2 + ac = b2 + 3− bx, bx ≥ b2 + 3

2
.
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Therefore,

bx− b− 1 ≥ b2 + 3

2
− b− 1 =

(b− 1)2

2
≥ 0.

The proof is completed. The equality holds for a = b = c = 1, and for a = 0, b = 1 and
c = 3.

(b) Since

ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2b+ b2c+ c2) + 6(
√

3− 1)abc ≥ 6
√

3;

that is,
(a+ b+ c)(ab+ bc+ ca) + 3(2

√
3− 3)abc ≥ 6

√
3,

a+ b+ c+ (2
√

3− 3)abc ≥ 2
√

3,

a[1 + (2
√

3− 3)bc] + b+ c ≥ 2
√

3,

a[1 + (2
√

3− 3)p] + 2(s−
√

3) ≥ 0,

where

s =
b+ c

2
, p = bc, s2 ≥ p ≥ 1.

From ab+ bc+ ca = 3, we get

a =
3− p

2s
, p ≤ 3.

Therefore, we need to show that F (s, p) ≥ 0, where

F (s, p) = (3− p)[1 + (2
√

3− 3)p] + 4s(s−
√

3).

Since the inequality F (s, p) ≥ 0 is true for s−
√

3 ≥ 0, consider further the case

s ≤
√

3.

We will show that
F (s, p) ≥ F (s, s2) ≥ 0.

We have

F (s, p)− F (s, s2) = (2
√

3− 3)(s4 − p2)− (6
√

3− 10)(s2 − p)
= (s2 − p)[(2

√
3− 3)(s2 + p)− 6

√
3 + 10].

Since s2 − p ≥ 0 and

(2
√

3− 3)(s2 + p)− 6
√

3 + 10 ≥ (2
√

3− 3)(1 + 1)− 6
√

3 + 10 = 4− 2
√

3 > 0,



174 Vasile Ĉırtoaje

the left inequality is true. The right inequality is also true because

F (s, s2) = (3− s2)[1 + (2
√

3− 3)s2] + 4s(s−
√

3)

= (
√

3− s)[(
√

3 + s)(1 + (2
√

3− 3)s2)− 4s]

= (
√

3− s)[
√

3(1− s)2(1 + 2s)− 3s(1− s)2]
= (
√

3− s)(1− s)2[
√

3 + (2
√

3− 3)s] ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
√

3.

P 1.121. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a2b+ b2c+ c2a ≥ 2abc+ 1;

(b) 2(ab2 + bc2 + ca2) ≥ 3abc+ 3.

(Vasile Cı̂rtoaje, 2008)

Solution. (a) Let
x = a+ c, x ≥ b.

From a2 + b2 + c2 = 3, we get

ac =
b2 + x2 − 3

2
,

and from (b− a)(b− c) ≤ 0, we get

bx ≥ b2 + ac,

bx ≥ b2 +
x2 + b2 − 3

2
,

(x− b)2 ≤ 3− 2b2, b ≤
√

3

2
,

x ≤ b+ d, d =
√

3− 2b2.

Since
a(b− a)(b− c) ≤ 0,

we have

a2b+ b2c+ c2a ≥ a2b+ b2c+ c2a+ a(b− a)(b− c)
= b2x− ac(b− x).
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Thus, it suffices to prove that
b2x− ac(3b− x) ≥ 1,

which is equivalent to f(x, b) ≥ 0, where

f(x, b) = 2b2x− (x2 + b2 − 3)(3b− x)− 2

= x3 − 3bx2 + 3(b2 − 1)x− 3b3 + 9b− 2.

We will show that
f(x, b) ≥ f(b+ d, b) ≥ 0.

Since x ≤ b+ d and

f(x, b)− f(b+ d, b) = (x− b− d)[x2 + x(b+ d) + (b+ d)2 − 3b(x+ b+ d) + 3b2 − 3]

= (x− b− d)[x2 − (2b− d)x− b2 − bd],

we need to show that g(x) ≤ 0, where

g(x) = x2 − (2b− d)x− b2 − bd = (x− 2b)(x+ d) + b(d− b).

Since d− b ≤ 0, it suffices to show that x− 2b ≤ 0. Indeed, we have

x2 = (a+ c)2 ≤ 2(a2 + c2) = 2(3− b2) ≤ 4,

hence
x ≤ 2 ≤ 2b.

To prove the right inequality f(b+ d, b) ≥ 0, we have

f(b+ d, b) = 2b2(b+ d)− 2bd(2b− d)− 2 = 2(3b− b3 − 1− b2d).

We need to show that
3b− b3 − 1 ≥ b2

√
3− 2b2

for

1 ≤ b ≤
√

3

2
.

We have

3b− b3 − 1 ≥ 3b− 3b

2
− 1 =

3b− 2

2
≥ 0.

By squaring, the inequality becomes

(3b− b3 − 1)2 ≥ b4(3− 2b2),

3b6 − 9b4 + 2b3 + 9b2 − 6b+ 1 ≥ 0,

(b− 1)2(3b4 + 6b3 − 4b+ 1) ≥ 0.

The original inequality is an equality for a = b = c = 1.
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(b) Denote
p = a+ b+ c, q = ab+ bc+ ca.

Since
ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2b+ b2c+ c2) ≥ 3abc+ 3;

that is,
pq ≥ 6abc+ 3.

From
(a− 1)(b− 1)(c− 1) ≥ 0,

we get
abc ≥ 1− p+ q,

therefore

pq − 6abc− 3 ≥ pq − 6(1− p+ q)− 3

= (p− 6)q + 6p− 9

=
(p− 6)(p2 − 3)

2
+ 6p− 9

=
p(p− 3)2

2
≥ 0.

The equality holds for a = b = c = 1.

P 1.122. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ b ≤ 1 ≤ c,

then
ab2 + bc2 + ca2 + 3abc ≥ 6.

(Vasile Cı̂rtoaje, 2008)

Solution. Denote
p = a+ b+ c.

Since
ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2b+ b2c+ c2) + 6abc ≥ 12;
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that is,
(a+ b+ c)(ab+ bc+ ca) + 3abc ≥ 12,

a+ b+ c+ abc ≥ 4,

which is equivalent to
(a− 1)(b− 1)(c− 1) ≥ 0.

The equality holds for a = b = c = 1.

P 1.123. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1 ≤ c,

then
2(a2b+ b2c+ c2a) ≤ 3abc+ 3.

(Vasile Cı̂rtoaje, 2008)

Solution. Consider two cases.
Case 1: a+ c ≥ 2b. Denote

x = a+ c, x ≥ 2b.

From a2 + b2 + c2 = 3 and (b− a)(b− c) ≤ 0, we get in succession

ac =
b2 + x2 − 3

2
,

bx ≥ b2 + ac,

bx ≥ b2 +
x2 + b2 − 3

2
,

(x− b)2 ≤ 3− 2b2,

x ≤ b+ d, d =
√

3− 2b2.

Since
ab2 + bc2 + ca2 − (a2b+ b2c+ c2) = (a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

a2b+ b2c+ c2a+ (ab2 + bc2 + ca2) ≤ 3abc+ 3;

that is,
(a+ b+ c)(ab+ bc+ ca) ≤ 6abc+ 3,

(x+ b)(bx+ ac) ≤ 6abc+ 3,

ac(x− 5b) + bx(x+ b)− 3 ≤ 0.
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Thus, we need to show that f(x, b) ≤ 0, where

f(x, b) = (x2 + b2 − 3)(x− 5b) + 2bx(x+ b)− 6

= x3 − 3bx2 + 3(b2 − 1)x− 5b3 + 15b− 6.

We will show that
f(x, b) ≤ f(b+ d, b) ≤ 0.

Since x ≤ b+ d and

f(x, b)− f(b+ d, b) = (x− b− d)[x2 + x(b+ d) + (b+ d)2 − 3b(x+ b+ d) + 3b2 − 3]

= (x− b− d)[x2 − (2b− d)x− b2 − bd],

we need to show that g(x) ≥ 0, where

g(x) = x2 − (2b− d)x− b2 − bd.

Since x− 2b ≥ 0 and d− b ≥ 0, we have

g(x) = (x− 2b)(x+ d) + b(d− b) ≥ 0.

To prove the right inequality f(b+ d, b) ≤ 0, from

f(b+ d, b) = 2bd(d− 4b) + 2b(b+ d)(2b+ d)− 6 = 2(6b− 2b3 − 3− b2d),

it follows that we need to show that

6b− 2b3 − 3 ≤ b2
√

3− 2b2

for 0 ≤ b ≤ 1. This inequality is true for b ≤ 1

2
because

6b− 2b3 − 3 ≤ 3(2b− 1) ≤ 0.

So, it suffices to prove the inequality for 1/2 < b ≤ 1. By squaring, the inequality becomes

(6b− 2b3 − 3)2 ≤ b4(3− 2b2),

2b6 − 9b4 + 4b3 + 12b2 − 12b+ 3 ≤ 0,

(b− 1)3(2b3 + 6b2 + 3b− 3) ≤ 0.

We only need to show that
2b3 + 6b2 + 3b− 3 ≥ 0.

Indeed,
2b3 + 6b2 + 3b− 3 > 3(2b2 + b− 1) = 3(2b− 1)(b+ 1) > 0.

Case 2: a+ c ≤ 2b. Consider the nontrivial case a < c, denote

b1 =
a+ c

2
, b2 =

√
a2 + c2

2
(b1 < b2),
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and write the inequality in the homogeneous form E(a, b, c) ≤ 0, where

E(a, b, c) = 2(a2b+ b2c+ c2a)− 3abc− 3

(
a2 + b2 + c2

3

)3/2

.

From a2 + b2 + c2 = 3 and b ≤ 1, it follows that b ≤ b2. For fixed a and c, consider the
function

f(b) = E(a, b, c), b ∈ [b1, b2].

We will show that
f(b) ≤ f(b2)) ≤ 0.

The left inequality is true if f ′(b) ≥ 0 for b ∈ [b1, b2]. Since

f ′(b) = 2a2 + 4bc− 3ac− 3b

(
a2 + b2 + c2

3

)1/2

= 2a2 + 4bc− 3ac− 3b = 2a2 − 3ac+ b(4c− 3)

≥ 2a2 − 3ac+
(a+ c)(4c− 3)

2

=
(a− c)2 + 3(a2 + c2 − a− c)

2

≥ 3(a2 + c2 − a− c)
2

,

it suffices to show that
a2 + c2 ≥ a+ c.

From a2 + b2 + c2 = 3 and b ≤ 1, it follows that a2 + c2 ≥ 2. If a+ c ≤ 2, then

a2 + b2 ≥ 2 ≥ a+ c.

Also, if a+ c ≥ 2, then

a2 + b2 ≥ 1

2
(a+ c)2 ≥ a+ c.

To prove the right inequality f(b2) ≤ 0, we see that

f(b2) = 2a2b2 + (a2 + c2)c+ 2c2a− 3ab2c− 3b2
a2 + c2

2

= c(a+ c)2 − (3c2 + 6ac− a2)
2

b2

= c(a+ c)2 − (3c2 + 6ac− a2)
2

√
a2 + c2

2
.

Thus, we need to show that

c2(c+ a)4 ≤ (3c2 + 6ac− a2)2(c2 + a2)

8
,
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which is equivalent to

c6 + 4ac5 − 9a2c4 − 8a3c3 + 23a4c2 − 12a5c+ a6 ≥ 0,

(c− a)3(c3 + 7c2a+ 9ca2 − a3) ≤ 0.

The proof is completed. The equality holds for a = b = c = 1.

P 1.124. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1 ≤ c,

then
2(a3b+ b3c+ c3a) ≤ abc+ 5.

(Vasile Cı̂rtoaje, 2008)

Solution. Let
p = a+ b+ c, q = ab+ bc+ ca.

Since
ab3 + bc3 + ca3 − (a3b+ b3c+ c3) = (a+ b+ c)(a− b)(b− c)(c− a) ≥ 0,

it suffices to prove that

(a3b+ b3c+ c3a) + (ab3 + bc3 + ca3) ≤ abc+ 5,

which is equivalent to

(a2 + b2 + c2)(ab+ bc+ ca) ≤ abc(a+ b+ c+ 1) + 5,

3q ≤ abc(p+ 1) + 5.

From
(a− 1)(b− 1)(c− 1) ≥ 0,

we get
abc ≥ q − p+ 1.

Therefore, it suffices to show that

3q ≤ (q − p+ 1)(p+ 1) + 5,

which is equivalent to
6− p2 ≥ q(2− p),

12− 2p2 ≥ (p2 − 3)(2− p),
p3 − 4p2 − 3p+ 18 ≥ 0,

(p− 3)2(p+ 2) ≥ 0.

The proof is completed. The equality holds for a = b = c = 1.
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P 1.125. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3b+ b3c+ c3a).

(Vasile Cı̂rtoaje, 1992)

First Solution. Write the inequality as

E1 − 2E2 ≥ 0,

where
E1 = a3(a− b) + b3(b− c) + c3(c− a),

E2 = a2b(a− b) + b2c(b− c) + c2a(c− a).

Using the substitution
b = a+ p, c = a+ q,

we have

E1 = a3(a− b) + b3[(b− a) + (a− c)] + c3(c− a)

= (a− b)2(a2 + ab+ b2) + (a− c)(b− c)(b2 + bc+ c2)

= p2(a2 + ab+ b2)− q(p− q)(b2 + bc+ c2)

= 3(p2 − pq + q2)a2 + 3(p3 − p2q + q3)a+ p4 − p3q + q4

and

E2 = a2b(a− b) + b2c[(b− a) + (a− c)] + c2a(c− a)

= (a− b)b(a2 − bc) + (a− c)c(b2 − ca)

= pb(bc− a2) + qc(ca− b2)
= (p2 − pq + q2)a2 + (p3 + p2q − 2pq2 + q3)a+ p3q − p2q2.

Thus, the inequality can be rewritten as

Aa2 +Ba+ C ≥ 0,

where
A = p2 − pq + q2,

B = p3 − 5p2q + 4pq2 + q3,

C = p4 − 3p3q + 2p2q2 + q4.

For the non-trivial case A > 0, it is enough to show that δ ≤ 0, where δ = B2 − 4AC is the
discriminant of the quadratic function Aa2 +Ba+ C. Indeed, we have

δ = −3(p6 − 2p5q − 3p4q2 + 6p3q3 + 2p2q4 − 4pq5 + q6)

= −3(p3 − p2q − 2pq2 + q3)2 ≤ 0.
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The equality holds for a = b = c, and also for

a

sin2 4π
7

=
b

sin2 2π
7

=
c

sin2 π
7

(or any cyclic permutation).

Second Solution. Let us denote

x = a2 − ab+ bc,

y = b2 − bc+ ca,

z = c2 − ca+ ab.

We have
x2 + y2 + z2 =

∑
a4 + 2

∑
a2b2 − 2

∑
a3b

and
xy + yz + zx =

∑
a3b.

From the known inequality

x2 + y2 + z2 ≥ xy + yz + zx,

the desired inequality follows.

Third Solution. Let us denote

x = a(a− 2b− c),

y = b(b− 2c− a),

z = c(c− 2a− b).
We have

x2 + y2 + z2 =
∑

a4 + 5
∑

a2b2 + 4abc
∑

a− 4
∑

a3b− 2
∑

ab3

and
xy + yz + zx = 3

∑
a2b2 + 4abc

∑
a−

∑
a3b− 2

∑
ab3.

The known inequality
x2 + y2 + z2 ≥ xy + yz + zx

leads to the desired inequality.

Remark 1. Let
E = (a2 + b2 + c2)2 − 3(a3b+ b3c+ c3a).

Using the notations from the first solution, the formula

4A(Aa2 +Ba+ C) = (2Aa+B)2 − δ,
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leads to the following identity

4E1E = (A1 − 5B1 + 4C1)
2 + 3(A1 −B1 − 2C1 + 2D1)

2,

where

A1 = a3 + b3 + c3, B1 = a2b+ b2c+ c2a, C1 = ab2 + bc2 + ca2, D1 = 3abc,

E1 = a2 + b2 + c2 − ab− bc− ca.

Remark 2. Let

E = (a2 + b2 + c2)2 − 3(a3b+ b3c+ c3a),

The identity

x2 + y2 + z2 − xy − yz − zx =
1

2

∑
(x− y)2,

where x, y, z are defined in the second or third solution, leads to the identity

2E =
∑

(a2 − b2 − ab+ 2bc− ca)2.

In addition, the following similar identities hold:

6E =
∑

(2a2 − b2 − c2 − 3ab+ 3bc)2,

4E = (2a2 − b2 − c2 − 3ab+ 3bc)2 + 3(b2 − c2 − ab− bc+ 2ca)2.

Remark 3. The inequality in P 1.125 is known as Vasc’s inequality, after the author’s
username on the Art of Problem Solving website.

P 1.126. If a, b, c are real numbers, then

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3b+ b3c+ c3a).

(Vasile Cı̂rtoaje, 1992)

First Solution. Making the substitution

b = a+ p, c = a+ q,

the inequality turns into

Aa2 +Ba+ C ≥ 0,

where

A = 3(p2 − pq + q2), B = 3(p3 − 2p2q + pq2 + q3), C = p4 − 2p3q + pq3 + q4.
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Since the discriminant of the quadratic trinomial Aa2 +Ba+ C is nonpositive,

δ = B2 − 4AC = −3(p6 − 6p4q + 2p3q3 + 9p2q4 − 6pq5 + q6)

= −3(p3 − 3pq2 + q3)2 ≤ 0,

the conclusion follows. The equality holds for a = b = c, and also for

a

sin π
9

=
b

sin 7π
9

=
c

sin 13π
9

(or any cyclic permutation).

Second Solution. Let us denote
x = a(a− b),
y = b(b− c),
z = c(c− a).

We have
x2 + y2 + z2 =

∑
a4 +

∑
a2b2 − 2

∑
a3b

and
xy + yz + zx =

∑
a2b2 −

∑
ab3.

Applying the known inequality

x2 + y2 + z2 ≥ xy + yz + zx,

the desired inequality follows.

Third Solution. Let
x = a2 + bc+ ca,

y = b2 + ca+ ab,

z = c2 + ab+ bc.

We have
x2 + y2 + z2 =

∑
a4 + 2

∑
a2b2 + 4abc

∑
a+ 2

∑
ab3

and
xy + yz + zx = 2

∑
a2b2 + 4abc

∑
a+ 2

∑
a3b+

∑
ab3.

The known inequality
x2 + y2 + z2 ≥ xy + yz + zx

leads to the desired inequality.

Remark 1. The inequality is more interesting in the case abc < 0. If a, b, c are positive,
then the inequality is less sharp than Vasc’s inequality in P 1.125 because it can be obtained
by adding Vasc’s inequality and

ab(a− b)2 + bc(b− c)2 + ca(c− a)2 ≥ 0.
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On the other hand, if a, b, c are positive, then the inequality

3(a4 + b4 + c4) + 4(ab3 + bc3 + ca3) ≥ 7(a3b+ b3c+ c3a)

is a refinement of the inequality in P 1.126. To prove this inequality, we write it as

3(a4 + b4 + c4 − a3b− b3c− c3a) + 4(ab3 + bc3 + ca3 − a3b− b3c− c3a) ≥ 0,

consider a = min{a, b, c} and use the substitution

b = a+ p, c = a+ q, a > 0, p ≥ 0, q ≥ 0.

Since ∑
a4 −

∑
a3b =

∑
a3(a− b)

= 3(p2 − pq + q2)a2 + 3(p3 − p2q + q3)a+ p4 − p3q + q4

and ∑
ab3 −

∑
a3b = (a+ b+ c)(a− b)(b− c)(c− a)

= pq(q − p)(3a+ p+ q),

the inequality becomes
Aa2 +Ba+ C ≥ 0,

where
A = 9(p2 − pq + q2), B = 3(3p3 − 7p2q + 4pq2 + 3q3),

C = 3p4 − 7p3q + 4pq3 + 3q4.

The inequality Aa2 +Ba+ C ≥ 0 is true for a > 0 and p, q ≥ 0 because

A ≥ 0,

B = p(3p− 4q)2 + q(p− 3q)2 + 2pq(p+ q) ≥ 0,

3C = p(p+ q)(3p− 5q)2 + 5q2
(
p− 13q

10

)2

+
11

20
q4 ≥ 0.

Remark 2. Let

E = a4 + b4 + c4 + ab3 + bc3 + ca3 − 2(a3b+ b3c+ c3a).

Using the notations from the first solution, the formula

4A(Aa2 +Ba+ C) = (2Aa+B)2 − δ

leads to the following identity

4E1E = (A1 − 3C1 + 2D1)
2 + 3(A1 − 2B1 + C1)

2,
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where

A1 = a3 + b3 + c3, B1 = a2b+ b2c+ c2a, C1 = ab2 + bc2 + ca2, D1 = 3abc,

E1 = a2 + b2 + c2 − ab− bc− ca.

Remark 3. Let

E = a4 + b4 + c4 + ab3 + bc3 + ca3 − 2(a3b+ b3c+ c3a).

The identity

x2 + y2 + z2 − xy − yz − zx =
1

2

∑
(x− y)2,

where x, y, z are defined in the second or third solution, leads to the identity

2E =
∑

(a2 − b2 − ab+ bc)2.

In addition, the following similar identities hold:

6E =
∑

(2a2 − b2 − c2 − 2ab+ bc+ ca)2,

4E = (2a2 − b2 − c2 − 2ab+ bc+ ca)2 + 3(b2 − c2 − bc+ ca)2.

Remark 4. The inequalities in P 1.125 and P 1.126 are particular cases of the following
more general statement (Vasile Cı̂rtoaje, 2007).

• Let

f4(a, b, c) =
∑

a4 + A
∑

a2b2 +Babc
∑

a+ C
∑

a3b+D
∑

ab3,

where A,B,C,D are real constants such that

1 + A+B + C +D = 0, 3(1 + A) ≥ C2 + CD +D2.

If a, b, c are real numbers, then
f4(a, b, c) ≥ 0.

Note that the following identity holds:

4Sf4(a, b, c) = [U+V +(C+D)S]2+3

(
U − V +

C −D
3

S

)2

+
4

3
(3+3A−C2−CD−D2)S2,

where
S =

∑
a2b2 −

∑
a2bc,

U =
∑

a3b−
∑

a2bc,

V =
∑

ab3 −
∑

a2bc.
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For the main case
3(1 + A) = C2 + CD +D2,

the inequality f4(a, b, c) ≥ 0 is equivalent to each of the following two inequalities∑
[2a2 − b2 − c2 + Cab− (C +D)bc+Dca]2 ≥ 0,∑

[3b2 − 3c2 + (C + 2D)ab+ (C −D)bc− (2C +D)ca]2 ≥ 0.

P 1.127. If a, b, c are positive real numbers, then

(a)
a2

ab+ 2c2
+

b2

bc+ 2a2
+

c2

ca+ 2b2
≥ 1;

(b)
a3

a2b+ 2c3
+

b3

b2c+ 2a3
+

c3

c2a+ 2b3
≥ 1.

Solution. (a) By the Cauchy-Schwarz inequality, we have∑ a2

ab+ 2c2
≥ (

∑
a2)

2∑
a2(ab+ 2c2)

=
(
∑
a2)

2∑
a3b+ 2

∑
a2b2

.

Therefore, it suffices to show that(∑
a2
)2
≥ 2

∑
a2b2 +

∑
a3b.

We get this inequality by summing the known inequality

2

3

(∑
a2
)2
≥ 2

∑
a2b2

and Vasc’s inequality
1

3

(∑
a2
)2
≥
∑

a3b.

The equality holds for a = b = c = 1.

(b) By the Cauchy-Schwarz inequality, we have∑ a3

a2b+ 2c3
≥ (

∑
a2)

2∑
a(a2b+ 2c3)

=
(
∑
a2)

2∑
a3b+ 2

∑
ac3

=
(
∑
a2)

2

3
∑
a3b

.

Therefore, it suffices to show that (∑
a2
)2
≥ 3

∑
a3b,

which is just Vasc’s inequality. The equality holds for a = b = c = 1.
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P 1.128. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

ab+ 1
+

b

bc+ 1
+

c

ca+ 1
≥ 3

2
.

Solution. We use the following hint

a

ab+ 1
= a− a2b

ab+ 1
,

b

bc+ 1
= b− b2c

bc+ 1
,

c

ca+ 1
= c− c2a

ca+ 1
,

which transforms the desired inequality into

a2b

ab+ 1
+

b2c

bc+ 1
+

c2a

ca+ 1
≤ 3

2
.

By the AM-GM inequality, we have

ab+ 1 ≥ 2
√
ab, bc+ 1 ≥ 2

√
bc, ca+ 1 ≥ 2

√
ca.

Consequently, it suffices to show that

a2b

2
√
ab

+
b2c

2
√
bc

+
c2a

2
√
ca
≤ 3

2
,

which is equivalent to
a
√
ab+ b

√
bc+ c

√
ca ≤ 3,

3(a
√
ab+ b

√
bc+ c

√
ca) ≤ (a+ b+ c)2.

Replacing
√
a,
√
b,
√
c by a, b, c, respectively, we get Vasc’s inequality in P 1.125. The

equality holds for a = b = c = 1.

P 1.129. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

3a+ b2
+

b

3b+ c2
+

c

3c+ a2
≤ 3

2
.

(Vasile Cı̂rtoaje, 2007)

Solution. Since

a

3a+ b2
=

1

3
− b2

3(3a+ b2)
,

b

3b+ c2
=

1

3
− c2

3(3b+ c2)
,

c

3c+ a2
=

1

3
− a2

3(3c+ a)
,

the desired inequality can be rewritten as

b2

3a+ b2
+

c2

3b+ c2
+

a2

3c+ a2
≥ 3

2
.



Cyclic Inequalities 189

By the Cauchy-Schwarz inequality, we have

∑ b2

3a+ b2
≥ (

∑
b2)

2∑
b2(3a+ b2)

=
(
∑
a2)

2∑
a4 + (

∑
a) (
∑
ab2)

=
(
∑
a2)

2∑
a4 +

∑
a2b2 + abc

∑
a+

∑
ab3
≥ (

∑
a2)

2

(
∑
a2)2 +

∑
ab3

.

Thus, it is enough to show that (∑
a2
)2
≥ 3

∑
ab3,

which is Vasc’s inequality. The equality holds for a = b = c = 1.

P 1.130. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a

b2 + c
+

b

c2 + a
+

c

a2 + b
≥ 3

2
.

(Pham Kim Hung, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a

b2 + c
≥

(∑
a3/2

)2∑
a2(b2 + c)

=

∑
a3 + 2

∑
a3/2b3/2∑

a2b2 +
∑
ab2

.

Thus, it is enough to show that

2
∑

a3 + 4
∑

a3/2b3/2 ≥ 3
∑

a2b2 + 3
∑

ab2,

which is equivalent to the homogeneous inequality

2
(∑

a
)(∑

a3
)

+ 4
(∑

a
)(∑

a3/2b3/2
)
≥ 9

∑
a2b2 + 3

(∑
a
)(∑

ab2
)
.

In order to get a symmetric inequality, we use Vasc’s inequality. We have

3
(∑

a
)(∑

ab2
)

= 3
∑

a2b2 + 3abc
∑

a+ 3
∑

ab3

≤ 3
∑

a2b2 + 3abc
∑

a+
(∑

a2
)2

=
∑

a4 + 5
∑

a2b2 + 3abc
∑

a.

Therefore, it suffices to prove the symmetric inequality

2
(∑

a
)(∑

a3
)

+ 4
(∑

a
)(∑

a3/2b3/2
)
≥ 9

∑
a2b2 +

∑
a4 + 5

∑
a2b2 + 3abc

∑
a,
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which is equivalent to∑
a4 + 2

∑
ab(a2 + b2) + 4abc

∑√
ab+ 4A ≥ 14

∑
a2b2 + 3abc

∑
a,

where
A =

∑
(ab)3/2(a+ b).

Since
A ≥ 2

∑
a2b2,

it suffices to prove that∑
a4 + 2

∑
ab(a2 + b2) + 4abc

∑√
ab ≥ 6

∑
a2b2 + 3abc

∑
a.

According to Schur’s inequality of degree four∑
a4 ≥

∑
ab(a2 + b2)− abc

∑
a,

it is enough to show that

3
∑

ab(a2 + b2) + 4abc
∑√

ab ≥ 6
∑

a2b2 + 4abc
∑

a.

Write this inequality as

3
∑

ab(a− b)2 ≥ 2abc
∑(√

a−
√
b
)2
,

∑
ab
(√

a−
√
b
)2 [

3
(√

a+
√
b
)2
− 2c

]
≥ 0.

We will prove the stronger inequality∑
ab
(√

a−
√
b
)2 [(√

a+
√
b
)2
− c
]
≥ 0,

which is equivalent to

∑(√
a−
√
b√

c

)2 (√
a+
√
b−
√
c
)
≥ 0.

Substituting x =
√
a, y =

√
b, z =

√
c, the inequality becomes

∑(
x− y
z

)2

(x+ y − z) ≥ 0.

Without loss of generality, assume that x ≥ y ≥ z. It suffices to show that(
y − z
x

)2

(y + z − x) +

(
x− z
y

)2

(z + x− y) ≥ 0.
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Since (
x− z
y

)2

≥
(
y − z
x

)2

,

we have (
y − z
x

)2

(y + z − x) +

(
x− z
y

)2

(z + x− y) ≥

≥
(
y − z
x

)2

(y + z − x) +

(
y − z
x

)2

(z + x− y)

= 2z

(
y − z
x

)2

≥ 0.

The equality holds for a = b = c = 1.

P 1.131. If a, b, c are positive real numbers such that abc = 1, then

a

b3 + 2
+

b

c3 + 2
+

c

a3 + 2
≥ 1.

Solution. Using the substitution

a =
x

y
, b =

z

x
, c =

y

z
, x, y, z > 0,

the inequality turns into ∑ x4

y(2x3 + z3)
≥ 1.

By the Cauchy-Schwarz inequality, we have∑ x4

y(2x3 + z3)
≥ (

∑
x2)

2∑
y(2x3 + z3)

=
(
∑
x2)

2

2
∑
x3y +

∑
xy3

.

Thus, it is enough to show that(∑
x2
)2
≥ 2

∑
x3y +

∑
xy3.

According to Vasc’s inequality, we have(∑
x2
)2
≥ 3

∑
x3y

and (∑
x2
)2
≥ 3

∑
xy3.

Thus, the conclusion follows. The equality holds for a = b = c = 1.
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P 1.132. Let a, b, c be positive real numbers such that

am + bm + cm = 3,

where m > 0. Prove that
am−1

b
+
bm−1

c
+
cm−1

a
≥ 3.

Solution. Making the substitution

x = a
1
k , y = b

1
k , z = c

1
k ,

where

k =
2

m
, k > 0,

we need to show that x2 + y2 + z2 = 3 yields

x2−k

yk
+
y2−k

zk
+
z2−k

xk
≥ 3,

which is equivalent to
x2

(xy)k
+

y2

(yz)k
+

z2

(zx)k
≥ 3.

Applying Jensen’s inequality to the convex function f(u) =
1

uk
, we get

x2

(xy)k
+

y2

(yz)k
+

z2

(zx)k
≥ x2 + y2 + z2(

x2 · xy + y2 · yz + z2 · zx
x2 + y2 + z2

)k
=

3k+1

(x3y + y3z + z3x)k
.

Thus, it suffices to show that x3y + y3z + z3x ≤ 3. This is just Vasc’s inequality in P 1.125.
The equality holds for a = b = c = 1.

P 1.133. If a, b, c are positive real numbers, then

(a)
1

4a
+

1

4b
+

1

4c
+

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

(
1

3a+ b
+

1

3b+ c
+

1

3c+ a

)
;

(b)
1

4a
+

1

4b
+

1

4c
+

1

a+ 3b
+

1

b+ 3c
+

1

c+ 3a
≥ 2

(
1

3a+ b
+

1

3b+ c
+

1

3c+ a

)
.

(Gabriel Dospinescu and Vasile Cı̂rtoaje, 2004)
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Solution. We will prove that the following more general inequalities hold for t ≥ 0:

t4a

4a
+
t4b

4b
+
t4c

4c
+
t2a+2b

a+ b
+
t2b+2c

b+ c
+
t2c+2a

c+ a
− 3

(
t3a+b

3a+ b
+

t3b+c

3b+ c
+

t3c+a

3c+ a

)
≥ 0,

t4a

4a
+
t4b

4b
+
t4c

4c
+

ta+3b

a+ 3b
+

tb+3c

b+ 3c
+

tc+3a

c+ 3a
− 2

(
t3a+b

3a+ b
+

t3b+c

3b+ c
+

t3c+a

3c+ a

)
≥ 0.

For t = 1, we get the desired inequalities.

(a) Denoting the left hand side of the former inequality by f(t), the inequality becomes
f(t) ≥ f(0). This is true if f ′(t) ≥ 0 for t > 0. We have the derivative

tf ′(t) = t4a + t4b + t4c + 2(t2a+2b + t2b+2c + t2c+2a)− 3(t3a+b + t3b+c + t3c+a).

Using the substitution x = ta, y = tb, z = tc, the inequality f ′(t) ≥ 0 turns into

x4 + y4 + z4 + 2(x2y2 + y2z2 + z2x2) ≥ 3(x3y + y3z + z3x),

which is Vasc’s inequality in P 1.125. The equality holds for a = b = c.

(b) Similarly, we have the derivative

tf ′(t) = t4a + t4b + t4c + ta+3b + tb+3c + tc+3a − 2(t3a+b + t3b+c + t3c+a).

Denoting x = ta, y = tb, z = tc, the inequality f ′(t) ≥ 0 turns into

x4 + y4 + z4 + xy3 + yz3 + zx3 ≥ 2(x3y + y3z + z3x),

which is the the inequality in P 1.126. The equality holds for a = b = c.

P 1.134. If a, b, c are positive real numbers such that a6 + b6 + c6 = 3, then

a5

b
+
b5

c
+
c5

a
≥ 3.

(Tran Quoc Anh, 2007)

Solution. By Hölder’s inequality, we have(
a5

b
+
b5

c
+
c5

a

)3

≥ (a6 + b6 + c6)4

a9b3 + b9c3 + c9a3
=

81

a9b3 + b9c3 + c9a3
.

Therefore, it suffices to show that

a9b3 + b9c3 + c9a3 ≤ 3.

This is equivalent to
3(a9b3 + b9c3 + c9a3) ≤ (a6 + b6 + c6)2,

which is Vasc’s inequality (see P 1.125). The equality holds for a = b = c.
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P 1.135. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a3

a+ b5
+

b3

b+ c5
+

c3

c+ a5
≥ 3

2
.

(Marin Bancos, 2010)

Solution. Write the inequality as∑(
a3

a+ b5
− a2

)
+

3

2
≥ 0,

∑ a2b5

a+ b5
≤ 3

2
.

Since
a+ b5 ≥ 2

√
ab5,

it suffices to show that ∑
ab2
√
ab ≤ 3.

In addition, since 2
√
ab ≤ a+ b, it suffices to prove that∑

a2b2 +
∑

ab3 ≤ 6.

This is true since ∑
a2b2 ≤ 1

3
(a2 + b2 + c2)2 = 3,

and, according to Vasc’s inequality,∑
ab3 ≤ 1

3
(a2 + b2 + c2)2 = 3.

The equality holds for a = b = c = 1.

P 1.136. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2b+ b2c+ c2a+ 3 ≥ a+ b+ c+ ab+ bc+ ca.

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality as follows:∑
(1− ab)−

∑
a(1− ab) ≥ 0,∑

(a2 + b2 + c2 − 3ab)−
∑

a(a2 + b2 + c2 − 3ab) ≥ 0,
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3
(∑

a2 −
∑

ab
)
−
∑

a(a− b)2 −
∑

a(c2 − ab) ≥ 0,

3

2

∑
(a− b)2 −

∑
a(a− b)2 ≥ 0,∑

(a− b)2(3− 2a) ≥ 0.

Assume that
a = max{a, b, c}.

For 3− 2a ≥ 0, the inequality is clearly true. Consider now that 3− 2a < 0. Since

(a− b)2 = [(a− c) + (c− b)]2 ≤ 2[(a− c)2 + (c− b)2],

it suffices to show that

2[(a− c)2 + (c− b)2](3− 2a) + (b− c)2(3− 2b) + (c− a)2(3− 2c) ≥ 0,

which can be rewritten as

(a− c)2(9− 4a− 2c) + (b− c)2(9− 4a− 2b) ≥ 0.

This inequality is true because 9 > 4a+ 2c and 9 > 4a+ 2b. For instance, the last inequality
is true if 81 > 4(2a+ b)2; indeed, we have

81

4
− (2a+ b)2 > 15− (2a+ b)2 = 5(a2 + b2 + c2)− (2a+ b)2 = (a− 2b)2 + 5c2 ≥ 0.

The equality holds for a = b = c = 1.

Remark. From (a+ b+ c− 3)2 ≥ 0, we get

ab+ bc+ ca+ 6 ≥ 3(a+ b+ c),

hence
a+ b+ c+ ab+ bc+ ca− 3 ≥ 4(a+ b+ c)− 9.

So, the following statement is true:

• If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2b+ b2c+ c2a+ 9 ≥ 4(a+ b+ c).

P 1.137. If a, b, c are positive real numbers such that a+ b+ c = 3, then

12

a2b+ b2c+ c2a
≤ 3 +

1

abc
.

(Vasile Cı̂rtoaje and Sheng Li Chen, 2009)
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Solution. Let
p = a+ b+ c = 3, q = ab+ bc+ ca, r = abc ≤ 1.

Write the inequality as

2(a2b+ b2c+ c2a) ≥ 24r

3r + 1
.

From

(a− b)2(b− c)2(c− a)2 = −27r2 + 2(9pq − 2p3)r + p2q2 − 4q3

= −27r2 + 54(q − 2)r + 9q2 − 4q3,

we get
(a− b)(b− c)(c− a) ≤

√
−27r2 + 54(q − 2)r + 9q2 − 4q3,

hence

2(a2b+ b2c+ c2a) =
∑

ab(a+ b)− (a− b)(b− c)(c− a)

= pq − 3r − (a− b)(b− c)(c− a)

≥ 3q − 3r −
√
−27r2 + 54(q − 2)r + 9q2 − 4q3.

Therefore, it suffices to show that

3q − 3r −
√
−27r2 + 54(q − 2)r + 9q2 − 4q3 ≥ 24r

3r + 1
.

which is equivalent to

3[(3r + 1)q − 3r2 − 9r] ≥ (3r + 1)
√
−27r2 + 54(q − 2)r + 9q2 − 4q3.

Before squaring this inequality, we need to show that (3r + 1)q − 3r2 − 9r ≥ 0. Using the
known inequality q2 ≥ 3pr, we have

(3r + 1)q − 3r2 − 9r ≥ 3(3r + 1)
√
r − 3r2 − 9r

= 3
√
r
(
1−
√
r
)3 ≥ 0.

By squaring, the desired inequality can be restated as

Aq3 + C ≥ 3Bq,

where

A = 4(3r + 1)2, B = 72r(r + 1)(3r + 1), C = 108r(r + 1)(3r2 + 12r + 1).

By the AM-GM inequality,

Aq3 + C = Aq3 +
C

2
+
C

2
≥ 3

3

√
Aq3

(
C

2

)2

;



Cyclic Inequalities 197

so, it is enough to show that
AC2 ≥ 4B3,

which is equivalent to

(3r2 + 12r + 1)2 ≥ 32r(r + 1)(3r + 1)).

Indeed,
(3r2 + 12r + 1)2 − 32r(r + 1)(3r + 1) = (r − 1)2(3r − 1)2 ≥ 0,

or, by the AM-GM inequality,

3r2 + 12r + 1 = 8r + (r + 1)(3r + 1) ≥ 2
√

8r(r + 1)(3r + 1).

The equality holds for a = b = c = 1, and also for r =
1

3
and q = 3

√
C

2A
= 2; that is, when

a, b, c are the roots of the equation

x3 − 3x2 + 2x− 1

3
= 0

such that a ≤ b ≤ c or b ≤ c ≤ a or c ≤ a ≤ b.

P 1.138. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

a2

b
+
b2

c
+
c2

a
≥ a2 + b2 + c2.

(Nguyen Viet Hung, 2024)

First Solution (by Le Thu). By the Cauchy-Schwarz inequality, we have

a2

b
+
b2

c
+
c2

a
=

a4

a2b
+

b4

b2c
+

c4

c2a
≥ (a2 + b2 + c2)2

a2b+ b2c+ c2a
.

So, it suffices to show that

a2 + b2 + c2 ≥ a2b+ b2c+ c2a.

According to Vasc’s inequality (P 1.125), we only need to show that√
3(a3b+ b3c+ c3a) ≥ a2b+ b2c+ c2a,

which is equivalent to

(ab+ bc+ ca)(a3b+ b3c+ c3a) ≥ (a2b+ b2c+ c2a)2.

Clearly, this inequality follows from the Cauchy-Schwarz inequality.
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The equality occurs for a = b = c = 1.

Second Solution (by Hai Duong). From

(a+ b+ c)2 ≥ 3(ab+ bc+ ca) = (ab+ bc+ ca)2,

we get
a+ b+ c ≥ ab+ bc+ ca.

So, it suffices to prove the homogeneous inequality

(ab+ bc+ ca)

(
a2

b
+
b2

c
+
c2

a

)
≥ (a+ b+ c)(a2 + b2 + c2),

which is equivalent to
a3c

b
+
b3a

c
+
c3b

a
≥ a2b+ b2c+ c2a,∑(

a3c

b
+
b3a

c
− 2a2b

)
≥ 0,

∑ a(b2 − ac)2

bc
≥ 0.

P 1.139. If a, b, c are positive real numbers such that a+ b+ c = 3, then

24

a2b+ b2c+ c2a
+

1

abc
≥ 9.

(Vasile Cı̂rtoaje, 2009)

Solution (by Vo Quoc Ba Can). Let us denote

p = a+ b+ c = 3, q = ab+ bc+ ca, r = abc.

Write the inequality as
24r ≥ (9r − 1)(a2b+ b2c+ c2a),

and consider further the nontrivial case

r ≥ 1

9
.

From

(a− b)2(b− c)2(c− a)2 = −27r2 + 2(9pq − 2p3)r + p2q2 − 4q3

= −27r2 + 54(q − 2)r + 9q2 − 4q3,
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we get
−(a− b)(b− c)(c− a) ≤

√
−27r2 + 54(q − 2)r + 9q2 − 4q3,

hence

2(a2b+ b2c+ c2a) =
∑

ab(a+ b)− (a− b)(b− c)(c− a)

= pq − 3r − (a− b)(b− c)(c− a)

≤ 3q − 3r +
√
−27r2 + 54(q − 2)r + 9q2 − 4q3.

Therefore, it suffices to show that

48r ≥ (9r − 1)
[
3q − 3r +

√
−27r2 + 54(q − 2)r + 9q2 − 4q3

]
,

which is true if

3[9r2 + 15r − (9r − 1)q] ≥ (9r − 1)
√
−27r2 + 54(q − 2)r + 9q2 − 4q3.

We need first to show that 9r2 + 15r − (9r − 1)q ≥ 0. From Schur’s inequality

p3 + 9r ≥ 4pq,

we get

q ≤ 3(r + 3)

4
,

hence

9r2 + 15r − (9r − 1)q ≥ 9r2 + 15r − 3(r + 3)(9r − 1)

4
=

9(r − 1)2

4
≥ 0.

By squaring the desired inequality, we get

Aq3 + C ≥ 3Bq,

where

A = (9r − 1)2, B = 18r(9r − 1)(3r + 1), C = 27r(27r3 + 99r2 + r + 1).

Using the AM-GM inequality, we have

Aq3 + C = Aq3 +
C

2
+
C

2
≥ 3

3

√
Aq3

(
C

2

)2

;

thus, it is enough to show that
AC2 ≥ 4B3,

which is equivalent to

(27r3 + 99r2 + r + 1)2 ≥ 32r(9r − 1)(3r + 1)3,
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729r6 − 2430r5 + 2943r4 − 1476r3 + 199r2 + 34r + 1 ≥ 0,

(r − 1)2(27r2 − 18r − 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for r =
3 + 2

√
3

9
and q = 1 +

√
3; that is,

when a, b, c are the roots of the equation

x3 − 3x2 + (1 +
√

3)x− 3 + 2
√

3

9
= 0

such that a ≥ b ≥ c or b ≥ c ≥ a or c ≥ a ≥ b.

P 1.140. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc+ ca).

Prove that

(a) 8(a4 + b4 + c4) ≥ 17(a3b+ b3c+ c3a);

(b) 16(a4 + b4 + c4) ≥ 34(a3b+ b3c+ c3a) + 81abc(a+ b+ c).

(Vasile Cı̂rtoaje, 2011)

Solution. (a) Let

x = a2 + b2 + c2, y = ab+ bc+ ca, 2x = 5y.

Since the equality holds for a = 2, b = 1, c = 0 (when abc = 0), we will use the inequality

a2b2 + b2c2 + c2a2 ≤ y2

to get
a4 + b4 + c4 = x2 − 2(a2b2 + b2c2 + c2a2) ≥ x2 − 2y2,

hence

a4 + b4 + c4 ≥ x2 − 2y2 =
17

144
(2x+ y)2.

Therefore, it suffices to prove that

(2x+ y)2 ≥ 18(a3b+ b3c+ c3a).

We will show that this inequality holds for all nonnegative real numbers a, b, c. Assume that
a = max{a, b, c}. There are two possible cases: a ≥ b ≥ c and a ≥ c ≥ b.

Case 1: a ≥ b ≥ c. Using the AM-GM inequality gives

2(a3b+ b3c+ c3a) ≤ 2ab(a2 + bc+ c2) ≤
[

2ab+ (a2 + bc+ c2)

2

]2
.
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Therefore, it suffices to show that

2x+ y ≥ 3

2
(2ab+ a2 + bc+ c2),

which is equivalent to the obvious inequality

(a− 2b)2 + c(2a− b+ c) ≥ 0.

Case 2: a ≥ c ≥ b. Since

ab3 + bc3 + ca3 − (a3b+ b3c+ c3a) = (a+ b+ c)(a− b)(b− c)(c− a) ≥ 0,

we have
2(a3b+ b3c+ c3a) ≤ (a3b+ b3c+ c3a) + (ab3 + bc3 + ca3) ≤ xy.

Thus, it suffices to prove that
(2x+ y)2 ≥ 9xy.

Since x ≥ y, we get
(2x+ y)2 − 9xy = (x− y)(4x− y) ≥ 0.

Thus, the proof is completed. The equality holds for a = 2b and c = 0 (or any cyclic
permutation).

(b) For a = b = c = 0, the inequality is trivial. Otherwise, let us denote

p = a+ b+ c, q = ab+ bc+ ca, r = abc,

and write the inequality as

16
∑

a4 ≥ 17
∑

ab(a2 + b2) + 17
(∑

a3b−
∑

ab3
)

+ 81abc
∑

a.

Due to homogeneity, we may assume that p = 3, which involves q = 2. Since

abc
∑

a = 3r,

∑
a4 =

(∑
a2
)2
− 2

∑
a2b2

= (p2 − 2q)2 − 2q2 + 4pr = 17 + 12r,∑
ab(a2 + b2) =

(∑
ab
)(∑

a2
)
− abc

∑
a

= q(p2 − 2q)− pr = 10− 3r,∑
a3b−

∑
ab3 = −p(a− b)(b− c)(c− a)

≤ p
√

(a− b)2(b− c)2(c− a)2

= p
√
p2q2 − 4q3 + 2p(9q − 2p2)r − 27r2

= 3
√

4− 27r2,
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it suffices to prove that

16(17 + 12r) ≥ 17(10− 3r) + 51
√

4− 27r2 + 243r,

which is equivalent to the obvious inequality

2 ≥
√

4− 27r2.

The equality holds for a = 2b and c = 0 (or any cyclic permutation).

P 1.141. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc+ ca).

Prove that

(a) 2(a3b+ b3c+ c3a) ≥ a2b2 + b2c2 + c2a2 + abc(a+ b+ c);

(b) 11(a4 + b4 + c4) ≥ 17(a3b+ b3c+ c3a) + 129abc(a+ b+ c);

(c) a3b+ b3c+ c3a ≤ 14 +
√

102

8
(a2b2 + b2c2 + c2a2).

Solution. For a = b = c = 0, the inequalities are trivial. Otherwise, let us denote

p = a+ b+ c, q = ab+ bc+ ca, r = abc.

Due to homogeneity, we may assume that p = 3, which involves q = 2. From∣∣∣∑ a3b−
∑

ab3
∣∣∣ = | − p(a− b)(b− c)(c− a)|

= p
√

(a− b)2(b− c)2(c− a)2

= p
√
p2q2 − 4q3 + 2p(9q − 2p2)r − 27r2

= 3
√

4− 27r2,

it follows that
−3
√

4− 27r2 ≤
∑

a3b−
∑

ab3 ≤ 3
√

4− 27r2.

In addition, we have

abc
∑

a = 3r,∑
a2b2 = q2 − 2pr = 4− 6r,∑

ab(a2 + b2) = q(p2 − 2q)− pr = 10− 3r,
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∑
a4 = p4 − 4p2q + 2q2 + 4pr = 17 + 12r.

(a) Write the inequality as∑
ab(a2 + b2) +

(∑
a3b−

∑
ab3
)
≥
∑

a2b2 + abc
∑

a.

It suffices to prove that

10− 3r − 3
√

4− 27r2 ≥ 4− 6r + 3r,

which is equivalent to the obvious inequality

2 ≥
√

4− 27r2.

The equality holds for a = 0 and 2b = c (or any cyclic permutation).

(b) Write the inequality as

22
∑

a4 ≥ 17
∑

ab(a2 + b2) + 17
(∑

a3b−
∑

ab3
)

+ 258abc
∑

a.

It suffices to prove that

22(17 + 12r) ≥ 17(10− 3r) + 51
√

4− 27r2 + 774r

for 0 ≤ r ≤ 2

3
√

3
. Write this inequality as

4− 9r ≥
√

4− 27r2.

We have 4− 9r ≥ 4− 2
√

3 > 0. By squaring, the inequality becomes

(4− 9r)2 ≥ 4− 27r2,

(3r − 1)2 ≥ 0.

For p = 3, the equality holds when q = 2, r =
1

3
and (a − b)(b − c)(c − a) ≤ 0. In general,

the equality holds when a, b, c are proportional to the roots of the equation

3x3 − 9x2 + 6x− 1 = 0

and satisfy
(a− b)(b− c)(c− a) ≤ 0.

This occurs when (Wolfgang Berndt)

a sin2 π

9
= b sin2 2π

9
= c sin2 4π

9
.
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(c) Write the inequality as∑
ab(a2 + b2) +

(∑
a3b−

∑
ab3
)
≤ k(a2b2 + b2c2 + c2a2),

where

k =
14 +

√
102

4
.

It suffices to prove that
10− 3r + 3

√
4− 27r2 ≤ k(4− 6r),

where r ≤ 2

3
√

3
. Write this inequality as

3
√

4− 27r2 ≤ 4k − 10− 3(2k − 1)r.

We have

4k − 10− 3(2k − 1)r ≥ 4k − 10− 2(2k − 1)√
3

= 4

(
1− 1√

3

)
k − 10 +

2√
3
> 0.

By squaring, the inequality becomes

9(4− 27r2) ≤ [4k − 10− 3(2k − 1)r]2,

which is equivalent to
(r − k1)2 ≥ 0,

where

k1 =
2

129

√
787 + 72

√
102

3
≈ 0.3483.

For p = 3, the equality holds when q = 2, r = k1 and (a− b)(b− c)(c− a) ≤ 0. In general,
the equality holds when a, b, c are proportional to the roots of the equation

x3 − 3x2 + 2x− k1 = 0

and satisfy
(a− b)(b− c)(c− a) ≤ 0.

P 1.142. If a, b, c are real numbers such that

a3b+ b3c+ c3a ≤ 0,

then
a2 + b2 + c2 ≥ k(ab+ bc+ ca),

where

k =
1 +

√
21 + 8

√
7

2
≈ 3.7468.

(Vasile Cı̂rtoaje, 2012)
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Solution. Let us denote

p = a+ b+ c, q = ab+ bc+ ca, r = abc.

If p = 0, then
3(ab+ bc+ ca) ≤ (a+ b+ c)2 = 0,

hence
a2 + b2 + c2 ≥ 0 ≥ k(ab+ bc+ ca).

Consider now that p 6= 0 and use the contradiction method. It suffices to prove that

a2 + b2 + c2 < k(ab+ bc+ ca)

involves
a3b+ b3c+ c3a > 0.

Since the statement remains unchanged by replacing a, b, c with −a,−b,−c, respectively, we
may consider that p > 0. In addition, due to homogeneity, we may assume that p = 1. From
the hypothesis a2 + b2 + c2 < k(ab+ bc+ ca), we get

q >
1

k + 2
.

Write the desired inequality as∑
ab(a2 + b2) +

∑
a3b−

∑
ab3 > 0.

Since ∑
ab(a2 + b2) = q(p2 − 2q)− pr = q − 2q2 − r

and ∑
a3b−

∑
ab3 = −p(a− b)(b− c)(c− a) ≥ −p

√
(a− b)2(b− c)2(c− a)2

= −p
√
p2q2 − 4q3 + 2p(9q − 2p2)r − 27r2 = −

√
q2 − 4q3 + 2(9q − 2)r − 27r2,

it suffices to prove that

q − 2q2 − r >
√
q2 − 4q3 + 2(9q − 2)r − 27r2.

From p2 ≥ 3q, we get
1

k + 2
< q ≤ 1

3
,

and from q2 ≥ 3pr, we get r ≤ q2/3; therefore,

q − 2q2 − r ≥ q − 2q2 − q2

3
= q

(
1− 7q

3

)
> 0.

By squaring, the desired inequality can be restated as

(q − 2q2 − r)2 > q2 − 4q3 + 2(9q − 2)r − 27r2,
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7r2 + (1− 5q + q2)r + q4 > 0.

This is true if the discriminant

D = (1− 5q + q2)2 − 28q4 = [1− 5q + (1 + 2
√

7)q2][1− 5q + (1− 2
√

7)q2]

is negative. Since

1− 5q + (1 + 2
√

7)q2 =

(
1− 5q

2

)2

+
8
√

7− 21

4
q2 > 0,

we only need to show that f(q) > 0, where

f(q) = (2
√

7− 1)q2 + 5q − 1.

Since q >
1

k + 2
, we have

f(q) >
2
√

7− 1

(k + 2)2
+

5

k + 2
− 1 = 0.

For p = 1, the equality holds when (a− b)(b− c)(c− a) > 0 and

q =
1

k + 2
, r =

−q2√
7

= − 1√
7(k + 2)2

.

In general, the equality holds when a, b, c are proportional to the roots of the equation

w3 − w2 +
1

k + 2
w +

1√
7(k + 2)2

= 0

and satisfy (a− b)(b− c)(c− a) > 0.

P 1.143. If a, b, c are real numbers such that

a3b+ b3c+ c3a ≥ 0,

then

a2 + b2 + c2 + k(ab+ bc+ ca) ≥ 0,

where

k =
−1 +

√
21 + 8

√
7

2
≈ 2.7468.

(Vasile Cı̂rtoaje, 2012)
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Solution. Let us denote

p = a+ b+ c, q = ab+ bc+ ca, r = abc.

At least two of a, b, c have the same sign; let b and c be these numbers. If p = 0, then the
hypothesis a3b+ b3c+ c3a ≥ 0 can be written as

−(b+ c)3b+ b3c− c3(b+ c) ≥ 0.

Clearly, this inequality is satisfied only for a = b = c = 0, when the desired inequality is
trivial. Consider further that p 6= 0 and use the contradiction method. It suffices to prove
that

a2 + b2 + c2 + k(ab+ bc+ ca) < 0

involves
a3b+ b3c+ c3a < 0.

Since the statement remains unchanged by replacing a, b, c with −a,−b,−c, respectively, we
may consider p > 0. In addition, due to homogeneity, we may assume p = 1. From the
hypothesis a2 + b2 + c2 + k(ab+ bc+ ca) < 0, we get

q <
−1

k − 2
≈ −1.339.

Write the desired inequality as∑
ab(a2 + b2) +

∑
a3b−

∑
ab3 < 0,

Since ∑
ab(a2 + b2) = q(p2 − 2q)− pr = q − 2q2 − r

and ∑
a3b−

∑
ab3 = −p(a− b)(b− c)(c− a) ≤ p

√
(a− b)2(b− c)2(c− a)2

= p
√
p2q2 − 4q3 + 2p(9q − 2p2)r − 27r2 =

√
q2 − 4q3 + 2(9q − 2)r − 27r2,

it suffices to prove that√
q2 − 4q3 + 2(9q − 2)r − 27r2 < r + 2q2 − q.

Since q < −1, we have
1− 2q

3
> 1,

hence

r2 = a2b2c2 ≤
(
a2 + b2 + c2

3

)3

=

(
1− 2q

3

)3

<

(
1− 2q

3

)4

,

which implies

r > −
(

1− 2q

3

)2

.
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Therefore,

r + 2q2 − q > −
(

1− 2q

3

)2

+ 2q2 − q =
(2q − 1)(7q + 1)

9
> 0.

By squaring, the desired inequality becomes

q2 − 4q3 + 2(9q − 2)r − 27r2 < (r + 2q2 − q)2,

7r2 + (1− 5q + q2)r + q4 > 0.

This is true if the discriminant

D = (1− 5q + q2)2 − 28q4 = [1− 5q + (1 + 2
√

7)q2][1− 5q + (1− 2
√

7)q2]

is negative. Since
1− 5q + (1 + 2

√
7)q2 > 0,

we only need to show that f(q) > 0, where

f(q) = (2
√

7− 1)q2 + 5q − 1.

Since the derivative

f ′(q) = 2(2
√

7− 1)q + 5 < 2(2
√

7− 1)(−1) + 5 = 7− 4
√

7 < 0,

f(q) is strictly decreasing, hence

f(q) > f

(
−1

k − 2

)
= 0.

For p = 1, the equality holds when (a− b)(b− c)(c− a) < 0 and

q =
−1

k − 2
, r =

−q2√
7

=
−1√

7(k − 2)2
.

In general, the equality holds when a, b, c are proportional to the roots of the equation

w3 − w2 − 1

k − 2
w +

1√
7(k − 2)2

= 0

and satisfy (a− b)(b− c)(c− a) < 0.

P 1.144. If a, b, c are real numbers such that

k(a2 + b2 + c2) = ab+ bc+ ca, k ∈
(
−1

2
, 1

)
,
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then

αk ≤
a3b+ b3c+ c3

(a2 + b2 + c2)2
≤ βk,

where

27αk = 1 + 13k − 5k2 − 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
,

27βk = 1 + 13k − 5k2 + 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
.

(Vasile Cı̂rtoaje, 2012)

Solution. Let us denote

p = a+ b+ c, q = ab+ bc+ ca, r = abc.

The case p = 0 is not possible because p = 0 and k(a2 + b2 + c2) = ab+ bc+ ca lead to

ab+ bc+ ca = 0,

a(b+ c) + bc = 0,

−(b+ c)2 + bc = 0,

b2 + bc+ c2 = 0,

which involves a = b = c = 0. Consider further that p 6= 0. Since the statement remains
unchanged by replacing a, b, c with −a,−b,−c, respectively, it suffices to consider the case
p > 0. In addition, due to homogeneity, we may assume p = 1, which implies

q =
k

1 + 2k
.

(a) Write the desired left inequality as

2αk(a
2 + b2 + c2)2 ≤

∑
ab(a2 + b2) +

(∑
a3b−

∑
ab3
)
.

Since ∑
a2 = p2 − 2q = 1− 2q,∑

ab(a2 + b2) = q(p2 − 2q)− pr = q − 2q2 − r,∑
a3b−

∑
ab3 = −p(a− b)(b− c)(c− a) ≥ −p

√
(a− b)2(b− c)2(c− a)2

= −p
√

4(p2 − 3q)3 − (2p3 − 9pq + 27r)2

27
= −

√
4(1− 3q)3 − (2− 9q + 27r)2

27
,

it suffices to prove that

2αk(1− 2q)2 ≤ q − 2q2 − r −
√

4(1− 3q)3 − (2− 9q + 27r)2

27
.
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Applying Lemma below for

α =
1√
27
, β =

−1

27
, x = 2(1− 3q)

√
1− 3q, y = 2− 9q + 27r,

we get √
4(1− 3q)3 − (2− 9q + 27r)2

27
+ r +

2− 9q

27
≤

4(1− 3q)
√

7(1− 3q)

27
,

with equality for

(1− 3q)

√
1− 3q

7
− 2 + 9q − 27r = 0.

Thus, it suffices to show that

2αk(1− 2q)2 ≤ q − 2q2 +
2− 9q

27
−

4(1− 3q)
√

7(1− 3q)

27
,

which is equivalent to

27αk ≤ 1 + 13k − 5k2 − 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
.

For p = 1, the equality holds when (a− b)(b− c)(c− a) ≥ 0, q = k/(1 + 2k) and

27r = (1− 3q)

√
1− 3q

7
− 2 + 9q =

r1
1 + 2k

,

where

r1 = 5k − 2 + (1− k)

√
1− k

7(1 + 2k)
.

Therefore, the equality holds when a, b, c are proportional to the roots of the equation

w3 − w2 +
k

1 + 2k
w − r1

27(1 + 2k)
= 0

and satisfy (a− b)(b− c)(c− a) ≥ 0.

(b) Write the desired right inequality as

2βk(a
2 + b2 + c2)2 ≥

∑
ab(a2 + b2) +

(∑
a3b−

∑
ab3
)
.

Since ∑
a2 = p2 − 2q = 1− 2q,∑

ab(a2 + b2) = q(p2 − 2q)− pr = q − 2q2 − r,∑
a3b−

∑
ab3 = −p(a− b)(b− c)(c− a) ≤ p

√
(a− b)2(b− c)2(c− a)2
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= p

√
4(p2 − 3q)3 − (2p3 − 9pq + 27r)2

27
=

√
4(1− 3q)3 − (2− 9q + 27r)2

27
,

it suffices to prove that

2βk(1− 2q)2 ≥ q − 2q2 − r +

√
4(1− 3q)3 − (2− 9q + 27r)2

27
.

Applying Lemma below for

α =
1√
27
, β =

1

27
, x = 2(1− 3q)

√
1− 3q, y = 2− 9q + 27r,

we get √
4(1− 3q)3 − (2− 9q + 27r)2

27
− r − 2− 9q

27
≤

4(1− 3q)
√

7(1− 3q)

27
,

with equality for

(1− 3q)

√
1− 3q

7
+ 2− 9q + 27r = 0.

Thus, it suffices to show that

2βk(1− 2q)2 ≥ q − 2q2 +
2− 9q

27
+

4(1− 3q)
√

7(1− 3q)

27
,

which is equivalent to

27βk ≥ 1 + 13k − 5k2 + 2(1− k)(1 + 2k)

√
7(1− k)

1 + 2k
.

For p = 1, the equality holds when (a− b)(b− c)(c− a) ≤ 0, q = k/(1 + 2k) and

27r = 9q − 2− (1− 3q)

√
1− 3q

7
=

r0
1 + 2k

,

where

r0 = 5k − 2− (1− k)

√
1− k

7(1 + 2k)
.

Therefore, the equality holds when a, b, c are proportional to the roots of the equation

w3 − w2 +
k

1 + 2k
w − r0

27(1 + 2k)
= 0

and satisfy (a− b)(b− c)(c− a) ≤ 0.

Lemma. If α, β, x, y are real numbers such that

α ≥ 0, x ≥ 0, x2 ≥ y2,
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then
α
√
x2 − y2 ≤ x

√
α2 + β2 + βy,

with equality if and only if
βx+ y

√
α2 + β2 = 0.

Proof. Since
x
√
α2 + β2 + βy ≥ |β|x+ βy ≥ |β||y|+ βy ≥ 0,

we can write the inequality as

α2(x2 − y2) ≤
(
x
√
α2 + β2 + βy

)2
,

which is equivalent to (
βx+ y

√
α2 + β2

)2
≥ 0.

P 1.145. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

4a+ b2
+

b2

4b+ c2
+

c2

4c+ a2
≥ 3

5
.

(Michael Rozenberg, 2008)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a2

4a+ b2
≥ [

∑
a(2a+ c)]2∑

(4a+ b2)(2a+ c)2
=

(2
∑
a2 +

∑
ab)

2∑
(4a+ b2)(2a+ c)2

.

Therefore, it suffices to show that

5
(

2
∑

a2 +
∑

ab
)2
≥ 3

∑
(4a+ b2)(2a+ c)2,

which is equivalent to the homogeneous inequalities

5
(

2
∑

a2 +
∑

ab
)2
≥
∑

[4a(a+ b+ c) + 3b2](2a+ c)2,

5
(

2
∑

a2 +
∑

ab
)2
≥
∑

(4a2 + 3b2 + 4ab+ 4ac)(4a2 + c2 + 4ac),

2
∑

a4 + 5
∑

a2b2 ≥ abc
∑

a+ 6
∑

ab3.

Using Vasc’s inequality

3
∑

ab3 ≤
(∑

a2
)2
,
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it is enough to prove the symmetric inequality

2
∑

a4 + 5
∑

a2b2 ≥ abc
∑

a+ 2
(∑

a2
)2
,

which is equivalent to the well-known inequality∑
a2b2 ≥ abc

∑
a.

The equality holds for a = b = c = 1.

P 1.146. If a, b, c are positive real numbers, then

a2 + bc

a+ b
+
b2 + ca

b+ c
+
c2 + ab

c+ a
≤ (a+ b+ c)3

3(ab+ bc+ ca)
.

(Michael Rozenberg, 2013)

Solution (by Manlio Marangelli). Write the inequality as∑(
a2 + bc

a+ b
− a
)
≤ (a+ b+ c)3

3(ab+ bc+ ca)
− (a+ b+ c),

∑ b(c− a)

a+ b
≤ (a+ b+ c)3

3(ab+ bc+ ca)
− (a+ b+ c),∑

b(c2 − a2)(b+ c)

(a+ b)(b+ c)(c+ a)
≤ (a+ b+ c)3

3(ab+ bc+ ca)
− (a+ b+ c),

3
∑
ab3 − 3abc

∑
a

(a+ b)(b+ c)(c+ a)
≤ (a+ b+ c)3

ab+ bc+ ca
− 3(a+ b+ c).

By the known Vasc’s inequality

3
∑

ab3 ≤
(∑

a2
)2
,

it suffices to prove the symmetric inequality

(
∑
a2)

2 − 3abc
∑
a

(a+ b)(b+ c)(c+ a)
≤ (a+ b+ c)3

ab+ bc+ ca
− 3(a+ b+ c).

Using the notation
p = a+ b+ c, q = ab+ bc+ ca, r = abc,

this inequality can be written as

(p2 − 2q)2 − 3pr

pq − r
≤ p3

q
− 3p,
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which is equivalent to
q2(p2 − 4q)− (p2 − 6q)pr ≥ 0.

Case 1: p2 − 6q ≥ 0. Since 3pr ≤ q2, we have

q2(p2 − 4q)− (p2 − 6q)pr ≥ q2(p2 − 4q)− q2(p2 − 6q)

3
=

2q2(p2 − 3q)

3
≥ 0.

Case 2: p2 − 6q ≤ 0. Using Schur’s inequality of fourth degree

6pr ≥ (p2 − q)(4q − p2),

we get

q2(p2 − 4q)− (p2 − 6q)pr ≥ q2(p2 − 4q)− (p2 − 6q)(p2 − q)(4q − p2)
6

=
(p2 − 3q)(p2 − 4q)2

6
≥ 0.

The equality holds for a = b = c = 1.

P 1.147. If a, b, c are positive real numbers such that a+ b+ c = 3, then

√
ab2 + bc2 +

√
bc2 + ca2 +

√
ca2 + ab2 ≤ 3

√
2.

(Nguyen Van Quy, 2013)

Solution (by Michael Rozenberg). By the Cauchy-Schwarz inequality, we have(∑√
ab2 + bc2

)2
≤
∑ ab+ c2

a+ c
·
∑

b(a+ c).

Therefore, it suffices to show that∑ ab+ c2

a+ c
≤ 9

ab+ bc+ ca
,

which is equivalent to the homogeneous inequality∑ ab+ c2

a+ c
≤ (a+ b+ c)3

3(ab+ bc+ ca)
,

which is the inequality from the previous P 1.146. The equality holds for a = b = c = 1.
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P 1.148. If a, b, c are positive real numbers such that a5 + b5 + c5 = 3, then

a2

b
+
b2

c
+
c2

a
≥ 3.

Solution. We will prove the inequality under the more general condition am + bm + cm = 3,
where 0 < m ≤ 21/4. First, write the inequality in the homogeneous form

a2

b
+
b2

c
+
c2

a
≥ 3

(
am + bm + cm

3

)1/m

.

By the Power Mean inequality, we have(
am + bm + cm

3

)1/m

≤
(
a21/4 + b21/4 + c21/4

3

)4/21

.

Thus, it suffices to show that

a2

b
+
b2

c
+
c2

a
≥ 3

(
a21/4 + b21/4 + c21/4

3

)4/21

.

By the known Vasc’s inequality in P 1.125, namely

(x2 + y2 + z2)2 ≥ 3(x3y + y3z + z3x), x, y, z ∈ R,

we have (
a2

b
+
b2

c
+
c2

a

)2

≥ 3

(
a3√
bc

+
b3√
ca

+
c3√
ab

)
.

Therefore, it suffices to prove the symmetric inequality

a3√
bc

+
b3√
ca

+
c3√
ab
≥ 3

(
a21/4 + b21/4 + c21/4

3

)8/21

,

which is equivalent to
a3√
bc

+
b3√
ca

+
c3√
ab

3


21/4

≥ 3

(
a21/4 + b21/4 + c21/4

3

)2

,

Setting
a = x2/7, b = y2/7, c = z2/7, x, y, z > 0,

the inequality becomes(
x+ y + z

3

)21/4

≥ 3(xyz)3/4
(
x3/2 + y3/2 + z3/2

3

)2

.
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By the Cauchy-Schwarz inequality, we have

(x+ y + z)(x2 + y2 + z2) ≥ (x3/2 + y3/2 + z3/2)2.

Thus, it is enough to prove that(
x+ y + z

3

)17/4

≥ 1

3
(xyz)3/4(x2 + y2 + z2).

Due to homogeneity, we may assume that x+ y + z = 3, when the inequality becomes

(xyz)3/4(x2 + y2 + z2) ≤ 3.

Since
3

4
>

1√
2
,

this inequality follows from the inequality in P 2.89 from Volume 2:

(xyz)k(x2 + y2 + z2) ≤ 3, k ≥ 1√
2

The proof is completed. The equality holds for a = b = c = 1.

P 1.149. Let P (a, b, c) be a cyclic homogeneous polynomial of degree three. The inequality

P (a, b, c) ≥ 0

holds for all a, b, c ≥ 0 if and only if the following two conditions are fulfilled:

(a) P (1, 1, 1) ≥ 0;

(b) P (0, b, c) ≥ 0 for all b, c ≥ 0.

(Pham Kim Hung, 2007)

Solution. The conditions (a) and (b) are clearly necessary. Therefore, we will prove further
that these conditions are also sufficient to have P (a, b, c) ≥ 0. The polynomial P (a, b, c) has
the general form

P (a, b, c) = A(a3 + b3 + c3) +B(a2b+ b2c+ c2a) + C(ab2 + bc2 + ca2) + 3Dabc.

Since

P (1, 1, 1) = 3(A+B + C +D), P (0, 1, 1) = 2A+B + C, P (0, 0, 1) = A,

the conditions (a) and (b) involves

A+B + C +D ≥ 0, 2A+B + C ≥ 0, A ≥ 0.
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Assume that a = min{a, b, c}, and denote

b = a+ p, c = a+ q, p, q ≥ 0.

For fixed p and q, define the function

f(a) = P (a, a+ p, a+ q), a ≥ 0.

Since
a′ = b′ = c′ = 1,

we have the derivative

f ′(a) = 3A(a2 + b2 + c2) + (B + C)(a+ b+ c)2 + 3D(ab+ bc+ ca)

= (3A+B + C)(a2 + b2 + c2) + (2B + 2C + 3D)(ab+ bc+ ca)

= (3A+B + C)(a2 + b2 + c2 − ab− bc− ca) + 3(A+B + C +D)(ab+ bc+ ca).

Because f ′(a) ≥ 0, f is increasing, hence f(a) ≥ f(0), which is equivalent to

P (a, b, c) ≥ P (0, p, q) = P (0, b, c).

According to the condition (b), we have P (0, b, c) ≥ 0, hence P (a, b, c) ≥ 0.

Remark 1. From the proof of P 1.149, the following statement follows:

• Let P (a, b, c) be a cyclic homogeneous polynomial of degree three. The inequality

P (a, b, c) ≥ 0

holds for all nonnegative real numbers a, b, c satisfying

a ≤ b ≤ c

if and only if P (1, 1, 1) ≥ 0 and P (0, b, c) ≥ 0 for all 0 ≤ b ≤ c.

Remark 2. From P 1.149, using the substitution

a = y + z, b = z + x, c = x+ y, x, y, z ≥ 0,

we get the following statement:

• Let P (a, b, c) be a cyclic homogeneous polynomial of degree three, where a, b, c are the
lengths of the sides of a triangle. The inequality

P (a, b, c) ≥ 0

holds if and only if P (1, 1, 1) ≥ 0 and P (b+ c, b, c) ≥ 0 for all b, c ≥ 0.



218 Vasile Ĉırtoaje

P 1.150. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

8(a2b+ b2c+ c2a) + 9 ≥ 11(ab+ bc+ ca).

Solution. Write the inequality in the homogeneous form P (a, b, c) ≥ 0, where

P (a, b, c) = 24(a2b+ b2c+ c2a) + (a+ b+ c)3 − 11(a+ b+ c)(ab+ bc+ ca).

According to P 1.149, it suffices to show that P (1, 1, 1) ≥ 0 and P (0, b, c) ≥ 0 for all b, c ≥ 0.
We have

P (1, 1, 1) = 0

and

P (0, b, c) = 24b2c+ (b+ c)3 − 11bc(b+ c)

= b3 + 16b2c− 8bc2 + c3

≥ 16b2c− 8bc2 + c3 = c(4b− c)2 ≥ 0.

The equality holds for a = b = c = 1.

P 1.151. If a, b, c are nonnegative real numbers such that a+ b+ c = 6, then

a3 + b3 + c3 + 8(a2b+ b2c+ c2a) ≥ 166.

(Vasile Cı̂rtoaje, 2010)

Solution. Write the inequality in the homogeneous form P (a, b, c) ≥ 0, where

P (a, b, c) = a3 + b3 + c3 + 8(a2b+ b2c+ c2a)− 166

(
a+ b+ c

6

)3

.

According to P 1.149, it suffices to show that P (1, 1, 1) ≥ 0 and P (0, b, c) ≥ 0 for all b, c ≥ 0.
We have

P (1, 1, 1) = 27− 83

4
=

25

4
> 0

and

P (0, b, c) = b3 + c3 + 8b2c− 83

108
(b+ c)3

=
1

108
(25b3 + 615b2c− 249bc2 + 25c3)

=
1

108
(5b− c)2(b+ 25c) ≥ 0.

The equality holds for a = 0, b = 1, c = 5 (or any cyclic permutation).
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P 1.152. If a, b, c are positive real numbers such that abc = 1, then

a
a
b b

b
c c

c
a ≥ 1.

(Vasile Cı̂rtoaje, 2004)

Solution. Write the inequality as

a

b
ln a+

b

c
ln b+

c

a
ln c ≥ 0.

Since the function f(x) = x lnx is convex for x > 0, Jensen’s inequality gives

1

b
· a ln a+

1

c
· b ln b+

1

a
· c ln c ≥

(
a

b
+
b

c
+
c

a

)
· ln

a
b

+ b
c

+ c
a

1
b

+ 1
c

+ 1
a

.

Since
a

b
+
b

c
+
c

a
≥ 3,

it remains to show that
a

b
+
b

c
+
c

a
≥ 1

b
+

1

c
+

1

a
,

which is the inequality from P 1.51, (a). The equality occurs for a = b = c = 1.

P 1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a

b+ c
+

b

c+ a
+

c

a+ b
+ 7 ≥ 17

3

(
a

a+ b
+

b

b+ c
+

c

c+ a

)
.

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality as P (a, b, c) ≥ 0, where

P (a, b, c) =
∑

(3a− 17b)(a+ b)(a+ c) + 21(a+ b)(b+ c)(c+ a)

= 3(a3 + b3 + c3)− 10(a2b+ b2c+ c2a) + 7(ab2 + bc2 + ca2).

According to P 1.149, it suffices to show that P (1, 1, 1) ≥ 0 and P (0, b, c) ≥ 0 for all b, c ≥ 0.
We have P (1, 1, 1) = 0 and

P (0, b, c) = 3(b3 + c3)− 10b2c+ 7bc2.

Consider the nontrivial case b, c > 0. Setting c = 1, we need to show that f(b) ≥ 0, where

f(b) = 3b3 − 10b2 + 7b+ 3.
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Case 1: b ≥ 3. We have

f(b) > 3b3 − 10b2 + 7b = (b− 1)(3b− 7) > 0.

Case 2: 2 ≤ b ≤ 3. We have

f(b) ≥ 3b3 − 10b2 + 8b = b(b− 2)(3b− 4) ≥ 0.

Case 3: 0 < b ≤ 2. We have

f(b) ≥ 3b3 − 10b2 + 7b+ 1.5b = b(3b2 − 10b+ 8.5) > 3b(b− 5/3)2 ≥ 0.

The equality holds for a = b = c.

P 1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 ≤ k ≤ 5,
then

ka+ b

a+ c
+
kb+ c

b+ a
+
kc+ a

c+ b
≥ 3

2
(k + 1).

(Vasile Cı̂rtoaje, 2007)

First Solution. Write the inequality as

b

a+ c
+

c

b+ a
+

a

c+ b
− 3

2
+ k

(
a

a+ c
+

b

b+ a
+

c

c+ b
− 3

2

)
≥ 0.

Since
b

a+ c
+

c

b+ a
+

a

c+ b
− 3

2
≥ 0,

it suffices to consider the case k = 5, when the inequality can be written as follows:∑
(5a+ b)(b+ a)(c+ b) ≥ 9(a+ c)(b+ a)(c+ b),

2
∑

ab2 +
∑

a3 ≥ 3
∑

a2b,

2
∑

ab2 +
4

3

∑
a3 − 1

3

∑
b3 ≥ 3

∑
a2b,∑

(6ab2 + 4a3 − b3 − 9a2b) ≥ 0,

(a− b)2(4a− b) + (b− c)2(4b− c) + (c− a)2(4c− a) ≥ 0.

Assume that a = min{a, b, c}, and use the substitution

b = a+ p, c = a+ q, p, q ≥ 0.

The inequality becomes

p2(3a− p) + (p− q)2(3a+ 4p− q) + q2(3a+ 4q) ≥ 0,
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2Aa+B ≥ 0,

where
A = p2 − pq + q2, B = p3 − 3p2q + 2pq2 + q3.

Since A ≥ 0, we only need to show that B ≥ 0. For q = 0, we have B = p3 ≥ 0, while for
q > 0, the inequality B ≥ 0 is equivalent to

1 ≥ x(x− 1)(2− x),

where x = p/q ≥ 0. For the non-trivial case x ∈ [1, 2], we get this inequality by multiplying
the obvious inequalities

1 ≥ x− 1

and
1 ≥ x(2− x).

The proof is completed. The equality holds for a = b = c.

Second Solution. We can write the inequality in the form P (a, b, c) ≥ 0, where P (a, b, c)
is a cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices to show
that the desired inequality holds for a = b = c, and also for a = 0. If a = 0, then the
inequality becomes

x+ k +
1

x
+

k

1 + x
≥ 3

2
(k + 1),

2(x− 1)2 + x ≥ kx(x− 1)

x+ 1
,

where

x =
b

c
> 0.

For 0 < x ≤ 1, we have

2(x− 1)2 + x > 0 ≥ kx(x− 1)

x+ 1
.

For 1 ≤ x ≤ 5, it suffices to consider the case k = 5, when the inequality is equivalent to

2(x− 1)2 + x ≥ 5x(x− 1)

x+ 1
,

x3 − 3x2 + 2x+ 1 ≥ 0,

x(x− 2)2 + (x− 1)2 ≥ 0.

Remark. As in the second solution, we can prove that the inequality in P 1.154 holds for

0 ≤ k ≤ k0, k0 =

√
13 + 16

√
2 ≈ 5.969.

For a = 0 and k = k0, the inequality becomes

2(x− 1)2 + x ≥ kx(x− 1)

x+ 1
, x =

b

c
> 0,
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2x3 − (k0 + 1)x2 + (k0 − 1)x+ 2 ≥ 0,

(x− x0)2
(
x+

1

x20

)
≥ 0,

where

x0 =
1 +
√

2 +
√

2
√

2− 1

2
≈ 1.883.

If k = k0, then the equality holds for a = b = c, and also for a = 0 and
b

c
+
c

b
= 1 +

√
2 (or

any cyclic permutation).

P 1.155. Let a, b, c be nonnegative real numbers. Prove that

(a) if k ≤ 1− 2

5
√

5
, then

ka+ b

2a+ b+ c
+

kb+ c

a+ 2b+ c
+

kc+ a

a+ b+ 2c
≥ 3

4
(k + 1).

(b) if k ≥ 1 +
2

5
√

5
, then

ka+ b

2a+ b+ c
+

kb+ c

a+ 2b+ c
+

kc+ a

a+ b+ 2c
≤ 3

4
(k + 1).

(Vasile Cı̂rtoaje, 2007)

Solution. (a) Write the inequality in the form P (a, b, c) ≥ 0, where P (a, b, c) is a cyclic
homogeneous polynomial of degree three. According to P 1.149, it suffices to show that the
desired inequality holds for a = b = c, and also for a = 0. For a = 0, the inequality becomes

x

x+ 1
+
kx+ 1

2x+ 1
+

k

x+ 2
≥ 3

4
(k + 1),

(x+ 2)(2x2 − x+ 1) ≥ k(x+ 1)(2x2 − x+ 2),

where

x =
b

c
≥ 0.

It suffices to consider the case k = 1− 2

5
√

5
, when the inequality is equivalent to

(x− x0)2
(
x+

2

5
√

5 x20

)
≥ 0,

where

x0 =
3−
√

5

2
.
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The equality holds for a = b = c. If k = 1− 2

5
√

5
, then the equality also holds for a = 0 and

b

c
+
c

b
= 3 (or any cyclic permutation).

(b) According to P 1.149, it suffices to show that the desired inequality holds for a =
b = c, and also for a = 0. If a = 0, then the inequality becomes

x

x+ 1
+
kx+ 1

2x+ 1
+

k

x+ 2
≤ 3

4
(k + 1),

(x+ 2)(2x2 − x+ 1) ≤ k(x+ 1)(2x2 − x+ 2),

where

x =
b

c
≥ 0.

It suffices to consider the case k = 1 +
2

5
√

5
, when the inequality is equivalent to

(x− x1)2
(
x+

2

5
√

5 x21

)
≥ 0,

where

x1 =
3 +
√

5

2
.

The equality holds for a = b = c. If k = 1 +
2

5
√

5
, then the equality also holds for a = 0 and

b

c
+
c

b
= 3 (or any cyclic permutation).

P 1.156. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≤ 23

8
, then

ka+ b

2a+ c
+
kb+ c

2b+ a
+
kc+ a

2c+ b
≥ k + 1.

(Vasile Cı̂rtoaje, 2007)

Solution. We can write the inequality in the form P (a, b, c) ≥ 0, where P (a, b, c) is a cyclic
homogeneous polynomial of degree three. According to P 1.149, it suffices to show that the
desired inequality holds for a = b = c, and also for a = 0. For a = 0, the inequality becomes

x+
k

2
+

1

2x
+

k

2 + x
≥ k + 1,

x2 + (x− 1)2 ≥ kx2

x+ 2
,
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where

x =
b

c
> 0.

It suffices to consider that k = 23/8, when the inequality is equivalent to

2x2 − 2x+ 1 ≥ 23x2

8(x+ 2)
,

16x3 − 7x2 − 24x+ 16 ≥ 0,

16x(x− 1)2 + (5x− 4)2 ≥ 0.

The equality holds for a = b = c.

Remark. For k = 2, we get the inequality in P 1.21.

P 1.157. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a

b
+
b

c
+
c

a
+ 3 ≥ 2

(
a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b

)
.

Solution. Write the inequality as follows:∑(a
b
− 1
)
≥ 2

∑(
b+ c

c+ a
− 1

)
,

∑
(a− b)

(
1

b
+

2

c+ a

)
≥ 0,

(a− b)
(

1

b
+

2

c+ a

)
+ (b− c)

(
1

c
+

2

a+ b

)
+ [(c− b) + (b− a)]

(
1

a
+

2

b+ c

)
≥ 0,

(b− a)

(
1

a
+

2

b+ c
− 1

b
− 2

c+ a

)
+ (c− b)

(
1

a
+

2

b+ c
− 1

c
− 2

a+ b

)
≥ 0,

(b− a)2
[

1

ab
− 2

(b+ c)(c+ a)

]
+ (c− b)(c− a)

[
1

ac
− 2

(b+ c)(a+ b)

]
≥ 0.

The inequality is true since

1

ab
− 2

(b+ c)(c+ a)
=
c(a+ b+ c)− ab

(b+ c)(c+ a)
>

a(c− b)
(b+ c)(c+ a)

≥ 0

and
1

ac
− 2

(b+ c)(a+ b)
=
b(a+ b+ c)− ac

(b+ c)(a+ b)
>

c(b− a))

(b+ c)(a+ b)
≥ 0.

The equality holds for a = b = c.
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P 1.158. If a ≥ b ≥ c ≥ 0, then

3a+ b

2a+ c
+

3b+ c

2b+ a
+

3c+ a

2c+ b
≥ 4.

(Vasile Cı̂rtoaje, 2007)

First Solution. Write the inequality as follows:∑
(3a+ b)(2b+ a)(2c+ b) ≥ 4(2a+ c)(2b+ a)(2c+ b),

2
∑

a3 + 13
∑

ab2 + 7
∑

a2b+ 42abc ≥ 4(4
∑

ab2 + 2
∑

a2b+ 9abc),

2
∑

a3 + 6abc ≥ 3
∑

ab2 +
∑

a2b,

2E(a, b, c) ≥ F (a, b, c),

where

E(a, b, c) =
∑

a3 + 3abc−
∑

ab2 −
∑

a2b,

F (a, b, c) =
∑

ab2 −
∑

a2b.

The inequality is true since E(a, b, c) ≥ 0 (by Schur’s inequality of degree three) and

F (a, b, c) = (a− b)(b− c)(c− a) ≤ 0.

The equality holds for a = b = c, and also for a = b and c = 0.

Second Solution. Denote

x = a− b ≥ 0, y = b− c ≥ 0,

and write the inequality as follows

∑(
3a+ b

2a+ c
− 4

3

)
≥ 0,

∑ a+ 3b− 4c

2a+ c
≥ 0,

a+ 3b− 4c

2a+ c
+
b+ 3c− 4a

2b+ a
+
c+ 3a− 4b

2c+ b
≥ 0,

x+ 4y

2a+ c
− 4x+ 3y

2b+ a
+

3x− y
2c+ b

≥ 0,

xA+ yB ≥ 0,
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where

A =
1

2a+ c
− 4

2b+ a
+

3

2c+ b

=

(
1

2a+ c
− 1

2b+ a

)
+ 3

(
1

2c+ b
− 1

2b+ a

)
=

−x+ y

(2a+ c)(2b+ a)
+

3(x+ 2y)

(2b+ a)(2c+ b)

and

B =
4

2a+ c
− 3

2b+ a
− 1

2c+ b

= 3

(
1

2a+ c
− 1

2b+ a

)
+

(
1

2a+ c
− 1

2c+ b

)
=

3(−x+ y)

(2a+ c)(2b+ a)
− 2x+ y

(2a+ c)(2c+ b)
.

Thus, the inequality is equivalent to

x[(−x+ y)(2c+ b) + 3(x+ 2y)(2a+ c) + y[3(−x+ y)(2c+ b)− (2x+ y)(2b+ a)] ≥ 0,

x2(6a− b+ c) + xy(10a− 6b+ 2c)− y2(a− b− 6c) ≥ 0,

It suffices to show that

xy(10a− 6b+ 2c)− y2(a− b− 6c) ≥ 0,

which is true is
x(10a− 6b+ 2c)− y(a− b− 6c) ≥ 0.

We have

x(10a− 6b+ 2c)− y(a− b− 6c) = x(10x+ 4y + 6c)− y(x− 6c)

= 10x2 + 3xy + 6c(x+ y) ≥ 0.

Third Solution. According to Remark 1 from P 1.149, it suffices to prove that the in-
equality holds for c = 0 and a ≥ b; that is, to show that

3

2
+

1

2x
+

3

2 + x
+ x ≥ 4,

where
x =

a

b
≥ 1.

The inequality is equivalent to

2x3 − x2 − 3x+ 2 ≥ 0,

(x− 1)(2x2 + x− 2) ≥ 0.
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P 1.159. If a ≥ b ≥ c ≥ 0 and ab+ bc+ ca = 2 , then
√
a+ ab+

√
b+ bc+

√
c+ ca ≥ 3.

(KaiRain, 2020)

Solution. Consider the main case a ≥ b ≥ c and show that
√
a+ ab+

√
b+ bc+

√
c+ ca ≥ 3.

For c = 0, we need to show that ab = 2 involves
√
a+ ab+

√
b ≥ 3,

that is
√
a+ 2 +

√
2

a
≥ 3.

Denoting x =

√
a

2
, we need to show that

√
2x2 + 2 ≥ 3− 1

x
.

This is true if

2(x2 + 1) ≥
(

3− 1

x

)2

for x ≥ 1/3, which is equivalent to the obvious inequality

(x− 1)2(2x2 + 4x− 1) ≥ 0.

Using this result, it suffices to show that

√
a+ ab+

√
b+ bc+

√
c+ ca ≥

√
a+ 2 +

√
2

a
,

that is equivalent to

√
c+ ca ≥

√
a+ 2−

√
a+ ab+

√
2

a
−
√
b+ bc,

√
c+ ca ≥ 2− ab√

a+ 2 +
√
a+ ab

+
2− ab− abc√
2a+ a

√
b+ bc

,

√
c+ ca ≥ c(a+ b)√

a+ 2 +
√
a+ ab

+
c(a+ b− ab)√
2a+ a

√
b+ bc

.

So, we need to show that

√
1 + a ≥

√
c(a+ b)√

a+ 2 +
√
a+ ab

+

√
c(a+ b− ab)√

2a+ a
√
b+ bc

.
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We get this inequality by summing the inequalities

√
1 + a

2
≥

√
c(a+ b)√

a+ 2 +
√
a+ ab

,

√
1 + a

2
≥
√
c(a+ b− ab)√

2a+ a
√
b+ bc

.

From ab+ bc+ ca = 2, it follows
2

3
≤ ab ≤ 2 and b ≤

√
2. Since

√
a+ ab ≤

√
a+ 2

and

a
√
b ≤
√

2a, a
√
b ≤ a

√
b+ bc,

it suffice to prove the inequalities

√
1 + a ≥

√
c(a+ b)√
a+ ab

,
√

1 + a ≥
√
c(a+ b− ab)

a
√
b

.

By squaring, the first inequality becomes

a(1 + a)(1 + b) ≥ c(a+ b)2,

a(1 + a)(1 + b) ≥ (a+ b)(2− ab).

Since 2a ≥ a+ b, it suffices to show that

(1 + a)(1 + b) ≥ 2(2− ab),

that is

a+ b+ 3ab ≥ 3.

Indeed, we have

a+ b+ 3ab ≥ 2
√
ab+ 3ab ≥ 2

√
2

3
+ 2 > 3.

Since
√
b ≥
√
c, the second inequality is true if

a
√

1 + a ≥ a+ b− ab,

that is

a(
√

1 + a− 1) ≥ b(1− a).

For the nontrivial case a ≤ 1, it suffices to show that

a(
√

1 + a− 1) ≥ a(1− a),

that is √
1 + a+ a ≥ 2.
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Since 3a2 ≥ ab+ bc+ ca = 2, we have

√
1 + a+ a ≥

√
1 +

√
2

3
+

√
2

3
> 2.

The inequality is an equality for a = 2, b = 1, c = 0.

Remark. The following sharper inequality holds in the same conditions:
√
a+ ab+

√
b+
√
c ≥ 3,

with equality for a = 2, b = 1, c = 0.
For fixed b, according to the relation ab+ bc+ ca = 2, we may consider that a is a function

of c. Differentiating this equation, we get

a′ = −a+ b

b+ c
,

a′′ =
(a+ b+ (b− c)a′

(a+ c)2
=

(a+ b)(a− b+ 2c)

(a+ c)3
.

Write the required inequality as f(c) ≥ 0, where

f(c) =
√
a+ ab+

√
b+
√
c− 3, c ∈ [0, b].

We have

f ′(c) =
a′
√

1 + b

2
√
a

+
1

2
√
c
,

f ′′(c) =
(2aa′′ − (a′)2)

√
1 + b

4a3/2
− 1

4c3/2

=
(a+ b)(a2 + 3ac− 3ab− bc)

√
1 + b

4a3/2(a+ c)3
− 1

4c3/2
.

Since
a2 + 3ac− 3ab− bc = a2 − 3a(b− c)− bc < a2,

we have

f ′′(c) <
(a+ b)

√
a(1 + b)

4(a+ c)3
− 1

4c3/2
.

From b2 ≤ ab ≤ ab+ bc+ ca = 2, we get b ≤
√

2,
√

1 + b < 4, hence

f ′′(c) <
(a+ b)

√
a

(a+ c)3
− 1

4c3/2
≤ 2

( √
a

a+ c

)3

− 1

4(
√
c)3
≤ 0.

Since f is concave and 0 ≤ c ≤ b, it is enough to show that f(0) ≥ 0 (for c = 0 and ab = 2)
and f(b) ≥ 0 (for c = b and 2ab+ b2 = 2). We have

f(0) =

√
2 + 2b

b
+
√
b− 3 =

(1−
√
b)2(2 + 4

√
b− b)√

b(2 + 2b)− b
√
b+ 3b

≥ 0.
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For c = b, when 2 = 2ab+ b2 ≥ 3b2, hence b ≤
√

2

3
, we have

f(b) =

√
(1 + b)(2− b2)

2b
+ 2
√
b− 3 =

A√
2b(1 + b)(2− b2)− 4b

√
b+ 6b

,

where, for x =
√
b ≤ 4

√
2

3
< 1,

A = (1 + x2)(2− x4)− 2x2(3− 2x)2 = (1− x)(2 + 2x− 14x2 + 10x3 + x4 + x5).

Since

2 + 2x− 14x2 + 10x3 + x4 + x5 = 2− 13x2 + 13x3 + (1− x)2x(2 + 3x+ x2)

> 2 + 13x3 − 13x2 = 2 +
13x3

2
+

13x3

2
− 13x2

≥ 3
3

√
2 · 13x3

2
· 13x3

2
− 13x2 =

(
3

3

√
169

2
− 13

)
x2 > 0,

we have A > 0, hence f(b) > 0.

P 1.160. If a ≥ b ≥ c are nonnegative numbers such that ab+ bc+ ca = 3 , then

√
a+ 2ab+

√
b+ 2bc+

√
c+ 2ca ≥ 4.

(Vasile Cı̂rtoaje, 2020)

Solution. We will prove the sharper inequality

√
a+ 2ab+

√
b+ bc+

√
c+ ca ≥ 4.

For c = 0, we need to show that ab = 3 involves

√
a+ 2ab+

√
b ≥ 4,

that is
√
a+ 6 +

√
3

a
≥ 4.

It is easy to show that this inequality is true for all a > 0. Using this result, it suffices to
show that

√
a+ 2ab+

√
b+ bc+

√
c+ ca ≥

√
a+ 6 +

√
3

a
,
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that is equivalent to

√
c+ ca ≥

√
a+ 6−

√
a+ 2ab+

√
3

a
−
√
b+ bc,

√
c+ ca ≥ 2(3− ab√

a+ 6 +
√
a+ 2ab

+
3− ab− abc√
3a+ a

√
b+ bc

,

√
c+ ca ≥ 2c(a+ b)√

a+ 6 +
√
a+ 2ab

+
c(a+ b− ab)√
3a+ a

√
b+ bc

.

So, we need to show that

√
1 + a ≥ 2

√
c(a+ b)√

a+ 6 +
√
a+ 2ab

+

√
c(a+ b− ab)√

3a+ a
√
b+ bc

.

We get this inequality by summing the inequalities

k
√

1 + a ≥ 2
√
c(a+ b)√

a+ 6 +
√
a+ 2ab

, (1− k)
√

1 + a ≥
√
c(a+ b− ab)√

3a+ a
√
b+ bc

,

where

k =

√
2

3
.

From ab+ bc+ ca = 3, it follows 1 ≤ ab ≤ 3 and b ≤
√

3. Since
√
a+ 2ab ≤

√
a+ 6,

the first inequality is true if

k
√

1 + a ≥
√
c(a+ b)√
a+ 2ab

,

that is
2a(1 + a)(1 + 2b) ≥ 3c(a+ b)2,

2a(1 + a)(1 + 2b) ≥ 3(3− ab)(a+ b).

Since 2a ≥ a+ b, it suffices to show that

(1 + a)(1 + 2b) ≥ 3(3− ab),

that is
(5b+ 1)a+ 2b ≥ 8.

For a ≥ b ≥ 1, this inequality is obvious. For 0 ≤ b ≤ 1, from

b ≥ c =
3− ab
a+ b

we get

a ≥ 3− b2

2b
.
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Therefore,

(5b+ 1)a+ 2b− 8 ≥ (5b+ 1)(3− b2)
2b

+ 2b

=
3− b+ 3b2 − 5b3

2b
=

(1− b)(3 + 2b+ 5b2)

2b
≥ 0.

Since 1− k > 1

4
, the second inequality is true if

√
1 + a ≥ 4

√
c(a+ b− ab)√

3a+ a
√
b+ bc

,

Consider the nontrivial case a + b − ab ≥ 0, and claim that
√

3a ≥ a
√
b+ bc, which is

equivalent to 3 ≥ ab+ abc. Indeed, we have

3− ab− abc = 3− ab− ab(3− ab)
a+ b

=
(3− ab)(a+ b− ab)

a+ b
≥ 0.

Thus, it suffices to show that

√
1 + a ≥ 2

√
c(a+ b− ab)
a
√
b+ bc

.

Since
a+ b− ab

a
≤ 1,

it suffices to show that
√

1 + a ≥ 2

√
c

b(1 + c)
,

that is

b(1 + a)(1 + c) ≥ 4c.

Since ab ≥ 1, we have

b(1 + a) ≥ b+ 1 ≥ c+ 1,

therefore,

b(1 + a)(1 + c)− 4c ≥ (1 + c)2 − 4c = (1− c)2 ≥ 0.

The inequality is an equality for a = 3, b = 1, c = 0.

P 1.161. If a, b, c are nonnegative real numbers such that ab+ bc+ ca = 3, then

√
a+ 3b+

√
b+ 3c+

√
c+ 3a ≥ 6.
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Solution. Use the substitution

√
a+ 3b = 2x,

√
b+ 3c = 2y,

√
c+ 3a = 2z,

which yields

a =
x2 − 3y2 + 9z2

7
, a =

y2 − 3z2 + 9x2

7
, a =

z2 − 3x2 + 9y2

7
,

ab+ bc+ ca =
−3(x4 + y4 + z4) + 10(x2y2 + y2z2 + z2x2)

7
.

So, we need to show that
x+ y + z ≥ 3

for
3(x4 + y4 + z4) + 21 = 10(x2y2 + y2z2 + z2x2).

By the contradiction method, we need to prove that

x+ y + z < 3

involves
3(x4 + y4 + z4) + 21 > 10(x2y2 + y2z2 + z2x2).

It suffices to prove the homogeneous inequality f(x, y, z) ≥ 0, where

f(x, y, z) = 81(x4 + y4 + z4) + 7(x+ y + z)4 − 270(x2y2 + y2z2 + z2x2).

According to P 3.68 from Volume 1, it is enough to show that f(0, y, z) ≥ 0 and f(x, 1, 1) ≥ 0
for x, y, z ≥ 0. We have

f(0, y, z) = 81(y4 + z4) + 7(y + z)4 − 270y2z2

≥ 162y2z2 + 112y2z2 − 270y2z2 = 4y2z2 ≥ 0

and

f(x, 1, 1) = 81(x4 + 2) + 7(x+ 2)4 − 540x2 = 4(22x4 + 14x3 − 93x2 + 56x+ 1)

= (x− 1)2(22x2 + 58x+ 1) ≥ 0.

The equality occurs for a = b = c = 1.

P 1.162. If a, b, c are the lengths of the sides of a triangle, then

10

(
a

b
+
b

c
+
c

a

)
> 9

(
b

a
+
c

b
+
a

c

)
.
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Solution. According to Remark 2 from the proof of P 1.149, it suffices to show that
P (1, 1, 1) ≥ 0 and P (b+ c, b, c) ≥ 0 for b, c ≥ 0, where

P (a, b, c) = 10(ab2 + bc2 + ca2)− 9(a2b+ b2c+ c2a).

We have P (1, 1, 1) = 3 > 0 and

P (b+ c, b, c) = b3 − 7b2c+ 12bc2 + c3.

We need to show that

x3 − 7x2 + 12x+ 1 > 0,

where x = b/c, x > 0. For x ∈ (0, 3] ∪ [4,∞), we have

x3 − 7x2 + 12x+ 1 > x3 − 7x2 + 12x = x(3− x)(4− x) ≥ 0.

For x ∈ (3, 4), we have

x3 − 7x2 + 12x+ 1 > x3 − 7x2 + 12x+
x

4
=
x(2x− 7)2

4
≥ 0.

P 1.163. If a, b, c are the lengths of the sides of a triangle, then

a

3a+ b− c
+

b

3b+ c− a
+

c

3c+ a− b
≥ 1.

Solution. Write the inequality as follows:∑(
a

3a+ b− c
− 1

4

)
≥ 1

4
,

∑ a− b+ c

3a+ b− c
≥ 1.

Applying the Cauchy-Schwarz inequality, we get

∑ a− b+ c

3a+ b− c
≥ [

∑
(a− b+ c)]2∑

(a− b+ c)(3a+ b− c)
=

(
∑
a)2∑

a2 + 2
∑
ab

= 1.

The equality holds for a = b = c.
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P 1.164. If a, b, c are the lengths of the sides of a triangle, then

a2 − b2

a2 + bc
+
b2 − c2

b2 + ca
+
c2 − a2

c2 + ab
≤ 0.

(Vasile Cı̂rtoaje, 2007)

First Solution. Suppose that a = max{a, b, c}. Since

c2 − a2 = −(a2 − b2)− (b2 − c2),

the inequality can be written as follows:

(a2 − b2)
(

1

a2 + bc
− 1

c2 + ab

)
+ (b2 − c2)

(
1

b2 + ca
− 1

c2 + ab

)
≤ 0,

−(a2 − b2)(a− c)(a− b+ c)

a2 + bc
− (b2 − c2)(b− c)(b+ c− a)

a2 + bc
≤ 0.

The equality holds for an equilateral triangle, and also for a degenerate triangle having a
side equal to zero.

Second Solution. The sequences

{a2, b2, c2}

and {
1

a2 + bc
,

1

b2 + ca
,

1

c2 + ab

}
are reversely ordered. Indeed, if a ≥ b ≥ c, then

1

a2 + bc
≤ 1

b2 + ca
≤ 1

c2 + ab
,

because
1

b2 + ca
− 1

a2 + bc
=

(a− b)(a+ b− c)
(b2 + ca)(a2 + bc)

≥ 0,

1

c2 + ab
− 1

b2 + ca
=

(b− c)(b+ c− a)

(c2 + ab)(b2 + ca)
≥ 0.

Then, by the rearrangement inequality, we have

a2 · 1

a2 + bc
+ b2 · 1

b2 + ca
+ c2 · 1

c2 + ab
≤

≤ b2 · 1

a2 + bc
+ c2 · 1

b2 + ca
+ a2 · 1

c2 + ab
,

which is the desired inequality.
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P 1.165. If a, b, c are the lengths of the sides of a triangle, then

a2(a+ b)(b− c) + b2(b+ c)(c− a) + c2(c+ a)(a− b) ≥ 0.

(Vasile Cı̂rtoaje, 2006)

First Solution. Assume that
a = max{a, b, c},

use the substitution

a = x+ p+ q, b = x+ p, c = x+ q, x, p, q ≥ 0,

and write the inequality as

a2b2 + b2c2 + c2a2 − abc(a+ b+ c) ≥ ab3 + bc3 + ca3 − a3b− b3c− c3a,

a2(b− c)2 + b2(c− a)2 + c2(a− b)2 ≥ 2(a+ b+ c)(a− b)(b− c)(c− a),

(x+ p+ q)2(p− q)2 + (x+ p)2p2 + (x+ q)2q2 ≥ 2(3x+ 2p+ 2q)pq(q − p),
which is equivalent to

Ax2 + 2Bx+ C ≥ 0,

where
A = p2 − pq + q2 ≥ 0,

B = p3 + q(p− q)2 ≥ 0,

C = (p2 + pq − q2)2 ≥ 0.

The equality holds for an equilateral triangle, and also for a degenerate triangle with

a

2
=

b

1 +
√

5
=

c

3 +
√

5

(or any cyclic permutation).

Second Solution. Using the substitution

x =

√
ca

b
, y =

√
ab

c
, z =

√
bc

a
,

we can write the inequality as follows:

b2c2 + c2a2 + a2b2 ≥ ab(b2 + c2 − a2) + bc(c2 + a2 − b2) + ca(a2 + b2 − c2),

bc

a
+
ca

b
+
ab

c
≥ 2b cosA+ 2c cosB + 2a cosC,

x2 + y2 + z2 ≥ 2yz cosA+ 2zx cosB + 2xy cosC,

(x− y cosC − z cosB)2 + (y sinC − z sinB)2 ≥ 0.
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P 1.166. If a, b, c are the lengths of the sides of a triangle, then

a2b+ b2c+ c2a ≥
√
abc(a+ b+ c)(a2 + b2 + c2).

(Vasile Cı̂rtoaje and Vo Quoc Ba Can, 2005)

Solution. Without loss of generality, assume that b is between a and c; that is

(b− a)(b− c) ≤ 0.

First Solution. By the AM-GM inequality, we have

4abc(a+ b+ c)(a2 + b2 + c2) ≤ [ac(a+ b+ c) + b(a2 + b2 + c2)]2.

Thus, we only need to show that

2(a2b+ b2c+ c2a) ≥ ac(a+ b+ c) + b(a2 + b2 + c2),

which is equivalent to
b[a2 − (b− c)2]− ac(a+ b− c) ≥ 0,

(a+ b− c)(a− b)(b− c) ≥ 0.

The equality holds for an equilateral triangle, and also for a degenerate triangle with

c = a+ b, b3 = a2(a+ b)

(or any cyclic permutation).

Second Solution. The desired inequality is equivalent to D ≥ 0, where D is the discrimi-
nant of the quadratic function

f(x) = (a2 + b2 + c2)x2 − 2(a2b+ b2c+ c2a)x+ abc(a+ b+ c).

For the sake of contradiction, assume that D < 0 for some a, b, c. Then, f(x) > 0 for all real
x. This is not true because

f(b) = b(b− a)(b− c)(a+ b− c) ≤ 0.

P 1.167. If a, b, c are the lengths of the sides of a triangle, then

a2
(
b

c
− 1

)
+ b2

( c
a
− 1
)

+ c2
(a
b
− 1
)
≥ 0.

(Vasile Cı̂rtoaje, Moldova TST, 2006)
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First Solution. Using the substitution

a =
1

x
, b =

1

y
, c =

1

z
,

the inequality becomes
E(x, y, z) ≥ 0,

where
E(x, y, z) = yz2(z − y) + zx2(x− z) + xy2(y − x).

Without loss of generality, assume that

a = min{a, b, c}, x = max{x, y, z}.

We will show that
E(x, y, z) ≥ E(y, y, z) ≥ 0.

We have

E(x, y, z)− E(y, y, z) = z(x3 − y3)− z2(x2 − y2) + y3(x− y)− y2(x2 − y2)
= (x− y)(x− z)(xz + yz − y2) ≥ 0,

because

xz + yz − y2 ≥ y(2z − y) =
2b− c
b2c

=
(b− a) + (a+ b− c)

b2c
≥ 0.

Also,
E(y, y, z) = yz(y − z)2 ≥ 0.

The equality holds for a = b = c.

Second Solution. Write the inequality as F (a, b, c) ≥ 0, where

F (a, b, c) = a3b2 + b3c2 + c3a2 − abc(a2 + b2 + c2).

Since

2E(a, b, c) =
(∑

a3b2 +
∑

a2b3 − 2abc
∑

a2
)
−
(∑

a2b3 −
∑

a3b2
)

=
(∑

a3b2 +
∑

a3c2 − 2abc
∑

a2
)
−
(∑

a2b3 −
∑

a2c3
)

=
∑

a3(b− c)2 −
∑

a2(b3 − c3)

and ∑
a2(b3 − c3) =

∑
a2(b− c)3,

we get

E(a, b, c) =
∑

a3(b− c)2 −
∑

a2(b− c)3 =
∑

a2(b− c)2(a− b+ c) ≥ 0.
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Third Solution. By the Cauchy-Schwarz inequality, we have

∑ a2b

c
≥ (
∑
a2b)

2∑
a2bc

.

Therefore, it suffices to show that(∑
a2b
)2
≥ abc(a+ b+ c)(a2 + b2 + c2),

which is the inequality from the previous P 1.166.

P 1.168. If a, b, c are the lengths of the sides of a triangle, then

(a) a3b+ b3c+ c3a ≥ a2b2 + b2c2 + c2a2;

(b) 3(a3b+ b3c+ c3a) ≥ (ab+ bc+ ca)(a2 + b2 + c2);

(c)
a3b+ b3c+ c3

3
≥
(
a+ b+ c

3

)4

.

Solution. (a) First Solution. Write the inequality as

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Using the substitution

a = y + z, b = z + x, c = x+ y, x, y, z ≥ 0,

the inequality turns into

xy3 + yz3 + zx3 ≥ xyz(x+ y + z),

which follows from the Cauchy-Schwarz inequality

(xy3 + yz3 + zx3)(z + x+ y) ≥ xyz(y + z + x)2.

The equality holds for an equilateral triangle, and also for a degenerate triangle with a = 0
and b = c (or any cyclic permutation).

Second Solution. Multiplying by a+ b+ c, the inequality becomes as follows:∑
a4b+ abc

∑
a2 ≥

∑
a2b3 + abc

∑
ab,
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∑
b4c+ abc

∑
a2 ≥

∑
b2c3 + abc

∑
ab,∑ b3

a
+
∑

a2 ≥
∑ bc2

a
+
∑

ab,∑
a2 ≥

∑ b

a
(c2 + a2 − b2),

a2 + b2 + c2 ≥ 2bc cosB + 2ca cosC + 2ab cosA,

(a− b cosA− c cosC)2 + (b sinA− c sinC)2 ≥ 0.

(b) Write the inequality as∑
a2b(a− b) +

∑
b2(a− b)(a− c) ≥ 0.

Since
∑
a2b(a− b) ≥ 0 (according to the inequality in (a)), it suffices to show that∑

b2(a− b)(a− c) ≥ 0.

This is a particular case (x = c, y = a, z = b) of the following inequality

(x− y)(x− z)a2 + (y − z)(y − x)b2 + (z − x)(z − y)c2 ≥ 0,

where x, y, z are real numbers. If two of x, y, z are equal, then the inequality is trivial.
Otherwise, assume that x > y > z and write the inequality as

a2

y − z
+

c2

x− y
≥ b2

x− z
.

Applying the Cauchy-Schwarz inequality, we get

a2

y − z
+

c2

x− y
≥ (a+ c)2

(y − z) + (x− y)
=

(a+ c)2

x− z
≥ b2

x− z
.

The equality holds for a = b = c.

(c) According to the inequality (b), it suffices to show that

9(ab+ bc+ ca)(a2 + b2 + c2) ≥ (a+ b+ c)4.

This is equivalent to
(A−B)(4B − A) ≥ 0,

where
A = a2 + b2 + c2, B = ab+ bc+ ca.

Since A ≥ B and

4B − A > 2(ab+ bc+ ca)− a2 − b2 − c2

= a(2b+ 2c− a)− (b− c)2

≥ a2 − (b− c)2

= (a− b+ c)(a+ b− c) ≥ 0.

the conclusion follows. The equality holds for a = b = c.
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P 1.169. If a, b, c are the lengths of the sides of a triangle, then

2

(
a2

b2
+
b2

c2
+
c2

a2

)
≥ b2

a2
+
c2

b2
+
a2

c2
+ 3.

Solution. Write the inequality as follows:

∑ a2

b2
≥ 3 +

∑ b2

a2
−
∑ a2

b2
,

∑ b2

c2
≥ 3 +

∑ c2

b2
−
∑ a2

b2
,

∑ b2

c2
≥
∑(

1 +
c2

b2
− a2

b2

)
,

∑ b2

c2
≥ 2

∑ c

b
cosA.

Putting

x =
b

c
, y =

c

a
, z =

a

b
,

we have xyz = 1 and

c

b
=

1

x
= yz,

a

c
=

1

y
= zx,

b

a
=

1

z
= xy.

Therefore, we can write the inequality as

x2 + y2 + z2 ≥ 2yz cosA+ 2zx cosB + 2xy cosC,

which is equivalent to the obvious inequality

(x− y cosC − z cosB)2 + (y sinC − z sinB)2 ≥ 0.

The equality occurs for a = b = c.

P 1.170. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then

a2

a2 − b2
+

b2

b2 − c2
+

c2

c2 − a2
≤ 0.

(Vasile Cı̂rtoaje, 2003)
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Solution. Write the inequality as

a2

b2 − a2
+

b2

c2 − b2
≥ c2

c2 − a2
.

Since c ≤ a+ b, it suffices to show that

a2

b2 − a2
+

b2

c2 − b2
≥ (a+ b)2

c2 − a2
,

which is equivalent to

a2
(

1

b2 − a2
− 1

c2 − a2

)
+ b2

(
1

c2 − b2
− 1

c2 − a2

)
≥ 2ab

c2 − a2
,

a2(c2 − b2)
b2 − a2

+
b2(b2 − a2)
c2 − b2

≥ 2ab,(
a

√
c2 − b2
b2 − a2

− b
√
b2 − a2
c2 − b2

)2

≥ 0.

The equality occurs for a degenerate triangle with c = a+ b and a = xb, where x ≈ 0.53209
is the positive root of the equation x3 + 3x2 − 1 = 0.

P 1.171. If a, b, c are the lengths of the sides of a triangle, then

a

b
+
b

c
+
c

a
+ 3 ≥ 2

(
a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b

)
.

(Manlio Marangelli, 2008)

First Solution. Assume that c = max{a, b, c}. If a ≤ b ≤ c, then the inequality follows
from P 1.157. Consider further that

b ≤ a ≤ c.

Write the inequality as follows:∑(a
b
− 1
)
≥ 2

∑(
b+ c

c+ a
− 1

)
,

∑
(a− b)

(
1

b
+

2

c+ a

)
≥ 0,

(a− b)
(

1

b
+

2

c+ a

)
+ [(b− a) + (a− c)]

(
1

c
+

2

a+ b

)
+ (c− a)

(
1

a
+

2

b+ c

)
≥ 0,

(a− b)
(

1

b
+

2

c+ a
− 1

c
− 2

a+ b

)
+ (c− a)

(
1

a
+

2

b+ c
− 1

c
− 2

a+ b

)
≥ 0,
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(a− b)(c− b)
[

1

bc
− 2

(a+ b)(a+ c)

]
+ (c− a)2

[
1

ac
− 2

(a+ b)(b+ c)

]
≥ 0.

Since

1

bc
− 2

(a+ b)(a+ c)
=
c(a− b) + a(a+ b)

bc(a+ b)(a+ c)
≥ a(a+ b)

bc(a+ b)(a+ c)
=

a

bc(a+ c)

and

1

ac
− 2

(a+ b)(b+ c)
=
−c(a− b) + b(a+ b)

ac(a+ b)(b+ c)
>

−c(a− b)
ac(a+ b)(b+ c)

=
−(a− b)

a(a+ b)(b+ c)
,

it suffices to show that

(a− b)(c− b)a
bc(a+ c)

− (c− a)2(a− b)
a(a+ b)(b+ c)

≥ 0,

which is true if
(c− b)a
bc(a+ c)

≥ (c− a)2

a(a+ b)(b+ c)
.

We can get this by multiplying the inequalities

c− b ≥ c− a,

1

b
≥ 1

a
,

1

c
≥ 1

a+ b
,

a

a+ c
≥ c− a
b+ c

.

The last inequality is true since

a

a+ c
− c− a
b+ c

≥ a

a+ c
− b

b+ c
=

c(a− b)
(a+ c)(b+ c)

≥ 0.

The equality holds for a = b = c.

Second Solution (by Vo Quoc Ba Can). Since∑ a+ b

b+ c
=
∑(

1 +
a− c
b+ c

)
= 3 +

∑ a− c
b+ c

,

we can write the desired inequality as∑ a

b
− 3 ≥ 2

∑ a− c
b+ c

.

Since

(ab+ bc+ ca)
(∑ a

b
− 3
)

=
∑

a2 − 2
∑

ab+
∑ a2c

b
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and

(ab+ bc+ ca)
∑ a− c

b+ c
= [a(b+ c) + bc]

∑ a− c
b+ c

=
∑

a2 −
∑

ab+
∑ bc(a− c)

b+ c
,

the inequality is equivalent to

∑ a2c

b
+ 2

∑ bc(c− a)

b+ c
≥
∑

a2.

Since ∑ a2c

b
≥
∑

a2

(see the inequality in P 1.167), we only need to show that

∑ bc(c− a)

b+ c
≥ 0.

Write this inequality as follows: ∑
bc(c2 − a2)(a+ b) ≥ 0,

∑
(c2 − a2)

(
1 +

b

a

)
≥ 0,

∑
(c2 − a2) b

a
≥ 0,

∑ bc2

a
≥
∑

ab.

According to P 1.167, we have

∑ bc2

a
≥
∑

a2 ≥
∑

ab.

P 1.172. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 2, then

akb(a− b) + bkc(b− c) + cka(c− a) ≥ 0.

(Vasile Cı̂rtoaje, 1986)
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Solution (by Darij Grinberg). For k = 2, we get the known inequality (a) in P 1.168:

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

We will prove the following more general statement: if f is an increasing nonnegative function
defined on [0,∞), then

E(a, b, c) ≥ 0,

where
E(a, b, c) = a2bf(a)(a− b) + b2cf(b)(b− c) + c2af(c)(c− a).

For f(x) = xk−2, k ≥ 2, we get the original inequality. In order to prove the claimed
generalization, assume that a = max{a, b, c}. There are two cases to consider.

Case 1: a ≥ b ≥ c. Since
f(a) ≥ f(b) ≥ f(c) ≥ 0,

we have

E(a, b, c) ≥ a2bf(c)(a− b) + b2cf(c)(b− c) + c2af(c)(c− a)

= f(c)[a2b(a− b) + b2c(b− c) + c2a(c− a)] ≥ 0.

Case 2: a ≥ c ≥ b. Since
f(a) ≥ f(c) ≥ f(b) ≥ 0,

we have

E(a, b, c) ≥ a2bf(a)(a− b) + b2cf(a)(b− c) + c2af(a)(c− a)

= f(a)[a2b(a− b) + b2c(b− c) + c2a(c− a)] ≥ 0.

The equality holds for a = b = c, and also for a degenerate triangle with a = 0 and b = c (or
any cyclic permutation).

P 1.173. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 1, then

3(ak+1b+ bk+1c+ ck+1a) ≥ (a+ b+ c)(akb+ bkc+ cka).

Solution. For k = 1, the inequality is equivalent to

2(a2b+ b2c+ c2a) ≥ ab2 + bc2 + ca2 + 3abc,

(2c− a)b2 + (2a2 − 3ac− c2)b− ac(a− 2c) ≥ 0.

Assuming that a = min{a, b, c} and making the substitution

b = x+
a+ c

2
,
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this inequality becomes

(2c− a)x2 +

(
x+

3a

4

)
(a− c)2 ≥ 0.

It is true since

4x+ 3a = a+ 4b− 2c = 2(a+ b− c) + (2b− a) > 0.

In order to prove the desired inequality for k > 1, we rewrite it as

akb(2a− b− c) + bkc(2b− c− a) + cka(2c− a− b) ≥ 0.

We will prove that if f is an increasing nonnegative function defined on [0,∞), then E(a, b, c) ≥
0, where

E(a, b, c) = ab(2a− b− c)f(a) + bc(2b− c− a)f(b) + ca(2c− a− b)f(c).

For f(x) = xk−1, k ≥ 1, we get the original inequality. In order to prove this generalization,
assume that a = max{a, b, c}. There are two cases to consider.

Case 1: a ≥ b ≥ c. Since f(a) ≥ f(b) ≥ f(c) ≥ 0, we have

E(a, b, c) ≥ ab(2a− b− c)f(b) + bc(2b− c− a)f(b) + ca(2c− a− b)f(c)

= b[2(a− b)(a− c) + ab− c2]f(b) + ca(2c− a− b)f(c)

≥ b[2(a− b)(a− c) + ab− c2]f(c) + ca(2c− a− b)f(c)

= [2(a2b+ b2c+ c2a)− ab2 − bc2 − ca2 − 3abc]f(c) ≥ 0.

Case 2: a ≥ c ≥ b. Since f(a) ≥ f(c) ≥ f(b) ≥ 0, we have

E(a, b, c) ≥ ab(2a− b− c)f(c) + bc(2b− c− a)f(b) + ca(2c− a− b)f(c)

= a[(c− b)(2c− a) + b(a− b)]f(c) + bc(2b− c− a)f(b).

Since

(c− b)(2c− a) + b(a− b) ≥ (c− b)(b+ c− a) + b(a− b) ≥ 0,

we get

E(a, b, c) ≥ a[(c− b)(2c− a) + b(a− b)]f(b) + bc(2b− c− a)f(b)

= [2(a2b+ b2c+ c2a)− ab2 − bc2 − ca2 − 3abc]f(b) ≥ 0.

The equality holds for a = b = c.

Remark. For k = 1, the inequality has the form

2

(
b

a
+
c

b
+
a

c

)
≥ a

b
+
b

c
+
c

a
+ 3.
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A sharper inequality is the following

3

(
b

a
+
c

b
+
a

c

)
≥ 2

(
a

b
+
b

c
+
c

a

)
+ 3.

Using the substitution

b = x+
a+ c

2
,

this inequality turns into

(3c− 2a)x2 +
(
x+ a− c

4

)
(a− c)2 ≥ 0,

which is true since, on the assumption a = min{a, b, c}, we have 3c− 2a > 0 and

4x+ 4a− c = 2a+ 4b− 3c = 3(a+ b− c) + (b− a) > 0.

P 1.174. Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 4. Prove that

a

3 + b
+

b

3 + c
+

c

3 + d
+

d

3 + a
≥ 1.

Solution. By the Cauchy-Schwarz inequality, we have

∑ a

3 + b
≥ (

∑
a)2∑

a(3 + b)
=

16

12 +
∑
ab
.

Therefore, it suffices to show that

ab+ bc+ cd+ da ≤ 4.

Indeed,

ab+ bc+ cd+ da = (a+ c)(b+ d) ≤
[

(a+ c) + (b+ d)

2

]2
= 2.

The equality occurs for a = b = c = d = 1.

P 1.175. Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 4. Prove that

a

1 + b2
+

b

1 + c2
+

c

1 + d2
+

d

1 + a2
≥ 2.
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Solution. Since
a

1 + b2
= a− ab2

1 + b2
,

the inequality is equivalent to

ab2

1 + b2
+

bc2

1 + c2
+

cd2

1 + d2
+

da2

1 + a2
≤ 2.

Since
ab2

1 + b2
≤ ab2

2b
=
ab

2
,

it suffices to show that
ab+ bc+ cd+ da ≤ 4.

Indeed, we have

ab+ bc+ cd+ da = (a+ c)(b+ d) ≤
[

(a+ c) + (b+ d)

2

]2
= 2.

The equality occurs for a = b = c = d = 1.

P 1.176. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then

a2bc+ b2cd+ c2da+ d2ab ≤ 4.

(Song Yoon Kim, 2006)

Solution. Let (x, y, z, t) be a permutation of (a, b, c, d) such that

x ≥ y ≥ z ≥ t,

hence
xyz ≥ xyt ≥ xzt ≥ yzt.

By the rearrangement inequality, we have

a2bc+ b2cd+ c2da+ d2ab = a · abc+ b · bcd+ c · cda+ d · dab
≤ x · xyz + y · xyt+ z · xzt+ t · yzt
= (xy + zt)(xz + yt).

Consequently, it suffices to show that x+ y + z + t = 4 involves

(xy + zt)(xz + yt) ≤ 4.

Indeed, by the AM-GM inequality, we have

(xy + zt)(xz + yt) ≤ 1

4
(xy + zt+ xz + yt)2 =

1

4
(x+ t)2(y + z)2 ≤ 4,
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because

(x+ t)(y + z) ≤ 1

4
(x+ t+ y + z)2 = 4.

The equality holds for a = b = c = d = 1, and also for a = 2, b = c = 1 and d = 0 (or any
cyclic permutation).

P 1.177. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then

a(b+ c)2 + b(c+ d)2 + c(d+ a)2 + d(a+ b)2 ≤ 16.

Solution (by Vo Quoc Ba Can). Write the inequality as

(a+ b+ c+ d)3 ≥ 4[a(b+ c)2 + b(c+ d)2 + c(d+ a)2 + d(a+ b)2].

Since
(a+ b+ c+ d)2 ≥ 4(a+ b)(c+ d),

we have

(a+ b+ c+ d)3 ≥ 4(a+ b)(c+ d)(a+ b+ c+ d)

= 4(c+ d)(a+ b)2 + 4(a+ b)(c+ d)2.

Therefore, it suffices to show that

(c+ d)(a+ b)2 + (a+ b)(c+ d)2 ≥ a(b+ c)2 + b(c+ d)2 + c(d+ a)2 + d(a+ b)2,

which is equivalent to

c(a+ b)2 + a(c+ d)2 ≥ a(b+ c)2 + c(d+ a)2,

a[(c+ d)2 − (b+ c)2] + c[(a+ b)2 − (d+ a)2] ≥ 0,

(b+ d)(b− d)(c− a) ≥ 0.

Similarly, due to cyclicity, the desired inequality is true if

(c+ a)(c− a)(d− b) ≥ 0.

Since one of the inequalities (b− d)(c− a) ≥ 0 and (c− a)(d− b) ≥ 0 is true, the conclusion
follows. The equality holds for a = c and b = d.

P 1.178. If a, b, c, d are positive real numbers, then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ a

+
d− a
a+ b

≥ 0.
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Solution. We have

a− b
b+ c

+
c− d
d+ a

+ 2 =
a+ c

b+ c
+
a+ c

d+ a

= (a+ c)

(
1

b+ c
+

1

d+ a

)
≥ (a+ c)

4

(b+ c) + (d+ a)

=
4(a+ c)

a+ b+ c+ d
.

Similarly,
b− c
c+ d

+
d− a
a+ b

+ 2 ≥ 4(b+ d)

a+ b+ c+ d
.

Adding these inequalities yields the desired inequality. The equality holds for a = c and
b = d.

Remark. It seems that the following inequality holds for a, b, c, d, e positive real numbers
(Vasile Cı̂rtoaje, AMM, 5, 1998):

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ e

+
d− e
e+ a

+
e− a
a+ b

≥ 0.

The most difficult case (open) is a ≥ b ≥ d ≥ c ≥ e.

P 1.179. If a, b, c, d are positive real numbers, then

(a)
a− b

a+ 2b+ c
+

b− c
b+ 2c+ d

+
c− d

c+ 2d+ a
+

d− a
d+ 2a+ b

≥ 0;

(b)
a

2a+ b+ c
+

b

2b+ c+ d
+

c

2c+ d+ a
+

d

2d+ a+ b
≤ 1.

Solution. (a) Write the inequality as∑(
a− b

a+ 2b+ c
+

1

2

)
≥ 2,

∑ 3a+ c

a+ 2b+ c
≥ 4.

By the Cauchy-Schwarz inequality, we get∑ 3a+ c

a+ 2b+ c
≥ [

∑
(3a+ c)]2∑

(3a+ c)(a+ 2b+ c)

=
16 (
∑
a)2

4 (
∑
a2 + 2

∑
ab+

∑
ac)

=
4 (
∑
a)2

(
∑
a)2

= 4.
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The equality holds for a = b = c = d.

(b) Write the inequality as ∑(
1

2
− a

2a+ b+ c

)
≥ 1,

∑ b+ c

2a+ b+ c
≥ 2.

By the Cauchy-Schwarz inequality, we get∑ b+ c

2a+ b+ c
≥ [

∑
(b+ c)]2∑

(b+ c)(2a+ b+ c)

=
4 (
∑
a)2

2 (
∑
a2 + 2

∑
ab+

∑
ac)

=
2 (
∑
a)2

(
∑
a)2

= 2.

The equality holds for a = b = c = d.

Open problem 1. If a, b, c, d, e are positive real numbers, then

a− b
a+ 2b+ c

+
b− c

b+ 2c+ d
+

c− d
c+ 2d+ e

+
d− e

d+ 2e+ a
+

e− a
e+ 2a+ b

≥ 0.

Open problem 2 (by Ando). If a1, a2, . . . , an (n ≥ 4) are positive real numbers, then

a1
(n− 2)a1 + a2 + a3

+
a2

(n− 2)a2 + a3 + a4
+ · · ·+ an

(n− 2)an + a1 + a2
≤ 1.

P 1.180. If a, b, c, d are positive real numbers such that abcd = 1, then

1

a(a+ b)
+

1

b(b+ c)
+

1

c(c+ d)
+

1

d(d+ a)
≥ 2.

(Vasile Cı̂rtoaje, G. Dospinescu, 2007)

Solution. Making the substitution

a =

√
y

x
, b =

√
z

y
, c =

√
t

z
, d =

√
x

t
,

where x, y, z, t are positive real numbers, the inequality can be rewritten as

x

y +
√
xz

+
y

z +
√
yt

+
z

t+
√
zx

+
t

x+
√
ty
≥ 2.
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Since
2
√
xz ≤ x+ z, 2

√
yt ≤ y + t,

it suffices to show that

x

x+ 2y + z
+

y

y + 2z + t
+

z

z + 2t+ x
+

t

t+ 2x+ y
≥ 1.

By the Cauchy-Schwarz inequality, we have∑ x

z + 2y + z
≥ (

∑
x)2∑

x(x+ 2y + z)
=

(
∑
x)2∑

x2 + 2
∑
xy +

∑
xz

= 1.

The equality holds for a = c =
1

b
=

1

d
.

Open problem 1. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then

1

a21 + a1a2
+

1

a22 + a2a3
+ · · ·+ 1

a2n + ana1
≥ n

2
.

Open problem 2. If a1, a2, . . . , an are positive real numbers, then

1

a21 + a1a2
+

1

a22 + a2a3
+ · · ·+ 1

a2n + ana1
≥ n2

2(a1a2 + a2a3 + · · ·+ ana1)
.

Remark 1. Using the substitution

a1 =
x2
x1
, a2 =

x3
x2
, . . . , an =

x1
xn
,

the inequality in Open problem 1 becomes

x21
x22 + x1x3

+
x22

x23 + x2x4
+ · · ·+ x2n

x21 + xnx2
≥ n

2
,

where x1, x2, . . . , xn > 0. This cyclic inequality is like Shapiro’s inequality

x1
x2 + x3

+
x2

x3 + x4
+ · · ·+ xn

x1 + x2
≥ n

2
,

which is true for even n ≤ 12 and for odd n ≤ 23.

Remark 2. By the AM-GM inequality, we have

a1a2 + a2a3 + · · ·+ ana1 ≥ n n

√
a21a

2
2 · · · a2n.

Thus, the inequality in Open problem 2 is weaker than the inequality in Open problem 1.
Therefore, if Open problem 1 is true, then Open problem 2 is also true.
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P 1.181. If a, b, c, d are positive real numbers, then

1

a(1 + b)
+

1

b(1 + c)
+

1

c(1 + d)
+

1

d(1 + a)
≥ 16

1 + 8
√
abcd

.

(Pham Kim Hung, 2007)

Solution. Let p = 4
√
abcd. Putting

a = p
x2
x1
, b = p

x3
x2
, c = p

x4
x3
, d = p

x1
x4
,

where x1, x2, x3, x4 are positive real numbers, the inequality turns into∑ x1
x2 + px3

≥ 16p

1 + 8p2
.

By the Cauchy-Schwarz inequality, we have∑ x1
x2 + px3

≥ (
∑
x1)

2∑
x1(x2 + px3)

=
(
∑
x1)

2

(x1 + x3)(x2 + x4) + 2p(x1x3 + x2x4)
.

Since

x1x3 + x2x4 ≤
(
x1 + x3

2

)2

+

(
x2 + x4

2

)2

,

it suffices to show that
(A+B)2

2AB + p(A2 +B2)
≥ 8p

1 + 8p2
,

where
A = x1 + x3, B = x2 + x4.

This inequality is equivalent to

A2 +B2 + 2(8p2 − 8p+ 1)AB ≥ 0,

which is true because

A2 +B2 + 2(8p2 − 8p+ 1)AB ≥ 2AB + 2(8p2 − 8p+ 1)AB

= 4(2p− 1)2AB ≥ 0.

The equality holds for a = b = c = d =
1

2
.

P 1.182. If a, b, c, d are nonnegative real numbers such that a2 + b2 + c2 + d2 = 4, then

(a) 3(a+ b+ c+ d) ≥ 2(ab+ bc+ cd+ da) + 4;

(b) a+ b+ c+ d− 4 ≥ (2−
√

2)(ab+ bc+ cd+ da− 4).

(Vasile Cı̂rtoaje, 2006)
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Solution. Let p = a+ b+ c+ d. By the Cauchy-Schwarz inequality

(1 + 1 + 1 + 1)(a2 + b2 + c2 + d2) ≥ (a+ b+ c+ d)2,

we get p ≤ 4, and by the inequality

(a+ b+ c+ d)2 ≥ a2 + b2 + c2 + d2,

we get p ≥ 2. In addition, we have

ab+ bc+ cd+ da = (a+ c)(b+ d) ≤ (a+ c+ b+ d)2

4
=
p2

4
.

(a) It suffices to show that

3p ≥ p2

2
+ 4.

Indeed,

3p− p2

2
− 4 =

(4− p)(p− 2)

2
≥ 0.

The equality holds for a = b = c = d = 1.

(b) It suffices to show that

p− 4 ≥ (2−
√

2)

(
p2

4
− 4

)
.

This inequality is equivalent to

(4− p)(p− 2
√

2) ≥ 0,

which is true for p ≥ 2
√

2. So, it remains to consider the case 2 ≤ p < 2
√

2. Since

2(ab+ bc+ cd+ da) ≤ (a+ b+ c+ d)2 − (a2 + b2 + c2 + d2) = p2 − 4,

it is enough to prove that

p− 4 ≥ (2−
√

2 )

(
p2 − 4

2
− 4

)
.

Write this inequality as
(2 +

√
2 )(p− 4) ≥ p2 − 12,

(2
√

2− p)(p− 2 +
√

2 ) ≥ 0.

The equality holds for a = b = c = d = 1, and also for a = b = 0 and c = d =
√

2 (or any
cyclic permutation).
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P 1.183. Let a, b, c, d be positive real numbers.

(a) If a, b, c, d ≥ 1, then(
a+

1

b

)(
b+

1

c

)(
c+

1

d

)(
d+

1

a

)
≥ (a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
;

(b) If abcd = 1, then(
a+

1

b

)(
b+

1

c

)(
c+

1

d

)(
d+

1

a

)
≤ (a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
.

(Vasile Cı̂rtoaje and Ji Chen, 2011)

Solution. Let

A =(1 + ab)(1 + bc)(1 + cd)(1 + da)

=1 +
∑

ab+
∑

a2bd+ 2abcd+ abcd
∑

ab+ a2b2c2d2

=(1− abcd)2 + 4abcd+ (1 + abcd)
∑

ab+
∑

a2bd

=(1− abcd)2 + 4abcd+ (1 + abcd)(a+ c)(b+ d) +
∑

a2bd

and

B =(a+ b+ c+ d)(abc+ bcd+ cda+ dab)

=4abcd+
∑

a2(bc+ cd+ db)

=4abcd+
∑

a2c(b+ d) +
∑

a2bd

=4abcd+ (ac+ bd)(a+ c)(b+ d) +
∑

a2bd.

Thus,

A−B = (1− abcd)2 + (1 + abcd)(a+ c)(b+ d)− (ac+ bd)(a+ c)(b+ d)

= (1− abcd)2 + (1− ac)(1− bd)(a+ c)(b+ d).

(a) The inequality A ≥ B is clearly true for a, b, c, d ≥ 1. The equality holds for
a = b = c = d = 1.

(b) For abcd = 1, we have

B − A =
1

ac
(1− ac)2(a+ c)(b+ d) ≥ 0.

The equality holds for ac = bd = 1.
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P 1.184. If a, b, c, d are positive real numbers, then(
1 +

a

a+ b

)2

+

(
1 +

b

b+ c

)2

+

(
1 +

c

c+ d

)2

+

(
1 +

d

d+ a

)2

> 7.

(Vasile Cı̂rtoaje, 2012)

First Solution. Assume that d = max{a, b, c, d}. We get the desired inequality by sum-
ming the inequalities(

1 +
a

a+ b

)2

+

(
1 +

b

b+ c

)2

+

(
1 +

c

c+ a

)2

> 6

and (
1 +

c

c+ d

)2

+

(
1 +

d

d+ a

)2

> 1 +

(
1 +

c

c+ a

)2

.

Let

x =
a− b
a+ b

, y =
b− c
b+ c

, z =
c− a
c+ a

.

We have −1 < x, y, z < 1 and
x+ y + z + xyz = 0.

Since
a

a+ b
=
x+ 1

2
,

b

b+ c
=
y + 1

2
,

c

c+ a
=
z + 1

2
,

we can write the first inequality as follows:

(x+ 3)2 + (y + 3)2 + (z + 3)2 > 24,

x2 + y2 + z2 + 6(x+ y + z) + 3 > 0,

x2 + y2 + z2 + 3 > 6xyz.

By the AM-GM inequality, we have

x2 + y2 + z2 + 3 ≥ 6 6
√
x2y2z2 > 6xyz.

Write now the second inequality as(
1 +

c

c+ d

)2

− 1 >

(
c

c+ a
− d

d+ a

)(
2 +

c

c+ a
+

d

d+ a

)
.

Since
c

c+ a
− d

d+ a
=

a(c− d)

(c+ a)(d+ a)
≤ 0,

we have (
1 +

c

c+ d

)2

− 1 > 0 ≥
(

c

c+ a
− d

d+ a

)(
2 +

c

c+ a
+

d

d+ a

)
.
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Second Solution. Using the inequality

(1 + x)2 > 1 + 3x2, 0 < x < 1,

we have (
1 +

a

a+ b

)2

+

(
1 +

b

b+ c

)2

+

(
1 +

c

c+ d

)2

+

(
1 +

d

d+ a

)2

>

> 4 + 3

[(
a

a+ b

)2

+

(
b

b+ c

)2

+

(
c

c+ d

)2

+

(
d

d+ a

)2
]
.

Therefore, it suffices to prove that(
a

a+ b

)2

+

(
b

b+ c

)2

+

(
c

c+ d

)2

+

(
d

d+ a

)2

≥ 1,

which is equivalent to the known inequality in P 1.191 from Volume 2:

1

(1 + x)2
+

1

(1 + y)2
+

1

(1 + z)2
+

1

(1 + t)2
≥ 1,

where

x =
a

b
, y =

b

c
, z =

c

d
, t =

d

a
, xyzt = 1.

P 1.185. If a, b, c, d are positive real numbers, then

a2 − bd
b+ 2c+ d

+
b2 − ca

c+ 2d+ a
+

c2 − db
d+ 2a+ b

+
d2 − ac
a+ 2b+ c

≥ 0.

(Vo Quoc Ba Can, 2009)

Solution. Write the inequality as follows:∑(
4a2 − 4bd

b+ 2c+ d
+ b+ d− 2a

)
≥ 0,

∑ (b− d)2 + 2(a− c)(2a− b− d)

b+ 2c+ d
≥ 0.

It suffices to show that ∑ (a− c)(2a− b− d)

b+ 2c+ d
≥ 0.

This inequality is equivalent to

(a− c)
(

2a− b− d
b+ 2c+ d

− 2c− d− b
d+ 2a+ b

)
+ (b− d)

(
2b− c− a
c+ 2d+ a

− 2d− a− c
a+ 2b+ c

)
≥ 0,
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which can be written as

(a− c)(a2 − c2)
(b+ 2c+ d)(d+ 2a+ b)

+
(b− d)(b2 − d2)

(c+ 2d+ a)(a+ 2b+ c)
≥ 0.

The equality occurs for a = c and b = d.

P 1.186. If a, b, c, d are positive real numbers such that a ≤ b ≤ c ≤ d, then√
2a

a+ b
+

√
2b

b+ c
+

√
2c

c+ d
+

√
2d

d+ a
≤ 4.

(Vasile Cı̂rtoaje, 2009)

Solution. According to the inequality in P 1.74, we have√
2a

a+ b
+

√
2b

b+ c
+

√
2c

c+ a
≤ 3.

Therefore, it suffices to show that√
2c

c+ d
+

√
2d

d+ a
≤ 1 +

√
2c

c+ a
.

By squaring, this inequality becomes

2c

c+ d
+

2d

d+ a
+ 2

√
4cd

(c+ d)(d+ a)
≤ 1 +

2c

c+ a
+ 2

√
2c

c+ a
.

We can get it by summing the inequalities

2c

c+ d
+

2d

d+ a
≤ 1 +

2c

c+ a
,

2

√
4cd

(c+ d)(d+ a)
≤ 2

√
2c

c+ a
.

The former inequality is true since

2c

c+ d
+

2d

d+ a
− 1− 2c

c+ a
=

(a− d)(d− c)(c− a)

(c+ d)(d+ a)(a+ c)
≤ 0,

while the second inequality reduces to

c(a− d)(d− c) ≤ 0.

The equality holds for a = b = c = d.
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P 1.187. Let a, b, c, d be nonnegative real numbers, and let

x =
a

b+ c
, y =

b

c+ d
, z =

c

d+ a
, t =

d

a+ b
.

Prove that

(a)
√
xz +

√
yt ≤ 1;

(b) x+ y + z + t+ 4(xz + yt) ≥ 4.

(Vasile Cı̂rtoaje, 2004)

Solution. (a) Using the Cauchy-Schwarz inequality, we have

√
xz +

√
yt =

√
ac√

(b+ c)(d+ a)
+

√
bd√

(c+ d)(a+ b)

≤
√
ac

√
ac+

√
bd

+

√
bd

√
ac+

√
bd

= 1.

The equality holds for a = b = c = d, for a = c = 0, and for b = d = 0

(b) Write the inequality as
A+B ≥ 6,

where

A = x+ z + 4xz + 1 =
(a+ b)(c+ d) + (a+ c)2 + ab+ 2ac+ cd

(b+ c)(d+ a)

=
(a+ b)(c+ d)

(b+ c)(d+ a)
+

(a+ c)2

(b+ c)(d+ a)
+

a

d+ a
+

c

b+ c
,

B = y + t+ 4yt+ 1 =
(b+ c)(d+ a)

(c+ d)(a+ b)
+

(b+ d)2

(c+ d)(a+ b)
+

b

a+ b
+

d

c+ d
.

Since
(a+ b)(c+ d)

(b+ c)(d+ a)
+

(b+ c)(d+ a)

(c+ d)(a+ b)
≥ 2,

it suffices to show that

(a+ c)2

(b+ c)(d+ a)
+

(b+ d)2

(c+ d)(a+ b)
+
∑ a

d+ a
≥ 4.

By the Cauchy-Schwarz inequality, we have

(a+ c)2

(b+ c)(d+ a)
+

(b+ d)2

(c+ d)(a+ b)
≥ (a+ b+ c+ d)2

C
,

∑ a

d+ a
≥ (a+ b+ c+ d)2

D
,



260 Vasile Ĉırtoaje

where
C = (b+ c)(d+ a) + (c+ d)(a+ b),

D =
∑

a(d+ a) = a2 + b2 + c2 + d2 + ab+ bc+ cd+ da,

C +D = (a+ b+ c+ d)2.

Thus, it is enough to show that

(C +D)

(
1

C
+

1

D

)
≥ 4,

which is clearly true. The equality holds for a = b = c = d.

P 1.188. If a, b, c, d are nonnegative real numbers, then(
1 +

2a

b+ c

)(
1 +

2b

c+ d

)(
1 +

2c

d+ a

)(
1 +

2d

a+ b

)
≥ 9.

(Vasile Cı̂rtoaje, 2004)

Solution. We can rewrite the inequality as(
1 +

a+ c

a+ b

)(
1 +

a+ c

c+ d

)(
1 +

b+ d

b+ c

)(
1 +

b+ d

d+ a

)
≥ 9.

Using the Cauchy-Schwarz inequality and the AM-GM inequality yields(
1 +

a+ c

a+ b

)(
1 +

a+ c

c+ d

)
≥

[
1 +

a+ c√
(a+ b)(c+ d)

]2
≥
(

1 +
2a+ 2c

a+ b+ c+ d

)2

,

(
1 +

b+ d

b+ c

)(
1 +

b+ d

d+ a

)
≥

[
1 +

b+ d√
(b+ c)(d+ a)

]2
≥
(

1 +
2b+ 2d

a+ b+ c+ d

)2

.

Thus, it suffices to show that(
1 +

2a+ 2c

a+ b+ c+ d

)(
1 +

2b+ 2d

a+ b+ c+ d

)
≥ 3.

This is equivalent to the obvious inequality

4(a+ c)(b+ d)

(a+ b+ c+ d)2
≥ 0.

The equality holds for a = c = 0 and b = d, as well as for b = d = 0 and a = c.
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P 1.189. Let a, b, c, d be nonnegative real numbers. If k > 0, then(
1 +

ka

b+ c

)(
1 +

kb

c+ d

)(
1 +

kc

d+ a

)(
1 +

kd

a+ b

)
≥ (1 + k)2.

(Vasile Cı̂rtoaje, 2004)

Solution. Let us denote

x =
a

b+ c
, y =

b

c+ d
, z =

c

d+ a
, t =

d

a+ b
.

Since ∏
(1 + kx) ≥ 1 + k(x+ y + z + t) + k2(xy + yz + zt+ tx+ xz + yt),

it suffices to show that
x+ y + z + t ≥ 2

and
xy + yz + zt+ tx+ xz + yt ≥ 1.

The inequality x + y + z + t ≥ 2 is the well-known Shapiro’s inequality for 4 positive real
numbers. This can be proved by the Cauchy-Schwarz inequality, as follows:

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ (a+ b+ c+ d)2

a(b+ c) + b(c+ d) + c(d+ a) + d(a+ b)
≥ 2.

The right inequality reduces to the obvious inequality

(a− c)2 + (b− d)2 ≥ 0.

To prove the inequality xy + yz + zt+ tx+ xz + yt ≥ 1, we will use the inequalities

x+ z

2
≥ xz,

y + t

2
≥ yt,

and the identity
xz(1 + y + t) + yt(1 + x+ z) = 1.

If these are true, then

xy + yz + zt+ tx+ xz + yt =
x+ z

2
(y + t) +

y + t

2
(x+ z) + xz + yt

≥ xz(y + t) + yt(x+ z) + xz + yt

= xz(1 + y + t) + yt(1 + x+ z) = 1.

We have
x+ z

2
− xz =

bc+ da+ (a− c)2

2(b+ c)(d+ a)
≥ 0
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and
y + t

2
− yt =

ab+ cd+ (b− d)2

2(a+ b)(c+ d)
≥ 0.

To prove the identity above, we rewrite it as∑
xyz + xz + yt = 1,

and see that ∑
xyz =

∑
abc(a+ b)

A
=

∑
a2bc+

∑
a2bd

A
and

xz + yt =
ac(a+ b)(c+ d) + bd(b+ c)(d+ a)

A
=

∑
a2cd+ (ac+ bd)2

A
,

where
A =

∏
(a+ b) =

∑
a2bc+

∑
a2bd+

∑
a2cd+ (ac+ bd)2.

Thus, the proof is completed. The equality holds for a = c = 0 and b = d, as well as for
b = d = 0 and a = c.

Remark. For k = 2, we get the inequality in P 1.188. For k = 1, we get the following
known inequality

(a+ b+ c)(b+ c+ d)(c+ d+ a)(d+ a+ b) ≥ 4(a+ b)(b+ c)(c+ d)(d+ a).

A proof of this inequality starts from the inequalities

(a+ b+ c)2 ≥ (2a+ b)(2c+ b)

and
(2a+ b)(2b+ a) ≥ 2(a+ b)2.

We have ∏
(a+ b+ c)2 ≥

∏
(2a+ b) ·

∏
(2c+ b)

=
∏

(2a+ b)(2b+ a)

≥ 24
∏

(a+ b)2,

hence ∏
(a+ b+ c) ≥ 4

∏
(a+ b).

P 1.190. If a, b, c, d are positive real numbers such that a+ b+ c+ d = 4, then

1

ab
+

1

bc
+

1

cd
+

1

da
≥ a2 + b2 + c2 + d2.

(Vasile Cı̂rtoaje, 2007)
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Solution. Write the inequality as

(a+ c)(b+ d) ≥ abcd(a2 + b2 + c2 + d2).

From (a− c)4 ≥ 0 and (b− d)4 ≥ 0, we get

(a+ c)4 ≥ 8ac(a2 + c2), (b+ d)4 ≥ 8bd(b2 + d2),

hence
bd(a+ c)4 + ac(b+ d)4 ≥ 8abcd(a2 + b2 + c2 + d2).

Therefore, it suffices to show that

8(a+ c)(b+ d) ≥ bd(a+ c)4 + ac(b+ d)4.

Since 4bd ≤ (b+ d)2 and 4ac ≤ (a+ c)2, we only need to show that

32(a+ c)(b+ d) ≥ (b+ d)2(a+ c)4 + (a+ c)2(b+ d)4.

Denoting a+ c = 2x and b+ d = 2y, this inequality is equivalent to

2 ≥ xy(x2 + y2),

(x+ y)4 ≥ 8xy(x2 + y2),

(x− y)4 ≥ 0.

The equality occurs for a = b = c = d = 1.

P 1.191. If a, b, c, d are positive real numbers, then

a2

(a+ b+ c)2
+

b2

(b+ c+ d)2
+

c2

(c+ d+ a)2
+

d2

(d+ a+ b)2
≥ 4

9
.

(Pham Kim Hung, 2006)

First Solution. By Hölder’s inequality, we have

∑ a2

(a+ b+ c)2
≥

(∑
a4/3

)3
[
∑
a(a+ b+ c)]2

.

Since ∑
a(a+ b+ c) = (a+ c)2 + (b+ d)2 + (a+ c)(b+ d)

and ∑
a4/3 =

(
a4/3 + c4/3

)
+
(
b4/3 + d4/3

)
≥ 2

(
a+ c

2

)4/3

+ 2

(
b+ d

2

)4/3

,
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it suffices to show that

9
[
(a+ c)4/3 + (b+ d)4/3

]3 ≥ 8[(a+ c)2 + (b+ d)2 + (a+ c)(b+ d)]2.

Due to homogeneity, we may assume that b+d = 1. Putting a+ c = t3, t > 0, the inequality
becomes

9(t4 + 1)3 ≥ 8(t6 + 1 + t3)2,

9

(
t2 +

1

t2

)3

≥ 8

(
t3 +

1

t3
+ 1

)2

.

Setting

x = t+
1

t
, x ≥ 2,

the inequality turns into
9(x2 − 2)3 ≥ 8(x3 − 3x+ 1)2,

which is equivalent to

(x− 2)2(x4 + 4x3 + 6x2 − 8x− 20) ≥ 0.

This is true since

x4 + 4x3 + 6x2 − 8x− 20 = x4 + 4x2(x− 2) + 4x(x− 2) + 10(x2 − 2) > 0.

Thus, the proof is completed. The equality holds for a = b = c = d.

Second Solution. Due to homogeneity, we may assume that

a+ b+ c+ d = 1.

In this case, we write the inequality as(
a

1− d

)2

+

(
b

1− a

)2

+

(
c

1− b

)2

+

(
d

1− c

)2

≥ 4

9
.

Let (x, y, z, t) be a permutation of (a, b, c, d) such that

x ≥ y ≥ z ≥ t.

Since
1

(1− t)2
≤ 1

(1− z)2
≤ 1

(1− y)2
≤ 1

(1− x)2
,

by the rearrangement inequality, we have(
x

1− t

)2

+

(
y

1− z

)2

+

(
z

1− y

)2

+

(
t

1− x

)2

≤

≤
(

a

1− d

)2

+

(
b

1− a

)2

+

(
c

1− b

)2

+

(
d

1− c

)2

.
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Therefore, it suffices to show that x+ y + z + t = 1 involves

U + V ≥ 4

9
,

where

U =

(
x

1− t

)2

+

(
t

1− x

)2

,

V =

(
y

1− z

)2

+

(
z

1− y

)2

.

Let
s = x+ t, p = xt, s ∈ (0, 1),

Since
x2 + t2 = s2 − 2p, x3 + t3 = s3 − 3ps, x4 + t4 = s4 − 4ps2 + 2p2,

we get

U =
x2 + t2 − 2(x3 + t3) + x4 + t4

(1− s+ p)2

=
2p2 − 2(1− s)(1− 2s)p+ s2(1− s)2

p2 + 2(1− s)p+ (1− s)2
,

(2− U)p2 − 2(1− s)(1− 2s+ U)p+ (1− s)2(s2 − U) = 0.

The quadratic trinomial in p has the discriminant

D = (1− s)2[(1− 2s+ U)2 − (2− U)(s2 − U)].

From the necessary condition D ≥ 0, we get

U ≥ 4s− 1− 2s2

(2− s)2
.

Analogously,

V ≥ 4r − 1− 2r2

(2− r)2
,

where r = y + z. Taking into account that

s+ r = 1,

we get

U + V ≥ 4s− 1− 2s2

(2− s)2
+

4r − 1− 2r2

(2− r)2

=
4s− 1− 2s2

(1 + r)2
+

4r − 1− 2r2

(1 + s)2

=
5(s2 + r2)− 2(s4 + r4)

(2 + sr)2

=
5(s2 + r2)− 2(s2 + r2)2 + 4s2r2

(2 + sr)2
,
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hence

U + V − 4

9
≥ 5(s2 + r2)− 2(s2 + r2)2 + 4s2r2

(2 + sr)2
− 4

9

=
5(s2 + r2)− 2(s2 + r2)2

(2 + sr)2
+

2(1− 4sr)2 − 18

9(2 + sr)2

≥ 5(s2 + r2)− 2(s2 + r2)2 − 2

(2 + sr)2

=
(2− s2 − r2)(2s2 + 2r2 − 1)

(2 + sr)2
.

Thus, we need to show that (2− s2 − r2)(2s2 + 2r2 − 1) ≥ 0. This is true since since

2− s2 − r2 > 2− (s+ r)2 = 1,

2s2 + 2r2 − 1 ≥ (s+ r)2 − 1 = 0.

P 1.192. If a, b, c, d are positive real numbers such that a+ b+ c+ d = 3, then

ab(b+ c) + bc(c+ d) + cd(d+ a) + da(a+ b) ≤ 4.

(Pham Kim Hung, 2007)

Solution. Write the inequality as∑
ab2 +

∑
abc ≤ 4,

(ab2 + cd2 + bcd+ dab) + (bc2 + da2 + abc+ cda) ≤ 4,

(b+ d)(ab+ cd) + (a+ c)(bc+ da) ≤ 4.

Without loss of generality, assume that a+ c ≤ b+ d. Since

(ab+ cd) + (bc+ da) = (a+ c)(b+ d),

we can rewrite the inequality as

(a+ c)(b+ d)2 + (a+ c− b− d)(bc+ da) ≤ 4.

Since a+ c− b− d ≤ 0, it suffices to show that

(a+ c)(b+ d)2 ≤ 4.

Indeed, by the AM-GM inequality, we have

(a+ c)

(
b+ d

2

)(
b+ d

2

)
≤ 1

27

(
a+ c+

b+ d

2
+
b+ d

2

)3

= 1.

The equality holds for a = b = 0, c = 1 and d = 2 (or any cyclic permutation).
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P 1.193. If a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c+ d = 2, then

ab(b+ c) + bc(c+ d) + cd(d+ a) + da(a+ b) ≤ 1.

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality as∑
ab2 +

∑
abc ≤ 1.

Since∑
ab2 −

∑
a2b = (ab2 + bc2 + ca2 − a2b− b2c− c2a) + (cd2 + da2 + ac2 − c2d− d2a− a2c)

= (a− b)(b− c)(c− a) + (c− d)(d− a)(a− c) ≤ 0,

it suffices to show that ∑
ab2 +

∑
a2b+ 2

∑
abc ≤ 2.

Indeed, ∑
ab2 +

∑
a2b+ 2

∑
abc =

∑
(ab2 + a2b+ abc+ abd)

= (a+ b+ c+ d)
∑

ab

= 2(a+ c)(b+ d)

≤ 2

[
(a+ c) + (b+ d)

2

]2
= 2.

The equality holds for a = b = t and c = d = 1− t, where t ∈
[

1

2
, 1

]
.

P 1.194. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 4. If k ≥ 37

27
,

then
ab(b+ kc) + bc(c+ kd) + cd(d+ ka) + da(a+ kb) ≤ 4(1 + k).

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality in the homogeneous form

ab(b+ kc) + bc(c+ kd) + cd(d+ ka) + da(a+ kb) ≤ (1 + k)(a+ b+ c+ d)3

16
.

Assume that d = min{a, b, c, d} and use the substitution

a = d+ x, b = d+ y, c = d+ z,
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where x, y, z ≥ 0. The inequality can be restated as

4Ad+B ≥ 0,

where

A = (3k − 1)(x2 + y2 + z2)− 2(k + 1)y(x+ z) + (6− 2k)xz,

B = (1 + k)(x+ y + z)3 − 16(xy2 + yz2 + kxyz).

It suffices to show that A ≥ 0 and B ≥ 0. We have

A = (3k − 1)y2 + (3k − 1)(x+ z)2 − 2(k + 1)y(x+ z)− 8(k − 1)xz

≥ (3k − 1)y2 + (3k − 1)(x+ z)2 − 2(k + 1)y(x+ z)− 2(k − 1)(x+ z)2

= (3k − 1)y2 + (k + 1)(x+ z)2 − 2(k + 1)y(x+ z)

≥ 2
√

(3k − 1)(k + 1)y(x+ z)− 2(k + 1)y(x+ z)

= 2
√
k + 1

(√
3k − 1−

√
k + 1

)
y(x+ z) ≥ 0.

Since

(x+ y + z)3 − 16xyz ≥ 0,

the inequality B ≥ 0 holds for all k ≥ 37

27
if it holds for k =

37

27
. In this particular case, the

inequality B ≥ 0 can be written as

4

(
x+ y + z

3

)3

≥ xy2 + yz2 +
37

27
xyz.

Actually, the following sharper inequality holds (see P 2.24)

4

(
x+ y + z

3

)3

≥ xy2 + yz2 +
3

2
xyz.

Thus, the proof is completed. The equality holds for a = b = c = d = 1. If k =
37

27
, then the

equality also holds for a =
4

3
, b =

8

3
and c = d = 0 (or any cyclic permutation).

P 1.195. If a, b, c, d are nonnegative real numbers such that a+ b+ c+ d = 4, then√
3a

b+ 2
+

√
3b

c+ 2
+

√
3c

d+ 2
+

√
3d

a+ 2
≤ 4.

(Vasile Cı̂rtoaje, 2020)
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Solution. (after an idea of Michael Rozenberg) Let (a1, a2, a3, a4) be an increasing permu-
tation of (a, b, c, d). Since the sequences

(a1, a2, a3, a4) and

(
1

a4 + 2
,

1

a3 + 2
,

1

a2 + 2
,

1

a1 + 2

)
are increasing, according to the rearrangement inequality, we have√

3a

b+ 2
+

√
3b

c+ 2
+

√
3c

d+ 2
+

√
3d

a+ 2
≤

≤
√

3a1
a4 + 2

+

√
3a2
a3 + 2

+

√
3a3
a2 + 2

+

√
3a4
a1 + 2

= A+B,

where

A =

√
3a1
a4 + 2

+

√
3a4
a1 + 2

, B =

√
3a2
a3 + 2

+ +

√
3a3
a2 + 2

.

We need to show that A+B ≤ 2. According to Lemma below, we have

A+B ≤ a1 + a4 + 4

3
+
a2 + a3 + 4

3
= 4.

The equality holds for a = b = c = d = 1.

Lemma. If a, b are nonnegative real numbers, then√
3a

b+ 2
+

√
3b

a+ 2
≤ a+ b+ 4

3
.

Proof. Use the substitution

x =

√
3a

b+ 2
, y =

√
3b

a+ 2
,

which yields xy < 3 and

a =
2x2(y2 + 3)

9− x2y2
, b =

2y2(x2 + 3)

9− x2y2
, a+ b =

4x2y2 + 6(x2 + y2)

9− x2y2
.

Thus, we need to show that

3(x+ y) ≤ 4x2y2 + 6(x2 + y2)

9− x2y2
+ 4,

which is equivalent to

2(x+ y)2 − (9− x2y2)(x+ y) + 12− 4xy ≥ 0,(
4x+ 4y − 9 + x2y2

)2
+ 15− 32xy + 18x2y2 − x4y4 ≥ 0,(

4x+ 4y − 9 + x2y2
)2

+ (1− xy)2(3− xy)(5 + xy) ≥ 0.

The equality holds for a = b = 1.
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P 1.196. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d. Prove that

2

(
a

b
+
b

c
+
c

d
+
d

a

)
≥ 4 +

a

c
+
c

a
+
b

d
+
d

b
.

(Vasile Cı̂rtoaje, 2012)

First Solution. Let

E(a, b, c, d) = 2

(
a

b
+
b

c
+
c

d
+
d

a

)
− 4− a

c
− c

a
− b

d
− d

b
.

We show that
E(a, b, c, d) ≥ E(b, b, c, d) ≥ E(b, b, c, c).

We have

E(a, b, c, d)− E(b, b, c, d) = (b− a)

(
1

c
+

2d

ab
− 2

b
− c

ab

)
≥ 0,

since
1

c
+

2d

ab
− 2

b
− c

ab
≥ 1

c
+

2c

ab
− 2

b
− c

ab

=
1

c
+

c

ab
− 2

b
≥ 1

c
+

c

b2
− 2

b
=

(b− c)2

b2c
≥ 0.

Also,

E(b, b, c, d)− E(b, b, c, c) = (d− c)
(

1

b
− 2c− b

cd

)
≥ 0,

since
1

b
− 2c− b

cd
≥ 1

b
− 2c− b

c2
=

(b− c)2

bc2
≥ 0.

Because E(b, b, c, c) = 0, the proof is completed. The equality holds for a = b and c = d.

Second Solution. Using the substitution

x =
a

b
, y =

b

c
, z =

c

d
, 0 < x, y, z ≤ 1,

the inequality becomes as follows:

2

(
x+ y + z +

1

xyz

)
≥ 4 + xy +

1

xy
+ yz +

1

yz
,

y(2− x− z) +
1

y

(
2

xz
− 1

x
− 1

z

)
− 2(2− x− z) ≥ 0,

(2− x− z)

(
y +

1

xyz
− 2

)
≥ 0.

The last inequality is true since 2− x− y ≥ 0 and

y +
1

xyz
− 2 ≥ y +

1

y
− 2 ≥ 0.
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P 1.197. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that
a

b
+
b

c
+
c

d
+
d

a
≥ ab+ bc+ cd+ da.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the inequality as follows:

a2cd+ b2da+ c2ab+ d2bc ≥ ab+ bc+ cd+ da,

ac(ad+ bc) + bd(ab+ cd) ≥ (ad+ bc) + (ab+ cd),

(ac− 1)(ad+ bc) + (bd− 1)(ab+ cd) ≥ 0.

Since

ac− 1 =
1

bd
− 1 ≥ 1− bd

and
bd ≥

√
abcd = 1,

we have

(ac− 1)(ad+ bc) + (bd− 1)(ab+ cd) ≥ (1− bd)(ad+ bc) + (bd− 1)(ab+ cd)

= (bd− 1)(a− c)(b− d) ≥ 0.

The equality holds for a = b =
1

c
=

1

d
≤ 1.

P 1.198. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that

4 +
a

b
+
b

c
+
c

d
+
d

a
≥ 2(a+ b+ c+ d).

(Vasile Cı̂rtoaje, 2012)

Solution. Making the substitution

x = 4

√
a

b
, y =

√
b

c
, z = 4

√
c

d
, 0 < x, y, z ≤ 1,

we need to show that E(x, y, z) ≥ 0, where

E(x, y, z) = 4 + x4 + z4 + y2 +
1

x4y2z4
− 2

(
x3yz +

yz

x
+

z

xy
+

1

xyz3

)
.
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We will show that

E(x, y, z) ≥ E(x, 1, z) ≥ E(x, 1, 1) ≥ 0. (*)

The left inequality is equivalent to

(1− y)E1(x, y, z) ≥ 0,

where

E1(x, y, z) = −1− y +
1 + y

x4y2z4
+ 2

(
x3z +

z

x

)
− 2

y

(
z

x
+

1

xz3

)
.

To prove it, we show that

E1(x, y, z) ≥ E1(x, 1, z) ≥ 0.

We have

E1(x, 1, z) = 2(1− x3z)

(
1

x4z4
− 1

)
≥ 0.

Since

E1(x, y, z − E1(x, 1, z) = (1− y)E2(x, y, z),

where

E2(x, y, z) = 1 +
1 + 2y

x4y2z4
− 2

y

(
z

x
+

1

xz3

)
,

we need to show E2(x, y, z) ≥ 0. Indeed,

E2(x, y, z) = 1 +
1

x4y2z4
− 2

y

(
z

x
+

1

xz3
− 1

x4z4

)
≥ 2

x2yz2
− 2

y

(
z

x
+

1

xz3
− 1

x4z4

)
=

2

xyz

(
1

xz
− z2 − 1

z2
+

1

x3z3

)
≥ 2

xyz

(
1

z
− z2 − 1

z2
+

1

z3

)
=

2

xyz

(
1− z3

z
+

1− z
z3

)
≥ 0.

The middle inequality in (*) is equivalent to

(1− z)F (x, z) ≥ 0,

where

F (x, z) = (1 + z + z2 + z3)

(
1

x4z4
− 1

)
+ 2

(
x3 +

2

x

)
− 1 + z + z2

xz
.
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It is true since

F (x, z) >
1

x4z4
− 1 +

3

x
− 1 + z + z2

xz

≥ 1

xz
− 1 +

3

x
− 1 + z + z2

xz

=
2− x− z

x
≥ 0.

The right inequality in (*) is also true since

x4E(x, 1, 1) = x8 − 2x7 + 6x4 − 6x3 + 1

= (x− 1)2(x6 − x4 − 2x3 + 3x2 + 2x+ 1)

≥ (x− 1)2(x6 − x4 − 2x3 + 2x2)

= x2(x− 1)4(x2 + 2x+ 2) ≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1.

P 1.199. Let A = {a1, a2, a3, a4} be a set of real numbers such that

a1 + a2 + a3 + a4 = 0.

Prove that there exists a permutation B = {a, b, c, d} of A such that

a2 + b2 + c2 + d2 + 3(ab+ bc+ cd+ da) ≥ 0.

Solution. Write the desired inequality as

a2 + b2 + c2 + d2 + 3(ab+ bc+ cd+ da) ≥ (a+ b+ c+ d)2,

ab+ bc+ cd+ da ≥ 2(ac+ bd),

(ab+ cd− ac− bd) + (bc+ da− ac− bd) ≥ 0.

(a− d)(b− c) + (a− b)(d− c) ≥ 0.

Clearly, this inequality is true for a ≤ b ≤ d ≤ c. The equality occurs when A has three
equal elements.

P 1.200. If a, b, c, d, e are positive real numbers, then

a

a+ 2b+ 2c
+

b

b+ 2c+ 2d
+

c

c+ 2d+ 2e
+

d

d+ 2e+ 2a
+

e

e+ 2a+ 2b
≥ 1.



274 Vasile Ĉırtoaje

Solution. The inequality follows by applying the Cauchy-Schwarz inequality:∑ a

a+ 2b+ 2c
≥ (

∑
a)2∑

a(a+ 2b+ 2c)
=

(
∑
a)2∑

a2 + 2
∑
ab+ 2

∑
ac

= 1.

The equality holds for a = b = c = d = e.

P 1.201. Let a, b, c, d, e be positive real numbers such that a+ b+ c+ d+ e = 5. Prove that

a

b
+
b

c
+
c

d
+
d

e
+
e

a
≤ 1 +

4

abcde
.

Solution. Let (x, y, z, t, u) be a permutation of (a, b, c, d, e) such that x ≥ y ≥ z ≥ t ≥ u.
By the rearrangement inequality, we have

a

b
+
b

c
+
c

d
+
d

e
+
e

a
≤ x

u
+
y

t
+
z

z
+
t

y
+
u

x

=
(x
u

+
u

x
+ 2
)

+

(
y

t
+
t

y
+ 2

)
− 3

= 4(p+ q)− 3,

where

p =
1

4

(x
u

+
u

x
+ 2
)
≥ 1, q =

1

4

(
y

t
+
t

y
+ 2

)
≥ 1.

From (p− 1)(q − 1) ≥ 0, we get
p+ q ≤ 1 + pq,

4(p+ q)− 3 ≤ 1 + 4pq,

hence
a

b
+
b

c
+
c

d
+
d

e
+
e

a
≤ 1 + 4pq.

Thus, it suffices to show that

pq ≤ 1

xyztu
,

which is is equivalent to

z

(
x+ u

2

)2(
y + t

2

)2

≤ 1.

Indeed, by the AM-GM inequality, we get

z

(
x+ u

2

)2(
y + t

2

)2

≤

z +
x+ u

2
+
x+ u

2
+
y + t

2
+
y + t

2
5


5

= 1.
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The equality holds for a = b = c = d = e = 1.

Remark. Similarly, we can prove the following generalization (Michael Rozenberg):

• If a1, a2, . . . , an are positive real numbers such that a1 + a2 + · · ·+ an = n, then

n− 4 +
4

a1a2 · · · an
≥ a1
a2

+
a2
a3

+ · · ·+ an
a1
.

P 1.202. If a, b, c, d, e are real numbers such that a+ b+ c+ d+ e = 0, then

−
√

5− 1

4
≤ ab+ bc+ cd+ de+ ea

a2 + b2 + c2 + d2 + e2
≤
√

5− 1

4
.

Solution. From
(a+ b+ c+ d+ e)2 = 0,

we get ∑
a2 + 2

∑
ab+ 2

∑
ac = 0.

Therefore, for any real k, we have∑
a2 + (2k + 2)

∑
ab =

∑
2a(kb− c).

By the AM-GM inequality, we get

2a(kb− c) ≤ a2 + (kb− c)2,

hence ∑
a2 + (2k + 2)

∑
ab ≤

∑
[a2 + (kb− c)2] = (k2 + 2)

∑
a2 − 2k

∑
ab,

which is equivalent to ∑
a2 ≥ 2(2k + 1)

k2 + 1

∑
ab.

Choosing k =
−1−

√
5

2
and k =

−1 +
√

5

2
, we get the desired inequalities. The equality in

both inequalities occurs when

a = kb− c, b = kc− d, c = kd− e, d = ke− a, e = ka− b;

that is, when

a = x, b = y, c = −x+ ky, d = −k(x+ y), e = kx− y,

where x and y are real numbers.
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P 1.203. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that

a2

b+ c+ d
+

b2

c+ d+ e
+

c2

d+ e+ a
+

d2

e+ a+ b
+

e2

a+ b+ c
≥ 5

3
.

(Pham Van Thuan, 2005)

Solution. By the AM-GM Inequality, we get

2(b+ c+ d) ≤ (b2 + 1) + (c2 + 1) + (d2 + 1) = 8− a2 − e2.

Therefore, it suffices to show that

∑ a2

8− a2 − e2
≥ 5

6
.

By the Cauchy-Schwarz Inequality, we have

∑ a2

8− a2 − e2
≥

(∑
a2
)2

∑
a2(8− a2 − e2)

=
25

40−
∑

a4 −
∑

a2e2

=
50

80−
∑

(a2 + e2)2
≥ 50

80− 1

5

[∑
(a2 + e2)

]2 =
5

6
.

The equality holds for a = b = c = d = e = 1.

P 1.204. Let a, b, c, d, e be nonnegative real numbers such that a+ b+ c+ d+ e = 5. Prove
that

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + e2)(e2 + a2) ≤ 729

2
.

(Vasile Cı̂rtoaje, 2007)

Solution. Write the inequality as

E(a, b, c, d, e) ≤ 0,

and, without loss of generality, assume that

e = min{a, b, c, d, e}.
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We claim that it suffices to prove the desired inequality for the case e = 0. To prove this, it
suffices to show that

E(a, b, c, d, e) ≤ E
(
a+

e

2
, b, c, d+

e

2
, 0
)
, (*)

which is equivalent to
(a2 + b2)(c2 + d2)(d2 + e2)(e2 + a2) ≤

≤
[(
a+

e

2

)2
+ b2

] [
c2 +

(
d+

e

2

)2](
d+

e

2

)2 (
a+

e

2

)2
.

Since

a2 + b2 ≤
(
a+

e

2

)2
+ b2,

c2 + d2 ≤ c2 +
(
d+

e

2

)2
,

d2 + e2 ≤ d2 + de ≤
(
d+

e

2

)2
,

e2 + a2 ≤ ae+ a2 ≤
(
a+

e

2

)2
,

the conclusion follows. Thus, we only need to show that

a+ b+ c+ d = 5

involves
E(a, b, c, d, 0) ≤ 0,

where

E(a, b, c, d, 0) = a2d2(a2 + b2)(b2 + c2)(c2 + d2)− 729

2
.

Without loss of generality, assume that

c = min{b, c}.

We claim that it suffices to prove the inequality E(a, b, c, d, 0) ≤ 0 for the case c = 0. To
prove this, it suffices to show that

E(a, b, c, d, 0) ≤ E
(
a, b+

c

2
, 0, d+

c

2
, 0
)
, (**)

which is equivalent to

d2(a2 + b2)(b2 + c2)(c2 + d2) ≤
(
d+

c

2

)2 [
a2 +

(
b+

c

2

)2](
b+

c

2

)2 (
d+

c

2

)2
.

This is true since

d2(c2 + d2) ≤
(
d+

c

2

)4
,
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a2 + b2 ≤ a2 +
(
b+

c

2

)2
,

b2 + c2 ≤ b2 + bc ≤
(
b+

c

2

)2
.

Thus, we only need to show that
a+ b+ d = 5

involves
E(a, b, 0, d, 0) ≤ 0,

where

E(a, b, 0, d, 0) = a2b2d4(a2 + b2)− 729

2
.

We will show that

E(a, b, 0, d, 0) ≤ E

(
a+ b

2
,
a+ b

2
, 0, d, 0

)
≤ 0. (***)

The left inequality is true if
32a2b2(a2 + b2) ≤ (a+ b)6.

Indeed, we have

(a+ b)6 − 32a2b2(a2 + b2) ≥ 4ab(a+ b)4 − 32a2b2(a2 + b2) = 4ab(a− b)4 ≥ 0.

To prove the right inequality, denote

u =
a+ b

2
.

We need to show that
2u+ d = 5

implies
E(u, u, 0, d, 0) ≤ 0;

that is,

u6d4 ≤ 729

4
,

u3d2 ≤ 27

2
.

By the AM-GM inequality, we have

5 =
2u

3
+

2u

3
+

2u

3
+
d

2
+
d

2
≥ 5

5

√(
2u

3

)3(
t

2

)2

,

from which the conclusion follows. The equality holds for a = b =
3

2
, c = 0, d = 2 and e = 0

(or any cyclic permutation).
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P 1.205. If a, b, c, d, e ∈ [1, 5], then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ e

+
d− e
e+ a

+
e− a
a+ b

≥ 0.

(Vasile Cı̂rtoaje, 2002)

Solution. Write the inequality as∑(
a− b
b+ c

+
2

3

)
≥ 10

3
,

∑ 3a− b+ 2c

b+ c
≥ 10.

Since
3a− b+ 2c ≥ 3− 5 + 2 = 0,

we may apply the Cauchy-Schwarz inequality to get

∑ 3a− b+ 2c

b+ c
≥ [

∑
(3a− b+ 2c)]2∑

(b+ c)(3a− b+ 2c)
=

16 (
∑
a)2∑

a2 + 4
∑
ab+ 3

∑
ac
.

Therefore, it suffices to show that

8
(∑

a
)2
≥ 5

∑
a2 + 20

∑
ab+ 15

∑
ac.

Since (∑
a
)2

=
∑

a2 + 2
∑

ab+ 2
∑

ac,

this inequality is equivalent to

3
∑

a2 +
∑

ac ≥ 4
∑

ab.

Indeed,

3
∑

a2 +
∑

ac− 4
∑

ab =
1

2

∑
(a− 2b+ c)2 ≥ 0.

The equality holds for a = b = c = d = e.

P 1.206. If a, b, c, d, e, f ∈ [1, 3], then

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ e

+
d− e
e+ f

+
e− f
f + a

+
f − a
a+ b

≥ 0.

(Vasile Cı̂rtoaje, 2002)
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Solution. Write the inequality as

∑(
a− b
b+ c

+
1

2

)
≥ 3,

∑ 2a− b+ c

b+ c
≥ 6.

Since

2a− b+ c ≥ 2− 3 + 1 = 0,

we may apply the Cauchy-Schwarz inequality to get

∑ 2a− b+ c

b+ c
≥ [

∑
(2a− b+ c)]2∑

(b+ c)(2a− b+ c)
=

2 (
∑
a)2∑

ab+
∑
ac
.

Thus, we still have to show that(∑
a
)2
≥ 3

(∑
ab+

∑
ac
)
.

Let

x = a+ d, y = b+ e, z = c+ f.

Since ∑
ab+

∑
ac = xy + yz + zx,

we have (∑
a
)2
− 3

(∑
ab+

∑
ac
)

= (x+ y + z)2 − 3(xy + yz + zx) ≥ 0.

The equality holds for a = c = e and b = d = f .

P 1.207. If a1, a2, . . . , an (n ≥ 3) are positive real numbers, then

n∑
i=1

ai
ai−1 + 2ai + ai+1

≤ n

4
,

where a0 = an and an+1 = a1.

(Vasile Cı̂rtoaje, 2008)
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Solution. Applying the Cauchy-Schwarz inequality, we have

n∑
i=1

ai
ai−1 + 2ai + ai+1

=
n∑
i=1

ai
(ai−1 + ai) + (ai + ai+1)

≤ 1

4

n∑
i=1

ai

(
1

ai−1 + ai
+

1

ai + ai+1

)

=
1

4

(
n∑
i=1

ai
ai−1 + ai

+
n∑
i=1

ai
ai + ai+1

)

=
1

4

(
n∑
i=1

ai+1

ai + ai+1

+
n∑
i=1

ai
ai + ai+1

)
=
n

4
.

The equality holds for a1 = a2 = · · · = an.

P 1.208. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers such that a1a2 · · · an = 1. Prove
that

1

n− 2 + a1 + a2
+

1

n− 2 + a2 + a3
+ · · ·+ 1

n− 2 + an + a1
≤ 1.

(Vasile Cı̂rtoaje, 2008)

First Solution. Let r =
n− 2

n
. We can get the desired inequality by summing the following

inequalities
n− 2

n− 2 + a1 + a2
≤ ar3 + ar4 + · · ·+ arn
ar1 + ar2 + · · ·+ arn

,

n− 2

n− 2 + a2 + a3
≤ ar1 + ar4 + · · ·+ arn
ar1 + ar2 + · · ·+ arn

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n− 2

n− 2 + an + a1
≤
ar2 + ar3 + · · ·+ arn−1
ar1 + ar2 + · · ·+ arn

.

The first inequality is equivalent to

(a1 + a2)(a
r
3 + ar4 + · · ·+ arn) ≥ (n− 2)(ar1 + ar2).

By the AM-GM inequality, we have

ar3 + ar4 + · · ·+ arn ≥ (n− 2)(a3a4 · · · an)
r

n−2 =
n− 2

(a1a2)
r

n−2

.

Therefore, it suffices to show that

a1 + a2 ≥ (a1a2)
r

n−2 (ar1 + ar2),
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or, equivalently,

a1 + a2 ≥ (a1a2)
1
n

(
a

n−2
n

1 + a
n−2
n

2

)
.

This is equivalent to the obvious inequality

(
a

n−1
n

1 − a
n−1
n

2

)(
a

1
n
1 − a

1
n
2

)
≥ 0.

The equality holds for a1 = a2 = · · · = an.

Second Solution. Since

n− 2

n− 2 + a1 + a2
= 1− a1 + a2

n− 2 + a1 + a2
,

we can write the desired inequality as

n∑
i=1

ai + ai+1

ai + ai+1 + n− 2
≥ 2,

where an+1 = a1. Using the Cauchy-Schwarz inequality, we get

n∑
i=1

ai + ai+1

ai + ai+1 + n− 2
≥

(
n∑
i=1

√
ai + ai+1

)2

n∑
i=1

(ai + ai+1 + n− 2)

=

2
n∑
i=1

ai + 2
∑

1≤i<j≤n

√
(ai + ai+1)(aj + aj+1)

2
n∑
i=1

ai + n(n− 2)

.

Therefore, it suffices to prove that

∑
1≤i<j≤n

√
(ai + ai+1)(aj + aj+1) ≥

n∑
i=1

ai + n(n− 2).
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Setting an+2 = a2, by the Cauchy-Schwarz inequality and the AM-GM inequality, we have∑
1≤i<j≤n

√
(ai + ai+1)(aj + aj+1) =

=
n∑
i=1

√
(ai + ai+1)(ai+1 + ai+2) +

∑
1≤i<j≤n
j 6=i+1

√
(ai + ai+1)(aj + aj+1)

≥
n∑
i=1

(ai+1 +
√
aiai+2) + n(n− 3) n

√
a1a2 · · · an

=
n∑
i=1

ai + n(n− 3) +
n∑
i=1

√
aiai+2

≥
n∑
i=1

ai + n(n− 3) + n n
√
a1a2 · · · an =

n∑
i=1

ai + n(n− 2).

P 1.209. If a1, a2, ..., an ≥ 1, then∏(
a1 +

1

a2
+ n− 2

)
≥ nn−2(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
.

(Vasile Cı̂rtoaje, 2011)

Solution. Write the inequality as E(a1, a2, ..., an) ≥ 0, and denote

A =

(
a2 +

1

a3
+ n− 2

)(
a3 +

1

a4
+ n− 2

)
· · ·
(
an−1 +

1

an
+ n− 2

)
.

We will prove that
E(a1, a2, ..., an) ≥ E(1, a2, ..., an).

If this is true, then

E(a1, a2, ..., an) ≥ E(1, a2, ..., an) ≥ E(1, 1, a3, ..., an) ≥ · · · ≥ E(1, 1, ..., 1, an) = 0.

We have

E(a1, a2, ..., an)− E(1, a2, ..., an) = (a1 − 1)

(
B − C

a1

)
,

where

B = A(an + n− 2)− nn−2
(

1

a2
+

1

a3
+ · · ·+ 1

an

)
,

C = A

(
1

a2
+ n− 2

)
− nn−2(a2 + a3 + · · ·+ an).
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Since a1 − 1 ≥ 0, we need to show that

a1B − C ≥ 0.

According to the AM-GM inequality, we have

A ≥
(
n n

√
a2
a3

)(
n n

√
a3
a4

)
· · ·
(
n n

√
an−1
an

)
= nn−2 n

√
a2
an
,

an + n− 2 ≥ (n− 1) n−1
√
an,

A(an + n− 2) ≥ (n− 1)nn−2
n

√
a2a

1
n−1
n ≥ (n− 1)nn−2,

therefore

B ≥ nn−2
(
n− 1− 1

a2
− 1

a3
− · · · − 1

an

)
≥ 0

and

a1B − C ≥ B − C = A

(
an −

1

a2

)
+ nn−2

(
a2 −

1

a2

)
+ · · ·+ nn−2

(
an −

1

an

)
≥ 0.

The equality holds when n− 1 of the numbers a1, a2, ..., an are equal to 1.

P 1.210. If a1, a2, ..., an ≥ 1, then(
a1 +

1

a1

)(
a2 +

1

a2

)
· · ·
(
an +

1

an

)
+ 2n ≥ 2

(
1 +

a1
a2

)(
1 +

a2
a3

)
· · ·
(

1 +
an
a1

)
.

(Vasile Cı̂rtoaje, 2011)

Solution. Write the inequality as E(a1, a2, ..., an) ≥ 0, and denote

A =

(
a2 +

1

a2

)
· · ·
(
an +

1

an

)
,

B =

(
1 +

a2
a3

)
· · ·
(

1 +
an−1
an

)
.

We will prove that
E(a1, a2, ..., an) ≥ E(1, a2, ..., an).

If this is true, then

E(a1, a2, ..., an) ≥ E(1, a2, ..., an) ≥ E(1, 1, a3, ..., an) ≥ · · · ≥ E(1, 1, ..., 1, an) = 0.

We have

E(a1, a2, ..., an)− E(1, a2, ..., an) = (a1 − 1)

(
C − D

a1

)
,
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where

C = A− 2B

a2
,

D = A− 2Ban.

Since a1 − 1 ≥ 0, we need to show that

a1C −D ≥ 0.

First, we prove that C ≥ 0; that is,

(a22 + 1) · · · (a2n + 1) ≥ 2(a2 + a3) · · · (an−1 + an).

By squaring, this inequality becomes

(a22 + 1)[(a22 + 1)(a23 + 1)] · · · [(a2n−1 + 1)(a2n + 1)](a2n + 1) ≥

≥ 4(a2 + a3)
2 · · · (an−1 + an)2.

By the Cauchy-Schwarz inequality, we have

(a22 + 1)(a23 + 1) ≥ (a2 + a3)
2, ... , (a2n−1 + 1)(a2n + 1) ≥ (an−1 + an)2.

Therefore, we still have to show that

(a22 + 1)(a2n + 1) ≥ 4,

which is clearly true for a2 ≥ 1 and an ≥ 1. Finally, we have

a1C −D ≥ C −D = 2B

(
an −

1

a2

)
≥ 0.

The equality holds when n− 1 of a1, a2, ..., an are equal to 1.

P 1.211. Let k and n be positive integers with k < n, and let a1, a2, . . . , an be real numbers
such that a1 ≤ a2 ≤ · · · ≤ an. Then

(a1 + a2 + · · ·+ an)2 ≥ n(a1ak+1 + a2ak+2 + · · ·+ anan+k)

(where an+i = ai for any positive integer i) in the following cases:

(a) n = 2k;

(b) n = 4k.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 5, 2005)
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Solution. (a) We have to prove that

(a1 + a2 + · · ·+ a2k)
2 ≥ 4k(a1ak+1 + a2ak+2 + · · ·+ aka2k).

Let x be a real number such that ak ≤ x ≤ ak+1. Then, obviously,

(x− a1)(ak+1 − x) + (x− a2)(ak+2 − x) + · · ·+ (x− ak)(a2k − x) ≥ 0.

Expanding, rearranging and multiplying by 4k, we obtain

4kx(a1 + a2 + · · ·+ a2k) ≥ 4k2x2 + 4k(a1ak+1 + a2ak+2 + · · ·+ aka2k).

On the other hand, by the AM-GM inequality, we have

(a1 + a2 + · · ·+ a2k)
2 + 4k2x2 ≥ 4kx(a1 + a2 + · · ·+ a2k).

Adding these inequalities, we obtain the desired inequality. The equality holds for

aj+1 = aj+2 = · · · = aj+k =
a1 + a2 + · · ·+ a2k

2k
,

where j ∈ {1, 2, · · · , k − 1}.

(b) Let

bi = ai + a2k+i, i = 1, 2, ..., 2k.

Clearly, b1 ≤ b2 ≤ · · · ≤ b2k. Applying the inequality from part (a), we obtain

(a1 + a2 + · · ·+ a4k)
2 ≥ 4k(a1ak+1 + a2ak+2 + · · ·+ a4kak).

(b1 + b2 + · · ·+ b2k)
2 ≥ 4k(b1bk+1 + b2bk+2 + · · ·+ bkb2k),

which is the desired inequality. The equality occurs for
aj+1 = aj+2 = · · · = aj+k = a

aj+2k+1 = aj+2k+2 = · · · = aj+3k = b

a1 + a2 + · · ·+ a4k = 2k(a+ b)

,

where a ≤ b are real numbers, and j ∈ {1, 2, · · · , k − 1}.

Remark. Actually, the inequality holds for any integer k satisfying
n

4
≤ k ≤ n

2
(see Crux

Mathematicorum, 2008, volume 34, issue 4).
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P 1.212. If a1, a2, . . . , an ∈ [1, 2], then

n∑
i=1

3

ai + 2ai+1

≥
n∑
i=1

2

ai + ai+1

,

where an+1 = a1.
(Vasile Cı̂rtoaje, 2005)

Solution. Rewrite the inequality as follows

n∑
i=1

ai − ai+1

(ai + ai+1)(ai + 2ai+1)
≥ 0,

n∑
i=1

[
k(ai − ai+1)

(ai + ai+1)(ai + 2ai+1)
+

1

ai
− 1

ai+1

]
≥ 0, k > 0,

n∑
i=1

(ai − ai+1)[(k − 3)aiai+1 − a2i − 2a2i+1]

aiai+1(ai + ai+1)(ai + 2ai+1)
≥ 0,

Setting k = 6, the inequality becomes

n∑
i=1

(ai − ai+1)
2(2ai+1 − ai)

aiai+1(ai + ai+1)(ai + 2ai+1)
≥ 0.

Since 1 ≤ ai ≤ 2, we have 2ai+1 − ai ≥ 0 for all i = 1, 2, . . . , n. Thus, the inequality is
proved. The equality holds for a1 = a2 = · · · = an.

P 1.213. If a1, a2, . . . , an (n ≥ 3) are real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1a2 + a2a3 + · · ·+ ana1 = n,

then
(3− a1)2 + (3− a2)2 + · · ·+ (3− an)2 ≥ 4n.

(Vasile Cı̂rtoaje, GMA, no. 3-4, 2022)

Solution. Let

a =
a2 + a3 + · · ·+ an−1

n− 2
.

By Jensen’s inequality applied to the convex function f(x) = (3− x)2, we have

(3− a2)2 + (3− a3)2 + · · ·+ (3− an−1)2 ≥ (n− 2)(3− a)2.

Thus, it suffices to show that

(3− a1)2 + (3− an)2 + (n− 2)(3− a)2 ≥ 4n.
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Using the substitutions

A =
a+ a1

2
, B =

a+ an
2

,

the inequality becomes as follows:

(3 + a− 2A)2 + (3 + a− 2B)2 + (n− 2)(3− a)2 ≥ 4n,

4(A2 +B2)− 4(3 + a)(A+B) + 2(3 + a)2 + (n− 2)(3− a)2 − 4n ≥ 0,

4(A+B)2 − 4(3 + a)(A+B) + 2(3 + a)2 + (n− 2)(3− a)2 − 4n ≥ 8AB,

(2A+ 2B − 3− a)2 + (3 + a)2 + (n− 2)(3− a)2 − 4n ≥ 8AB.

It is true if

(3 + a)2 + (n− 2)(3− a)2 − 4n ≥ 8AB.

By Lemma below, we have:

4AB + (n− 4)a2 ≤ n.

So, it suffices to show that

(3 + a)2 + (n− 2)(3− a)2 − 4n ≥ 2n− 2(n− 4)a2,

which is equivalent to

3(n− 3)(a− 1)2 ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1.

Lemma. If a1, a2, . . . , an (n ≥ 3) are real numbers such that a1 ≥ a2 ≥ · · · ≥ an, then

(a+ a1)(a+ an) + (n− 4)a2 ≤ a1a2 + a2a3 + · · ·+ ana1,

where

a =
a2 + a3 + · · ·+ an−1

n− 2
.

Proof. For n = 3, the inequality is an identity. For n > 3, since the sequences (a2, . . . , an−2)
and (a3, . . . , an−1) are decreasing, by Chebyshev’s inequality we have

(n− 3)(a2a3 + · · ·+ an−2an−1) ≥ (a2 + · · ·+ an−2)(a3 + · · ·+ an−1).

Thus, the desired inequality is true if

(a1 + an)a+ (n− 3)a2 ≤ a1a2 + an−1an +
1

n− 3
(a2 + · · ·+ an−2)(a3 + · · ·+ an−1),

which is equivalent to

a1(a− a2) + an(a− an−1) + (n− 3)a2 ≤ 1

n− 3
[(n− 2)a− an−1][(n− 2)a− a2].
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Since a− a2 ≤ 0 and a− an−1 ≥ 0, it suffices to show that

a2(a− a2) + an−1(a− an−1) + (n− 3)a2 ≤ 1

n− 3
[(n− 2)a− an−1][(n− 2)a− a2],

that is
(2n− 5)a2 − (2n− 5)(a2 + an−1)a+ (n− 3)(a22 + a2n−1) + a2an−1 ≥ 0,

(2n− 5)

(
a− a2 + an−1

2

)2

+
2n− 7

4
(a2 − an−1)2 ≥ 0.

Remark 1. Actually, 3 is the largest real value of k such that

(k − a1)2 + (k − a2)2 + · · ·+ (k − an)2 ≥ n(k − 1)2

for any real numbers ai with a1 ≥ a2 ≥ · · · ≥ an and a1a2 + a2a3 + · · ·+ ana1 = n. Choosing
a1 > a2 = · · · = an−1 = 1 > an > 0 and denoting s = (a1 + an)/2, the equality constraint
becomes a1an + 2s = 3. From 3 = a1an + 2s > 2s and 3 = a1an + 2s < s2 + 2s, we get
s ∈ (1, 3/2). The inequality can be written as follows:

(k − a1)2 + (k − an)2 ≥ 2(k − 1)2, (s− 1)(s+ 2− k) ≥ 0, s+ 2− k ≥ 0.

Taking s→ 1, we get the necessary condition k ≤ 3.

Remark 2. We can write the inequalities from P 1.213 as

a21 + a22 + · · ·+ a2n + 5n ≥ 6(a1 + a2 + · · ·+ an).

Since
a1 + a2 + · · ·+ an

n
+

n

a1 + a2 + · · ·+ an
≥ 2

for a1 + a2 + · · ·+ an > 0, the following inequality follows:

• If a1, a2, . . . , an (n ≥ 3) are nonnegative real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n, a1 ≥ a2 ≥ · · · ≥ an,

then

a21 + a22 + · · ·+ a2n +
6n2

a1 + a2 + · · ·+ an
≥ 7n.

P 1.214. Let a, b, c, d be positive real numbers such that ab+ bc+ cd+ da = 4.

(a) If a ≥ b ≥ 1 ≥ c ≥ d, then

1

a
+

1

b
+

1

c
+

1

d
+ 8 ≥ 3(a+ b+ c+ d).

(b) If a ≥ b ≥ c ≥ 1 ≥ d, then the inequality above holds true.

(Vasile Cı̂rtoaje, SSMJ, 4 and 6, 2024)
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Solution. Write the constraint as

(a+ c)(b+ d) = 4.

(a) Let

x =
a+ c

2
, y =

b+ d

2
, xy = 1.

From (a− 1)(c− 1) ≤ 0 and (b− 1)(d− 1) ≤ 0, we get

ac ≤ 2x− 1, bd ≤ 2y − 1,
1

2
< y ≤ x < 2.

Since
1

a
+

1

b
+

1

c
+

1

d
=
a+ c

ac
+
b+ d

bd
≥ 2x

2x− 1
+

2y

2y − 1
,

it suffices to show that
x

2x− 1
+

y

2y − 1
+ 4 ≥ 3(x+ y),

which is equivalent to
x

2x− 1
+

1

2− x
+ 4 ≥ 3

(
x+

1

x

)
,

(x− 1)4 ≥ 0.

The equality occurs for a = b = c = d = 1.

(b) Let

x =
a+ d

2
, y =

b+ c

2
, y ≥ 1.

Since
1

b
+

1

c
≥ 4

b+ c
=

2

y
,

it suffices to show that
1

a
+

1

d
+

2

y
+ 8 ≥ 3(a+ d+ 2y),

that is
x

ad
+

1

y
+ 4 ≥ 3(x+ y).

From
4xy − 4 = (a+ d)(b+ c)− (a+ c)(b+ d) = (a− b)(c− d) ≥ 0,

we get
xy ≥ 1,

and from

4− (a+ y)(y + d) = (a+ c)(b+ d)− (a+ y)(y + d) = a(b− y) + (bc− y2) + d(c− y)
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=
a(b− c)

2
− (b− c)2

4
− d(b− c)

2
=

(b− c)(2a+ c− b− 2d)

4
≥ 0,

we get (a+ y)(y + d) ≤ 4, hence

ad ≤ 4− y2 − 2xy.

So, it suffices to show that

x

4− y2 − 2xy
+

1

y
+ 4 ≥ 3(x+ y),

that is

x+ (4− y2 − 2xy)

(
1

y
+ 4− 3x− 3y

)
≥ 0.

For fixed y, the inequality is true if f(x) ≥ 0, where

f(x) = 6y2x2 + y(9y2 − 8y − 13)x+ (y2 − 4)(3y2 − 4y − 1).

Since

f ′(x) = 12y2x+ y(9y2 − 8y − 13) ≥ 12y + y(9y2 − 8y − 13)

= y(9y2 − 8y − 1) = y(y − 1)(9y + 1) ≥ 0,

f is an increasing function, therefore

f(x) ≥ f

(
1

y

)
= 3y4 − 4y3 − 4y2 + 8y − 3 = (y − 1)2(3y2 + 2y − 3) ≥ 0.

The equality occurs for a = b = c = d = 1.

Remark 1. Points (a) and (b) can be combined as follows:

• Let a ≥ b ≥ c ≥ d > 0 such that ab+ bc+ cd+ da = 4. If b ≥ 1, then

1

a
+

1

b
+

1

c
+

1

d
+ 8 ≥ 3(a+ b+ c+ d).

Note that the inequality

1

a
+

1

b
+

1

c
+

1

d
− 4 ≥ k(a+ b+ c+ d− 4)

does not hold true for k > 3. To prove this assertion, we set b = c = 1, when the inequality
becomes

1

a
+

1

d
− 2 ≥ k(a+ d− 2)

under the constraint

ad+ a+ d = 3.
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Denoting x = (a+ d)/2, we have ad = 3− 2x and x ∈ [1, 3/2). The condition x ≥ 1 follows
from

3 = ad+ S ≤ x2 + x.

Consider now that x ∈ (1, 3/2), and write the inequality as follows:

x

ad
− 1 ≥ k(x− 1),

x

3− 2x
− 1 ≥ k(x− 1),

k ≤ 3

3− 2x
.

From this, we get the necessary condition

k ≤ lim
x→1

3

3− 2x
= 3.

Remark 2. Since
a+ b+ c+ d

4
+

4

a+ b+ c+ d
≥ 2,

the following statement follows:

• Let a ≥ b ≥ c ≥ d > 0 such that ab+ bc+ cd+ da = 4. If b ≥ 1, then

1

a
+

1

b
+

1

c
+

1

d
+

48

a+ b+ c+ d
≥ 16.

P 1.215. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
4

3
≤ 1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≤ 3

2
.

(Vasile Cı̂rtoaje, Math. Reflections, 4, 2024)

Solution. The hypothesis is equivalent to

(a+ c)(b+ d) = 4.

Therefore,

a+ c ≥ 2 ≥ b+ d.
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(a) To prove the right inequality, we see that

1

a+ 2
+

1

c+ 2
=

a+ c+ 4

ac+ 2(a+ c) + 4
≤ a+ c+ 4

2(a+ c+ 2)

and
1

b+ 2
+

1

d+ 2
=

b+ d+ 4

bd+ 2(b+ d) + 4
≤ b+ d+ 4

2(b+ d+ 2)
=
a+ c+ 1

a+ c+ 2
,

hence
1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≤ a+ c+ 4

2(a+ c+ 2)
+
a+ c+ 1

a+ c+ 2
=

3

2
.

The equality occurs for ab = 4 and c = d = 0.

(b) Let

x =
a+ d

2
, y =

b+ c

2
.

From
4xy − 4 = (a+ d)(b+ c)− (a+ c)(b+ d) = (a− b)(c− d) ≥ 0,

we get
xy ≥ 1,

and from

4− (a+ y)(y + d) = (a+ c)(b+ d)− (a+ y)(y + d) = a(b− y) + (bc− y2) + d(c− y)

=
a(b− c)

2
− (b− c)2

4
− d(b− c)

2
=

(b− c)(2a+ c− b− 2d)

4
≥ 0,

we get (a+ y)(y + d) ≤ 4, hence

ad ≤ 4− 2xy − y2.

Since
1

b+ 2
+

1

c+ 2
≥ 2

y + 2
,

we only need to show that
1

a+ 2
+

1

d+ 2
+

2

y + 2
≥ 4

3
,

that is
x+ 2

ad+ 4x+ 4
+

1

y + 2
≥ 2

3
.

So, it suffices to show that

x+ 2

8 + 4x− 2xy − y2
+

1

y + 2
≥ 2

3
,

that is

x+ 2 + (8 + 4x− 2xy − y2)
(

1

y + 2
− 2

3

)
≥ 0,
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x(4y2 − 3y + 2) + 2y3 + y2 − 10y + 4 ≥ 0.

Since xy ≥ 1, it is true if

4y2 − 3y + 2

y
+ 2y3 + y2 − 10y + 4 ≥ 0,

which is equivalent to
2y4 + y3 − 6y2 + y + 2 ≥ 0,

(y − 1)2(2y2 + 5y + 2) ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.216. If n ≥ 6 and a1 ≥ 1 ≥ a2 ≥ · · · ≥ an such that a1a2 + a2a3 + · · ·+ ana1 = n, then

1

a1 + 3
+

1

a2 + 3
+ · · ·+ 1

an + 3
≥ n

4
.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 6, 2024)

Solution. Let

S =
a1 + an

2
, x =

a2 + a3 + · · ·+ an−1
n− 2

,

where
a1 ≥ 1 ≥ x ≥ an.

By the AM-HM inequality, we have

1

a2 + 3
+ · · ·+ 1

an−1 + 3
≥ (n− 2)2

(a2 + 3) + · · ·+ (an−1 + 3)
=
n− 2

x+ 3
,

and it suffices to show that

1

a1 + 3
+

1

an + 3
+
n− 2

x+ 3
≥ n

4
.

By Lemma below, we have (n − 3)x2 + x(a1 + an) + a1an ≤ n. Since the left hand side of
the desired inequality decreases when a1 increases, we may replace this inequality constraint
with the equality constraint (n− 3)x2 + x(a1 + an) + a1an = n, i.e.

a1an = n− 2xS − (n− 3)x2.

From (a1− x)(an− x) ≤ 0, we get a1an ≤ 2xS− x2, and from n− 2xS− (n− 3)x2 = a1an ≤
2xS − x2, we get

S ≥ S1 =
n− (n− 4)x2

4x
.
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Since
1

a1 + 3
+

1

an + 3
=

2S + 6

a1an + 9 + 6S
=

2S + 6

n+ 9 + 2(3− x)S − (n− 3)x2
,

we need to show that

2S + 6

n+ 9 + 2(3− x)S − (n− 3)x2
+
n− 8− nx

4(x+ 3)
≥ 0,

which can be written as 2A(x)S +B(x) ≥ 0, where

A(x) = nx2 − 4(n− 3)x+ 3(n− 4) = (x− 1)(nx− 3n+ 12),

B(x) = n(n− 3)x3 − (n− 3)(n− 8)x2 − (n2 + 9n− 24)x+ n(n+ 1)

= (x− 1)[n(n− 3)x2 + 8(n− 3)x− n(n+ 1)].

Since x ≤ 1 and 3n − 12 − nx ≥ 3n − 12 − n = 2(n − 6) ≥ 0, we have A(x) ≥ 0. So,
it suffices to show that 2A(x)S1 + B(x) ≥ 0, which is equivalent to the obvious inequality
(x− 1)2h(x) ≥ 0, where

h(x) = (n− 2)x2 + 2(2n− 5)x+ 3(n− 4) > 0.

Thus, the proof is completed. For kn = 3, the equality occurs when a2 = · · · = an−1 = 1 and
a1 + an + a1an = 3 such that a1 ≥ 1 ≥ an.

Lemma. Let a1 ≥ a2 ≥ . . . ≥ an ≥ 0 such that a1a2 + a2a3 + · · · + ana1 = n. If n ≥ 4 and

x =
a2 + · · ·+ an−1

n− 2
, then

(n− 3)x2 + x(a1 + an) + a1an ≤ n,

with equality for a2 = · · · = an−1.

Proof. Write the desired inequality as follows:

(n− 3)x2 + x(a1 + an) + a1an ≤ a1a2 + a2a3 + · · ·+ ana1,

(n− 3)x2 + a1(x− a2) + an(x− an−1) ≤ a2a3 + · · ·+ an−2an−1.

Since x− a2 ≤ 0 and x− an−1 ≥ 0, it suffices to show that

(n− 3)x2 + a2(x− a2) + an−1(x− an−1) ≤ a2a3 + · · ·+ an−2an−1,

which can be rewritten as

a2a3 + · · · an−2an−1 ≥ (n− 3)x2 + (a2 + an−1)x− a22 − a2n−1.

Since the sequences a2, a3, . . . , an−2 and a3, a4, . . . , an−1 are decreasing, by Chebyshev’s in-
equality we have

(n−3)(a2a3+· · ·+an−2an−1) ≥ (a2+· · ·+an−2)(a3+· · ·+an−1) = ((n− 2)x− an−1) ((n− 2)x− a2) .
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Thus, it suffices to show that

((n− 2)x− an−1) ((n− 2)x− a2)
n− 3

≥ (n− 3)x2 + (a2 + an−1)x− a22 − a2n−1,

which is equivalent to

(2n− 5)x2 − (2n− 5)(a2 + an−1)x+ (n− 3)(a22 + a2n−1) + a2an−1 ≥ 0,

(2n− 5)(2x− a2 − an−1)2 + (2n− 7)(a2 − an−1)2 ≥ 0.

Clearly, the last inequality is true.

Remark. Note that 3 is the largest positive value of k such that the inequality

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
≥ n

1 + k

holds for n ≥ 6 and all nonnegative numbers a1, a2, . . . , an satisfying

a1a2 + a2a3 + · · ·+ ana1 = n, a1 ≥ 1 ≥ a2 ≥ · · · ≥ an.

Indeed, by setting a1 = 3, a2 = · · · = an−1 = 1 and an = 0, the desired inequality leads to
the necessary condition k ≤ 3.

P 1.217. If x1, x2, x3, x4, x5 are nonnegative real numbers such that

x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5,

then
1

5x1 + 4
+

1

5x2 + 4
+

1

5x3 + 4
+

1

5x4 + 4
+

1

5x5 + 4
≥ 5

9
.

(Vasile Cı̂rtoaje, AMM, 6, 2023)

Solution. According to Lemma below, it is sufficient to show that

1

5a+ 4
+

1

5b+ 4
+

1

5c+ 4
+

1

5d+ 4
+

1

5e+ 4
≥ 5

9

for a ≥ b ≥ c ≥ d ≥ e ≥ 0 such that ae+ ad+ be+ bc+ cd = 5. We will prove the extended
inequality

1

a+ k
+

1

b+ k
+

1

c+ k
+

1

d+ k
+

1

e+ k
≥ 5

1 + k

for

0 < k ≤ k0, k0 =

√
54− 2

√
5− 3

√
5 + 3

4
≈ 0.83234991.
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Denote

x =
a+ b

2
, y =

d+ e

2
, a ≥ x ≥ b ≥ c ≥ d ≥ y ≥ e.

Replacing a and e with 2x− b and 2y − d, respectively, we have

5 = a(d+ e) + be+ bc+ cd = 2(2x− b)y + b(2y − d) + bc+ cd = 4xy + bc− (b− c)d.

From this, we get
5 ≥ 4xy + bc− (b− c)c = 4xy + c2,

hence
4xy ≤ 5− c2, c <

√
5,

and
5 = 4xy + bc− (b− c)d ≤ 4xy + bc− (b− c)y = 4xy + b(c− y) + cy

≤ 4xy + x(c− y) + cy = 3xy + c(x+ y) ≤ 3

4
(5− c2) + c(x+ y),

hence
4c(x+ y) ≥ 3c2 + 5.

By the AM-HM inequality, we have

1

a+ k
+

1

b+ k
≥ 4

a+ b+ 2k
,

1

d+ k
+

1

e+ k
≥ 4

x4 + x5 + 2k
.

So, it suffices to show that the conditions

4xy ≤ 5− c2, 4c(x+ y) ≥ 3c2 + 5, x ≥ c ≥ y ≥ 0, c ≤
√

2

involve
2

x+ k
+

2

y + k
+

1

c+ k
≥ 5

1 + k
,

that is
2(x+ y) + 4k

xy + k(x+ y) + k2
+

1

c+ k
≥ 5

1 + k
.

Since 4xy ≤ 5− c2, it suffices to show that

A+
1

c+ k
≥ 5

1 + k
,

where

A =
8(x+ y) + 16k

5− c2 + 4k(x+ y) + 4k2
=

2

k
· 4k(x+ y) + 8k2

5− c2 + 4k(x+ y) + 4k2

=
2

k

[
1 +

4k2 − 5 + c2

5− c2 + 4k(x+ y) + 4k2

]
.

Case 1: 4k2 − 5 + c2 ≥ 0. Since

A ≥ 2

k
,
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we need to show that
2

k
+

1

c+ k
≥ 5

1 + k
,

which is true when
2

k
+

1√
5 + k

≥ 5

1 + k
,

hence when 0 < k ≤ k0.

Case 2: 4k2 − 5 + c2 ≤ 0. Since 4c(x + y) ≥ 3c2 + 5, it suffices to consider the case
4c(x+ y) = 3c2 + 5, when

A ≥ 2

k

[
1 +

4k2 + 5− c2

5− c2 + k(3c2 + 5)/c+ 4k2

]
=

6c2 + 16kc+ 10

5k + (4k2 + 5)c+ 3kc2 − c3
.

Thus, we need to prove that

6c2 + 16kc+ 10

5k + (4k2 + 5)c+ 3kc2 − c3
+

1

c+ k
≥ 5

1 + k
,

which is equivalent to

c4 + (1− k)c3 − (2k2 − 5k + 5)c2 + (4k2 − 7k + 3)c− 2k2 + 3k ≥ 0,

(c− 1)2[c2 + (3− k)c+ k(3− 2k)] ≥ 0.

The proof is completed. The equality E(a, b, c, d, e) =
4

19
occurs for a = b = c = d = e = 1,

while the original inequality is an equality for x1 = x2 = x3 = x4 = x5 = 1.

Lemma. Let x1, x2, x3, x4, x5 be nonnegative real numbers such that x1x2 + x2x3 + x3x4 +
x4x5 + x5x1 = 5, and let E(x1, x2, x3, x4, x5) be a symmetric and decreasing function with
respect to each variable. If E(a, b, c, d, e) ≥ 0 for any a ≥ b ≥ c ≥ d ≥ e ≥ 0 such that
ae+ ad+ be+ bc+ cd = 5, then E(x1, x2, x3, x4, x5) ≥ 0.

Proof. Let T = (T1, T2, T3, T4, T5) and t = (t1, t2, t3, t4, t5) be two decreasing sequences
of nonnegative real numbers. By Karamata majorization inequality applied to the convex
function f(x) = ex, if T1 · · ·Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, then

T1 + T2 + T3 + T4 + T5 ≥ t1 + t2 + t3 + t4 + t5.

If (a, b, c, d, e) is a permutation of (x1, x2, x3, x4, x5) such that a ≥ b ≥ c ≥ d ≥ e ≥ 0, then

E(a, b, c, d, e) = E(x1, x2, x3, x4, x5)

and ∑
sym

ab =
∑
sym

x1x2,

where ∑
sym

x1x2 =
∑

1≤i<j≤5

xixj.
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Let T = (ab, ac, bd, ce, de) be a decreasing sequence, and t a decreasing permutation of
the sequence (x1x2, x2x3, x3x4, x4x5, x5x1). Since T1 · · ·Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, by
Karamata’s inequality we have

ab+ ac+ bd+ ce+ de ≥ x1x3 + x3x5 + x5x2 + x2x4 + x4x1,

which is equivalent to∑
sym

ab− (ab+ ac+ bd+ ce+ de) ≤
∑
sym

x1x2 − (x1x3 + x3x5 + x5x2 + x2x4 + x4x1),

i.e.
ae+ ad+ be+ bc+ cd ≤ x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5.

In the case ae+ad+ be+ bc+ cd < 5, by increasing the numbers a, b, c, d, e to have ae+ad+
be+bc+cd = 5 and to keep the constraint a ≥ b ≥ c ≥ d ≥ e ≥ 0, the function E(a, b, c, d, e)
decreases, therefore

E(a, b, c, d, e) ≤ E(x1, x2, x3, x4, x5).

On the other hand, by hypothesis, E(a, b, c, d, e) ≥ 0. So, we have

E(x1, x2, x3, x4, x5) ≥ E(a, b, c, d, e) ≥ 0.

P 1.218. If a, b, c, d, e are nonnegative real numbers such that

ab+ bc+ cd+ de+ ea = 5,

then
1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
+

1

e+ 1
≥ 5

2
.

(Vasile Ĉırtoaje, AMM, 6, 2023)

Solution. Assume that a = max{a, b, c, d, e}, a ≥ 1. Since

(a+ c)b+ (a+ d)e = 5− cd, cd ≤ 5,

(a+ c)(b+ 1) + (a+ d)(e+ 1) = 2a+ c+ d+ 5− cd,

by the Cauchy-Schwarz inequality we have

1

b+ 1
+

1

e+ 1
≥ (

√
a+ c+

√
a+ d)2

(a+ c)(b+ 1) + (a+ d)(e+ 1)

=
2a+ c+ d+ 2

√
(a+ c)(a+ d)

2a+ c+ d+ 5− cd
≥ 4a+ c+ d+ 2

√
cd

2a+ c+ d+ 5− cd
.
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Thus, it suffices to prove that

1

a+ 1
+

1

c+ 1
+

1

d+ 1
+

4a+ c+ d+ 2
√
cd

2a+ c+ d+ 5− cd
≥ 5

2
(∗)

for a = max{a, c, d}, a ≥ 1 and cd ≤ 5. Due to symmetry, we may assume that c ≥ d, hence

a ≥ c ≥ d, a ≥ 1, cd ≤ 5.

Denote

x =
c+ d

2
, p =

√
cd.

From c+ d ≥ 2
√
cd and (a− c)(a− d) ≥ 0, we get x ≥ p and a2 − 2ax+ p2 ≥ 0, therefore

p ≤ x ≤ a2 + p2

2a
.

For fixed a and p, the inequality (*) can be written as

1

a+ 1
+

2(x+ 1)

1 + 2x+ p2
+

4a+ 2x+ 2p

2a+ 2x+ 5− p2
≥ 5

2
,

which is equivalent to f(x) ≥ 0, where f is a polynomial of second order with the expression

f(x) = 4(1− a)x2 +B(a, p)x+ C(a, p).

Since f is concave, it suffices to prove the inequality f(x) ≥ 0 for x = p and x =
a2 + p2

2a
,

therefore for c = d and for c = a.

Case 1: c = d ≤
√

5. We need to prove the inequality

1

a+ 1
+

2

c+ 1
+

4a+ 4c

2a+ 2c+ 5− c2
≥ 5

2
,

which is equivalent to

2(3− c)a2 + (5c3 − c2 − 17c+ 5)a+ 3c3 + c2 − 5c+ 5 ≥ 0,

2(3− c)(a− c)2 + 5(c3 − c2 − c+ 1)a+ 5(c3 − c2 − c+ 1) ≥ 0,

2(3− c)(a− c)2 + 5(c− 1)2(c+ 1)(a+ 1) ≥ 0.

Case 2: c = a. We need to show that

2

a+ 1
+

1

d+ 1
+

5a+ d+ 2
√
ad

3a+ d+ 5− ad
≥ 5

2
,

which is equivalent to

5a2d2 − 2ad(a+ d) + a2 + d2 − 20ad− 2(a+ d) + 5 + 4(a+ 1)(d+ 1)
√
ad ≥ 0,



Cyclic Inequalities 301

(a− 1)2(d− 1)2 + 4
[
a2d2 − 6ad+ 1 + (a+ 1)(d+ 1)

√
ad
]
≥ 0,

1

4
(a− 1)2(d− 1)2 + (ad− 1)2 +

√
ad
[
(
√
a−
√
d)2 + (

√
ad− 1)2

]
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = 1.

Remark. In our opinion, the inequality

1

a+ k
+

1

b+ k
+

1

c+ k
+

1

d+ k
+

1

e+ k
≥ 5

1 + k

holds for k ∈ [0, k1], where

k1 =
3
√

5− 4 + 4
√

4−
√

5

2
≈ 1.1570

is a root of the equation
2√

5 + k
+

2

k
=

5

1 + k
.

In addition, the condition k ≤ k1 is necessary. Indeed, by choosing a = b =
√

5 and
c = e = 0, the equality constraint is satisfied and the inequality becomes

2√
5 + k

+
1

d+ k
≥ 3k − 2

k(1 + k)
.

Clearly, the inequality is true for all d ≥ 0 if and only if

2√
5 + k

≥ 3k − 2

k(1 + k)
,

that is k ≤ k1.

P 1.219. If a1, a2, . . . , a8 are nonnegative real numbers such that a1a2+a2a3+· · ·+a8a1 = 8,
then

1

5a1 + 3
+

1

5a2 + 3
+ · · ·+ 1

5a8 + 3
≥ 1.

(Vasile Ĉırtoaje, GMA, no. 3-4, 2024)

Solution. We first show that

64

(
1

5a1 + 3
+

1

5a2 + 3

)
+ 5a1a2 ≥ 21.

Denoting s =
a1 + a2

2
and p =

√
a1a2, the inequality becomes as follows:

64(10s+ 6)

25p2 + 30s+ 9
+ 5p2 ≥ 21,
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2(15p2 + 1)s+ 25p4 − 96p2 + 39 ≥ 0.

Since s ≥ p, we have

2(15p2 + 1)s+ 25p4 − 96p2 + 39 ≥ 2(15p2 + 1)p+ 25p4 − 96p2 + 39

= 25P 4 + 30p3 − 96p2 + 2p+ 39 = (p− 1)2(25p2 + 80p+ 39) ≥ 0.

Thus, from ∑
cyc

[
64

(
1

5a1 + 3
+

1

5a2 + 3

)
+ 5a1a2 − 21

]
≥ 0,

we get the desired inequality. The equality occurs for a1 = a2 = · · · = a8 = 1.

Remark 1. Similarly, we can prove the following statement:

• If a1, a2, . . . , an are nonnegative real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n,

then
1

5a1 + 3
+

1

5a2 + 3
+ · · ·+ 1

5an + 3
≥ n

8
.

Remark 2. The following stronger inequality is true.

• If k ≥
√

5 + 1

2
≈ 1.618 and a1, a2, . . . , an are nonnegative real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n,

then
1

ka1 + 1
+

1

ka2 + 1
+ · · ·+ 1

kan + 1
≥ n

k + 1
.

The proof is based on the inequality

(k + 1)2
(

1

ka1 + 1
+

1

ka2 + 1

)
+ ka1a2 ≥ 3k + 2,

which is equivalent to

2(k2 − k − 1 + kp2)s+ k2p4 − (3k2 + 2k − 1)p2 + 2k + 1 ≥ 0,

where s =
a1 + a2

2
and p =

√
a1a2. For p = 0, the inequality becomes

2(k2 − k − 1)s+ 2k + 1 ≥ 0,

and it is true for k ≥
√

5 + 1

2
. For p > 0, it suffices to show that

2(k2 − k − 1 + kp2)p+ k2p4 − (3k2 + 2k − 1)p2 + 2k + 1 ≥ 0,
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which is equivalent to

k2p4 + 2kp3 − (3k2 + 2k − 1)p2 + 2(k2 − k − 1)p+ 2k + 1 ≥ 0,

(p− 1)2[k2p2 + 2(k + 1)p+ 2k + 1] ≥ 0.

Remark 3. The following nice open inequality is true.

• If a1, a2, . . . , a7 are nonnegative real numbers such that a1a2 + a2a3 + · · · + a7a1 = 7,
then

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a7 + 1
≥ 7

2
.

Note that the inequality

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

a7 + k
≥ 7

1 + k

doesn’t hold for k > 1. Choosing a1 = a4 = 3, a2 = a3 = 1 and a5 = a7 = 0, the equality
constraint is satisfied and the inequality becomes:

1

a6 + k
+

2

3 + k
+

2

k
≥ 5

1 + k
.

Moreover, for a6 →∞, we get the necessary condition

2

3 + k
+

2

k
≥ 5

1 + k
,

which involves k ≤ 1.

Choosing a5 = a7 = 0 and then a6 →∞, we get the following very nice inequality (see P
2.119):

• If a1, a2, a3, a4 are nonnegative real numbers such that a1a2 + a2a3 + a3a4 = 7, then

1

a1 + 1
+

1

a2 + 1
+

1

a3 + 1
+

1

a4 + 1
≥ 3

2
,

with equality for a1 = a4 = 3 and a2 = a3 = 1.

As a final remark, the inequality

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
≥ n

2

with a1a2 + a2a3 + · · ·+ ana1 = n, does not hold for n = 6 and for n = 8.
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P 1.220. If a, b, c, d, e are nonnegative real numbers such that

ab+ bc+ cd+ de+ ea = 5, a ≥ b ≥ c ≥ 1 ≥ d ≥ e,

then
1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥ 5

4
.

(Vasile Cı̂rtoaje, Arhimede Math. J., No. 2, 2024)

Solution. For fixed a, d and e, from the equality constraint we may assume that b is a
function of c. By differentiating the constraint, we get

(a+ c)b′ + b+ d = 0, −b′ = b+ d

a+ c
≤ 1.

Denoting the left side of the desired inequality by f(c), we have

f ′(c) =
−b′

(b+ 3)2
− 1

(c+ 3)2
≤ 1

(b+ 3)2
− 1

(c+ 3)2
≤ 0.

Thus, f(c) is decreasing and has the minimum value when c is maximum, that is when c = b.
So, we only need to show that

1

a+ 3
+

2

b+ 3
+

1

d+ 3
+

1

e+ 3
≥ 5

4

for
ab+ b2 + bd+ de+ ea = 5, a ≥ b ≥ 1 ≥ d ≥ e.

For fixed a and e, from the equality constraint, we may assume that b is a decreasing function
of d. By differentiating the constraint, we get

(a+ 2b+ d)b′ + b+ e = 0, −b′ = b+ e

a+ 2b+ d
≤ 1

2
.

Denoting the left side of the desired inequality by g(d), we have

g′(d) =
−2b′

(b+ 3)2
− 1

(d+ 3)2
≤ 1

(b+ 3)2
− 1

(d+ 3)2
≤ 0.

Thus, g(d) is decreasing and has the minimum value when d is maximum (b is minimum),
that is when d = 1 (because d ≤ 1) or b = 1 (because b ≥ 1). So, it suffices to consider these
cases.

Case 1: d = 1. We need to show that

1

a+ 3
+

2

b+ 3
+

1

e+ 3
≥ 1

for
ab+ b2 + b+ e+ ea = 5, a ≥ b ≥ 1 ≥ e.
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Since

e =
5− b− b2 − ab

1 + a
, e+ 3 =

8− b− b2 + (3− b)a
1 + a

,

we need to show that

1

a+ 3
+

2

b+ 3
+

1 + a

8− b− b2 + (3− b)a
≥ 1,

which is equivalent to
1

a+ 3
+

1 + a

8− b− b2 + (3− b)a
≥ b+ 1

b+ 3
,

(b− 1)[ba2 + (b2 + 5b− 4)a+ 2b2 + 4b− 9] ≥ 0.

Since a ≥ b ≥ 1, we have

ba2 + (b2 + 5b− 4)a+ 2b2 + 4b− 9 ≥ a2 + 2a− 3 = (a− 1)(a+ 3) ≥ 0.

Case 2: b = 1. We need to show that

1

a+ 3
+

1

d+ 3
+

1

e+ 3
≥ 3

4

for

(a+ d)(e+ 1) = 4, a ≥ 1 ≥ d ≥ e.

Write the desired inequality as

a+ d+ 6

(a+ 3)(d+ 3)
+

1

e+ 3
≥ 3

4
.

From (a− 1)(d− 1) ≤ 0, we get ad ≤ a+ d− 1, hence

(a+ 3)(d+ 3) = (a− 1)(d− 1) + 4(a+ d) + 8 ≤ 4(a+ d) + 8

and
a+ d+ 6

(a+ 3)(d+ 3)
≥ a+ d+ 6

4(a+ d) + 8
=

4/(e+ 1) + 6

16/(e+ 1) + 8
=

3e+ 5

4(e+ 3)
.

So, it suffices to show that
3e+ 5

4(e+ 3)
+

1

e+ 3
≥ 3

4
,

which is an identity.

The equality occurs for b = c = d = 1 and a+ e+ ae = 3, a ≥ 1 ≥ e.
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P 1.221. Prove that 3 is the largest positive value of the constant k such that

1

a+ k
+

1

b+ k
+

1

c+ k
+

1

d+ k
+

1

e+ k
≥ 5

1 + k

for any a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 satisfying ab+ bc+ cd+ de+ ea = 5.

(Vasile Cı̂rtoaje, RMM, 38, 2025)

Solution. Choosing a = 3, b = c = d = 1 and e = 0, the constraints are satisfied, while the
inequality becomes

1

3 + k
+

1

k
≥ 2

1 + k
,

i.e. k ≤ 3. To prove that 3 is the largest positive value of k, we need to show that

1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥ 5

4
.

Denote x =
b+ c+ d

3
and y =

a+ e

2
. We have

a ≥ x ≥ 1 ≥ e.

By the AM-HM inequality, we have

1

b+ 3
+

1

c+ 3
+

1

d+ 3
≥ 9

(b+ 3) + (c+ 3) + (d+ 3)
=

3

x+ 3
.

Thus, it suffices to show that

1

a+ 3
+

1

e+ 3
+

3

x+ 3
≥ 5

4
,

i.e.
2y + 6

ae+ 6y + 9
+

3

x+ 3
≥ 5

4
.

First, we show that 2x2 + 2xy + ae ≤ 5. Indeed, we have

9(5− 2x2 − 2xy − ae) = 9(ab+ bc+ cd+ de+ ea)− 2(b+ c+ d)2 − 3(b+ c+ d)(a+ e)− 9ae

= −2(b+ c+ d)2 + 3a(2b− c− d)− 3e(b+ c− 2d) + 9c(b+ d)

≥ −2(b+ c+ d)2 + 3b(2b− c− d)− 3d(b+ c− 2d) + 9c(b+ d)

= 4(b− d)2 + 2(b− c)(c− d) ≥ 0.

Since the left side of the desired inequality decreases when x increases, we may replace the
inequality constraint 2x2 + 2xy + ae ≤ 5 with the equality constraint

2x2 + 2xy + ae = 5.
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So, since ae = 5− 2xy − 2x2, it suffices to show that

2y + 6

14 + 6y − 2xy − 2x2
+

3

x+ 3
≥ 5

4
,

which is equivalent to (x− 1)E ≥ 0, where

E = (5x− 3)y + 5x2 + 8x− 15.

Since x ≥ 1, we need to show that E ≥ 0. From (x− a)(x− e) ≤ 0, we get ae ≤ 2xy − x2,
and from

5 = 2x2 + 2xy + ae ≤ 2x2 + 2xy + 2xy − x2,

we get y ≥ 5− x2

4x
. Thus,

E ≥ (5x− 3)(5− x2)
4x

+5x2+8x−15 =
5(3x3 + 7x2 − 7x− 3)

4x
=

5(x− 1)(3x2 + 10x+ 3)

4x
≥ 0.

For k = 3, the equality occurs when b = c = d = 1 and a+ e+ ae = 3 with a ≥ 1 ≥ e.

P 1.222. If a, b, c, d are nonnegative real numbers such that

ab+ ac+ ad+ bc+ bd+ cd = 6,

then
1

ab+ 3
+

1

bc+ 3
+

1

cd+ 3
+

1

da+ 3
≥ 1.

(Vasile Cı̂rtoaje, Math. Reflections, 3, 2023)

Solution. By the AM-GM inequality, we have

6 = ab+ ac+ ad+ bc+ bd+ cd ≥ 6
6
√
a3b3c3d3,

hence
abcd ≤ 1.

Write the required inequality as follows:

1

ab+ 3
+

1

cd+ 3
+

1

bc+ 3
+

1

da+ 3
≥ 1,

ab+ cd+ 6

(ab+ 3)(cd+ 3)
+

bc+ da+ 6

(bc+ 3)(da+ 3)
≥ 1,

3(ab+ cd) + 18

abcd+ 3(ab+ cd) + 9
+

3(bc+ da) + 18

abcd+ 3(bc+ da) + 9
≥ 3,
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1 +
9− abcd

abcd+ 3(ab+ cd) + 9
+ 1 +

9− abcd
abcd+ 3(bc+ da) + 9

≥ 3,

1

abcd+ 3(ab+ cd) + 9
+

1

abcd+ 3(bc+ da) + 9
≥ 1

9− abcd
.

According to the AM-HM inequality, it is sufficient to show that

4

[abcd+ 3(ab+ cd) + 9] + [abcd+ 3(bc+ da) + 9]
≥ 1

9− abcd
,

which is equivalent to

6 ≥ ab+ bc+ cd+ da+ 2abcd,

ac+ bd ≥ 2abcd.

Indeed, we have

ac+ bd ≥ 2
√
abcd ≥ 2abcd.

The proof is completed. The equality occurs for a = b = c = d = 1.

Remark. The inequality

1

ab+ k
+

1

bc+ k
+

1

cd+ k
+

1

da+ k
≥ 4

1 + k

does not hold for k > 3. By choosing b = d =
√
ac, the constraint ab+ac+ad+bc+bd+cd = 6

becomes (a+ c)
√
ac+ ac = 3, while the inequality can be written as follows:

1

a
√
ac+ k

+
1

c
√
ac+ k

≥ 2

1 + k
,

(a+ c)
√
ac+ 2k

a2c2 + k(a+ c)
√
ac+ k2

≥ 2

1 + k
.

Denoting x = ac, we have 3 = (a + c)
√
ac + ac ≥ 3ac = 3x, hence x ∈ (0, 1]. Since

(a+ c)
√
ac = 3− x, the inequality becomes

3 + 2k − x
x2 − kx+ k2 + 3k

≥ 2

1 + k
,

which is equivalent to

(x− 1)(2x+ 3− k) ≤ 0.

It is true if and only if 2x + 3 − k ≥ 0 for x ∈ (0, 1). For x → 1, we get the necessary
condition k ≤ 3.
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P 1.223. If a, b, c, d are nonnegative real numbers such that

ab+ ac+ ad+ bc+ bd+ cd = 6, a ≥ b ≥ c ≥ d,

then
1

ab+ 5
+

1

bc+ 5
+

1

cd+ 5
+

1

da+ 5
≥ 2

3
.

(Vasile Cı̂rtoaje, AMM, 1, 2023)

Solution. Write the inequality as follows:

ab+ cd+ 10

(ab+ 5)(cd+ 5)
+

bc+ ad+ 10

(bc+ 5)(ad+ 5)
≥ 2

3
,

5(ab+ cd) + 50

abcd+ 5(ab+ cd) + 25
+

5(bc+ ad) + 50

abcd+ 5(bc+ ad) + 25
≥ 10

3
,

1 +
25− abcd

abcd+ 5(ab+ cd) + 25
+ 1 +

25− abcd
abcd+ 5(bc+ ad) + 25

≥ 10

3
,

1

abcd+ 5(ab+ cd) + 25
+

1

abcd+ 5(bc+ ad) + 25
≥ 4

3(25− abcd)
.

Since

ab+ cd = 6− (bc+ ad)− (ac+ bd) = 6− 2(bc+ ad)− (a− b)(c− d) ≤ 6− 2(bc+ ad),

it suffices to show that

1

abcd− 10(bc+ ad) + 55
+

1

abcd+ 5(bc+ ad) + 25
≥ 4

3(25− abcd)
.

Using the substitution
bc = x, ad = y,

the inequality becomes

1

xy − 10(x+ y) + 55
+

1

xy + 5(x+ y) + 25
≥ 4

3(25− xy)
.

Let z =
x+ y

2
. Since xy ≤ z2, it suffices to show that

1

z2 − 20z + 55
+

1

z2 + 10z + 25
≥ 4

3(25− z2)
,

which is equivalent to
10− 21z + 12z2 − z3 ≥ 0.

(1− z)2(10− z) ≥ 0.
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Since 2z = bc + ad < ab + ac + ad + bc + bd + cd = 6, the latter inequality is obvious. The
original inequality is an equality for a = b = c = d = 1.

Remark 1. The inequality

1

ab+ k
+

1

bc+ k
+

1

cd+ k
+

1

da+ k
≥ 4

1 + k

does not hold for k > 5. By choosing a = b and c = d, the constraint ab+ac+ad+bc+bd+cd =
6 becomes a2 + d2 + 4ad = 6, while the inequality can be written as follows:

1

a2 + k
+

1

d2 + k
+

2

ad+ k
≥ 4

1 + k
,

a2 + d2 + 2k

a2d2 + k(a2 + d2) + k2
+

2

ad+ k
≥ 4

1 + k
.

Denoting x = ad, we have 6 = a2 + d2 + 4ad ≥ 6ad = 6x, hence x ∈ [0, 1]. Since a2 + d2 =
6− 4x, the inequality becomes

3 + k − 2x

x2 − 4kx+ k2 + 6k
+

1

x+ k
≥ 2

1 + k
,

which is equivalent to (x− 1)P (x) ≤ 0, where

P (x) = 2x2 − (5k − 3)x+ 9k − k2.

Since x− 1 ≤ 0, the inequality is true if and only if P (x) ≥ 0 for x ∈ [0, 1]. Letting d→ 0,
we get the necessary condition (5− k)(1 + k) ≥ 0, that is k ≤ 5.

Remark 2. We claim that the following open problem is valid:

• If a, b, c, d, e are nonnegative real numbers such that

ab+ ac+ ad+ ae+ bc+ bd+ be+ cd+ ce+ de = 10, a ≥ b ≥ c ≥ d ≥ e,

then
1

ab+ 4
+

1

bc+ 4
+

1

cd+ 4
+

1

de+ 4
+

1

ea+ 4
≥ 1.

An interesting (open) particular case is for a = b and d = e: If b, c, d are nonnegative real
numbers such that

2(bc+ cd+ db) + (b+ d)2 = 10 ,

then
1

bc+ 4
+

1

cd+ 4
+

1

db+ 4
+

1

b2 + 4
+

1

d2 + 4
≥ 1.

Remark 3. We claim that the following open problem is valid:
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• If a, b, c, d, e are nonnegative real numbers such that

ab+ ac+ ad+ ae+ bc+ bd+ be+ cd+ ce+ de = 10,

then
1

ab+ 3
+

1

bc+ 3
+

1

cd+ 3
+

1

de+ 3
+

1

ea+ 3
≥ 5

4
.

P 1.224. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
1

ab+ 4
+

1

ac+ 4
+

1

ad+ 4
+

1

bc+ 4
+

1

bd+ 4
+

1

cd+ 4
≥ 6

5
.

(Vasile Cı̂rtoaje, GM-B, 1, 2024)

Solution. By the AM-GM inequality, we have

4 = ab+ bc+ cd+ da ≥ 4
√
a2b2c2d2 =

√
abcd,

hence

p ≤ 1, p = abcd.

Write the required inequality as follows:(
1

ab+ 4
+

1

cd+ 4

)
+

(
1

ac+ 4
+

1

bd+ 4

)
+

(
1

ad+ 4
+

1

bc+ 4

)
≥ 6

5
,

ab+ cd+ 8

p+ 4(ab+ cd) + 16
+

ac+ bd+ 8

p+ 4(ac+ bd) + 16
+

ad+ bc+ 8

p+ 4(ad+ bc) + 16
≥ 6

5
,

4(ab+ cd) + 32

p+ 4(ab+ cd) + 16
+

4(ac+ bd) + 32

p+ 4(ac+ bd) + 16
+

4(ad+ bc) + 32

p+ 4(ad+ bc) + 16
≥ 24

5
,

1 +
16− p

p+ 4(ab+ cd) + 16
+ 1 +

16− p
p+ 4(ac+ bd) + 16

+ 1 +
16− p

p+ 4(ad+ bc) + 16
≥ 24

5
,

1

p+ 4(ab+ cd) + 16
+

1

p+ 4(ac+ bd) + 16
+

1

p+ 4(ad+ bc) + 16
≥ 9

5(16− p)
,

According to the AM-HM inequality, it is sufficient to show that

9

[p+ 4(ab+ cd) + 16] + [p+ 4(ac+ bd) + 16] + [p+ 4(ad+ bc) + 16]
≥ 9

5(16− p)
,
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which is equivalent to

1

3p+ 4(ab+ cd+ ac+ bd+ ad+ bc) + 48
≥ 1

5(16− p)
,

1

3p+ 4(ac+ bd) + 64
≥ 1

5(16− p)
,

4 ≥ 2p+ ac+ bd,

ab+ bc+ cd+ da ≥ 2p+ ac+ bd,

(a− d)(b− c) + bc+ da ≥ 2p.

It suffices to show that
bc+ da ≥ 2p.

Indeed, we have
bc+ da ≥ 2

√
p ≥ 2p.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.225. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ c ≥ d,

then
1

ab+ 7
+

1

ac+ 7
+

1

ad+ 7
+

1

bc+ 7
+

1

bd+ 7
+

1

cd+ 7
≥ 3

4
.

(Vasile Cı̂rtoaje, SSMJ, 1, 2024)

Solution. Denote p = abcd and write the desired inequality as follows:

ab+ cd+ 14

p+ 7(ab+ cd) + 49
+

ac+ bd+ 14

p+ 7(ac+ bd) + 49
+

ad+ bc+ 14

p+ 7(ad+ bc) + 49
≥ 3

4
,

1 +
49− p

p+ 7(ab+ cd) + 49
+ 1 +

49− p
p+ 7(ac+ bd) + 49

+ 1 +
49− p

p+ 7(ad+ bc) + 49
≥ 21

4
,

1

p+ 7(ab+ cd) + 49
+

1

p+ 7(ac+ bd) + 49
+

1

p+ 7(ad+ bc) + 49
≥ 9

4(49− p)
.

By the AM-HM inequality, it suffices to show that

4

2p+ 7(ab+ cd+ ac+ bd) + 98
+

1

p+ 7(ad+ bc) + 49
≥ 9

4(49− p)
.

Since

ab+ cd+ ac+ bd = 2(ab+ cd)− (a− d)(b− c) ≤ 2(ab+ cd) = 2(4− ad− bc),
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it suffices to prove that

2

p− 7(ad+ bc) + 77
+

1

p+ 7(ad+ bc) + 49
≥ 9

4(49− p)
.

Using the substitution
ad = x, bc = y,

the inequality becomes

2

xy − 7(x+ y) + 77
+

1

xy + 7(x+ y) + 49
≥ 9

4(49− xy)
.

Let z =
x+ y

2
. Since xy ≤ z2, it suffices to show that

2

z2 − 14z + 77
+

1

z2 + 14z + 49
≥ 9

4(49− z2)
,

which is equivalent to
(z − 1)2(7− 3z) ≥ 0.

Since z <
ab+ bc+ cd+ da

2
= 2, the latter inequality is obvious. The original inequality is

an equality for a = b = c = d = 1.

Remark. The inequality

1

ab+ k
+

1

ac+ k
+

1

ad+ k
+

1

bc+ k
+

1

bd+ k
+

1

cd+ k
≥ 6

1 + k
.

does not hold true for k > 7. By choosing b = c = 1, the constraint ab + bc + cd + da = 4

becomes ad = 3− 2S, where S =
a+ d

2
, while the inequality can be written as follows:

2

a+ k
+

2

d+ k
+

1

ad+ k
≥ 5

1 + k
,

2(a+ d+ 2k)

ad+ k(a+ d) + k2
+

1

ad+ k
≥ 5

1 + k
,

4S + 4k

(2k − 2)S + k2 + 3
+

1

k + 3− 2S
≥ 5

1 + k
,

2(3k − 7)S2 − (k2 + 6k − 35)S + k2 − 21 ≥ 0,

(S − 1)[2(3k − 7)S − k2 + 21] ≥ 0.

From 3 − 2S = ad ≤ S2, we get S ≥ 1. Thus, the inequality is true if and only if 2(3k −
7)S − k2 + 21 ≥ 0 for S > 1. So, we get the necessary condition 2(3k− 7)− k2 + 21 ≥ 0, i.e.
(7− k)(1 + k) ≥ 0, k ≤ 7.
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P 1.226. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4,

then
4
√

2

3
≤ 1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
+

1

d2 + 1
< 3.

(Vasile Cı̂rtoaje, Recreatii Matematice, no. 1, 2022)

Solution. The hypothesis is equivalent to

(a+ c)(b+ d) = 4.

(a) Write the right inequality as

a2

a2 + 1
+

b2

b2 + 1
+

c2

c2 + 1
+

d2

d2 + 1
> 1.

Since
a2

a2 + 1
+

c2

c2 + 1
≥ (a+ c)2

(a2 + 1) + (c2 + 1)
≥ (a+ c)2

(a+ c)2 + 2

and
b2

b2 + 1
+

d2

d2 + 1
≥ (b+ d)2

(b+ d)2 + 2
=

8

(a+ c)2 + 8
,

it suffices to show that
(a+ c)2

(a+ c)2 + 2
+

8

(a+ c)2 + 8
> 1.

This is equivalent to the obvious inequality

(a+ c)2

(a+ c)2 + 2
>

(a+ c)2

(a+ c)2 + 8
.

(b) To prove the left inequality, consider a+ c ≥ 2 ≥ b+ d and first show that

1

a2 + 1
+

1

c2 + 1
≥ 8

(a+ c)2 + 4
.

Write this inequality as follows

1

a2 + 1
− 4

(a+ c)2 + 4
+

1

c2 + 1
− 4

(a+ c)2 + 4
≥ 0,

(c− a)(3a+ c)

a2 + 1
+

(a− c)(3c+ a)

c2 + 1
≥ 0,

(a− c)2(a2 + c2 + 4ac− 2) ≥ 0.
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The last inequality is true since

a2 + c2 + 4ac− 2 = (a+ c)2 + 2ac− 2 ≥ 4 + 2ac− 2 > 0.

Thus, we need to show that b+ d ≤ 2 involves

8

(a+ c)2 + 4
+

1

b2 + 1
+

1

d2 + 1
≥ 4
√

2

3
,

that is
2s

s+ 1
+

1

b2 + 1
+

1

d2 + 1
≥ 4
√

2

3
,

where

s =
1

4
(b+ d)2, 0 ≤ s ≤ 1.

Denoting
p = bd, 0 ≤ p ≤ s ≤ 1,

the inequality is equivalent to

s

s+ 1
+

2s+ 1− p
p2 − 2p+ 4s+ 1

≥ 2
√

2

3
.

We have two cases to consider.

Case 1: 2s ≤ 1. Since

1− (2s+ 1)p ≥ 1− (2s+ 1)s = (1− 2s)(1 + s) ≥ 0,

we have
2s+ 1− p

p2 − 2p+ 4s+ 1
− 2s+ 1

4s+ 1
=

p[1− (2s+ 1)p]

(4s+ 1)(p2 − 2p+ 4s+ 1)
≥ 0.

Thus, it suffices to show that
s

s+ 1
+

2s+ 1

4s+ 1
≥ 2
√

2

3
.

This inequality is equivalent to (
14s− 3

√
2 + 2

)2
≥ 0.

Case 2: 2s ≥ 1. Since

2s+ 1− p
p2 − 2p+ 4s+ 1

− 1

s+ 1
=

(s− p)(2s− 1 + p)

(s+ 1)(p2 − 2p+ 4s+ 1)
≥ 0,

it suffices to show that
s

s+ 1
+

1

s+ 1
≥ 2
√

2

3
,
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which is obvious.
The equality holds for

a2 = c2 = 2 + 3
√

2 , b2 =
2(3
√

2− 2)

7
, d = 0

(or any cyclic permutation).

P 1.227. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a ≥ b ≥ 1 ≥ c ≥ d,

then
1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
+

1

d2 + 1
≥ 2.

(Vasile Cı̂rtoaje, 2023)

Solution. From
4 = (a+ c)(b+ d) ≤ (a+ c)2,

we get
a+ c ≥ 2.

Write the inequality as
1

a2 + 1
+

1

c2 + 1
≥ b2

b2 + 1
+

d2

d2 + 1
.

Since
b2

b2 + 1
≤ b2

2b
=
b

2
,

d2

d2 + 1
≤ d

2
,

it suffices to show that
1

a2 + 1
+

1

c2 + 1
≥ b+ d

2
,

which is equivalent to E(a, c) ≥ 0, where

E(a, c) =
1

a2 + 1
+

1

c2 + 1
− 2

a+ c
.

It is true because a ≥ 1 ≥ c and a+ c ≥ 2 involve

E(a, 1) =
1

a2 + 1
+

1

2
− 2

a+ 1
=

(a− 1)3

2(a+ 1)(a2 + 1)
≥ 0

and

E(a, c)− E(a, 1) =

(
1

c2 + 1
− 1

2

)
−
(

2

a+ c
− 2

a+ 1

)
=

1− c
2

F (a, c),



Cyclic Inequalities 317

where

F (a, c) =
c+ 1

c2 + 1
− 4

(a+ c)(a+ 1)
≥ c+ 1

c2 + 1
− 2

a+ 1

≥ c+ 1

c2 + 1
− 2

3− c
=

(1− c)(1 + 3c)

(c2 + 1)(3− c)
≥ 0.

The equality occurs for a = b = c = d = 1.

P 1.228. If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4,

then

2 ≤ 1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
< 3.

Solution. The hypothesis is equivalent to

(a+ c)(b+ d) = 4.

(a) Since
1

a+ 1
+

1

c+ 1
=

a+ c+ 2

ac+ a+ c+ 1
≤ a+ c+ 2

a+ c+ 1
and

1

b+ 1
+

1

d+ 1
=

b+ d+ 2

bd+ b+ d+ 1
≤ b+ d+ 2

b+ d+ 1
=

2(a+ c+ 2)

a+ c+ 4
,

the right inequality is true if

a+ c+ 2

a+ c+ 1
+

2(a+ c+ 2)

a+ c+ 4
< 3,

which is equivalent to
a+ c > 0.

The inequality is strict since the necessary equality condition a + c = 0 contradicts the
constraint (a+ c)(b+ d) = 4.

(b) To prove the left inequality, we apply the AM-HM inequality as follows:

1

a+ 1
+

1

c+ 1
≥ 4

a+ c+ 2
,

1

b+ 1
+

1

d+ 1
≥ 4

b+ d+ 2
.

So, we only need to show that

2

a+ c+ 2
+

2

b+ d+ 2
≥ 1,

which is an identity. The equality holds for a = c =
1

b
=

1

d
.
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P 1.229. If a, b, c, d, e are nonnegative real numbers such that ab + bc + cd + de + ea = 1,
then

3 <
1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
+

1

e+ 1
≤ 4.

(Vasile Cı̂rtoaje, Math. Reflections, 3, 2023)

Solution. (a) To prove the left inequality, assume that a = min{a, b, c, d, e} < 1/2 and
c ≤ d. For a = c = 0, we need to show that de = 1 involves

1

b+ 1
+

1

d+ 1
+

1

e+ 1
> 1,

which reduces to the obvious inequality

1

b+ 1
> 0.

Consider next that a+ c > 0. Since

(a+ c)b+ (a+ d)e = 1− cd, cd ≤ 1,

(a+ c)(b+ 1) + (a+ d)(e+ 1) = 2a+ c+ d+ 1− cd,

by the Cauchy-Schwarz inequality we have

1

b+ 1
+

1

e+ 1
≥ (

√
a+ c+

√
a+ d)2

(a+ c)(b+ 1) + (a+ d)(e+ 1)

=
2a+ c+ d+ 2

√
(a+ c)(a+ d)

2a+ c+ d+ 1− cd
≥ 4a+ c+ d+ 2

√
cd

2a+ c+ d+ 1− cd
.

Thus, it suffices to prove that

1

a+ 1
+

1

c+ 1
+

1

d+ 1
+

4a+ c+ d+ 2
√
cd

2a+ c+ d+ 1− cd
> 3 (*)

for a < 1/2, a+ c > 0 and cd ≤ 1. Denote

x =
c+ d

2
, p =

√
cd.

From c+ d ≥ 2
√
cd and (a− c)(a− d) ≥ 0, we get x ≥ p and a2 − 2ax+ p2 ≥ 0, therefore

p ≤ x ≤ a2 + p2

2a
.

We have x = p for c = d ≤ 1, and x = (a2 + p2)/(2a) for a = c ∈ (0, 1/2). Write now the
inequality (*) as

1

a+ 1
+

2(x+ 1)

1 + 2x+ p2
+

4a+ 2x+ 2p

2a+ 2x+ 1− p2
> 3.
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For fixed a and p, the inequality is equivalent to f(x) > 0, where f is a polynomial of second
order with the expression

f(x) = −4ax2 +B(a, p)x+ C(a, p).

Since f is concave, it suffices to prove the inequality f(x) > 0 for x = p and x =
a2 + p2

2a
,

therefore for c = d ≤ 1 and for a = c ∈ (0, 1/2), respectively.

Case 1: c = d ≤ 1. The inequality (*) becomes

1

a+ 1
+

2

c+ 1
+

4a+ 4c

2a+ 2c+ 1− c2
> 3,

which is equivalent to the obvious inequality

2(1− c)a2 + (3c3 − c2 − c+ 3)a+ 2c(c2 + 1) > 0.

Case 2: a = c ∈ (0, 1/2). The inequality (*) becomes

2

c+ 1
+

1

d+ 1
+

5c+ d+ 2
√
cd

3c+ d+ 1− cd
> 3,

2(c+ 1)(d+ 1)
√
cd+ 3c2d2 − cd(2c+ d)− c(c+ 2d) + 3c > 0.

Using the substitution
cd = y2, 0 < y ≤ 1,

the inequality becomes

2y(c+ 1)

(
y2

c
+ 1

)
+ 3y4 − y2

(
2c+

y2

c

)
− c

(
c+

2y2

c

)
+ 3c > 0,

y3(2− y)

c
− c2 + (3 + 2y − 2y2)c+ y(2− 2y + 2y2 + 3y3) > 0.

It is true if −c2 + (3 + 2y − 2y2)c ≥ 0. Indeed, we have

−c2 + (3 + 2y − 2y2)c > −c+ (3 + 2y − 2y2)c = 2(1 + y − y2)c > 0.

(b) To prove the right inequality, suppose that (x1, x2, x3, x4, x5) is a permutation of
(a, b, c, d, e) such that x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5. Due to symmetry, the desired inequality is
equivalent to

1

x1 + 1
+

1

x2 + 1
+

1

x3 + 1
+

1

x4 + 1
+

1

x5 + 1
≤ 4,

that can be written in the form

x1
x1 + 1

+
x2

x2 + 1
+

x3
x3 + 1

+
x4

x4 + 1
+

x5
x5 + 1

≥ 1.
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For x1x2 ≥ 1, the inequality is true because

x1
x1 + 1

+
x2

x2 + 1
− 1 =

x1x2 − 1

(x1 + 1)(x2 + 1)
≥ 0.

Consider further x1x2 ≤ 1. For x3 + x4 + x5 > 0, by the Cauchy-Schwarz inequality we have

x3
x3 + 1

+
x4

x4 + 1
+

x5
x5 + 1

≥ (x3 + x4 + x5)
2

x3(x3 + 1) + x4(x4 + 1) + x5(x5 + 1)

≥ (x3 + x4 + x5)
2

(x3 + x4 + x5)2 + x3 + x4 + x5
=

x3 + x4 + x5
x3 + x4 + x5 + 1

= 1− 1

x3 + x4 + x5 + 1
,

hence
x3

x3 + 1
+

x4
x4 + 1

+
x5

x5 + 1
≥ 1− 1

x3 + x4 + x5 + 1
.

We can see that this inequality is also true for x3 = x4 = x5 = 0. So, it suffices to prove that

x1
x1 + 1

+
x2

x2 + 1
− 1

x3 + x4 + x5 + 1
≥ 0.

By Lemma below, we have

x3 + x4 + x5 ≥
1− x1x2
x1 + x2

,

hence
x1

x1 + 1
+

x2
x2 + 1

− 1

x3 + x4 + x5 + 1
≥ x1
x1 + 1

+
x2

x2 + 1
− 1

1−x1x2
x1+x2

+ 1

=
x1

x1 + 1
+

x2
x2 + 1

− x1 + x2
1− x1x2 + x1 + x2

=
2x1x2(1− x1x2)

(x1 + 1)(x2 + 1)(1− x1x2 + x1 + x2)
≥ 0.

The proof is completed. The equality is an equality for ab = 1 and c = d = e = 0 (or any
cyclic permutation).

Lemma. Let a, b, c, d, e be nonnegative real numbers, and let (x1, x2, x3, x4, x5) be a permu-
tation of (a, b, c, d, e) such that x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5. Then,

x1x2 + (x1 + x2)(x3 + x4 + x5) ≥ ab+ bc+ cd+ de+ ea.

Proof. Assume that a = max{a, b, c, d, e}, hence a = x1 and x2 +x3 +x4 +x5 = b+ c+d+ e.
Since

x1x2 + (x1 + x2)(x3 + x4 + x5) = x1(x2 + x3 + x4 + x5) + x2(x3 + x4 + x5)

= a(b+ c+ d+ e) + x2(x3 + x4 + x5) ≥ a(b+ c+ d+ e) + x2x3,

it suffices to show that

a(b+ c+ d+ e) + x2x3 ≥ ab+ bc+ cd+ de+ ea,



Cyclic Inequalities 321

that is
a(c+ d) + x2x3 ≥ bc+ cd+ de,

which is equivalent to the obvious inequality

c(a− b) + d(a− c) + (x2x3 − de) ≥ 0.

P 1.230. If a, b, c, d, e, f are nonnegative real numbers such that

ab+ bc+ cd+ de+ ef + fa = 6,

then

(2a+ 1)2 + (2b+ 1)2 + (2c+ 1)2 + (2d+ 1)2 + (2e+ 1)2 + (2f + 1)2 ≥ 54.

(Vasile Ĉırtoaje, MATINF, 9-10, 2022)

Solution. Let
s = a+ c+ e, q = ac+ ce+ ea, 3q ≤ s2.

By the Cauchy-Schwarz inequality, we have:[
(a+ c)2 + (c+ e)2 + (e+ a)2

] [
(2b+ 1)2 + (2d+ 1)2 + (2f + 1)2

]
≥

≥ [(a+ c)(2b+ 1) + (c+ e)(2d+ 1) + (e+ a)(2f + 1)]2

= 4(a+ c+ e+ ab+ bc+ cd+ de+ ef + fa)2 = 4(s+ 6)2.

Since

(a+ c)2 + (c+ e)2 + (e+ a)2 = 2(a2 + c2 + e2 + ac+ ce+ ea) = 2(s2 − q) > 0,

we get

(2b+ 1)2 + (2d+ 1)2 + (2f + 1)2 ≥ 2(s+ 6)2

s2 − q
.

Thus, it suffices to prove that

(2a+ 1)2 + (2c+ 1)2 + (2e+ 1)2 +
2(s+ 6)2

s2 − q
≥ 54.

Since

(2a+ 1)2 + (2c+ 1)2 + (2e+ 1)2 = 4(a2 + c2 + e2 + a+ c+ e) + 3 = 4(s2 + s− 2q) + 3,

we need to prove the inequality

4(s2 + s− 2q) +
2(s+ 6)2

s2 − q
≥ 51,
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which is equivalent to f(q) ≥ 0, where

f(q) = 8q2 − (12s2 + 4s− 51)q + 4s4 + 4s3 − 49s2 + 24s+ 72.

For s ≤ 1, we have

f(q) > 8q2 − (12s2 + 4s− 51)q ≥ (51− 4s− 12s2)q ≥ 0.

Consider now s ≥ 1 and write f(q) as

f(q) = 8

(
12s2 + 4s− 51

16
− q
)2

+
g(s)

32
,

where
g(s) = −16s4 + 32s3 − 360s2 + 1176s− 297.

For 1 ≤ s ≤ 5

2
, we have g(s) > 0, therefore f(q) > 0. Indeed,

g(s) = 4s(2s+ 3)(s− 1)(5− 2s)− 404s2 + 1236s− 297 ≥ −404s2 + 1236s− 297

> −420s2 + 1200s− 375 = 15(−28s2 + 80s− 25) = 15(5− 2s)(14s− 5) ≥ 0.

For s ≥ 5

2
, since

12s2 + 4s− 51

16
− q ≥ 12s2 + 4s− 51

16
− s2

3
=

20s2 + 12s− 153

48

>
20s2 + 12s− 155

48
=

(2s− 5)(10s+ 31)

48
≥ 0,

f(q) is a decreasing function, hence

f(q) ≥ f

(
s2

3

)
=

8(s4 + 3s3 − 36s2 + 27s+ 81)

9
=

8(s− 3)2(s2 + 9s+ 9)

9
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = f = 1.

P 1.231. Prove that 4 is the largest positive value of the constant k such that

a21 + a22 + · · ·+ a2n − n ≥ k(a1 + a2 + · · ·+ an − n)

for all odd integers n ≥ 3 and nonnegative real numbers ai which satisfy a1a2 + a2a3 + · · ·+
ana1 = n.

(Vasile Ĉırtoaje, AMM, 3, 2025)
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Solution. For a1 = a3 = · · · = an−2 := x, a2 = a4 = · · · = an−1 := y and an = 1, the
constraint becomes (n− 2)xy + x+ y = n, i.e.

2S = n− (n− 2)p,

where S =
x+ y

2
and p = xy. From n− (n− 2)p = 2S ≥ 2

√
p, we get p ≤ 1. On the other

hand, the inequality becomes as follows:

(n− 1)(x2 + y2)

2
+ 1− n ≥ k

[
(n− 1)(x+ y)

2
+ 1− n

]
,

x2 + y2 − 2 ≥ k(x+ y − 2), 4S2 − 2p− 2 ≥ k(2S − 2),

[n− (n− 2)p]2 − 2p− 2 ≥ k[n− (n− 2)p− 2],

(1− p)[n2 − 2− (n− 2)2p] ≥ k(n− 2)(1− p).

It is true for all p ∈ [0, 1] if and only if

n2 − 2− (n− 2)2p ≥ k(n− 2).

For p = 1, we get

k ≤ 4 +
2

n− 2
.

Clearly, this condition is true for all odd integer n ≥ 3 if and only if k ≤ 4. To finish the
proof, we need to prove the inequality

a21 + a22 + · · ·+ a2n + 3n ≥ 4(a1 + a2 + · · ·+ an),

which is equivalent to the obvious inequality∑
cyc

(a1 + a2 − 2)2 ≥ 0.

For k = 4, the equality occurs when a1 = a2 = · · · = an = 1.

Remark 1. From the proof above, it follows that the inequality

a21 + a22 + · · ·+ a2n + 3n ≥ 4(a1 + a2 + · · ·+ an)

holds for all integer n ≥ 2 and all nonnegative real numbers a1, a2, . . . , an which satisfy
a1a2 + a2a3 + · · ·+ ana1 = n.

Remark 2. For a given even n ≥ 2, the largest values of kn is 4. Indeed, by choosing
a1 = a3 = · · · = an−1 := x and a2 = a4 = · · · = an := y, the constraint becomes xy = 1,
while the inequality becomes as follows:

x2 + y2 − 2 ≥ kn(x+ y − 2),
(x2 − 1)2

x2
≥ kn(x− 1)2

x
.



324 Vasile Ĉırtoaje

The inequality is true for any positive x if and only if kn ≤
(x+ 1)2

x
. For x = 1, we get the

necessary condition kn ≤ 4.

Remark 3. For a given odd n ≥ 3, the largest values of kn (when ai are real numbers) is

2 + 2 sec
(π
n

)
. Denoting ai = 1 + xi for i = 1, 2, . . . , n, and

X = x21 + x22 + · · ·+ x2n, Y = x1x2 + x2x3 + · · ·+ xnx1,

the constraint becomes
Y + 2(x1 + x2 + · · ·+ xn) = 0,

while the inequality becomes

X − (k − 2)(x1 + x2 + · · ·+ xn) ≥ 0,

hence
2X

k − 2
+ Y ≥ 0.

It is known that the least value of An such that AnX + Y ≥ 0 for any real x1, x2, . . . , xn is

An = cos
(π
n

)
. So, from

2

k − 2
= cos

(π
n

)
,

we obtain the largest value of k, that is kn = 2 + 2 sec
(π
n

)
.

P 1.232. If a, b, c, d, e are positive real numbers such that

ab+ bc+ cd+ de+ ea = 5,

then

5

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
≥ 4(a+ b+ c+ d+ e) + 5.

(Vasile Ĉırtoaje, RMM, 36, 2025)

Solution. Using Lemma in the proof of P 1.217, it suffices to consider

ae+ ad+ be+ bc+ cd = 5, a ≥ b ≥ c ≥ d ≥ e.

Denote

x =
a+ b

2
, y =

d+ e

2
, a ≥ x ≥ b ≥ c ≥ d ≥ y ≥ e.

As shown at P 1.217, we have

4xy ≤ 5− c2, c <
√

5,
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and
4c(x+ y) ≥ 3c2 + 5.

By the AM-HM inequality, we have

1

a
+

1

b
≥ 4

a+ b
=

2

x
,

1

d
+

1

e
≥ 2

y
.

Thus, it suffices to show that the conditions

4xy ≤ 5− c2, 4c(x+ y) ≥ 3c2 + 5, x ≥ c ≥ y > 0

involve

5

(
2

x
+

2

y
+

1

c

)
≥ 4(2x+ 2y + c) + 5,

that is

2(x+ y)

(
5

xy
− 4

)
+

5

c
− 4c− 5 ≥ 0.

Since
5

xy
− 4 ≥ 20

5− c2
− 4 =

4c2

5− c2
,

it suffices to show that
8(x+ y)c2

5− c2
+

5

c
− 4c− 5 ≥ 0.

This inequality is true if
2c(3c2 + 5)

5− c2
+

5

c
− 4c− 5 ≥ 0,

which is equivalent to
2c4 + c3 − 3c2 − 5c+ 5 ≥ 0,

(c− 1)2(2c2 + 5c+ 5) ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = 1.

Remark 1. The inequality

1

a
+

1

b
+

1

c
+

1

d
+

1

e
− 5 ≥ k(a+ b+ c+ d+ e− 5)

is not valid for k >
4

5
. To prove this assert, consider the case

a = x2, b = e =
m

x2
, c = d =

1

x
, m, x > 0.

From the constraint ab+ bc+ cd+ de+ ea = 5, we get

2m+
2m

x3
+

1

x2
= 5, m =

x(5x2 − 1)

2(x3 + 1)
,
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The desired inequality becomes

1

x2
+

2x2

m
+ 2x− 5 ≥ k

(
x2 +

2m

x2
+

2

x
− 5

)
,

1

x2
+

4x(x3 + 1)

5x2 − 1
+ 2x− 5 ≥ k

(
x2 +

5x2 − 1

x4 + x
+

2

x
− 5

)
.

For x→∞, this inequality leads to the necessary condition

4

5
≥ k.

Remark 2. Since
a+ b+ c+ d+ e

5
+

5

a+ b+ c+ d+ e
≥ 2,

the following inequality follows from P 1.232:

• If a, b, c, d, e are positive real numbers such that

ab+ bc+ cd+ de+ ea = 5,

then
1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

20

a+ b+ c+ d+ e
≥ 9.

P 1.233. If a, b, c, d, e are positive real numbers such that

ab+ bc+ cd+ de+ ea = 5, a ≥ b ≥ c ≥ 1 ≥ d ≥ e,

then
1

a
+

1

b
+

1

c
+

1

d
+

1

e
+ 10 ≥ 3(a+ b+ c+ d+ e).

(Vasile Ĉırtoaje, Math. Reflections, 4, 2024)

Solution. Write the inequality as E ≥ 0. For fixed c, d and e, we may consider that a and
E are functions of b. Differentiating the equality constraint yields

(b+ e)a′ + a+ c = 0, −a′ = a+ c

b+ e
≥ a+ c

b+ c
≥ a+ b

2b
.

Therefore,

E ′(b) = −
(

1

b2
+ 3

)
−
(

1

a2
+ 3

)
a′ ≥ −

(
1

b2
+ 3

)
+

(
1

a2
+ 3

)
a+ b

2b
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= 3

(
a+ b

2b
− 1

)
−
(

1

b2
− a+ b

2a2b

)
=

(a− b)(3a2b− 2a− b)
2a2b2

.

Since ab ≥ 1, we have 3a2b − 2a − b ≥ 3a − 2a − b = a − b ≥ 0. Thus, E ′(b) ≥ 0, E(b) is
increasing and has the minimum value when b is minimum, hence when b = c. So, we need
to show that F ≥ 0 for

ac+ c2 + cd+ de+ ea = 5, a ≥ c ≥ 1 ≥ d ≥ e > 0,

where

F =
1

a
+

2

c
+

1

d
+

1

e
+ 10− 3(a+ 2c+ d+ e).

For fixed a and e, we may consider that d and F are functions of c. Differentiating the
equality constraint yields

(c+ e)d′ + a+ 2c+ d = 0, −d′ = a+ 2c+ d

c+ e
≥ 2.

Therefore,

F ′(c) = −2

(
1

c2
+ 3

)
−
(

1

d2
+ 3

)
d′ ≥ −2

(
1

c2
+ 3

)
+ 2

(
1

d2
+ 3

)
≥ 0,

F (c) is increasing and has the minimum value when c is minimum (d is maximum), hence
when either c = 1 or d = 1. So, it suffices to consider these cases.

Case 1: c = 1. We have

F =
1

a
+

1

d
+

1

e
+ 6− 3(a+ d+ e)

and
a+ d+ de+ ea = 4, a ≥ 1 ≥ d ≥ e > 0.

Denoting s =
a+ d

2
, we have

e =
4− a− d
a+ d

=
2− s
s

,

and from (a− 1)(d− 1) ≤ 0, we get ad ≤ 2s− 1. Therefore,

F =
2s

ad
+

s

2− s
+6−6s−3(2− s)

s
≥ 2s

2s− 1
+

s

2− s
+6−6s−3(2− s)

s
=

12(s− 1)4

s(2s− 1)(2− s)
≥ 0.

Case 2: d = 1. We have

F =
1

a
+

2

c
+

1

e
+ 8− 3(a+ 2c+ e)

and
ac+ c2 + c+ e+ ea = 5, a ≥ c ≥ 1 ≥ e > 0.
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Since
2

c
≥ 4− 2c, it follows that

F ≥ 1

a
− 3a− 8c+

1

e
− 3e+ 12.

Since c2 ≥ 2c− 1, the constraint ac+ c2 + c+ e+ ea = 5 yields

ac+ 3c+ e+ ea ≤ 6.

Thus, we have

c ≤ 6− (1 + a)e

3 + a
,

6 ≥ ac+ 3c+ e+ ea > a+ 3 + 0 + 0, 1 ≤ a < 3,

6 ≥ ac+ 3c+ e+ ea ≥ a+ 3 + e+ ea, 0 < e ≤ 3− a
1 + a

:= e0.

Therefore, for fixed a ∈ [1, 3), we have F ≥ f(e), where

f(e) =
1

a
− 3a− 8 · 6− (1 + a)e

3 + a
+

1

e
− 3e+ 12, e ∈ (0, e0].

Since

f ′(e) =
8(1 + a)

3 + a
− 1

e2
− 3 =

5a− 1

3 + a
− 1

e2
≤ 5a− 1

3 + a
−
(

1 + a

3− a

)2

=
4(a3 − 9a2 + 11a− 3)

(3 + a)(3− a)2
=

4(a− 1)(a2 − 8a+ 3)

(3 + a)(3− a)2
≤ 0,

f(e) is decreasing, therefore

f(e) ≥ f(e0) =
1

a
− 3a− 8 +

1 + a

3− a
− 3(3− a)

1 + a
+ 12 =

3(1− a)4

a(3− a)(1 + a)
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = 1.

P 1.234. For given n ≥ 3, prove that 3 is the largest positive value of the constant k such
that

1

a1
+

1

a2
+ · · ·+ 1

an
− n ≥ k(a1 + a2 + · · ·+ an − n)

for any a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 1 ≥ an > 0 with a1a2 + a2a3 + · · ·+ an−1an + ana1 = n.

(Vasile Ĉırtoaje, RMM, 39, 2025)
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Solution. Choosing a2 = · · · = an−1 = 1, the inequality becomes

1

a1
+

1

an
− 2 ≥ k(a1 + an − 2),

where a1 ≥ 1 ≥ an > 0 such that a1an + a1 + an = 3. Let p = a1an. From

3 = a1an + a1 + an ≥ p+ 2
√
p,

we get p ∈ (0, 1]. Write the inequality as follows:

3− p
p
− 2 ≥ k(1− p), (1− p)(3− kp) ≥ 0.

It is true if and only if 3− kp ≥ 0 for p ∈ (0, 1). From the necessary condition

lim
p→1

(3− kp) ≥ 0,

we get k ≤ 3. To show that 3 is the largest positive value of the constant k , we need to
prove the inequality

1

a1
+

1

a2
+ · · ·+ 1

an
+ 2n ≥ 3(a1 + a2 + · · ·+ an).

By the AM-HM inequality, we have

1

a2
+ · · ·+ 1

an−1
≥ n− 2

S
,

where S =
a2 + · · ·+ an−1

n− 2
≥ 1. So, it suffices to show that E ≥ 0, where

E =
1

a1
+

1

an
+
n− 2

S
+ 2n− 3[a1 + an + (n− 2)S].

By Lemma in the proof of P 1.216, we have

(n− 3)S2 + (a1 + an)S + a1an ≤ n.

Since the expression E decreases when a1 increases, we may increase a1 to have

(n− 3)S2 + (a1 + an)S + a1an = n.

Denoting x =
a1 + an

2
, we need to show that

2x

n− 2Sx− (n− 3)S2
+
n− 2

S
+ 2n− 3[2x+ (n− 2)S] ≥ 0

for
(n− 3)S2 + 2Sx+ a1an = n.
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From (S − a1)(S − an) ≤ 0, we obtain

2Sx ≥ S2 + a1an = n− 2Sx− (n− 4)S2,

therefore
4Sx ≥ n− (n− 4)S2.

For fixed S, the desired inequality is equivalent to F (x) ≥ 0, where

F (x) = 12S2x2 + [6(2n− 5)S2− 4nS− 8n+ 6]Sx+ [n− (n− 3)S2][n− 2 + 2nS− 3(n− 2)S2].

Since

F ′(x) = 24S2x+6(2n−5)S3−4nS2−(8n−6)S ≥ 6S[n−(n−4)S2]+6(2n−5)S3−4nS2−(8n−6)S

= 6(n− 1)S3− 4nS2− (2n− 6)S ≥ 6(n− 1)S2− 4nS2− (2n− 6)S = n(n− 3)S(S − 1) ≥ 0,

F (x) is increasing, hence

F (x) ≥ F

(
n− (n− 4)S2

4S

)
=
n[3(n− 2)S4 − 4(n− 2)S3 − 2nS2 + 4nS − n− 2]

4

=
n(S − 1)2[3(n− 2)S2 + 2(n− 2)S − n− 2]

4
≥ 0.

The proof is completed. For k = 3, the equality occurs when a1 = a2 = · · · = an = 1.

Remark. Since
a1 + a2 + · · ·+ an

n
≥ 2− n

a1 + a2 + · · ·+ an
,

the following inequality follows from P 1.234:

• If a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 1 ≥ an > 0 such that a1a2 + a2a3 + · · ·+ an−1an + ana1 = n,
then

1

a1
+

1

a2
+ · · ·+ 1

an
+

3n2

a1 + a2 + · · ·+ an
≥ 4n.

P 1.235. If a, b, c, d, e, f are nonnegative real numbers such that

ab+ bc+ cd+ de+ ef + fa = 6, a ≥ b ≥ c ≥ d ≥ e ≥ f,

then
1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
+

1

f + 3
≥ 3

2
.

(Vasile Cı̂rtoaje, GMA, no. 1-2, 2022)
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First Solution. Let x =
b+ c+ d+ e

4
and y =

a+ f

2
. By the AM-HM inequality, we

have

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥ 16

(b+ 3) + (c+ 3) + (d+ 3) + (e+ 3)
=

4

x+ 3
.

So, it suffices to show that
1

a+ 3
+

1

f + 3
+

4

x+ 3
≥ 3

2
,

i.e.
2y + 6

af + 6y + 9
− 3x+ 1

2(x+ 3)
≥ 0.

By Lemma in the proof of P 1.216, we have

3x2 + 2xy + af ≤ 6, x <
√

2.

So, it is enough to show that

2y + 6

15− 3x2 + 2(3− x)y
− 3x+ 1

2(x+ 3)
≥ 0.

After multiplying by 3− x, we get the equivalent inequalities[
(3− x)(2y + 6)

15− 3x2 + 2(3− x)y
− 1

]
+

[
1− (3− x)(3x+ 1)

2(x+ 3)

]
≥ 0,

3(x− 1)2

15− 3x2 + 2(3− x)y
+

3(x− 1)2

2(x+ 3)
≥ 0.

The equality holds for b = c = d = e = 1 and a+ f + af = 3 (a ≥ 1 ≥ f).

P 1.236. Let a1, a2, . . . , an be positive real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n, a1 ≥ a2 ≥ · · · ≥ an.

Prove that:
1

a1
+

1

a2
+ · · ·+ 1

an
≥ a1 + a2 + · · ·+ an.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 9, 2023)

Solution. For n = 2, the inequality is an equality. Consider further n ≥ 3. Let

y =
a2 + · · ·+ an−1

n− 2
, a1 ≥ y ≥ an > 0.
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By the AM-HM inequality,

1

a2
+ · · ·+ 1

an−1
≥ (n− 2)2

a2 + · · ·+ an−1
=
n− 2

y
.

By Lemma in the proof of P 1.216, it suffices to show that (n− 3)y2 + (a1 + an)y+ a1an ≤ n
involves

1

a1
+

1

an
+
n− 2

y
≥ a1 + an + (n− 2)y.

Denoting a1 by x and an by z, it suffices to prove the homogeneous inequality

[(n− 3)y2 + xy + yz + zx]

(
n− 3

y
+

1

x
+

1

y
+

1

z

)
≥ n[(n− 3)y + x+ y + z],

which is equivalent to A+ (n− 3)B ≥ 0, where

A =
yz

x
+
zx

y
+
xy

z
− (x+ y + z), B =

y2

x
+
y2

z
+
xz

y
− 3y.

Since

2A =
x2(y − z)2 + y2(z − x)2 + z2(x− y)2

xyz
≥ 0

and

B ≥ 3

(
y2

x
· y

2

z
· xz
y

)1/3

− 3y = 0,

we obtain the required inequality A+(n−3)B ≥ 0. So, the proof is completed. The equality
occurs for a1 = a2 = . . . = an = 1.

Remark. Since
a1 + a2 + · · ·+ an

n
+

n

a1 + a2 + · · ·+ ane
≥ 2,

the following inequality follows from P 1.236:

• If a1, a2, . . . , an are positive real numbers such that

a1a2 + a2a3 + · · ·+ ana1 = n, a1 ≥ a2 ≥ · · · ≥ an,

then
1

a1
+

1

a2
+ · · ·+ 1

an
+

n2

a1 + a2 + · · ·+ an
≥ 2n.

P 1.237. If n ≥ 3 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then√
1

n

∑
cyclic

a1a2 ≥ n−1

√
1

n

∑
cyclic

a1a2 · · · an−1.

(Vasile Cı̂rtoaje, AMM, 1, 2024)
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Solution. For n = 3, the inequality is an equality. Consider further n ≥ 4. Due to
homogeneity, we may set ∑

cyclic

a1a2 = n

to prove that ∑
cyclic

a1a2 · · · an−1 ≤ n.

Write the desired inequality as

(a1 + an)A+ a1anB ≤ n,

where

A = a2a3 · · · an−1, B = a2a3 · · · an−2 + a3a4 · · · an−1 + · · ·+ an−1a1 · · · an−3.

Let

S =
a1 + an

2
, x =

a2 + · · ·+ an−1
n− 2

, a1 ≥ x ≥ an ≥ 0.

Since A ≤ xn−2 and B ≤ (n− 2)xn−3, it suffices to prove that

2Sxn−2 + (n− 2)a1anx
n−3 ≤ n.

On the other hand, by Lemma in the proof of P 1.216, we have (n− 3)x2 + 2Sx+ a1an ≤ n.
Since the left hand side of the desired inequality increases when a1an increases, we may
replace the inequality constraint with the equality constraint

(n− 3)x2 + 2Sx+ a1an = n.

So, the desired inequality is equivalent to

2Sxn−2 + (n− 2)
(
n− (n− 3)x2 − 2Sx

)
xn−3 ≤ n,

that is
(n− 2)(n− 3)xn−1 + 2(n− 3)xn−2S + n ≥ n(n− 2)xn−3.

From n = (n− 3)x2 + 2Sx+ a1an ≤ (n− 3)x2 + 2Sx+ S2, we get

S ≥
√
n− (n− 4)x2 − x.

Also, from 2S = a1+an ≥ a1 ≥ x and n = (n−3)x2+2Sx+a1an ≥ (n−3)x2+2Sx ≥ (n−2)x2,

we get x ≤
√

n

n− 2
. So, it suffices to prove that x ≤

√
n

n− 2
involves

(n− 2)(n− 3)xn−1 + 2(n− 3)xn−2
(√

n− (n− 4)x2 − x
)

+ n ≥ n(n− 2)xn−3,

that is f(x) ≥ 0, where

f(x) = (n− 3)(n− 4)xn−1 + 2(n− 3)xn−2
√
n− (n− 4)x2 + n− n(n− 2)xn−3.



334 Vasile Ĉırtoaje

We have f ′(x) = (n− 3)xn−4g(x), where

g(x) = [n(n− 2)− (n− 1)(n− 4)x2]

(
2x√

n− (n− 4)x2
− 1

)

=
n(x2 − 1)[n(n− 2)− (n− 1)(n− 4)x2](
2x+

√
n− (n− 4)x2

)√
n− (n− 4)x2

.

Since

n(n− 2)− (n− 1)(n− 4)x2 ≥ n(n− 2)− n(n− 1)(n− 4)

n− 2
=

n2

n− 2
> 0,

we have g(x) ≤ 0 for x ∈ [0, 1], and g(x) ≥ 0 for x ∈
[
1,

√
n

n− 2

]
, therefore f is decreasing

on [0, 1] and increasing on

[
1,

√
n

n− 2

]
. As a consequence, f(x) ≥ f(1) = 0.

For n ≥ 4, the equality occurs for a1 = a2 = · · · = an, and also for a1 ≥ a2 = · · · = an = 0.

Remark. We claim that the following generalization is valid:

• Let n ≥ 3 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If k ∈ {2, 3, . . . , n− 2}, then

k

√
1

n

∑
cyclic

a1a2 · · · ak ≥ n−1

√
1

n

∑
cyclic

a1a2 · · · an−1.

P 1.238. Let a, b, c, d, e be nonnegative real numbers satisfying ab + bc + cd + de + ea = 5.
Prove that:

(a) (a+ 2)2 + (b+ 2)2 + (c+ 2)2 + (d+ 2)2 + (e+ 2)2 ≥ 45.

(b) a3/2 + b3/2 + c3/2 + d3/2 + e3/2 ≥ 5.

(Vasile Ĉırtoaje, Crux Mathematicorum, 5, 2024)

Solution. (a) Denote

A =

√∑
ab

5
,

and write the inequality as follows:∑
a2 + 4

∑
a ≥ 25,

∑
a2 + 4

∑
a ≥ 5

∑
ab,∑

a2 −
∑

ab ≥ 4
(∑

ab−
∑

a
)
,

∑
(a− b)2 ≥ 8

(∑
ab− A

∑
a
)
,
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∑
(a−b)2 ≥ 8A

(√
5
∑

ab−
∑

a

)
,

∑
(a−b)2 ≥ 8A√

5
∑
ab+

∑
a

[
5
∑

ab−
(∑

a
)2]

,

5A+
∑
a

8A

∑
(a−b)2 ≥ 5

∑
ab−

(∑
a
)2
,

5A+
∑
a

4A

∑
(a−b)2+

∑
(a−b)2 ≥ 4

∑
a(b−c),

9A+
∑
a

4A

∑
(a− b)2 ≥ 4

∑
a(b− c).

From
∑

(a− 2b+ 2c− d)2 ≥ 0, we get

10
∑

a2 − 16
∑

ab+ 6
∑

ac ≥ 0, 5
∑

(a− b)2 ≥ 6
∑

a(b− c).

Thus, it suffices to show that
9A+

∑
a

4A
≥ 10

3
,

that is 3
∑
a ≥ 13A. By Lemma 1 below, we have

3
∑

a ≥ 6
√
ab+ bc+ cd+ de+ ea = 6

√
5 A > 13A.

The proof is completed. The equality occurs for a = b = c = d = e = 1.

(b) Assume that a = max{a, b, c, d, e}. Since the inequality is true for a3/2 ≥ 5, we
assume next a < 52/3, hence a < 3, b < 3, c < 3, d < 3 and e < 3. Based on the inequality
in Lemma 2 and the inequality in (a), we have

4
∑

a3/2 ≥
∑

(a+ 2)2 − 25 ≥ 45− 25 ≥ 20.

The equality occurs for a = b = c = d = e = 1.

Lemma 1. If a, b, c, d, e are nonnegative real numbers, then

a+ b+ c+ d+ e ≥ 2
√
ab+ bc+ cd+ de+ ea.

Proof. Due to cyclicity, we may assume that a = max{a, b, c, d, e} and b ≥ e. We need to
prove the homogeneous inequality

(a+ b+ c+ d+ e)2 ≥ 4(ab+ bc+ cd+ de+ ea),

which is equivalent to the obvious inequality

(a− b− e)2 + c2 + d2 + 2c(a− b+ e) + 2d(a− c) + 2d(b− e) ≥ 0.

The equality occurs for a = b+ e and c = d = 0 (or any cyclic permutation).

Lemma 2. If 0 ≤ x ≤ 4, then

4x3/2 ≥ (x+ 2)2 − 5.
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Proof. Denote f(x) = 4x3/2 − (x+ 2)2 + 5. From

f ′(x) = 6
√
x− 2(x+ 2) = 2(

√
x− 1)(2−

√
x),

we get f ′(x) ≤ 0 for x ∈ [0, 1] and f ′(x) ≥ 0 for x ∈ [1, 4]. As a consequence, f(x) is
decreasing on [0, 1] and increasing on [1, 4], therefore f(x) ≥ f(1) = 0.

Remark. Similarly, using the inequality in Lemma 1 and the inequality∑
(a−mb+mc− d)2 ≥ 0

for m =

√
5 + 1

2
, we have

(a+ k)2 + (b+ k)2 + (c+ k)2 + (d+ k)2 + (e+ k)2 ≥ 5(1 + k)2

for 0 ≤ k ≤ 1 +

√
5

2
. So, from

∑
(a−mb+mc− d)2 ≥ 0, we get

2(m2 + 1)
∑

a2 − 2m(m+ 2)
∑

ab+ 2(2m− 1)
∑

ac ≥ 0,

(m2 + 1)
∑

(a− b)2 ≥ 2(2m− 1)
∑

a(b− c).

For m =

√
5 + 1

2
(when this inequality is strongest), we obtain

√
5 + 1

4

∑
(a− b)2 ≥

∑
a(b− c).

On the other hand, the desired inequality is equivalent to

(2k + 5)A+
∑
a

2kA

∑
(a− b)2 ≥ 4

∑
a(b− c).

So, it suffices to show that
(2k + 5)A+

∑
a

2kA
≥
√

5 + 1,

which is true if
(2k + 5)A+ 2

√
5A

2kA
≥
√

5 + 1,

that is k ≤ 1 +

√
5

2
≈ 2.118. Note that the computer calculations show that the inequality

is true for 0 ≤ k ≤ k0, where k0 ≈ 2.123535.
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P 1.239. If a, b, c, d are nonnegative real numbers such that ab+ bc+ cd+ da ≥ 4, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1) ≥ (a+ b+ c+ d)2.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 10, 2024)

Solution. Write the hypothesis as

(a+ c)(b+ d) ≥ 4,

and assume that
a+ c ≥ b+ d.

There are two cases to consider: b+ d ≥ 2 and b+ d ≤ 2.

Case 1: b+ d ≥ 2. Since

(a2 + 1)(c2 + 1) ≥ (a+ c)2, (b2 + 1)(d2 + 1) ≥ (b+ d)2,

it suffices to show that
(a+ c)(b+ d) ≥ a+ b+ c+ d.

Indeed, we have

(a+ c)(b+ d)− (a+ b+ c+ d) ≥ 2(a+ c)− (a+ b+ c+ d) = (a+ c)− (b+ d) ≥ 0.

Case 2: b+ d ≤ 2. Let

x =
a+ c

2
, y =

b+ d

2
, x ≥ 1 ≥ y.

We have
xy ≥ 1, bd ≤ y2.

Since
(a2 + 1)(c2 + 1) ≥ (a+ c)2 = 4x2

and
(b2 + 1)(d2 + 1) = (b+ d)2 + (1− bd)2 ≥ 4y2 + (1− y2)2 = (1 + y2)2,

it suffices to show that
4x2(1 + y2)2 ≥ (2x+ 2y)2,

which is equivalent to
x(1 + y2) ≥ x+ y, y(xy − 1) ≥ 0.

The inequality is an equality for ac = 1 and b = d =
2

a+ c
, or bd = 1 and a = c =

2

b+ d
.

Remark 1. The inequality is also true for abcd ≥ 1 (Pham Kim Hung, 2006). Indeed, if
abcd ≥ 1, then

ab+ bc+ cd+ da ≥ 4
√
abcd ≥ 4,
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Remark 2. The inequality is also true for ab + ac + ad + bc + bd + cd ≥ 6 (see P 3.69,
Volume 1). Indeed, if ab+ ac+ ad+ bc+ bd+ cd ≥ 6, then at least one of the inequalities

(a+ b)(c+ d) ≥ 4, (a+ c)(b+ d) ≥ 4, (a+ d)(b+ c) ≥ 4

is true.

P 1.240. Let a, b, c, d, e be real numbers such that a ≥ b ≥ c ≥ d ≥ e ≥ 0 and ab+ bc+ cd+
de+ ea = 5. Prove that

a5/4 + b5/4 + c5/4 + d5/4 + e5/4 ≥ 5.

(Vasile Cı̂rtoaje, GMA, no. 3-4, 2023)

Solution. Denote

x =
a+ b

2
, y =

d+ e

2
, x ≥ c ≥ y.

By Jensen’s inequality for convex functions, we have

a5/4 + b5/4 ≥ 2x5/4, d5/4 + e5/4 ≥ 2y5/4.

Also, by Bernoulli’s inequality, we have

c5/4 = (1 + (c− 1))5/4 ≥ 1 +
5

4
(c− 1) =

5c− 1

4
.

So, it suffices to show that
8(x5/4 + y5/4) + 5c ≥ 21.

We will first show that
x2 + y2 + xy + c(x+ y) ≥ 5.

Indeed, we have

4
(
x2 + y2 + xy + c(x+ y)− 5

)
= (a+ b)2 + (d+ e)2 + (a+ b)(d+ e) + 2c(a+ b+ d+ e)

−4(ab+ bc+ cd+ de+ ea) = (a− b)2 + (d− e)2 + a(d+ 2c− 3e) + b(d+ e− 2c) + 2c(e− d)

≥ b(d+ 2c− 3e) + b(d+ e− 2c) + 2c(e− d) = 2b(d− e) + 2c(e− d) = 2(d− e)(b− c) ≥ 0.

So, we only need to show that

8(x5/4 + y5/4) +
5(5− x2 − y2 − xy)

x+ y
≥ 21.

Denoting x = s+ t, y = s− t and

f(t) = (s+ t)5/4 + (s− t)5/4, t ∈ [0, s],
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we need to show that g(t) ≥ 0, where

g(t) = f(t)− 5t2 + 15s2 + 42s− 25

16s
.

For even j (j ≥ 2), we have

f (j)(0) = 2k(k − 1) · · · (k − j + 1)sk−j > 0,

where k = 5/4. Thus, by the Maclaurin series expansion of the even function f , we have

f(t) = f(0) +
f (2)(0)t2

2!
+
f (4)(0)t4

4!
+ · · · ≥ f(0) +

f (2)(0)t2

2!
+
f (4)(0)t4

4!

= 2sk + k(k − 1)sk−2t2 +
k(k − 1)(k − 2)(k − 3)

12
sk−4t4

= 2s5/4 +
5

16
s−3/4t2 +

35

1024
s−11/4t4 ≥ 2s5/4 +

5

16
s−3/4t2 +

1

32
s−11/4t4.

Consequently, to prove that g(t) ≥ 0, it suffices to show that

2s5/4 +
5

16
s−3/4t2 +

1

32
s−11/4t4 ≥ 5t2 + 15s2 + 42s− 25

16s
,

which is equivalent to

s−7/4t4 − 10(1− s1/4)t2 + 64s9/4 − 30s2 − 84s+ 50 ≥ 0.

Substituting r = s1/4, the inequality becomes

r−7t4 − 10(1− r)t2 + 64r9 − 30r8 − 84r4 − 50 ≥ 0,

t4 − 10r7(1− r)t2 + r7(64r9 − 30r8 − 84r4 − 50) ≥ 0,

(t2 − 5r7 + 5r8)2 + r7(39r9 + 20r8 − 25r7 − 84r4 + 50) ≥ 0.

Since
39r9 + 20r8 − 25r7 − 84r4 + 50 = (r − 1)2E,

where
E = 39r7 + 98r6 + 132r5 + 166r4 + 200r3 + 150r2 + 100r + 50 > 0,

the proof is completed. The equality occurs for a = b = c = d = e = 1.

Remark. For 0 < k <
5

4
, the inequality ak + bk + ck + dk + ek ≥ 5 does not hold. To prove

this assert, suppose

a = b = 1 + x, c = 1− x2/2, d = e = 1− x.

For x ∈ [0, 1], we have a ≥ b ≥ c ≥ d ≥ e ≥ 0 and ab + bc + cd + de + ea = 5, while the
inequality ak + bk + ck + dk + ek ≥ 5 is equivalent to g(x) ≥ 0, where

g(x) = 2(1 + x)k + 2(1− x)k + (1− x2/2)k − 5.
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We have g(0) = 0, g′(0) = 0 and g′′(0) = k(4k − 5). Since g′′(0) < 0 for 0 < k < 5/4, the
point x = 0 is a local maximum of g. In addition, since g(0) = 0, there is a neighbourhood
V of 0 such that g(x) < 0 for x ∈ V ∩ (0, 1].

Open problem 1. If a1, a2, . . . , a7 are real numbers such that

a1 ≥ a2 ≥ · · · ≥ a7 ≥ 0, a1a2 + a2a3 + · · ·+ a7a1 = 7,

then

a
3/2
1 + a

3/2
2 + · · ·+ a

3/2
7 ≥ 7.

Open problem 2. Let n (n ≥ 5) be an odd integer number and k ≥ k0 =
2n− 5

n− 1
. If

a1, a2, . . . , an are real numbers such that

a1 ≥ a2 ≥ · · · ≥ an ≥ 0, a1a2 + a2a3 + · · ·+ ana1 = n,

then

ak1 + ak2 + · · ·+ akn ≥ n.

Note that for 0 < k < k0, the inequality ak1 + ak2 + · · ·+ akn ≥ n does not hold. To prove this
claim, suppose

a1 = a2 = · · · = aj = 1 + x, aj+1 = 1− (n− 4)x2/2, aj+2 = aj+3 = · · · = an = 1− x,

where j =
n− 1

2
. For x ∈ [0, 1], we have a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and a1a2+a2a3+· · ·+ana1 =

n. The inequality ak1 + ak2 + · · ·+ akn ≥ n is equivalent to g(x) ≥ 0, where

g(x) = j
(
(1 + x)k + (1− x)k

)
+

(
1− (n− 4)x2

2

)k
− n.

We have g(0) = 0, g′(0) = 0 and
1

k
g′′(0) = (n− 1)k− 2n+ 5. Since g′′(0) < 0 for 0 < k < k0,

the point x = 0 is a local maximum of g. In addition, since g(0) = 0, there is a neighbourhood
V of 0 such that g(x) < 0 for x ∈ V ∩ (0, 1].

P 1.241. If a1 ≥ 1 ≥ a2 ≥ · · · ≥ an ≥ 0 such that a1 + a2 + · · ·+ an = n, then

a1a2 + a2a3 + · · ·+ ana1 ≤ n.

(Vasile Ĉırtoaje, RMM, 38, 2025)
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Solution. For n = 2, the inequality reduces to (a1 − a2)2 ≥ 0. Consider next n ≥ 3 and
write the desired inequality in the homogeneous form

(a1 + a2 + · · ·+ an)2 − n(a1a2 + a2a3 + · · ·+ ana1) ≥ 0.

From
na2 ≤ n = a1 + a2 + · · ·+ an,

we get
a1 ≥ (n− 1)a2 − a3 − · · · − an.

For fixed a2, a3, . . . , an, the homogeneous inequality is equivalent to f(a1) ≥ 0, where

f(a1) = (a1 + a2 + · · ·+ an)2 − n(a2a3 + · · ·+ an−1an)− n(a2 + an)a1.

Since

f ′(a1) = 2(a1+a2+· · ·+an)−n(a2+an) = (a1+a2+· · ·+an−na2)+(a1+a2+· · ·+an−nan)

= n(1− a2) + (a1 + a2 + · · ·+ an − nan) ≥ 0,

f(a1) is increasing, hence

f(a1) ≥ f((n− 1)a2 − a3 − · · · − an).

Thus, it suffices to show that f((n− 1)a2 − a3 − · · · − an) ≥ 0, that is

na22 − (a2a3 + · · ·+ an−1an)− (a2 + an)[(n− 1)a2 − a3 − · · · − an] ≥ 0.

For n = 3, the inequality reduces to (a2 − a3)
2 ≥ 0, while for n ≥ 4, the inequality is

equivalent to

na22 − (a2a3 + · · ·+ an−1an)− n(a2 + an)a2 + (a2 + an)(a2 + a3 + · · ·+ an) ≥ 0,

−(a2a3 + a3a4 + · · ·+ an−1an + ana2)− (n− 1)a2an + (a2 + an)(a2 + a3 + · · ·+ an) ≥ 0,

a2(a2+a3+· · ·+an)−(a2a3+a3a4+· · ·+an−1an+ana2)+an[a2+a3+· · ·+an−(n−1)a2] ≥ 0,

a2(a2−a3) +a3(a2−a4) + · · ·+an−1(a2−an)−an[(a2−a3) + (a2−a4) + · · ·+ (a2−an)] ≥ 0,

(a2 − a3)(a2 − an) + (a2 − a4)(a3 − an) + · · ·+ (a2 − an)(an−1 − an) ≥ 0.

The last inequality is clearly true. The equality occurs for a1 = a2 = · · · = an = 1.

Remark. The following statement is also valid:

• If a1 ≥ 1 ≥ a2 ≥ · · · ≥ an ≥ 0 such that a1a2 + a2a3 + · · ·+ ana1 = n, then

a1 + a2 + · · ·+ an ≥ n.
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P 1.242. If 0 ≤ a1 ≤ 1 ≤ a2 ≤ · · · ≤ an such that a1 + a2 + · · ·+ an = n, then

a1a2 + a2a3 + · · ·+ ana1 ≤ n.

(Vasile Ĉırtoaje, Math. Reflections, 3, 2024)

Solution. For n = 2, the inequality reduces to (a1 − a2)2 ≥ 0. Consider next n ≥ 3 and
write the desired inequality in the homogeneous form

(a1 + a2 + · · ·+ an)2 − n(a1a2 + a2a3 + · · ·+ ana1) ≥ 0.

From
na2 ≥ n = a1 + a2 + · · ·+ an,

we get
a1 ≤ (n− 1)a2 − a3 − · · · − an.

For fixed a2, a3, . . . , an, the desired inequality is equivalent to f(a1) ≥ 0, where

f(a1) = (a1 + a2 + · · ·+ an)2 − n(a2a3 + · · ·+ an−1an)− n(a2 + an)a1.

Since

f ′(a1) = 2(a1+a2+· · ·+an)−n(a2+an) = (a1+a2+· · ·+an−na2)+(a1+a2+· · ·+an−nan) ≤ 0,

f(a1) is decreasing, hence

f(a1) ≥ f((n− 1)a2 − a3 − · · · − an).

Thus, it suffices to show that f((n− 1)a2 − a3 − · · · − an) ≥ 0, that is

na22 − (a2a3 + · · ·+ an−1an)− (a2 + an)[(n− 1)a2 − a3 − · · · − an] ≥ 0.

For n = 3, the inequality reduces to (a2 − a3)
2 ≥ 0, while for n ≥ 4, the inequality is

equivalent to

(a2 + an)(a2 + a3 + · · ·+ an)− (a2a3 + a3a4 + · · ·+ an−1an + ana2)− (n− 1)a2an ≥ 0,

[a2(a2+a3+· · ·+an)−(a2a3+a3a4+· · ·+an−1an+ana2)]+an[a2+a3+· · ·+an−(n−1)a2] ≥ 0,

[a2(a2−a3)+a3(a2−a4)+ · · ·+an−1(a2−an)]−an[(a2−a3)+(a2−a4)+ · · ·+(a2−an)] ≥ 0,

(a2 − a3)(a2 − an) + (a2 − a4)(a3 − an) + · · ·+ (a2 − an)(an−1 − an) ≥ 0.

The last inequality is clearly true. The equality occurs for a1 = a2 = · · · = an = 1.

Remark. The following statement is also valid.

• If 0 ≤ a1 ≤ 1 ≤ a2 ≤ · · · ≤ an such that a1a2 + a2a3 + · · ·+ ana1 = n, then

a1 + a2 + · · ·+ an ≥ n.
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P 1.243. Suppose n ≥ 4 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If a1 = a2 and an−1 = an, then

n(a1a2 + a2a3 + · · ·+ ana1) ≥ (a1 + a2 + · · ·+ an)2.

(Vasile Ĉırtoaje, Math. Reflections, 1, 2024)

Solution. For n = 4, the inequality reduces to an identity. Consider next n > 4, denote

S =
a2 + an−1

2
, s =

a3 + · · ·+ an−2
n− 4

,

and write the inequality as follows:

n[a22 + a2n−1 + a2an−1 + (a2a3 + · · ·+ an−2an−1)] ≥ [2(a2 + an−1) + (a3 + · · ·+ an−2)]
2,

n[4S2 − a2an−1 + (a2a3 + · · ·+ an−2an−1)] ≥ [4S + (n− 4)s]2.

Since the sequences (a2, . . . , an−2) and (a3, . . . , an−1) are decreasing, by Chebyshev’s inequal-
ity we have

(n− 3)(a2a3 + · · ·+ an−2an−1) ≥ (a2 + · · ·+ an−2)(a3 + · · ·+ an−1),

(n− 3)(a2a3 + · · ·+ an−2an−1) ≥ [a2 + (n− 4)s][an−1 + (n− 4)s],

(n− 3)(a2a3 + · · ·+ an−2an−1) ≥ a2an−1 + 2(n− 4)sS + (n− 4)2s2.

So, it suffices to show that

n

[
4S2 − a2an−1 +

a2an−1 + 2(n− 4)sS + (n− 4)2s2

n− 3

]
≥ [4S + (n− 4)s]2,

which is equivalent to

4(n− 3)S2 − 6(n− 4)sS + 3(n− 4)s2 ≥ na2an−1.

Since a2 ≥ s ≥ an−1, we have

(s− a2)(s− an−1) ≤ 0, a2an−1 ≤ 2sS − s2.

Therefore, it suffices to show that

4(n− 3)S2 − 6(n− 4)sS + 3(n− 4)s2 ≥ n(2sS − s2),

that is equivalent to
(n− 3)(S − s)2 ≥ 0.

The equality occurs for a1 = a2 = · · · = an = 1.
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P 1.244. Let a ≥ b ≥ c ≥ d ≥ e ≥ 0 such that ab+ bc+ cd+ de+ ea = 5. Prove that

a2 + b2 + c2 + d2 + e2 + 5(a+ b+ c+ d+ e) ≥ 30.

(Vasile Ĉırtoaje, Math. Reflections, 6, 2023)

Solution. Denote

x =
a+ b

2
, y =

d+ e

2
, x ≥ c ≥ y.

Since
a2 + b2 ≥ 2x2, d2 + e2 ≥ 2y2,

it suffices to show that

2(x2 + y2) + 10(x+ y) + c2 + 5c ≥ 30.

Moreover, since c2 ≥ 2c− 1, it suffices to show that

2(x2 + y2) + 10(x+ y) + 7c ≥ 31.

We will first show that
x2 + y2 + xy + c(x+ y) ≥ 5.

Indeed, we have

4[x2 + y2 + xy + c(x+ y)− 5] = (a+ b)2 + (d+ e)2 + (a+ b)(d+ e)

+2c(a+ b+ d+ e)− 4(ab+ bc+ cd+ de+ ea)

= (a− b)2 + (d− e)2 + a(d+ 2c− 3e) + b(d+ e− 2c) + 2c(e− d)

≥ b(d+ 2c− 3e) + b(d+ e− 2c) + 2c(e− d) = 2b(d− e) + 2c(e− d) = 2(d− e)(b− c) ≥ 0.

So, it suffices to show that

2(x2 + y2) + 10(x+ y) +
7(5− x2 − y2 − xy)

x+ y
≥ 31.

Denoting

s =
x+ y

2
, p = xy (p ≤ s2),

the desired inequality becomes

8s2 − 4p+ 20s+
7(5− 4s2 + p)

2s
≥ 31,

16s3 + 12s2 − 62s+ 35 ≥ p(8s− 7).

For 8s− 7 ≤ 0, it suffices to show that 16s3 + 12s2 − 62s+ 35 ≥ 0. Indeed,

16s3 + 12s2 − 62s+ 35 = s(4s− 3)2 + (1− s)(35− 36s) > 0.
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Also, for 8s− 7 ≥ 0, we have

16s3 + 12s2 − 62s+ 35− p(8s− 7) ≥ 16s3 + 12s2 − 62s+ 35− s2(8s− 7)

= 8s3 + 19s2 − 62s+ 35 = (s− 1)2(8s+ 35) ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = 1.

Remarks. Similarly, we can prove the stronger inequality

2(a2 + b2 + c2 + d2 + e2) + 11(a+ b+ c+ d+ e) ≥ 65.

It suffices to show that

4(x2 + y2) + 22(x+ y) + 2c2 + 11c ≥ 65

for
x2 + y2 + xy + c(x+ y) ≥ 5.

Since c2 ≥ 2c− 1, it suffices to show that

4(x2 + y2) + 22(x+ y) + 15c ≥ 67.

Denoting

s =
x+ y

2
, p = xy,

we need to show that
16s2 − 8p+ 44s+ 15c ≥ 67

for
2cs ≥ 5 + p− 4s2.

It suffices to show that

16s2 − 8p+ 44s+
15(5 + p− 4s2)

2s
≥ 67,

i.e.
32s3 + 28s2 − 134s+ 75 ≥ p(16s− 15).

Since

32s3 + 28s2 − 134s+ 75 = 32s(s− 1)2 + 92s2 − 166s+ 75 ≥ 92s2 − 166s+ 75 > 0,

the inequality is true if 16s− 15 ≤ 0. For 16s− 15 ≥ 0, since p ≤ s2, it suffices to prove that

32s3 + 28s2 − 134s+ 75 ≥ 2(16s− 15),

i.e.
16s3 + 43s2 − 134s+ 75 ≥ 0,

(s− 1)2(16s+ 75) ≥ 0.
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P 1.245. If a ≥ b ≥ 1 ≥ c ≥ d ≥ e ≥ f ≥ 0 such that ab+ bc+ cd+ de+ ef + fa = 6, then

(2a+ 3)2 + (2b+ 3)2 + (2c+ 3)2 + (2d+ 3)2 + (2e+ 3)2 + (2f + 3)2 ≥ 150.

(Vasile Ĉırtoaje, RMM, 38, 2025)

Solution. Denote by E the left hand side of the inequality. For fixed c, d, e, f , we may
assume that b and E are functions of a. By differentiating the equality constraint, we get

(a+ c)b′ + b+ f = 0, b′ =
−(b+ f)

a+ c
≥ −1.

Since
E ′(a)

4
= 2a+ 3 + (2b+ 3)b′ ≥ 2a+ 3− (2b+ 3) = 2(a− b) ≥ 0,

E(a) is increasing and has the minimum value when a is minimum, hence when a = b.
Similarly, for fixed a, b, c, d, assume that e and E are functions of f . By differentiating the
equality constraint, we get

(d+ f)e′ + a+ e = 0, e′ =
−(a+ e)

d+ f
≤ −1.

Since
E ′(f)

4
= 2f + 3 + (2e+ 3)e′ ≤ 2f + 3− (2e+ 3) = 2(f − e) ≤ 0,

E(f) is decreasing and has the minimum value when f is maximum, hence when f = e.
So, it suffices to consider a = b and f = e, when we need to show that F ≥ 150 for
b ≥ 1 ≥ c ≥ d ≥ e ≥ 0 such that b2 + bc+ cd+ de+ e2 + be = 6, where

F = 2(2b+ 3)2 + (2c+ 3)2 + (2d+ 3)2 + 2(2e+ 3)2.

Now, for fixed d and e, assume that b and F are functions of c. By differentiating the equality
constraint, we get

(2b+ c+ e)b′ + b+ d = 0, b′ =
−(b+ d)

2b+ c+ e
≤ −(b+ d)

2b+ c+ d
,

hence

F ′(c)

4
= 2c+3+2(2b+3)b′ ≤ 2c+3−2(2b+ 3)(b+ d)

2b+ c+ d
≤ 5−2(2b+ 3)(b+ d)

2b+ 1 + d
=

5 + 4b− 4b2 − (4b+ 1)d

2b+ 1 + d
.

We will show that F ′(c) ≤ 0, that is

4b2 − 4b− 5 + (4b+ 1)d ≥ 0.

From

6 = b2 + bc+ cd+ de+ e2 + be ≤ b2 + bc+ cd+ 2d2 + bd ≤ b2 + b+ 3d+ bd
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we get

d ≥ 6− b− b2

b+ 3
,

therefore

4b2 − 4b− 5 + (4b+ 1)d ≥ 4b2 − 4b− 5 +
(4b+ 1)(6− b− b2)

b+ 3
=

3(b− 1)(b+ 3)

b+ 3
≥ 0.

Since F ′(c) ≤ 0, F (c) is decreasing and has the minimum value when c is maximum, hence
when c = 1. So, it sufficesed to consider this case, when we need to show that G ≥ 125 for
b ≥ 1 ≥ d ≥ e ≥ 0 such that b2 + b+ d+ de+ e2 + be = 6, where

G = 2(2b+ 3)2 + (2d+ 3)2 + 2(2e+ 3)2.

For fixed b, we may assume that d is a function of e. By differentiating the equality constraint,
we get

(1 + e)d′ + b+ d+ 2e = 0,

hence

G(e)

4
= 2(2e+3)+(2d+3)d′ = 2(2e+3)−(2d+ 3)(b+ d+ 2e)

1 + e
≤ 2(2e+3)−(2e+ 3)(b+ d+ 2e)

1 + e

=
(2e+ 3)(2− b− d)

1 + e
.

From

6 = b2 + b+ d+ de+ e2 + be ≤ b2 + b+ d+ 2d2 + bd ≤ (b+ d)2 + (b+ d),

we get b + d ≥ 2, therefore G′(e) ≤ 0, G(e) is decreasing and has the minimum value when
e is maximum, hence when e = d. So, it suffices to consider e = d, when we need to show
that if b ≥ 1 ≥ d such that

b2 + b+ d+ 2d2 + bd = 6,

then 2(2b+ 3)2 + 3(2d+ 3)2 ≥ 125, i.e.

2b2 + 3d2 + 6b+ 9d ≥ 20, 2b(2− d) ≥ d2 − 7d+ 8.

Since 2b = −d− 1 +
√

25− 2d− 7d2, we need to show that

(−d− 1 +
√

25− 2d− 7d2)(2− d) ≥ d2 − 7d+ 8,

i.e.

(2− d)
√

25− 2d− 7d2 ≥ 10− 6d.

This is true if

(2− d)2(25− 2d− 7d2) ≥ (10− 6d)2,
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which is equivalent to the obvious inequality

d(d− 1)2(12− 7d) ≥ 0.

The equality occurs for a = b = c = d = e = f = 1, and also for a = b = 2, c = 1 and
d = e = f = 0.

Remark. Note that
3

2
is the largest positive value of k such that the inequality

(a+ k)2 + (b+ k)2 + (c+ k)2 + (d+ k)2 + (e+ k)2 + (f + k)2 ≥ 6(1 + k)2

holds for all nonnegative numbers a, b, c, d, e, f satisfying

ab+ bc+ cd+ de+ ef + fa = 6, a ≥ b ≥ 1 ≥ c ≥ d ≥ e ≥ f.

Indeed, assuming a = b = 2, c = 1 and d = e = f = 0, the equality constraint is satisfied,
while the desired inequality becomes

2(2 + k)2 + 3k2 ≥ 5(1 + k)2,

which is equivalent to 2k ≤ 3.

P 1.246. If a ≥ b ≥ c ≥ d ≥ e ≥ 0, then√
ab+ bc+ cd+ de+ ea

5
≥ 3

√
abc+ bcd+ cde+ dea+ eab

5
.

(Vasile Ĉırtoaje, Mathproblems, 4, 2023)

Solution. For c = 0, the right side of the inequality is zero, therefore the inequality is true.
Consider further c > 0. Due to homogeneity, we may assume that the right hand side of the
inequality is 1. So, we need to show that

ab+ bc+ cd+ de+ ea ≥ 5

for
abc+ bcd+ cde+ dea+ eab = 5.

By Lemma below, it suffices to consider the case when a = b = c, and the case when b = c
and d = e.

Case 1: a = b = c. We need to show that

2c2 + cd+ de+ ce ≥ 5

for
2c3 + c2d+ 2cde+ c2e = 5, c ≥ d ≥ e.
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For fixed c, we may consider that d is a function of e. From the equality constraint, we get

(c+ 2e)d′ + c+ 2d = 0, d′ =
−(c+ 2d)

c+ 2e
.

Writing the desired inequality as F (e) ≤ 5, we have

F ′(e) = c+ d+ (c+ e)d′ = c+ d− (c+ e)(c+ 2d)

c+ 2e
=
−c(d− e)
c+ 2e

≤ 0,

F (e) is decreasing and it is minimum when e is maximum, hence when e = d. So, we need
to show that

2c2 + 2cd+ d2 ≥ 5

for
c3 + 2c2d+ 2cd2 = 5, c ≥ d.

Write the desired inequality in the homogeneous form

(2c2 + 2cd+ d2)3 ≥ 5(c3 + 2c2d+ 2cd2)2.

Due to homogeneity, we may set c = 1. So, we need to show that f(d) ≥ 0, where

f(d) = 3 ln(d2 + 2d+ 2)− ln 5− 2 ln(2d2 + 2d+ 1), d ∈ [0, 1].

We have

f ′(d) =
6(d+ 1)

d2 + 2d+ 2
− 4(2d+ 1)

2d2 + 2d+ 1
=

2(2d3 + 2d2 − 3d− 1)

(d2 + 2d+ 2)(2d2 + 2d+ 1)

=
2(d− 1)(2d2 + 4d+ 1)

(d2 + 2d+ 2)(2d2 + 2d+ 1)
≤ 0,

f(d) is decreasing, hence f(d) ≥ f(1) = 0.

Case 2: b = c and d = e. We need to show that

ab+ b2 + bd+ d2 + ad ≥ 5

for
ab2 + b2d+ bd2 + ad2 + abd = 5, a ≥ b ≥ d.

For fixed b, we may consider that a is a function of d. From the equality constraint, we get

(b2 + bd+ d2)a′ + ab+ b2 + 2ad+ 2bd = 0.

Writing the desired inequality as F (d) ≥ 5, we have

F ′(d) = a+ b+ 2d+ (b+ d)a′ = a+ b+ 2d− (b+ d)(ab+ b2 + 2ad+ 2bd)

b2 + bd+ d2
=

A(a, b, d)

b2 + bd+ d2
,
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where
A(a, b, d) = (a+ b+ 2d)(b2 + bd+ d2)− (b+ d)(ab+ b2 + 2ad+ 2bd).

We will show that
A(a, b, d) ≤ A(b, b, d) ≤ 0.

Indeed,
A(a, b, d)− A(b, b, d) = −d(2b+ d)(a− b) ≤ 0,

A(b, b, d) = −2d(b2 − d2) ≤ 0.

Since F ′(d) ≤ 0, F (d) is decreasing and it is minimum when d is maximum, hence when
d = b. So, we need to show that

2ab+ 3b2 ≥ 5

for
3ab2 + 2b3 = 5, a ≥ 1 ≥ b.

We have

3(2ab+ 3b2 − 5) ≥ 2(5− 2b3)

b
+ 9b2 − 15 =

5(b3 − 3b+ 2)

b
=

5(b− 1)2(b+ 2)

b
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = e = 1, and also for
b = c = d = e = 0.

Lemma. If a ≥ b ≥ c ≥ d ≥ e ≥ 0 such that abc + bcd + cde + dea + eab = 5, then the
expression

E = ab+ bc+ cd+ de+ ea

is minimum when a = b = c, or when b = c and d = e.

Proof. For fixed a, d and e, we may consider that b is a function of c. From the equality
constraint, we get

(ac+ cd+ ea)b′ + ab+ bd+ de = 0.

So,

E ′(c) = b+ d+ (a+ c)b′ = b+ d− (a+ c)(ab+ bd+ de)

ac+ cd+ ea
=
−(a+ d− e)(ab− cd)

ac+ cd+ ea
≤ 0,

hence E(c) is decreasing and is minimum when c is maximum, hence when c = b.

Similarly, for fixed b, c and d, we may consider that a is a decreasing function of e. From
the equality constraint, we get

(bc+ de+ eb)a′ + cd+ da+ ab = 0,

E ′(e) = a+ d− (b+ e)a′ = a+ d− (b+ e)(cd+ da+ ab)

bc+ de+ eb
=
−(b− c+ d)(ab− de)

bc+ de+ eb
≤ 0,

hence E(e) is decreasing and is minimum when e is maximum (a is minimum), i.e. when
e = d or a = b.

Finally, we conclude that E is minimum when either b = c and d = e, or b = c and a = b
(i.e. a = b = c).
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P 1.247. Let a, b, c, d be nonnegative real numbers such that

1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
= 1.

Prove that there is a permutation (x1, x2, x3, x4) of the sequence (a, b, c, d) such that

x1x2 + x2x3 + x3x4 + x4x1 ≥ 4.

(Vasile Cı̂rtoaje, 2023)

Solution. Assume that a ≥ b ≥ c ≥ d ≥ 0. Since

(a+ d)(b+ c)− (a+ c)(b+ d) = (a− b)(c− d) ≥ 0

and
(a+ d)(b+ c)− (a+ b)(c+ d) = (a− c)(b− d) ≥ 0,

the sum
S = ab+ bd+ dc+ ca = (a+ d)(b+ c)

is the largest cyclic sum of this form. So, we will show that the sequence

(x1, x2, x3, x4) = (a, b, d, c)

satisfies the requirement S ≥ 4. Denoting

x =
a+ d

2
, y =

b+ c

2
,

we need to show that
1

a+ 3
+

1

d+ 3
+

1

b+ 3
+

1

c+ 3
= 1

involves xy ≥ 1. Since
1

b+ 3
+

1

c+ 3
≥ 2

y + 3

(from the AM-HM inequality or Jensen’s inequality), we have

1

a+ 3
+

1

d+ 3
+

2

y + 3
≤ 1,

2(x+ 3)

ad+ 6x+ 9
≤ y + 1

y + 3
.

From (y − a)(y − d) ≤ 0, we get ad ≤ 2xy − y2, therefore

2(x+ 3)

2xy − y2 + 6x+ 9
≤ y + 1

y + 3
,

2(x+ 3)

(2x− y + 3)(y + 3)
≤ y + 1

y + 3
,
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2(x+ 3)

2x− y + 3
≤ y + 1,

2xy ≥ y2 − 2y + 3,

hence
2(xy − 1) ≥ (y − 1)2 ≥ 0.

Remark. The following generalization is valid:

• If a1, a2, . . . , an are nonnegative real numbers such that

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
= 1,

then there is a permutation X = (x1, x2, . . . , xn) of the sequence A = (a1, a2, . . . , an) such
that

x1x2 + x2x3 + · · ·+ xnx1 ≥ n.

To prove this, it suffices to show that
∑

1≤i<j≤n

aiaj ≥ n. Using the contradiction method, we

need to show that
∑

1≤i<j≤n

aiaj < n involves

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
> 1.

This is true if
∑

1≤i<j≤n

aiaj = n involves

1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
≥ 1,

which is just P 1.208 in Volume 2.

P 1.248. Let a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0 such that a1 + a2 + · · ·+ a9 = 2. Prove that

a1a2 + a2a3 + · · ·+ a9a1 ≤ 1.

(Vasile Cı̂rtoaje, Math. Reflections, 1, 2023)

Solution. Write the inequality as F (a1, a2, . . . , a9) ≥ 0, where

F (a1, a2, . . . , a9) = (a1 + a2 + · · ·+ a9)
2 − 4(a1a2 + a2a3 + · · ·+ a9a1).

We will show that
F (a1, a2, a3, . . . , a9) ≥ F (a2, a2, a3 . . . , a9) ≥ 0.
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The left inequality is equivalent to

(a1+a2+a3+· · ·+a9)2−(2a2+a3+· · ·+a9)2 ≥ 4(a1a2+a2a3+· · ·+a9a1)−4(a22+a2a3+· · ·+a9a2),

(a1 − a2)(a1 + 3a2 + 2a3 + · · ·+ 2a9) ≥ 4(a1 − a2)(a2 + a9),

(a1 − a2)(a1 − a2 + 2a3 + · · ·+ 2a8 − 2a9) ≥ 0,

while the right inequality is equivalent to G(a2, a3, . . . , a8, a9) ≥ 0, where

G(a2, a3, . . . , a8, a9) = (2a2 + a3 + · · ·+ a8 + a9)
2 − 4(a22 + a2a3 + · · ·+ a8a9 + a9a2).

We will show that

G(a2, a3, . . . , a8, a9) ≥ G(a2, a3, . . . , a8, 0) ≥ · · · ≥ G(a2, 0, . . . , 0, 0) = 0.

We have

G(a2, a3, . . . , a8, a9)−G(a2, a3, . . . , a8, 0) =

= (2a2 + a3 + · · ·+ a8 + a9)
2 − (2a2 + a3 + · · ·+ a8)

2 − 4(a22 + a2a3 + · · ·+ a8a9 + a9a2)

+4(a22 + a2a3 + · · ·+ a7a8)

= a9(4a2 + 2a3 + · · ·+ 2a8 + a9)− 4a9(a8 + a2) = a9(2a3 + · · ·+ 2a7 − 2a8 + a9) ≥ 0,

G(a2, a3, . . . , a7, a8, 0)−G(a2, a3, . . . , a7, 0, 0) =

= (2a2 + a3 + · · ·+ a8)
2 − (2a2 + a3 + · · ·+ a7)

2 − 4(a22 + a2a3 + · · ·+ a7a8)

+4(a22 + a2a3 + · · ·+ a6a7) = a8(4a2 + 2a3 + · · ·+ 2a7 + a8)− 4a7a8

= a8(4a2 + 2a3 · · ·+ 2a6 − 2a7 + a8) ≥ 0

and, similarly,

G(a2, a3, . . . , a7, 0, 0)−G(a2, a3, . . . , a6, 0, 0, 0) = a7(4a2 + 2a3 + 2a4 + 2a5 − 2a6 + a7) ≥ 0,

G(a2, a3, a4, a5, a6, 0, 0, 0)−G(a2, a3, a4, a5, 0, 0, 0, 0) = a6(4a2 + 2a3 + 2a4 − 2a5 + a6) ≥ 0,

G(a2, a3, a4, a5, 0, 0, 0, 0)−G(a2, a3, a4, 0, 0, 0, 0, 0) = a5(4a2 + 2a3 − 2a4 + a5) ≥ 0,

G(a2, a3, a4, 0, 0, 0, 0, 0)−G(a2, a3, 0, 0, 0, 0, 0, 0) = a4(4a2 − 2a3 + a4) ≥ 0,

G(a2, a3, 0, 0, 0, 0, 0, 0)−G(a2, 0, 0, 0, 0, 0, 0, 0) = a23 ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = 1 and a3 = · · · = a9 = 0.
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P 1.249. Let n be a natural number, n ≥ 3. Prove that there is a real number qn > 1 such
that

a1
a2 + a3

+
a2

a3 + a4
+ · · ·+ an

a1 + a2
≥ n

2

for any real numbers a1, a2, . . . , an ∈ [1/qn, qn].

(Vasile Cı̂rtoaje, Crux Mathematicorum, 8, 2006)

Solution. Write the inequality as

n∑
i=1

2q2nai − ai+1 − ai+2

ai+1 + ai+2

≥ n(q2n − 1),

where an+1 = a1 and an+2 = a2. Since

2q2nai − ai+1 − ai+2 = (q2nai − ai+1) + (q2nai − ai+2) ≥ 0,

the Cauchy-Schwarz inequality may be applied to get

n∑
i=1

(ai+1+ai+2)(2q
2
nai−ai+1−ai+2) ·

n∑
i=1

2q2nai − ai+1 − ai+2

ai+1 + ai+2

≥

(
n∑
i=1

(2q2nai − ai+1 − ai+2)

)2

.

Thus, to obtain the desired inequality, it suffices to prove that(
n∑
i=1

(2q2nai − ai+1 − ai+2)

)2

≥ n(q2n − 1)
n∑
i=1

(ai+1 + ai+2)(2q
2
nai − ai+1 − ai+2).

Since
n∑
i=1

(2q2nai − ai+1 − ai+2) = 2(q2n − 1)
n∑
i=1

ai

and

n∑
i=1

(ai+1 + ai+2)(2q
2
nai − ai+1 − ai+2) = 2q2n

n∑
i=1

ai(ai+1 + ai+2)−
n∑
i=1

(ai + ai+1)
2 ,

the inequality becomes

4

n
(q2n − 1)

(
n∑
i=1

ai

)2

≥ 2q2n

n∑
i=1

ai(ai+1 + ai+2)−
n∑
i=1

(ai + ai+1)
2 ,

i.e.

4

n
(q2n − 1)

(
n∑
i=1

ai

)2

≥ 2q2n

n∑
i=1

(ai + ai+1)(ai+1 + ai+2)− (q2n + 1)
n∑
i=1

(ai + ai+1)
2 .
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Using the substitution bi = ai + ai+1 for i = 1, 2, . . . , n, the inequality reduces to

1

n
(q2n − 1)

(
n∑
i=1

bi

)2

≥ 2q2n

n∑
i=1

bibi+1 − (q2n + 1)
n∑
i=1

b2i .

Since (
n∑
i=1

bi

)2

= n
n∑
i=1

b2i −
∑
j<k

(bj − bk)2,

the inequality is equivalent to

2q2n

(
n∑
i=1

b2i −
n∑
i=1

bibi+1

)
≥ 1

n
(q2n − 1)

∑
j<k

(bj − bk)2,

i.e.

n
n∑
i=1

(bi − bi+1)
2 ≥

(
1− 1

q2n

)∑
j<k

(bj − bk)2. (*)

But, for j < k, we have

n∑
i=1

(bi − bi+1)
2 ≥

k−1∑
i=j

(bi − bi+1)
2 ≥ 1

k − j

(
k−1∑
i=j

(bi − bi+1)

)2

≥ 1

n− 1
(bj − bk)2.

Summing over j and k with j < k yields

n(n− 1)

2

n∑
i=1

(bi − bi+1)
2 ≥ 1

n− 1

∑
j<k

(bj − bk)2,

i.e.

n
n∑
i=1

(bi − bi+1)
2 ≥ 2

(n− 1)2

∑
j<k

(bj − bk)2.

Comparing this inequality with (*), we see that (*) is true by choosing

1− 1

q2n
=

2

(n− 1)2
,

that is

qn =
1√

1− 2/(n− 1)2
=

n− 1√
n2 − 2n− 1

.

Since qn >
1√

1− 2/n2
=

n√
n2 − 2

, we can also choose

qn =
n√

n2 − 2
.
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Open problem. Does there exist a real constant q > 1 such that

a1
a2 + a3

+
a2

a3 + a4
+

an
a1 + a2

≥ n

2

for any natural number n ≥ 3 and for any real numbers a1, a2, . . . , an ∈ [1/q, q]?

P 1.250. If a, b, c, d are positive real numbers and 0 ≤ x ≤ 1, then∑
cyclic

a

a+ (3− x)b+ xc
≥ 1.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 2006,1)

Solution. Let y = 3− x. Writing

a

a+ by + cx
+

c

c+ dy + ax
=

A

A+B

and
b

b+ cy + dx
+

d

d+ ay + bx
=

C

C +D
,

we need to show that
AC ≥ BD,

where
A = (a2 + c2)x+ (ad+ bc)y + 2ac,

B = (ab+ cd)xy − ac(1− x2) + bdy2,

C = (b2 + d2)x+ (ab+ cd)y + 2bd,

D = (ad+ bc)xy − bd(1− x2) + acy2.

Using the substitution

p = ac, q = bd, r = ab+ cd, s = ad+ bc, u = a2 + c2, v = b2 + d2,

we find
A = ux+ sy + 2p, B = rxy − p(1− x2) + qy2,

C = vx+ ry + 2q, D = sxy − q(1− x2) + py2,

and
AC = uvx2 + 4pq + rsy2 + 2(qu+ pv)x+ (ru+ sv)xy + 2(pr + qs)y,

BD = rsx2y2 +pq(1−2x2 +x4 +y4)− (ps+qr)x(1−x2)y+(pr+qs)xy3− (p2 +q2)(1−x2)y2

= rsx2y2 + pq(x2 + y2 − 1)2 − (ps+ qr)x(1− x2)y + (pr + qs)xy3 − (p− q)2(1− x2)y2.
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Since u ≥ 2p and v ≥ 2q, we have qu+ pv ≥ 4pq and ru+ sv ≥ 2(pr + qs), hence

AC ≥ E,

where
E = uvx2 + 4pq + rsy2 + 8pqx+ 2(pr + qs)(x+ 1)y.

So,
AC −BD ≥ E −BD = E1 + E2,

where
E1 = uvx2 + (p− q)2(1− x2)y2 + (pr + qs)(2 + 2x− xy2)y

= uvx2 + (p− q)2(1− x2)y2 + (pr + qs)(1− x)(2− 5x+ x2)y

and
E2 = rs(1− x2)y2 + (ps+ qr)x(1− x2)y + pq[4 + 8x− (x2 + y2 − 1)2].

Since r ≥ 2
√
pq and s ≥ 2

√
pq, we have rs ≥ 4pq and

ps+ qr ≥ 2(p+ q)
√
pq ≥ 4pq,

hence

E2 ≥ 4pq(1− x2)y2 + 4pqx(1− x2)y + pq[4 + 8x− (x2 + y2 − 1)2] = pq(E3 − 4x2),

where
E3 = 4(1− x2)(x+ y)y + 4(x+ 1)2 − (x2 + y2 − 1)2.

Since
4(1− x2)(x+ y)y = 12(1− x2)y

and
4(x+ 1)2 − (x2 + y2 − 1)2 = (2x+ 3− x2 − y2)(2x+ 1 + x2 + y2)

= −4(1− x)(3− x)(x2 − 2x+ 5) = −4(1− x)(x2 − 2x+ 5)y,

we have

E3 = 4(1− x)y[3(1 + x)− (x2 − 2x+ 5)] = −4(1− x)(2− 5x+ x2)y.

Thus,
AC −BD ≥ E1 + E2 ≥ E1 + pq(E3 − 4x2) = F,

where

F = (uv − 4pq)x2 + (p− q)2(1− x2)y2 + (pr + qs− 4pq)(1− x)(2− 5x+ x2)y.

It suffices to show that F ≥ 0. Since uv ≥ 4pq and pr + qs ≥ 2(p + q)
√
pq ≥ 4pq, we have

clearly F ≥ 0 for (1− x)(2− 5x+ x2) ≥ 0, that is for x = 1 and for 0 ≤ x ≤ (5−
√

17)/2 ≈
0.438. Next, we claim that

uv + 2p2 − 8pq + 2q2 ≥ 2(pr + qs− 4pq). (1)
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Indeed,

uv + 2p2 − 8pq + 2q2 − 2(pr + qs− 4pq) = (ab− p)2 + (cd− p)2 + (bc− q)2 + (ad− q)2 ≥ 0.

We distinguish two cases, y2−x2y2−2x2 ≥ 0 and 2x2+x2y2−y2 ≥ 0, which are equivalent to
x ∈ [0, x1] and x ∈ [x1, 1], respectively, where x1 ≈ 0.837 is the positive root of the equation

x4 − 6x3 + 10x2 + 6x− 9 = 0.

Case 1: y2 − x2y2 − 2x2 ≥ 0. Using (1), we have

F = (uv+2p2−8pq+2q2)x2 +(pr+qs−4pq)(1−x)(2−5x+x2)y+(p−q)2(y2−x2y2−2x2)

≥ (uv + 2p2 − 8pq + 2q2)x2 + (pr + qs− 4pq)(1− x)(2− 5x+ x2)y

≥ 2(pr + qs− 4pq)x2 + (pr + qs− 4pq)(1− x)(2− 5x+ x2)y

= (pr + qs− 4pq)
[
2x2 + (1− x)(2− 5x+ x2)y

]
.

Since pr + qs− 4pq ≥ 0 and

2x2 + (1− x)(2− 5x+ x2)y = 6− 23x+ 27x2 − 9x3 + x4 = (1− x)4 + 5− 19x+ 21x2 − 5x3

= (1− x)4 +
(3− x)(45− 156x+ 137x2) + 2x3

27
> 0,

we have F ≥ 0.

Case 2: 2x2 + x2y2 − y2 ≥ 0. Using (1), we have

2F = (uv+2p2−8pq+2q2)(1−x2)y2+2(pr+qs−4pq)(1−x)(2−5x+x2)y+(uv−4pq)(2x2+x2y2−y2)

≥ (uv + 2p2 − 8pq + 2q2)(1− x2)y2 + 2(pr + qs− 4pq)(1− x)(2− 5x+ x2)y

≥ 2(pr + qs− 4pq)(1− x2)y2 + 2(pr + qs− 4pq)(1− x)(2− 5x+ x2)y

= 2(pr + qs− 4pq)(1− x)(y + xy + 2− 5x+ x2)y

= 2(pr + qs− 4pq)(1− x)(5− 3x)y ≥ 0.

The equality occurs for a = b = c = d.

P 1.251. Prove that 18 is the largest positive value of the constant k such that

1

ab2 + k
+

1

bc2 + k
+

1

ca2 + k
≥ 3

1 + k

for all a ≥ b ≥ c ≥ 0 such that a+ b+ c = 3.

(Vasile Cı̂rtoaje, Math. Reflections, 6, 2024)
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Solution. Setting a = b =
3

2
and c = 0, the inequality leads to k ≤ 18. We will further

show that the inequality is true for k = 18. Let us denote p = a + b + c, q = ab + bc + ca,
r = abc and

A = a2b+ b2c+ c2a, B = ab2 + bc2 + ca2.

Since p = 3, we have q ≤ p2/3 = 3 and r ≤ p3/27 = 1. By expanding, the inequality can be
restated as follows:

3k2 ≥ 3r3 + (2k − 1)rA+ k(k − 2)B,

6k2 ≥ 6r3 + [(2k − 1)r + k(k − 2)](A+B) + [(2k − 1)r − k(k − 2)](A−B).

Since (2k − 1)r − k(k − 2) ≤ 2k − 1 − k(k − 2) = −k2 + 4k − 1 < 0 and A − B =
(a− b)(b− c)(a− c) ≥ 0, it suffices to show that

6k2 ≥ 6r3 + [(2k − 1)r + k(k − 2)](A+B),

i.e.
6k2 ≥ 6r3 + [(2k − 1)r + k(k − 2)](pq − 3r),

648 ≥ 2r3 + (35r + 288)(q − r).

Case 1: 0 ≤ q ≤ 9/4. It suffices to show that

648 ≥ 2r3 + (35r + 288)

(
9

4
− r
)
,

which is equivalent to
r(837 + 140r − 8r2) ≥ 0.

Case 2: 9/4 ≤ q ≤ 3. Let z = q/3 ∈ [3/4, 1]. For fixed z, we need to show that 648 ≥ f(r),
where f(r) = 2r3 + (35r + 288)(3z − r). By the fourth degree Schur’s inequality, we have

r ≤ (p2 − q)(4q − p2)
6p

=
(3− z)(4z − 3)

2
:= r0.

Since f ′(r) = 6r2 − 70r + 105z − 288 ≤ 6− 70r + 105− 288 < 0, f(r) is decreasing. So, we
only need to show that 648 ≥ f(r0), i.e.

648− 864z ≥ 2r30 − 35r20 − (288− 105z)r0.

Since

648− 864z = −216(4z − 3) =
−432r0
3− z

,

we need to show that
−432

3− z
≥ 2r20 − 35r0 − (288− 105z),

that is
−864

3− z
≥ 16z4 − 120z3 + 437z2 − 585z − 180,
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16z5 − 168z4 + 797z3 − 1896z2 + 1575z − 324 ≥ 0,

(z − 1)g(z) ≥ 0,

where

g(z) = 16z4 − 152z3 + 645z2 − 1251z + 324.

The inequality holds if g(z) ≤ 0. Indeed,

g(z) < 645z2 − 1251z + 324 = −645z(1− z)− 151(4z − 3)− 2z − 129 < 0.

For k = 18, the equality occurs when a = b = c = 1, and also when a = b =
3

2
and c = 0.

P 1.252. Let a = b ≥ c ≥ d ≥ 0 such that ab+ bc+ cd+ da = 4. Prove that

a2 + b2 + c2 + d2 + 28 ≥ 8(a+ b+ c+ d).

(Vasile Cı̂rtoaje, Math. Reflections, 5, 2024)

Solution. We need to show that

2b2 + c2 + d2 − 8(2b+ c+ d) + 28 ≥ 0

for

(b+ c)(b+ d) = 4, b ≥ c ≥ d ≥ 0.

Denote

x =
2b+ c

3
, b ≥ x ≥ c ≥ d ≥ 0, x ≥ 1.

Since 2b2 + c2 ≥ 3x2, it suffices to prove that

3x2 + d2 − 8(3x+ d) + 28 ≥ 0,

i.e.

3x2 − 24x+ 12 + (4− d)2 ≥ 0.

From

16 = (2b+ 2c)2b+ 2d) = (3x+ c)(3x+ 2d− c) = (3x+ d+ c− d)(3x+ d+ d− c)

= (3x+ d)2 − (c− d)2 ≥ (3x+ d)2 − (x− d)2 = 8(x2 + dx),

we get

d ≤ 2− x2

x
, 4− d ≥ 4− 2− x2

x
=
x2 + 4x− 2

x
,
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therefore

3x2 − 24x+ 12 + (4− d)2 ≥ 3x2 − 24x+ 12 +
(x2 + 4x− 2)2

x2
=

4(x− 1)4

x2
≥ 0.

Thus, the proof is completed. The equality occurs for a = b = c = d = 1.

Remark 1. Note that 8 is the largest positive value of k such that

a2 + b2 + c2 + d2 − 4 ≥ k(a+ b+ c+ d− 4)

whenever a = b ≥ c ≥ d ≥ 0 satisfying ab + bc + cd + da = 4. To prove this assert, we
assume a = b = c. The equality constraint becomes c2 + cd = 2 where c ∈ [1,

√
2], while the

inequality becomes as follows:

3c2+d2−4 ≥ k(3c+d−4), 3c2+
(2− c2)2

c2
−4 ≥ k

(
3c+

2− c2

c
− 4

)
,

4(c2 − 1)2

c2
≥ 2k(c− 1)2

c
.

It is true for all c ∈ (1,
√

2] if and only if
2(c+ 1)2

c
≥ k. Setting c→ 1, we get the necessary

condition k ≤ 8.

Remark 2. Since
a+ b+ c+ d

4
+

4

a+ b+ c+ d
≥ 2,

the following inequality follows from P 1.252:

• If a, b, c, d are nonnegative real numbers such that

ab+ bc+ cd+ da = 4, a = b ≥ c ≥ d,

then

a2 + b2 + c2 + d2 +
128

a+ b+ c+ d
≥ 36.

P 1.253. If x1, x2, x3, x4, x5 are positive real numbers such that

x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5,

then
1

x1
+

1

x2
+

1

x3
+

1

x4
+

1

x5
+

25

x1 + x2 + x3 + x4 + x5
≥ 10.

(Vasile Cı̂rtoaje, Recreatii Matematice, 1, 2025)
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Solution. By Lemma from P 1.217, it suffices to show that

1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

25

a+ b+ c+ d+ e
− 10 ≥ 0

for
ae+ ad+ be+ bc+ cd = 5, a ≥ b ≥ c ≥ d ≥ e > 0.

Denote

x =
a+ b

2
, y =

d+ e

2
, a ≥ x ≥ b ≥ c ≥ d ≥ y ≥ e.

Replacing a and e with 2x− b and 2y − d, respectively, we have

5 = a(d+ e) + be+ bc+ cd = 2(2x− b)y + b(2y − d) + bc+ cd = 4xy + bc− (b− c)d.

From this, we get
5 ≥ 4xy + bc− (b− c)c = 4xy + c2,

hence
4xy ≤ 5− c2, c <

√
5,

and
5 = 4xy + bc− (b− c)d ≤ 4xy + bc− (b− c)y = 4xy + b(c− y) + cy

≤ 4xy + x(c− y) + cy = 3xy + c(x+ y) ≤ 3

4
(5− c2) + c(x+ y),

hence
4c(x+ y) ≥ 3c2 + 5.

By the AM-HM inequality, we have

1

a
+

1

b
≥ 4

a+ b
=

2

x
,

1

d
+

1

e
≥ 2

y
.

Thus, it suffices to show that

2

x
+

2

y
+

1

c
+

25

2x+ 2y + c
≥ 10

for x ≥ c ≥ y > 0 such that 4xy ≤ 5− c2 and 4c(x+ y) ≥ 3c2 + 5. Denoting S =
x+ y

2
, we

need to show that
4S

xy
+

1

c
+

25

4S + c
≥ 10

for

xy ≤ 5− c2

4
, 8cS ≥ 3c2 + 5.

The inequality is true if
8S

5− c2
+

1

c
+

25

4S + c
≥ 10,
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which is equivalent to

32cS2 + 2(10c3 + 3c2 − 50c+ 5)S + c(5c3 − 13c2 − 25c+ 65) ≥ 0,

that is

(32cS + A)2 + 25B ≥ 0,

where

A = 10c3 + 3c2 − 50c+ 5,

B = −4c6 + 4c5 + 23c4 − 24c3 − 18c2 + 20c− 1 = (c− 1)2(c+ 1)(−4c3 + 19c− 1).

Case 1: c ∈
[

1

15
, 1

]
. Since

−4c3 + 19c− 1 ≥ −4c+ 19c− 1 = 15c− 1 ≥ 0,

we have B ≥ 0, therefore (32cS + A)2 + 25B ≥ 0.

Case 2: c ∈
(

0,
1

15

]
∪ [1,

√
5). Since

32cS + A ≥ 4(3c2 + 5) + A = 5(2c3 + 3c2 − 10c+ 5) = 5(c− 1)(2c2 + 5c− 5) ≥ 0,

we have

(32cS + A)2 + 25B ≥ 25(c− 1)2(2c2 + 5c− 5)2 + 25(c− 1)2(c+ 1)(−4c3 + 19c− 1)

= 200(c− 1)2(2c3 + 3c2 − 4c+ 3) ≥ 200(c− 1)2(2c2 − 4c+ 2) = 400(c− 1)4 ≥ 0.

The proof is completed. The equality occurs for x1 = x2 = x3 = x4 = x5 = 1.

P 1.254. Prove that
7

6
is the least positive value of the power exponent k such that

xk1 + xk2 + xk3 + xk4 + xk5 ≥ 5

for any nonnegative real numbers xi with at most one xi < 1 and x1x2 +x2x3 +x3x4 +x4x5 +
x5x1 = 5.

(Vasile Cı̂rtoaje, Arhimede Math. J., No. 1, 2024)
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Solution. Assuming x1 = x2 := x, x3 = x5 = 1 and x4 =
5− 2x− x2

2
, the constraints

are satisfied for x ∈ [1,
√

6 − 1], while the inequality becomes f(x) ≥ 0, where f(x) =

2xk +

(
5− 2x− x2

2

)k
− 3. From

1

k
f ′(x) = 2xk−1 − (x+ 1)

(
5− 2x− x2

2

)k−1
,

1

k
f ′′(x) = 2(k − 1)xk−2 −

(
5− 2x− x2

2

)k−1
+ (k − 1)(x+ 1)2

(
5− 2x− x2

2

)k−2
,

we find f(1) = f ′(1) = 0 and f ′′(1) = k(6k − 7). From the necessary condition f ′′(1) ≥ 0,
we get k ≥ 7/6. To show that 7/6 is the least positive value of k, we need to prove the
required inequality for k = 7/6. By Lemma below, it suffices to show that E(a, b, c, d, e) ≥ 0
for a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 such that ab+ ac+ bd+ ce+ de = 5, where

E(a, b, c, d, e) = ak + bk + ck + dk + ek − 5.

For fixed b, c and e, we may assume that a and E are functions of d. By differentiating
the equality constraint, we get

(b+ c)a′ + b+ e = 0, a′ =
−(b+ e)

b+ c
≥ −(b+ e)

b+ d
=
d− e
b+ d

− 1 ≥ d− e
a+ d

− 1 =
−(a+ e)

a+ d
.

Denoting E(a, b, c, d, e) by f(d), we have

6f ′(d)

7
= d1/6 + a1/6a′ ≥ d1/6 − a1/6(a+ e)

a+ d
.

We claim that f ′(d) ≥ 0. To prove this, it suffices to show that
a+ d

a+ e
≥
(a
d

)1/6
. By

Bernoulli’s inequality,(a
d

)1/6
=

(
1 +

a− d
d

)1/6

≤ 1 +
a− d

6d
=
a+ 5d

6d
.

So, it is enough to show that
a+ d

a+ e
≥ a+ 5d

6d
. From 5 = ab+ ac+ bd+ ce+ de ≥ ad+ ad+

d2 + de+ de, we get e ≤ 5− 2ad− d2

2d
and a+ e ≤ 5− d2

2d
, therefore

a+ d

a+ e
− a+ 5d

6d
≥ 2d(a+ d)

5− d2
− a+ 5d

6d
=
a(13d2 − 5) + d(17d2 − 25)

6d(5− d2)

≥ d(13d2 − 5) + d(17d2 − 25)

6d(5− d2)
=

5(d2 − 1)

5− d2
≥ 0.
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Since f ′(d) ≥ 0, f(d) is increasing and has the minimum value when d is minimum, hence
when d = 1. So, we need to show that

a7/6 + b7/6 + c7/6 + e7/6 ≥ 4

for a ≥ b ≥ c ≥ 1 ≥ e ≥ 0 such that ab+ ac+ b+ ce+ e = 5.

For fixed a and e, we may assume that b is a decreasing function of c. By differentiating
the equality constraint, we get (a + 1)b′ + a + e = 0. Denoting the left side of the desired
inequality by g(c), we have

6g′(c)

7
= c1/6 + b1/6b′ = c1/6 − b1/6(a+ e)

a+ 1
≥ 1− a1/6(a+ e)

a+ 1
.

We claim that g′(d) ≥ 0. To prove this, it suffices to show that
a+ 1

a+ e
≥ a1/6. By Bernoulli’s

inequality,

a1/6 = [1 + (a− 1)]1/6 ≤ 1 +
a− 1

6
=
a+ 5

6
.

So, it suffices to show that
a+ 1

a+ e
≥ a+ 5

6
. From 5 = ab+ ac+ b+ ce+ e ≥ a+ a+ 1 + e+ e,

we get a+ e ≤ 2, therefore

a+ 1

a+ e
− a+ 5

6
≥ a+ 1

2
− a+ 5

6
=
a− 1

3
≥ 0.

Since g′(c) ≥ 0, g(c) is increasing and has the minimum value when c is minimum (b is
maximum), that is when c = 1 or b = a. Consider now these cases.

Case 1: c = 1. We need to show that a7/6 + b7/6 + e7/6 ≥ 3 for a ≥ b ≥ 1 ≥ e ≥ 0 such

that ab + a + b + 2e = 5. Let x =
a+ b

2
≥ 1. Since, by Jensen’s inequality and Bernoulli’s

inequality,

a7/6 + b7/6 ≥ 2x7/6 = 2[1 + (x− 1)]7/6 ≥ 2

[
1 +

7(x− 1)

6

]
=

7x− 1

3
,

we have

a7/6 + b7/6 + e7/6 − 3 ≥ 7x− 1

3
− 3 =

7x− 10

3
≥ 0

for x ≥ 10/7. For x ∈ [1, 10/7], since e =
5− 2x− ab

2
≥ 5− 2x− x2

2
> 0, we have

a7/6 + b7/6 + e7/6 − 3 ≥ 2x7/6 +

(
5− 2x− x2

2

)7/6

− 3 := G(x).

If G′(x) ≥ 0, then G(x) is increasing, therefore G(x) ≥ G(1) = 0. Since

G′(x) =
7

3
x1/6 − 7

6
(x+ 1)

(
5− 2x− x2

2

)1/6

=
7

6
x1/6(x+ 1)

[
2

x+ 1
−
(

5− 2x− x2

2x

)1/6
]
,
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we need to show that H(x) ≥ 0, where H(x) =

(
2

x+ 1

)6

− 5− 2x− x2

2x
. Indeed, since(

2

x+ 1

)6

≥ 2

(
2

x+ 1

)3

− 1, we have

H(x) ≥ 16

(x+ 1)3
− 1− 5− 2x− x2

2x
=

16

(x+ 1)3
− 5− x2

2x

=
x5 + 3x4 − 2x3 − 14x2 + 17x− 5

2x(x+ 1)3
=

(x− 1)2(x3 + 5x2 + 7x− 5)

2x(x+ 1)3
≥ 0.

Case 2: b = a. We need to show that 2a7/6 + c7/6 + e7/6 ≥ 4 for a ≥ c ≥ 1 ≥ e ≥ 0 such
that a2 + ac + a + ce + e = 5. For fixed e, we may assume that a is a function of c. By
differentiating the equality constraint, we get

(2a+ c+ 1)a′ + a+ e = 0, a′ =
−(a+ e)

2a+ c+ 1
≥ −(a+ e)

2(a+ 1)
.

Denoting the left side of the desired inequality by h(c), we have

6h′(c)

7
= c1/6 + 2a1/6a′ = c1/6 − a1/6(a+ e)

a+ 1
≥ 1− a1/6(a+ e)

a+ 1
≥ 0.

The last inequality was proved before. Since h′(c) ≥ 0, h(c) is increasing and has the
minimum value when c is minimum, hence when c = 1. So, we need to show that 2a7/6+e7/6 ≥
3 for a ≥ 1 ≥ e ≥ 0 such that a2 + 2a+ 2e = 5. If a ≥ 10/7, then

2a7/6 + e7/6 − 3 ≥ 2a7/6 − 3 > 0,

and if a ∈ [1, 10/7], then

2a7/6 + e7/6 − 3 = 2a7/6 +

(
5− 2a− a2

2

)7/6

− 3 ≥ 0.

The latter inequality was proved at Case 1.

The proof is completed. The equality occurs for x1 = x2 = x3 = x4 = x5 = 1.

Lemma. Let x1, x2, x3, x4, x5 be nonnegative real numbers such that at most one of them
is less than 1 and x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5, and let E(x1, x2, x3, x4, x5) be a
symmetric and increasing function with respect to each variable. If E(a, b, c, d, e) ≥ 0 for any
a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 such that ab+ac+bd+ce+de = 5, then E(x1, x2, x3, x4, x5) ≥ 0.

Proof. Let T = (T1, T2, T3, T4, T5) and t = (t1, t2, t3, t4, t5) be two decreasing sequences of
positive real numbers. By Karamata majorization inequality applied to the convex function
f(x) = ex, if T1 · · ·Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, then

T1 + T2 + T3 + T4 + T5 ≥ t1 + t2 + t3 + t4 + t5.
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If (a, b, c, d, e) is a permutation of (x1, x2, x3, x4, x5) such that a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0,
then

E(a, b, c, d, e) = E(x1, x2, x3, x4, x5).

Let T = (ab, ac, bd, ce, de) be a decreasing sequence, and t a decreasing permutation of
the sequence (x1x2, x2x3, x3x4, x4x5, x5x1). Since T1 · · ·Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, by
Karamata’s inequality we have

ab+ ac+ bd+ ce+ de ≥ x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5.

In the case ab + ac + bd + ce + de > 5, by decreasing the numbers a, b, c, d, e to have
ab+ac+ bd+ce+de = 5 and to keep the constraint a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0, the function
E(a, b, c, d, e) decreases, therefore

E(a, b, c, d, e) ≤ E(x1, x2, x3, x4, x5).

On the other hand, by hypothesis, E(a, b, c, d, e) ≥ 0. So, we have

E(x1, x2, x3, x4, x5) ≥ E(a, b, c, d, e) ≥ 0.

P 1.255. Let a, b, c, d be nonnegative real numbers such that at most one of them is larger
than 1 and ab+ bc+ cd+ da ≤ 4. Prove that

a2 + b2 + c2 + d2 + 16 ≥ 5(a+ b+ c+ d).

(Vasile Cı̂rtoaje, 2024)

Solution. Without loss of generality, assume that a ≥ 1 and b, c, d ≤ 1. Since (a+c)(b+d) ≤
4, let us denote

x =
a+ c

2
, y =

b+ d

2
.

We have

xy ≤ 1, y ≤ 1.

Consider next two cases: x ≤ 1 and x ≥ 1.

Case 1: x ≤ 1. Let S =
a+ b+ c+ d

4
. We have

S =
x+ y

2
≤ 1

and

a2 + b2 + c2 + d2 ≥ (a+ b+ c+ d)2

4
= 4S2,
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therefore

a2 + b2 + c2 + d2 + 16− 5(a+ b+ c+ d) ≥ 4S2 + 16− 20S = 4(1− S)(4− S) ≥ 0.

Case 2: x ≥ 1. From (a− 1)(c− 1) ≤ 0, we get ac ≤ 2x− 1. In addition, bd ≤ y2. So, we
have

a2 + b2 + c2 + d2 + 16− 5(a+ b+ c+ d) = 4x2 − 2ac+ 4y2 − 2bd+ 16− 10(x+ y)

≥ 4x2 − 2(2x− 1) + 4y2 − 2y2 + 16− 10(x+ y) = 4x2 − 14x+
11

2
+ 2

(
5

2
− y
)2

≥ 4x2 − 14x+
11

2
+ 2

(
5

2
− 1

x

)2

=
2(2x4 − 7x3 + 9x2 − 5x+ 1)

x2
=

2(x− 1)3(2x− 1)

x2
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.256. Prove that [−32, 17] is the range of values of the real constant k such that

(a+ b+ c+ d)4 + 4k(a+ b+ c+ d) ≥ (16 + k)(a+ b)2(c+ d)2

for all nonnegative real numbers a, b, c, d with a ≥ b ≥ c ≥ d and abc+ bcd+ cda+ dab = 4.

(Leonard Giugiuc and Vasile Cı̂rtoaje, Recreatii Matematice, 2, 2024)

Solution. Write the inequality in the homogeneous form

(a+ b+ c+ d)4 + k(a+ b+ c+ d)(abc+ bcd+ cda+ dab) ≥ (16 + k)(a+ b)2(c+ d)2.

For a = b = c = 1 and d = 0, the inequality becomes k ≤ 17, and for a = b := x ≥ 1 and
c = d = 1, the inequality becomes

(x− 1)2[4(x2 + 6x+ 1) + kx] ≥ 0.

It is true for x ≥ 1 if and only if 4(x2 + 6x+ 1) + kx ≥ 0 for all x > 1. From

lim
x→1

[4(x2 + 6x+ 1) + kx] ≥ 0,

we get the necessary condition k ≥ −32. To finish the proof, we need to prove the inequality
for k ∈ [−32, 17]. For fixed a, b, c, d, the inequality has the form f(k) ≥ 0. Since f(k) is
a linear function, it has the minimum value when k = −32 or k = 17. Thus, it suffices to
consider these two cases.

Case 1: k = −32. We need to show that

(a+ b+ c+ d)4 + 16(a+ b)2(c+ d)2 ≥ 32(a+ b+ c+ d)(abc+ bcd+ cda+ dab).
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Let S =
a+ b

2
and s =

c+ d

2
. Since

abc+ bcd+ cda+ dab = ab(c+ d) + cd(a+ b) ≤ 2S2s+ 2s2S = 2Ss(S + s),

it suffices to show that
(S + s)4 + 16S2s2 ≥ 8Ss(S + s)2,

which is equivalent to
(S − s)4 ≥ 0.

Case 2: k = 17. We need to show that

(a+ b+ c+ d)4 + 17(a+ b+ c+ d)(abc+ bcd+ cda+ dab) ≥ 33(a+ b)2(c+ d)2.

Let s = c + d and x = cd. For fixed a, b and s, we may write the inequality as f(x) ≥ 0,
where

f(x) = (a+ b+ s)4 + 17(a+ b+ s)[abs+ (a+ b)x]− 33(a+ b)2s2.

Since f(x) is increasing, it has the minimum value when x = 0, hence when d = 0. So, it
suffices to prove the inequality for d = 0, that is

(a+ b+ c)4 + 17(a+ b+ c)abc ≥ 33(a+ b)2c2.

Since
3(a+ b)c ≤ 2(ab+ bc+ ca),

it suffices to show that
3p4 + 51pr ≥ 44q2,

where p = a+ b+ c, q = ab+ bc+ ca, r = abc. If p2 ≥ 4q, then

3p4 + 51pr − 44q2 ≥ 48q2 + 51pr − 44q2 > 0.

Consider now the case 3q ≤ p2 < 4q. By Schur’s inequality, we have p3 + 9r ≥ 4pq. Thus,

3(3p4 + 51pr − 44q2) ≥ 9p4 + 17p(4pq − p3)− 132q2 = 4(−2p4 + 17p2q − 33q2)

= 4(p2 − 3q)(11q − 2p2) ≥ 4(p2 − 3q)(8q − 2p2) ≥ 0.

The proof is completed. For k ∈ [−32, 17], the equality occurs when a = b = c = d = 1.
Moreover, for k = 17, the equality also occurs when a = b = c = 3

√
4 and d = 0.
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Chapter 2

Noncyclic Inequalities

2.1 Applications

2.1. If a, b are positive real numbers, then

1

4a2 + b2
+

3

b2 + 4ab
≥ 16

5(a+ b)2
.

2.2. If a, b are positive real numbers, then

3a
√

3a+ 3b
√

6a+ 3b ≥ 5(a+ b)
√
a+ b.

2.3. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(ab+ c)(ac+ b) ≤ 4.

2.4. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥ 1

4
(b+ c− 2a)3.

2.5. If a, b, c are nonnegative real numbers such that

c = min{a, b, c}, a2 + b2 + c2 = 3,

then

(a) 5b+ 2c ≤ 9;

(b) 5(b+ c) ≤ 9 + 3a.

371
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2.6. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

16

(b+ c)2
≥ 6

ab+ bc+ ca
.

2.7. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

2

(b+ c)2
≥ 5

2(ab+ bc+ ca)
.

2.8. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

25

(b+ c)2
≥ 8

ab+ bc+ ca
.

2.9. If a, b, c are positive real numbers, then

(a+ b)3(a+ c)3 ≥ 4a2bc(2a+ b+ c)2.

2.10. If a, b, c are positive real numbers such that abc = 1, then

(a)
a

b
+
b

c
+

1

a
≥ a+ b+ 1;

(b)
a

b
+
b

c
+

1

a
≥
√

3(a2 + b2 + 1).

2.11. If a, b, c are positive real numbers such that abc ≥ 1, then

a
a
b b

b
c cc ≥ 1.

2.12. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

ab2c3 < 4.

2.13. If a, b, c are positive real numbers such that ab+ bc+ ca =
5

3
, then

ab2c2 ≤ 1

3
.
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2.14. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, ab+ bc+ ca = 3.

Prove that

(a) ab2c ≤ 9

8
;

(b) ab4c ≤ 2;

(c) a2b3c ≤ 2.

2.15. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1

a
+

1

b
+

1

c
.

Prove that

b ≥ 1

a+ c− 1
.

2.16. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1

a
+

1

b
+

1

c
.

Prove that
ab2c3 ≥ 1.

2.17. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c = abc+ 2.

Prove that
(1− b)(1− ab3c) ≥ 0.

2.18. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

2(b2 + c2)
;

(b)
(a+ b)2

a2 + b2
+

(a+ c)2

a2 + c2
≥ (b− c)2

2(b2 + c2)
.
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2.19. Let a, b, c be real numbers, no two of which are zero. If bc ≥ 0, then

(a)
(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

(b+ c)2
;

(b)
(a+ b)2

a2 + b2
+

(a+ c)2

a2 + c2
≥ (b− c)2

(b+ c)2
.

2.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

|a− b|3

a3 + b3
+
|a− c|3

a3 + c3
≥ |b− c|

3

(b+ c)3
.

2.21. Let a, b, c be positive real numbers, b 6= c. Prove that

ab

(a+ b)2
+

ac

(a+ c)2
≤ (b+ c)2

4(b− c)2
.

2.22. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc+ a2

b2 + c2
≥ 3ab− c2

a2 + b2
+

3ac− b2

a2 + c2
.

2.23. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 + 2ca2 ≤ 8.

2.24. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 +
3

2
abc ≤ 4.

2.25. Let a, b, c be nonnegative real numbers such that a+ b+ c = 5. Prove that

ab2 + bc2 + 2abc ≤ 20.

2.26. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − a2b− b2c− c2a ≥ 8

9
(a− b)(b− c)2.
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2.27. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
≥ 3 +

(a− c)2

ab+ bc+ ca
.

2.28. If a, b, c are positive real numbers, then

(a)
a

b
+
b

c
+
c

a
≥ 3 +

4(a− c)2

(a+ b+ c)2
;

(b)
a

b
+
b

c
+
c

a
≥ 3 +

5(a− c)2

(a+ b+ c)2
.

2.29. If a ≥ b ≥ c > 0, then

a

b
+
b

c
+
c

a
≥ 3 +

3(b− c)2

ab+ bc+ ca
.

2.30. Let a, b, c be positive real numbers such that abc = 1. Prove that

(a) if a ≥ b ≥ 1 ≥ c, then

a

b
+
b

c
+
c

a
≥ 3 +

2(a− b)2

ab
;

(b) if a ≥ 1 ≥ b ≥ c, then

a

b
+
b

c
+
c

a
≥ 3 +

2(b− c)2

bc
.

2.31. Let a, b, c be positive real numbers such that

a ≥ 1 ≥ b ≥ c, abc = 1.

prove that
a

b
+
b

c
+
c

a
≥ 3 +

9(b− c)2

ab+ bc+ ca
.

2.32. Let a, b, c be positive real numbers such that

a ≥ 1 ≥ b ≥ c, a+ b+ c = 3.

prove that
a

b
+
b

c
+
c

a
≥ 3 +

4(b− c)2

b2 + c2
.
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2.33. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1 ≥ c, a+ b+ c = 3.

Prove that
a

b
+
b

c
+
c

a
≥ 3 +

3(a− b)2

ab
.

2.34. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
≥ 3 +

2(a− c)2

(a+ c)2
.

2.35. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
≥ a+ b+ c+

4(a− c)2

a+ b+ c
.

2.36. If a ≥ b ≥ c > 0, then

a2

b
+
b2

c
+
c2

a
≥ a+ b+ c+

6(b− c)2

a+ b+ c
.

2.37. If a ≥ b ≥ c > 0, then
a2

b
+
b2

c
+
c2

a
> 5(a− b).

2.38. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1 ≥ c, a+ b+ c = 3.

Prove that
a2

b
+
b2

c
+
c2

a
≥ 3 +

11(a− c)2

4(a+ c)
.

2.39. If a, b, c are positive real numbers, then

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

27(b− c)2

16(a+ b+ c)2
.
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2.40. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

9(b− c)2

4(a+ b+ c)2
.

2.41. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

2(b+ c)2
.

2.42. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

4bc
.

2.43. Let a, b, c be positive real numbers such that

a ≤ 1 ≤ b ≤ c, a+ b+ c = 3,

then
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

3(b− c)2

4bc
.

2.44. Let a, b, c be nonnegative real numbers such that

a ≥ 1 ≥ b ≥ c, a+ b+ c = 3,

then
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

(b+ c)2
.

2.45. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

(a)
ab+ bc+ ca

a2 + b2 + c2
+

2(b− c)2

3(b2 + c2)
≤ 1;

(b)
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

b2 + bc+ c2
≤ 1;

(c)
ab+ bc+ ca

a2 + b2 + c2
+

(a− b)2

2(a2 + b2)
≤ 1.
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2.46. Let a, b, c be positive real numbers such that

a ≤ 1 ≤ b ≤ c, a+ b+ c = 3,

then
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

bc
≤ 1.

2.47. Let a, b, c be nonnegative real numbers such that a = max{a, b, c} and b+c > 0. Prove
that

(a)
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

2(ab+ bc+ ca)
≤ 1;

(b)
ab+ bc+ ca

a2 + b2 + c2
+

2(b− c)2

(a+ b+ c)2
≤ 1.

2.48. Let a, b, c be positive real numbers. Prove that

(a) if a ≥ b ≥ c, then

ab+ bc+ ca

a2 + b2 + c2
+

(a− c)2

a2 − ac+ c2
≥ 1;

(b) if a ≥ 1 ≥ b ≥ c and abc = 1, then

ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

b2 − bc+ c2
≤ 1.

2.49. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

(a)
a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

4(b− c)2

3(b+ c)2
;

(b)
a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

(a− b)2

(a+ b)2
.

2.50. If a, b, c are positive real numbers, then

a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

9(a− c)2

4(a+ b+ c)2
.
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2.51. Let a, b, c be nonnegative real numbers, no two of which are zero. If a = min{a, b, c},
then

1√
a2 − ab+ b2

+
1√

b2 − bc+ c2
+

1√
c2 − ca+ a2

≥ 6

b+ c
.

2.52. If a ≥ 1 ≥ b ≥ c ≥ 0 such that

ab+ bc+ ca = abc+ 2,

then
ac ≤ 4− 2

√
2.

2.53. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a+ b+ c ≤ 4;

(b) 2a+ b+ c ≤ 4.

2.54. Let a, b, c be nonnegative real numbers such that a ≤ b ≤ c. Prove that

(a) if a+ b+ c = 3, then
a4(b4 + c4) ≤ 2;

(b) if a+ b+ c = 2, then
c4(a4 + b4) ≤ 1.

2.55. Let a, b, c be nonnegative real numbers such that

a ≤ b ≤ c, a+ b+ c = 3.

Find the greatest real number k such that√
(56b2 + 25)(56c2 + 25) + k(b− c)2 ≤ 14(b+ c)2 + 25.

2.56. If a ≥ b ≥ c > 0 such that abc = 1, then

3(a+ b+ c) ≤ 8 +
a

c
.
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2.57. If a ≥ b ≥ c > 0, then

(a+ b− c)(a2b− b2c+ c2a) ≥ (ab− bc+ ca)2.

2.58. If a ≥ b ≥ c > 0, then
ab+ bc

a2 + b2 + c2
≤ 1 +

√
3

4
.

2.59. If a ≥ b ≥ c ≥ d > 0, then

ab+ bc+ cd

a2 + b2 + c2 + d2
≤ 2 +

√
7

6
.

2.60. If
a ≥ 1 ≥ b ≥ c ≥ d ≥ 0, a+ b+ c+ d = 4,

then
ab+ bc+ cd ≤ 3.

2.61. Let k and a, b, c be positive real numbers, and let

E = (ka+ b+ c)

(
k

a
+

1

b
+

1

c

)
, F = (ka2 + b2 + c2)

(
k

a2
+

1

b2
+

1

c2

)
.

(a) If k ≥ 1, then √
F − (k − 2)2

2k
+ 2 ≥ E − (k − 2)2

2k
;

(b) If 0 < k ≤ 1, then √
F − k2
k + 1

+ 2 ≥ E − k2

k + 1
.

2.62. If a, b, c are positive real numbers, then

a

2b+ 6c
+

b

7c+ a
+

25c

9a+ 8b
> 1.
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2.63. If a, b, c are positive real numbers such that

1

a
≥ 1

b
+

1

c
,

then
1

a+ b
+

1

b+ c
+

1

c+ a
≥ 55

12(a+ b+ c)
.

2.64. If a, b, c are positive real numbers such that

1

a
≥ 1

b
+

1

c
,

then
1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
≥ 189

40(a2 + b2 + c2)
.

2.65. Find the best real numbers k,m, n such that

(
√
a+
√
b+
√
c)
√
a+ b+ c ≥ ka+mb+ nc

for all a ≥ b ≥ c ≥ 0.

2.66. Let a, b ∈ (0, 1] , a ≤ b.

(a) If a ≤ 1

e
, then

2aa ≥ ab + ba;

(b) If b ≥ 1

e
, then

2bb ≥ ab + ba.

2.67. If 0 ≤ a ≤ b and b ≥ 1

2
, then

2b2b ≥ a2b + b2a.

2.68. If a ≥ b ≥ 0, then

(a) ab−a ≤ 1 +
a− b√
a

;

(b) aa−b ≥ 1− 3(a− b)
4
√
a

.
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2.69. If a, b, c are positive real numbers such that

a ≥ b ≥ c, ab2c3 = 1,

then

a+ 2b+ 3c ≥ 1

a
+

2

b
+

3

c
.

2.70. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
1

a
+

2

b
≥ a2 + b2 + c2.

2.71. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
2

a
+

3

b
+

1

c
≥ 2(a2 + b2 + c2).

2.72. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
31

a
+

25

b
+

25

c
≥ 27(a2 + b2 + c2).

2.73. If a, b, c are the lengths of the sides of a triangle, then

a3(b+ c) + bc(b2 + c2) ≥ a(b3 + c3).

2.74. If a, b, c are the lengths of the sides of a triangle, then

(a+ b)2

2ab+ c2
+

(a+ c)2

2ac+ b2
≥ (b+ c)2

2bc+ a2
.



Noncyclic Inequalities 383

2.75. If a, b, c are the lengths of the sides of a triangle, then

a+ b

ab+ c2
+

a+ c

ac+ b2
≥ b+ c

bc+ a2
.

2.76. If a, b, c are the lengths of the sides of a triangle, then

b(a+ c)

ac+ b2
+
c(a+ b)

ab+ c2
≥ a(b+ c)

bc+ a2
.

2.77. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, ab2c3d6 = 1,

then

a+ 2b+ 3c+ 6d ≥ 1

a
+

2

b
+

3

c
+

6

d
.

2.78. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, abc2d4 ≥ 1,

then

a+ b+ 2c+ 4d ≥ 1

a
+

1

b
+

2

c
+

4

d
.

2.79. If a, b, c, d, e, f are positive real numbers such that

abcdef ≥ 1, a ≥ b ≥ c ≥ d ≥ e ≥ f, af ≥ be ≥ cd,

then

a+ b+ c+ d+ e+ f ≥ 1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

1

f
.

2.80. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
(a+ b)(c+ d) ≥ 2(ab+ cd).
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2.81. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

a2 + ab+ b2
+

1

c2 + cd+ d2
≤ 8

3(a+ b)(c+ d)
.

2.82. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

a2 + ab+ b2
+

1

c2 + cd+ d2
≤ 8

3(a+ b)(c+ d)
.

2.83. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

(ac+ bd)4
+

1

(ad+ bc)4
≤ 2

(ab+ cd)4
.

2.84. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
ab ≥ cd+ 3.

2.85. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
83

4
≤ ac+ bd ≤ 169

8
.

2.86. If a, b, c, d are positive real numbers such that

a2 + b2 + c2 + d2 = 4, a ≤ b ≤ c ≤ d,

then
1

a
+ a+ b+ c+ d ≥ 5.
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2.87. If a, b, c, d are real numbers, then

6(a2 + b2 + c2 + d2) + (a+ b+ c+ d)2 ≥ 12(ab+ bc+ cd).

2.88. If a, b, c, d are positive real numbers, then

1

a2 + ab
+

1

b2 + bc
+

1

c2 + cd
+

1

d2 + da
≥ 4

ac+ bd
.

2.89. If a, b, c, d are positive real numbers, then

1

a(1 + b)
+

1

b(1 + a)
+

1

c(1 + d)
+

1

d(1 + c)
≥ 16

1 + 8
√
abcd

.

2.90. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 4,

then
ac+ bd ≤ 2.

2.91. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 4,

then

2

(
1

b
+

1

d

)
≥ a2 + b2 + c2 + d2.

2.92. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 3.

Prove that
a3bcd < 4.

2.93. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 6.

Prove that
acd ≤ 2.



386 Vasile Ĉırtoaje

2.94. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 9.

Prove that
abd ≤ 4.

2.95. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 10.

Prove that
2b+ 4d ≤ 3c+ 5.

2.96. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d and

abcd = 1.

Prove that

4 +
a

b
+
b

c
+
c

d
+
d

a
≥ 2(a+ b)(c+ d).

2.97. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

3(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2.

Prove that

(a)
a+ d

b+ c
≤ 2;

(b)
a+ c

b+ d
≤ 7 + 2

√
6

5
;

(c)
a+ c

c+ d
≤ 3 +

√
5

2
.

2.98. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

2(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2.

Prove that
a ≥ b+ 3c+ (2

√
3− 1)d.
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2.99. If a, b, c, d, e are real numbers, then

ab+ bc+ cd+ de

a2 + b2 + c2 + d2 + e2
≤
√

3

2
.

2.100. If a, b, c, d, e are positive real numbers, then

a2b2

bd+ ce
+

b2c2

cd+ ae
+

c2a2

ad+ be
≥ 3abc

d+ e
.

2.101. Let a, b, c and x, y, z be positive real numbers such that

x+ y + z = a+ b+ c.

Prove that
ax2 + by2 + cz2 + xyz ≥ 4abc.

2.102. Let a, b, c and x, y, z be positive real numbers such that

x+ y + z = a+ b+ c.

Prove that
x(3x+ a)

bc
+
y(3y + b)

ca
+
z(3z + c)

ab
≥ 12.

2.103. Let a, b, c be given positive numbers. Find the minimum value F (a, b, c) of

E(x, y, z) =
ax

y + z
+

by

z + x
+

cz

x+ y
,

where x, y, z are nonnegative real numbers, no two of which are zero.

2.104. Let a, b, c and x, y, z be positive real numbers such that

a

yz
+

b

zx
+

c

xy
= 1.

Prove that

(a) x+ y + z ≥
√

4(a+ b+ c+
√
ab+

√
bc+

√
ca ) + 3 3

√
abc;

(b) x+ y + z >
√
a+ b+

√
b+ c+

√
c+ a.
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2.105. If a, b, c and x, y, z are nonnegative real numbers, then

2

(a+ b)(x+ y)
+

2

(b+ c)(y + z)
+

2

(c+ a)(z + x)
≥ 9

(b+ c)x+ (c+ a)y + (a+ b)z
.

2.106. Let a, b, c be the lengths of the sides of a triangle. If x, y, z are real numbers, then

(ya2 + zb2 + xc2)(za2 + xb2 + yc2) ≥ (xy + yz + zx)(a2b2 + b2c2 + c2a2).

2.107. If a, b, c are nonnegative real numbers such that

2(a+ b+ c) + ab+ bc+ ca = 9,

then

(a+ 1)bc+ 3(b+ c) ≤ 16

a+ 1
.

2.108. If a, b, c are nonnegative real numbers such that

2(a+ b+ c) + ab+ bc+ ca = 9,

then
1

ab+ 4
+

1

ac+ 4
+

1

b+ 4
+

1

c+ 4
≥ 4

5
.

2.109. If a, b, c are nonnegative real numbers such that

6a2 + 4a(b+ c) + bc = 15,

then
4

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
≥ 3.

2.110. Let a1, a2, . . . , an be positive real numbers such that a1 ≥ 2a2. Prove that

(5n− 1)(a21 + a22 + · · ·+ a2n) ≥ 5(a1 + a2 + · · ·+ an)2.

2.111. If a1, a2, . . . , an are positive real numbers such that a1 ≥ 4a2, then

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥
(
n+

1

2

)2

.
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2.112. Suppose n ≥ 3 and a1, a2, . . . , an are nonnegative real numbers such that a1 ≤ a2 ≤
· · · ≤ an.

(a) Prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
a1 + a2 + · · ·+ an−1

n− 1

)2

;

(b) If k ≥ k1 =
2

1 +

√
n

n− 2

, prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
ka1 + a2 + · · ·+ an−1

n− 2 + k

)2

.

(c) If 0 ≤ k ≤ k2 = 1 +
1

1 +

√
n

n− 2

, prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
a1 + · · ·+ an−2 + kan−1

n− 2 + k

)2

.

2.113. If k ≥ k0 = 7− 2
√

6 ≈ 2.101 and a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ 0, then(
ka+ b+ c+ d+ e+ f

k + 5

)2

≥ ab+ bc+ cd+ de+ ef + fa

6
.

2.114. If a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0, then(
4a1 + a2 + · · ·+ a9

12

)2

≥ a1a2 + a2a3 + · · ·+ a9a1
9

.

2.115. Prove that
3

4
is the least positive value of k such that(

ka+ b+ c+ d

k + 3

)2

≥ ab+ bc+ cd+ de+ ea

5

whenever a ≥ b ≥ c ≥ d ≥ e ≥ 0.

2.116. If a1 ≥ a2 ≥ · · · ≥ a8 ≥ 0, then

(2a1 + a2 + · · ·+ a7)
2 ≥ 8(a1a2 + a2a3 + · · ·+ a8a1).

2.117. Let a, b, c, d be nonnegative real numbers such that ab+ bc+ cd = 7. Prove that

1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
≥ 3

2
.
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2.2 Solutions

P 2.1. If a, b are positive real numbers, then

1

4a2 + b2
+

3

b2 + 4ab
≥ 16

5(a+ b)2
.

Solution. Using the Cauchy-Schwarz inequality gives

1

4a2 + b2
+

3

b2 + 4ab
≥ (1 + 3)2

(4a2 + b2) + 3(b2 + 4ab)
=

4

a2 + b2 + 3ab
.

Thus, we only need to show that

1

a2 + b2 + 3ab
≥ 4

5(a+ b)2
,

which reduces to (a− b)2 ≥ 0. The equality holds for a = b.

P 2.2. If a, b are positive real numbers, then

3a
√

3a+ 3b
√

6a+ 3b ≥ 5(a+ b)
√
a+ b.

Solution. Due to homogeneity, we may assume that a+ b = 3. Thus, we need to show that

a
√
a+ (3− a)

√
3 + a ≥ 5

for 0 < a < 3. Substituting √
a = x, 0 < x <

√
3,

the inequality becomes
(3− x2)

√
3 + x2 ≥ 5− x3.

For 3
√

5 ≤ x <
√

3, the inequality is trivial. For 0 < x < 3
√

5, squaring both sides of the
inequality gives

(3− x2)(9− x4) ≥ (5− x3)2,

3x4 − 10x3 + 9x2 − 2 ≤ 0,

(x− 1)2(3x2 − 4x− 2) ≤ 0.

Since 3x2 − 4x− 2 ≤ 0 for
2−
√

10

3
≤ x ≤ 2 +

√
10

3
, we only need to prove that

3
√

5 ≤ 2 +
√

10

3
.
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Indeed, we have (
2 +
√

10

3

)3

− 5 =
22
√

10− 67

27
> 0.

The equality holds for a = b/2.

P 2.3. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(ab+ c)(ac+ b) ≤ 4.

Solution. By the AM-GM inequality, we have

(ab+ c)(ac+ b) ≤
[

(ab+ c) + (ac+ b)

2

]2
=

(a+ 1)2(b+ c)2

4
.

Therefore, it suffices to show that

(a+ 1)(b+ c) ≤ 4.

Indeed,

(a+ 1)(b+ c) ≤
[

(a+ 1) + (b+ c)

2

]2
= 4.

The equality holds for a = b = c = 1, for a = 1, b = 0, c = 2, and for a = 1, b = 2, c = 0.

P 2.4. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥ 1

4
(b+ c− 2a)3.

Solution. Write the inequality as

2(a+ b+ c)[(a− b)2 + (b− c)2 + (c− a)2] ≥ (b+ c− 2a)3.

Consider the non-trivial case b+ c− 2a ≥ 0. Since (b− c)2 ≥ 0 and

a+ b+ c ≥ b+ c− a,

it suffices to show that

2(a− b)2 + 2(c− a)2 ≥ (b+ c− 2a)2.

Indeed, we have

2(a− b)2 + 2(c− a)2 − (b+ c− 2a)2 = (b− c)2 ≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c.
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P 2.5. If a, b, c are nonnegative real numbers such that

c = min{a, b, c}, a2 + b2 + c2 = 3,

then

(a) 5b+ 2c ≤ 9;

(b) 5(b+ c) ≤ 9 + 3a.

Solution. (a) It suffices to show that

5b+ 2c+ (a− c) ≤ 9;

that is,

9 ≥ a+ 5b+ c.

This follows from the Cauchy-Schwarz inequality

(1 + 25 + 1)(a2 + b2 + c2) ≥ (a+ 5b+ c)2.

The equality holds for a = c =
1

3
and b =

5

3
.

(b) It suffices to show that

5(b+ c) + 4(a− c) ≤ 9 + 3a;

that is,

9 ≥ a+ 5b+ c.

As we have shown at (a), this follows from the Cauchy-Schwarz inequality

(1 + 25 + 1)(a2 + b2 + c2) ≥ (a+ 5b+ c)2.

The equality holds for a = c =
1

3
and b =

5

3
.

P 2.6. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

16

(b+ c)2
≥ 6

ab+ bc+ ca
.

(Vasile Cı̂rtoaje, 2014)
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Solution (by Nguyen Van Quy). Since the equality holds for a = 0 and b = c, we write the
desired inequality in the form

16

(b+ c)2
+

(
1

a+ b
+

1

a+ c

)2

≥ 6

ab+ bc+ ca
+

2

(a+ b)(a+ c)

and apply then the AM-GM inequality

16

(b+ c)2
+

(
1

a+ b
+

1

a+ c

)2

≥ 8

b+ c

(
1

a+ b
+

1

a+ c

)
.

Therefore, it suffices to show that

8

b+ c

(
1

a+ b
+

1

a+ c

)
≥ 6

ab+ bc+ ca
+

2

(a+ b)(a+ c)
.

Since (a+ b)(a+ c) ≥ ab+ bc+ ca, it is enough to show that

8

b+ c

(
1

a+ b
+

1

a+ c

)
≥ 8

ab+ bc+ ca
,

which is equivalent to

(2a+ b+ c)(ab+ bc+ ca) ≥ (a+ b)(b+ c)(c+ a).

We have

(2a+ b+ c)(ab+ bc+ ca) ≥ (a+ b+ c)(ab+ bc+ ca)

≥ (a+ b)(b+ c)(c+ a).

This completes the proof. The equality holds for a = 0 and b = c.

P 2.7. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

2

(b+ c)2
≥ 5

2(ab+ bc+ ca)
.

Solution. This inequality follows from Iran 1996 inequality (see P 1.72 in Volume 2, for
k = 2), namely

1

(a+ b)2
+

1

(a+ c)2
+

1

(b+ c)2
≥ 9

4(ab+ bc+ ca)
,

and the inequality in P 2.6, namely

1

(a+ b)2
+

1

(a+ c)2
+

16

(b+ c)2
≥ 6

ab+ bc+ ca
.

Indeed, summing the first inequality multiplied by 14 and the second inequality, we get the
desired inequality. The equality holds for a = 0 and b = c.
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P 2.8. If a, b, c are nonnegative real numbers, no two of which are zero, then

1

(a+ b)2
+

1

(a+ c)2
+

25

(b+ c)2
≥ 8

ab+ bc+ ca
.

(Vasile Cı̂rtoaje, 2014)

Solution. Write the inequality as(
1

a+ b
+

1

a+ c

)2

+
25

(b+ c)2
≥ 8

ab+ bc+ ca
+

2

(a+ b)(a+ c)
.

By the AM-GM inequality, we have(
1

a+ b
+

1

a+ c

)2

+
25

(b+ c)2
≥ 10

b+ c

(
1

a+ b
+

1

a+ c

)
.

Therefore, it suffices to show that

10

b+ c

(
1

a+ b
+

1

a+ c

)
≥ 8

ab+ bc+ ca
+

2

(a+ b)(a+ c)
.

Since (a+ b)(a+ c) ≥ ab+ bc+ ca, it is enough to show that

10

b+ c

(
1

a+ b
+

1

a+ c

)
≥ 10

ab+ bc+ ca
,

which is equivalent to

(2a+ b+ c)(ab+ bc+ ca) ≥ (a+ b)(b+ c)(c+ a).

Indeed,

(2a+ b+ c)(ab+ bc+ ca) ≥ (a+ b+ c)(ab+ bc+ ca)

≥ (a+ b)(b+ c)(c+ a).

This completes the proof. The equality holds for a = 0 and
b

c
+
c

b
= 3.

P 2.9. If a, b, c are positive real numbers, then

(a+ b)3(a+ c)3 ≥ 4a2bc(2a+ b+ c)2.

(XZLBQ, 2014)
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Solution (by Nguyen Van Quy). Write the inequality as

(a+ b)2(a+ c)2

4a2bc
≥ (2a+ b+ c)2

(a+ b)(a+ c)
.

Since

(a+ b)2(a+ c)2 = [(a− b)2 + 4ab][(a− c)2 + 4ac]

≥ 4ac(a− b)2 + 4ab(a− c)2 + 16a2bc,

it suffices to show that

(a− b)2

ab
+

(a− c)2

ac
+ 4 ≥ (2a+ b+ c)2

(a+ b)(a+ c)
,

which is equivalent to
(a− b)2

ab
+

(a− c)2

ac
≥ (b− c)2

(a+ b)(a+ c)
.

Indeed, by the Cauchy-Schwarz inequality, we have

(a− b)2

ab
+

(a− c)2

ac
≥ (a− b− a+ c)2

ab+ ac
≥ (b− c)2

(a+ b)(a+ c)
.

The equality holds for a = b = c.

P 2.10. If a, b, c are positive real numbers such that abc = 1, then

(a)
a

b
+
b

c
+

1

a
≥ a+ b+ 1;

(b)
a

b
+
b

c
+

1

a
≥
√

3(a2 + b2 + 1).

(Vasile Cı̂rtoaje, 2007)

Solution. (a) First Solution. Write the inequality as(
2
a

b
+
b

c

)
+

(
b

c
+

1

a

)
+

(
1

a
+ a

)
≥ 3a+ 2b+ 2.

By the AM-GM inequality, we have(
2
a

b
+
b

c

)
+

(
b

c
+

1

a

)
+

(
1

a
+ a

)
≥ 3

3

√
a2

bc
+ 2

√
b

ca
+ 2 = 3a+ 2b+ 2.

The equality holds for a = b = c = 1.
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Second Solution. Since c =
1

ab
, the inequality becomes as follows:

a

b
+ ab2 +

1

a
≥ a+ b+ 1,

1

b
+ b2 +

1

a2
≥ 1 +

b

a
+

1

a
,

1

a2
− (b+ 1)

1

a
+ b2 +

1

b
− 1 ≥ 0,(

1

a
− b+ 1

2

)2

+
(b− 1)2(3b+ 4)

4b
≥ 0.

(b) Write the inequality as

a

(
1

b
+ b2

)
+

1

a
≥
√

3(a2 + b2 + 1).

By squaring, this inequality becomes

a2
(
b4 + 2b− 3 +

1

b2

)
+

1

a2
≥ b2 + 3− 2

b
.

Since

b4 + 2b− 3 +
1

b2
> 2b− 3 +

1

b2
=

(b− 1)2(2b+ 1)

b2
≥ 0,

by the AM-GM inequality, we have

a2
(
b4 + 2b− 3 +

1

b2

)
+

1

a2
≥ 2

√
b4 + 2b− 3 +

1

b2
.

Thus, it suffices to prove that

2

√
b4 + 2b− 3 +

1

b2
≥ b2 + 3− 2

b
.

Squaring again, we get the inequality

b5 − 2b3 + 4b2 − 7b+ 4 ≥ 0,

which is equivalent to the obvious inequality

b(b2 − 1)2 + 4(b− 1)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 2.11. If a, b, c are positive real numbers such that abc ≥ 1, then

a
a
b b

b
c cc ≥ 1.

(Vasile Cı̂rtoaje, 2011)

Solution. Write the inequality as

a

b
ln a+

b

c
ln b+ c ln c ≥ 0.

Since f(x) = x lnx is a convex function on (0,∞), apply Jensen’s inequality to get

pa ln a+ qb ln b+ rc ln c ≥ (p+ q + r)

(
pa+ qb+ rc

p+ q + r

)
ln

(
pa+ qb+ rc

p+ q + r

)

= (pa+ qb+ rc) ln

(
pa+ qb+ rc

p+ q + r

)
,

where p, q, r > 0. Choosing

p =
1

b
, q =

1

c
, r = 1,

we get

a

b
ln a+

b

c
ln b+ c ln c ≥ (

a

b
+
b

c
+ c) ln

 a

b
+
b

c
+ c

1

b
+

1

c
+ 1

 .

Thus, it suffices to show that
a

b
+
b

c
+ c ≥ 1

b
+

1

c
+ 1.

Since a ≥ 1

bc
, we need to show that

1

b2c
+
b

c
+ c ≥ 1

b
+

1

c
+ 1.

This is equivalent to
1

b2
+ b+ c2 ≥ c

b
+ 1 + c,

c2 −
(

1 +
1

b

)
c+ b− 1 +

1

b2
≥ 0,(

c− b+ 1

2b

)2

+
(b− 1)2(4b+ 3)

4b2
≥ 0.

The equality holds for a = b = c = 1.
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P 2.12. If a, b, c are positive real numbers such that ab+ bc+ ca = 3, then

ab2c3 < 4.

(Vasile Cı̂rtoaje, 2012)

Solution. From ab+ bc+ ca = 3, we get

c =
3− ab
a+ b

<
3

a+ b
.

Therefore,

(a+ b)3(4− ab2c3) > 4(a+ b)3 − 27ab2

= 4a3 + 12a2b− 15ab2 + 4b3

= (a+ 4b)(2a− b)2 ≥ 0.

P 2.13. If a, b, c are positive real numbers such that ab+ bc+ ca =
5

3
, then

ab2c2 ≤ 1

3
.

(Vasile Cı̂rtoaje, 2012)

Solution. By the AM-GM inequality, we have

ab+ ca ≥ 2a
√
bc.

Thus, from ab+ bc+ ca =
5

3
, we get

2a
√
bc+ bc ≤ 5

3
.

Therefore, it suffices to show that

(5− 3bc)b2c2

6
√
bc

≤ 1

3
.

Setting
√
bc = t, this inequality becomes

3t5 − 5t3 + 2 ≥ 0.

Indeed, be the AM-GM inequality, we have

3t5 + 2 = t5 + t5 + t5 + 1 + 1 ≥ 5
5
√
t5 · t5 · t5 · 1 · 1 = 5t3.

The equality holds for a =
1

3
and b = c = 1.
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P 2.14. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, ab+ bc+ ca = 3.

Prove that

(a) ab2c ≤ 9

8
;

(b) ab4c ≤ 2;

(c) ab3c2 ≤ 2.

(Vasile Cı̂rtoaje, 2012)

Solution. From (b− a)(b− c) ≤ 0, we get

b2 + ac ≤ b(a+ c),

b2 + ac ≤ 3− ac,
b2 + 2ac ≤ 3.

(a) We have
9− 8ab2c ≥ 9− 4b2(3− b2) = (2b2 − 3)2 ≥ 0.

The equality holds for a =
1

2

√
3

2
and b = c =

√
3

2
.

(b) We have

4− 2ab4c ≥ 4− b4(3− b2) = (b2 − 2)2(b2 + 1) ≥ 0.

The equality holds for a =

√
2

4
and b = c =

√
2.

(c) Write the desired inequality as follows:

2(ab+ bc+ ca)3 ≥ 27ab3c2,

2
(
a+ c+

ca

b

)3
≥ 27ac2.

Since ca/b ≥ a, it suffices to show that

2(2a+ c)3 ≥ 27ac2,

which is equivalent to the obvious inequality

(a+ 2c)(4a− c)2 ≥ 0.

The equality holds for a =

√
2

4
and b = c =

√
2.
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P 2.15. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1

a
+

1

b
+

1

c
.

Prove that

b ≥ 1

a+ c− 1
.

(Vasile Cı̂rtoaje, 2007)

Solution. Let us show that
a ≤ 1, c ≥ 1.

From a+ b+ c =
1

a
+

1

b
+

1

c
and

a+ b+ c+
1

a
+

1

b
+

1

c
− 6 =

(a− 1)2

a
+

(b− 1)2

b
+

(c− 1)2

c
≥ 0,

we get

a+ b+ c =
1

a
+

1

b
+

1

c
≥ 3.

Then,
1

a
≥ 1

3

(
1

a
+

1

b
+

1

c

)
≥ 1, c ≥ a+ b+ c

3
≥ 1.

Further, consider the following two cases.

Case 1: abc ≥ 1. Write the desired inequality as

a+ c− 1− 1

b
≥ 0.

We have

a+ c− 1− 1

b
= (1− a)(c− 1) +

abc− 1

b
≥ 0.

Case 2: abc ≤ 1. Since

a+ c− 1− 1

b
=

1

a
+

1

c
− 1− b,

the desired inequality is equivalent to

1

a
+

1

c
− 1− b ≥ 0.

We have
1

a
+

1

c
− 1− b =

(
1

a
− 1

)(
1− 1

c

)
+

1− abc
ac

≥ 0.

This completes the proof. The equality holds for a = b = c = 1.
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P 2.16. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1

a
+

1

b
+

1

c
.

Prove that
ab2c3 ≥ 1.

(Vasile Cı̂rtoaje, 1998)

First Solution. Write the inequality in the homogeneous form

ab2c3 ≥
[
abc(a+ b+ c)

ab+ bc+ ca

]3
,

which is equivalent to
(ab+ bc+ ca)3 ≥ a2b(a+ b+ c)3.

Since
(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c),

it suffices to show that
3c(ab+ bc+ ca) ≥ a(a+ b+ c)2.

Indeed,

3c(ab+ bc+ ca)− a(a+ b+ c)2 ≥ (a+ b+ c)(ab+ bc+ ca)− a(a+ b+ c)2

= (a+ b+ c)(bc− a2) ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Let us show that

a ≤ 1, bc ≥ 1.

Indeed, if a > 1, then 1 < a ≤ b ≤ c and

a+ b+ c− 1

a
− 1

b
− 1

c
=

1− a2

a
+

1− b2

b
+

1− c2

c
< 0,

which is false. On the other hand, from a ≤ 1 and

a− 1

a
= (b+ c)

(
1

bc
− 1

)
,

we get bc ≥ 1. Similarly, we can prove that

c ≥ 1, ab ≤ 1.

Since bc ≥ 1, it suffices to show that
abc2 ≥ 1.
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Taking account of ab ≤ 1, we have

c− 1

c
= (a+ b)

(
1

ab
− 1

)
≥ 2
√
ab

(
1

ab
− 1

)
= 2

(
1√
ab
−
√
ab

)
≥ 1√

ab
−
√
ab,

hence (
c− 1√

ab

)(
1 +

√
ab

c

)
≥ 0.

The last inequality involves
abc2 ≥ 0.

P 2.17. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c = abc+ 2.

Prove that
(1− b)(1− ab3c) ≥ 0.

(Vasile Cı̂rtoaje, 1999)

Solution. Let us show that
a ≤ 1, c ≥ 1.

To do this, we write the hypothesis a+ b+ c = abc+ 2 in the equivalent form

(1− a)(1− c) + (1− b)(1− ac) = 0, (*)

If a > 1, then 1 < a ≤ b ≤ c, which contradicts (*). Similarly, if c < 1, then a ≤ b ≤ c < 1,
which also contradicts (*). Therefore, we have a ≤ 1 and c ≥ 1. According to (*), we get

(1− b)(1− ac) = (1− a)(c− 1) ≥ 0. (**)

There are two cases to consider.

Case 1: b ≥ 1. According to (**), we have ac ≥ 1. Therefore,

ab3c = ac · b3 ≥ 1,

hence (1− b)(1− ab3c) ≥ 0.

Case 2: b ≤ 1. According to (**), we have ac ≤ 1. Therefore,

ab3c = ac · b3 ≤ 1,

and hence
(1− b)(1− ab3c) ≥ 0.

This completes the proof. The equality holds for a = b = 1 ≤ c or a ≤ 1 = b = c.
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P 2.18. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

2(b2 + c2)
;

(b)
(a+ b)2

a2 + b2
+

(a+ c)2

a2 + c2
≥ (b− c)2

2(b2 + c2)
.

Solution. (a) Consider two cases.
Case 1: 2a2 ≤ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+

(a− c)2)
a2 + c2

≥ [(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1

2a2 + b2 + c2
≥ 1

2(b2 + c2)
,

which reduces to b2 + c2 ≥ 2a2.
Case 2: 2a2 ≥ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ [c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.

Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥ 1

2(b2 + c2)
,

which reduces to a2(b2 + c2) ≥ 2b2c2. This is true since

2a2(b2 + c2)− 4b2c2 ≥ (b2 + c2)2 − 4b2c2 = (b2 − c2)2.

The equality holds for a = b = c.

(b) The inequality follows from the inequality in (a) by replacing a with −a. The
equality holds for −a = b = c.

P 2.19. Let a, b, c be real numbers, no two of which are zero. If bc ≥ 0, then

(a)
(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

(b+ c)2
;

(b)
(a+ b)2

a2 + b2
+

(a+ c)2

a2 + c2
≥ (b− c)2

(b+ c)2
.

(Vasile Cı̂rtoaje, 2011)
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Solution. (a) Consider two cases: a2 ≤ bc and a2 ≥ bc.
Case 1: a2 ≤ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+

(a− c)2)
a2 + c2

≥ [(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1

2a2 + b2 + c2
≥ 1

(b+ c)2
,

which is equivalent to a2 ≤ bc.
Case 2: a2 ≥ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ [c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.

Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥ 1

(b+ c)2
,

which reduces to bc(a2 − bc) ≥ 0. The equality holds for a = b = c, for b = 0 and a = c, and
for c = 0 and a = b.

(b) The inequality follows from the inequality in (a) by replacing a with −a. The
equality holds for −a = b = c, for b = 0 and a+ c = 0, and for c = 0 and a+ b = 0.

P 2.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

|a− b|3

a3 + b3
+
|a− c|3

a3 + c3
≥ |b− c|

3

(b+ c)3
.

(Vasile Cı̂rtoaje, 2013)

Solution. Without loss of generality, assume that b ≥ c. Thus, we have three cases to
consider: a ≥ b ≥ c, b ≥ c ≥ a and b ≥ a ≥ c.
Case 1: a ≥ b ≥ c. It suffices to show that

|a− c|3

(a+ c)3
≥ |b− c|)

3

(b+ c)3
,

which is equivalent to
a− c
a+ c

≥ b− c
b+ c

.
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Indeed,
a− c
a+ c

− b− c
b+ c

=
2c(a− b)

(a+ c)(b+ c)
≥ 0.

Case 2: b ≥ c ≥ a. It suffices to show that

(b− a)3

a3 + b3
≥ (b− c)3

(b+ c)3
.

Indeed,
(b− a)3

a3 + b3
≥ (b− c)3

a3 + b3
≥ (b− c)3

b3 + c3
≥ b− c)3

(b+ c)3
.

Case 3: b ≥ a ≥ c. We need to prove that

(b− a)3

a3 + b3
+

(a− c)3

a3 + c3
≥ (b− c)3

(b+ c)3
.

Using the substitution

x =
b− a
a+ b

, y =
a− c
a+ c

, 0 ≤ x < 1, 0 ≤ y ≤ 1,

we have

b =
1 + x

1− x
a, c =

1− y
1 + y

a,

(b− a)3 =
8x3

(1− x)3
a3, (a− c)3 =

8y3

(1 + y)3
a3,

a3 + b3 =
2(1 + 3x3)

(1− x)3
, a3 + c3 =

2(1 + 3y2)

(1 + y)3
,

b− c
b+ c

=
x+ y

1 + xy
.

Thus, the desired inequality becomes

4x3

1 + 3x2
+

4y3

1 + 3y2
≥ (x+ y)3

(1 + xy)3
,

x2 + y2 − xy + 3x2y2

(1 + 3x2)(1 + 3y2)
≥ (x+ y)2

4(1 + xy)3
,

s− p+ 3p2

1 + 3s+ 9p2
≥ s+ 2p

4(1 + p)3
,

where
s = x2 + y2, p = xy, 0 ≤ p < 1, 2p ≤ s ≤ 1 + p2.

Therefore, we need to show that f(s) ≥ 0, where

f(s) = 4(1 + p)3(s− p+ 3p2)− (s+ 2p)(3s+ 1 + 9p2).
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Since f is a concave function, it suffices to show that f(2p) ≥ 0 and f(1 + p2) ≥ 0. Indeed,
we have

f(2p) = 4p3(3p+ 1)(p+ 3) ≥ 0,

f(1 + p2) = 16p3(p+ 1)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, for b = 0 and a = c, and for
c = 0 and a = b.

P 2.21. Let a, b, c be positive real numbers, b 6= c. Prove that

ab

(a+ b)2
+

ac

(a+ c)2
≤ (b+ c)2

4(b− c)2
.

(Vasile Cı̂rtoaje, 2010)

Solution. Write the inequality in the form

(a− b)2

(a+ b)2
+

(a− c)2

(a+ c)2
+

(b+ c)2

(b− c)2
≥ 2.

Replacing a be −a, the inequality becomes

(a+ b)2

(a− b)2
+

(a+ c)2

(a− c)2
+

(b+ c)2

(b− c)2
≥ 2. (*)

Making the substitution

x =
a+ b

a− b
, y =

b+ c

b− c
, z =

c+ a

c− a
,

we can write the inequality as
x2 + y2 + z2 ≥ 2.

From

x+ 1 =
2a

a− b
, y + 1 =

2b

b− c
, z + 1 =

2c

c− a
and

x− 1 =
2b

a− b
, y − 1 =

2c

b− c
, z − 1 =

2a

c− a
,

we get
(x+ 1)(y + 1)(z + 1) = (x− 1)(y − 1)(z − 1),

xy + yz + zx+ 1 = 0.

Therefore, we have

x2 + y2 + z2 − 2 = x2 + y2 + z2 + 2(xy + yz + zx) = (x+ y + z)2 ≥ 0.
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The inequality (*) is an equality for x+ y + z = 0; that is,

(a+ b+ c)(ab+ bc+ ca)− 9abc = 0.

Therefore, the original inequality is an equality for

(b+ c− a)(bc− ab− ac) + 9abc = 0.

P 2.22. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc+ a2

b2 + c2
≥ 3ab− c2

a2 + b2
+

3ac− b2

a2 + c2
.

(Vasile Cı̂rtoaje, 2014)

Solution (by Nguyen Van Quy). Write the inequality as

a2

b2 + c2
+

b2

a2 + c2
+

c2

a2 + b2
+

3bc

b2 + c2
≥ 3ab

a2 + b2
+

3ac

a2 + c2
.

By the Cauchy-Schwarz inequality, we have

b2

a2 + c2
+

c2

a2 + b2
≥ (b2 + c2)2

b2(a2 + c2) + c2(a2 + b2)
=

(b2 + c2)2

a2(b2 + c2) + 2b2c2

≥ 2− a2(b2 + c2) + 2b2c2

(b2 + c2)2
= 2− a2

b2 + c2
− 2b2c2

(b2 + c2)2
,

hence
a2

b2 + c2
+

b2

a2 + c2
+

c2

a2 + b2
≥ 2− 2b2c2

(b2 + c2)2
.

Therefore, it suffices to show that

2− 2b2c2

(b2 + c2)2
+

3bc

b2 + c2
≥ 3ab

a2 + b2
+

3ac

a2 + c2
.

This inequality is equivalent to[
1

2
− 2b2c2

(b2 + c2)2

]
+

(
3

2
− 3ab

a2 + b2

)
+

(
3

2
− 3ac

a2 + c2

)
≥
(

3

2
− 3bc

b2 + c2

)
,

(b2 − c2)2

3(b2 + c2)2
+

(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

b2 + c2
.

Using the inequality in P 2.19-(a), namely

(a− b)2

a2 + b2
+

(a− c)2

a2 + c2
≥ (b− c)2

(b+ c)2
,
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it is enough to prove that

(b+ c)2

3(b2 + c2)2
+

1

(b+ c)2
≥ 1

b2 + c2
,

which is equivalent to
1

(b+ c)2
≥ 2(b2 − bc+ c2)

3(b2 + c2)2
.

We have

3(b2 + c2)2 − 2(b+ c)2(b2 − bc+ c2) = 3(b2 + c2)2 − 2(b+ c)(b3 + c3)

= b4 + c4 + 6b2c2 − 2bc(b2 + c2)

≥ (b2 + c2)2 − 2bc(b2 + c2)

= (b2 + c2)(b− c)2 ≥ 0.

The equality holds for a = b = c.

P 2.23. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 + 2ca2 ≤ 8.

Solution. Since the equality holds for a = 2, b = 0, c = 1, we apply the AM-GM inequality
to get

ca2

4
= c · a

2
· a

2
≤ 1

27

(
c+

a

2
+
a

2

)3
=

1

27
(c+ a)3 ≤ 1

27
(a+ b+ c)3 = 1.

Therefore, it suffices to show that

ab2 + bc2 + ca2 ≤ 4,

which is the inequality in P 1.1.

P 2.24. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 +
3

2
abc ≤ 4.

(Vasile Cı̂rtoaje and Vo Quoc Ba Can, 2007)
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Solution. Consider two cases.

Case 1: c ≥ 2b. We have

ab2 + bc2 +
3

2
abc = b(a+ c)2 − ab

(
a− b+

c

2

)
≤ b(a+ c)2

= 4b

(
a+ c

2

)(
a+ c

2

)
≤ 4

b+
a+ c

2
+
a+ c

2
3


3

= 4.

Case 2: 2b > c. Write the desired inequality as f(a) ≥ 0, where

f(a) = 4

(
a+ b+ c

3

)3

− ab2 − bc2 − 3

2
abc,

with the derivative

f ′(a) = 4

(
a+ b+ c

3

)2

− b2 − 3

2
bc.

The equation f ′(a) = 0 has the positive root

a1 =
3

2

√
b(2b+ 3c)

2
− b− c =

(2b− c)(5b+ 8c)

6
√

2b(2b+ c) + 8(b+ c)
.

Since f ′(a) < 0 for 0 ≤ a < a1 and f ′(a) > 0 for a > a1, f(a) is decreasing on [0, a1] and
increasing on [a1,∞); consequently, f(a) ≥ f(a1). To complete the proof, it suffices to show
that f(a1) ≥ 0. Indeed, since

4

(
a1 + b+ c

3

)2

= b2 +
3

2
bc,

we have

f(a1) = 4

(
a1 + b+ c

3

)3

− a1
(
b2 +

3

2
bc

)
− bc2

=
a1 + b+ c

3

(
b2 +

3

2
bc

)
− a1

(
b2 +

3

2
bc

)
− bc2

=
b+ c− 2a1

3

(
b2 +

3

2
bc

)
− bc2

=

(
b+ c−

√
2b2 + 3bc

2

)(
b2 +

3

2
bc

)
− bc2

=
b

4

[
4b2 + 10bc+ 2c2 − (2b+ 3c)

√
2b(2b+ 3c)

]
=

bc(2b− c)2(b+ 2c)

2[4b2 + 10bc+ 2c2 + (2b+ 3c)
√

2b(2b+ 3c)]
≥ 0.
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Thus, the proof is completed. The equality holds for a = 0, b = 1, c = 2, and for a = 1,
b = 2, c = 0.

P 2.25. Let a, b, c be nonnegative real numbers such that a+ b+ c = 5. Prove that

ab2 + bc2 + 2abc ≤ 20.

(Vo Quoc Ba Can, 2011)

Solution. Write the inequality as

b(ab+ c2 + 2ac) ≤ 20.

We see that the equality holds for a = 1 and b = c = 2. From (a− b/2)2 ≥ 0, it follows that

ab ≤ a2 +
b2

4
.

Therefore, for b ≤ 4, we have

b(ab+ c2 + 2ac)− 20 ≤ b

(
a2 +

b2

4
+ c2 + 2ac

)
− 20 = b

[
(a+ c)2 +

b2

4

]
− 20

= b

[
(5− b)2 +

b2

4

]
− 20 =

5

4
(b− 4)(b− 2)2 ≤ 0.

Consider now that b > 4. Since

a = 5− b− c ≤ 5− b,

We have

ab2 + bc2 + 2abc− 20 = ab2 + b(5− a− b)2 + 2ab(5− a− b)− 20

= b3 + ab2 − 10b2 − a2b+ 25b− 20

≤ b3 + ab2 − 10b2 + 25b− 20

≤ b3 + (5− b)b2 − 10b2 + 25b− 20

= −5(b− 4)(b− 1) < 0.

P 2.26. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − a2b− b2c− c2a ≥ 8

9
(a− b)(b− c)2.
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Solution. Since

3(a3 + b3 + c3 − a2b− b2c− c2a) =
∑

(2a3 − 3a2b+ b3) =
∑

(2a+ b)(a− b)2,

we can write the inequality as

(2a+ b)(a− b)2 + (2b+ c)(b− c)2 + (2c+ a)(c− a)2 ≥ 8

3
(a− b)(b− c)2.

If a ≤ b, then

(2a+ b)(a− b)2 + (2b+ c)(b− c)2 + (2c+ a)(c− a)2 ≥ 0 ≥ 8

3
(a− b)(b− c)2.

If a ≥ b, then there are two cases to consider: b ≥ c and b ≤ c.

Case 1: a ≥ b ≥ c. It suffices to show that

(2c+ a)(a− c)2 ≥ 8

3
(a− b)(b− c)2.

By the AM-GM inequality, we have

(a− b)(b− c)2 = 4(a− b)
(
b− c

2

)(
b− c

2

)
≤ 4

[
(a− b) + (b− c)/2 + (b− c)/2

3

]3
=

4

27
(a− c)3.

Therefore, it suffices to show that

(2c+ a)(a− c)2 ≥ 32

81
(a− c)3,

which is obvious.

Case 2: a ≥ b, c ≥ b. Making the substitution

a = b+ p, c = b+ q, p, q ≥ 0,

the inequality becomes

(3b+ 2p)p2 + (3b+ q)q2 + (3b+ p+ 2q)(p− q)2 ≥ 8

3
pq2,

3[p2 + q2 + (p− q)2]b+ 2p3 + q3 + (p+ 2q)(p− q)2 ≥ 8

3
pq2.

It suffices to show that

2p3 + q3 + (p+ 2q)(p− q)2 ≥ 8

3
pq2,
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which is equivalent to

2p3 + 2q3 ≥ 34

9
pq2.

By the AM-GM inequality, we have

2p3 + 2q3 = 2p3 + q3 + q3 ≥ 3 3
√

2p3q6 ≥ 34

9
pq2,

because

3
3
√

2 >
34

9
.

The equality holds for a = b = c.

P 2.27. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
≥ 3 +

(a− c)2

ab+ bc+ ca
.

(Vasile Cı̂rtoaje and Vo Quoc Ba Can, 2008)

First Solution. By expanding, the inequality can be written as

b2 +
bc2

a
+
ca2

b
+
ab2

c
≥ 2ab+ 2bc.

We can get this inequality by summing the AM-GM inequalities

ab+
bc2

a
≥ 2bc,

b2 +
ca2

b
+
ab2

c
≥ 3ab.

The equality holds for a = b = c.

Second Solution. From

(a+ b+ c)

(
a

b
+
b

c
+
c

a
− 3

)
=
∑ a2

b
+
∑ bc

a
− 2

∑
a

=
∑(

a2

b
− 2a+ b

)
+
∑(

bc

a
− b
)

=
∑(

a2

b
− 2a+ b

)
+

1

2

∑(
ab

c
+
ac

b
− 2a

)
=
∑ (a− b)2

b
+

1

2

∑ a(b− c)2

bc
,
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we get

(a+ b+ c)

(
a

b
+
b

c
+
c

a
− 3

)
≥ (a− b)2

b
+

(b− c)2

c
+

(c− a)2

a
.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+

(b− c)2

c
≥ (a− c)2

b+ c
.

Therefore,

(a+ b+ c)

(
a

b
+
b

c
+
c

a
− 3

)
≥ (a− c)2

b+ c
+

(c− a)2

a
,

which is equivalent to
a

b
+
b

c
+
c

a
− 3 ≥ (a− c)2

a(b+ c)
.

From this result, the desired inequality follows immediately.

P 2.28. If a, b, c are positive real numbers, then

(a)
a

b
+
b

c
+
c

a
≥ 3 +

4(a− c)2

(a+ b+ c)2
;

(b)
a

b
+
b

c
+
c

a
≥ 3 +

5(a− c)2

(a+ b+ c)2
.

(Vo Quoc Ba Can and Vasile Cı̂rtoaje, 2009)

Solution. As we have shown at the second solution of the previous problem P 2.27:

(a+ b+ c)

(
a

b
+
b

c
+
c

a
− 3

)
=
∑ (a− b)2

b
+

1

2

∑ a(b− c)2

bc
,

a

b
+
b

c
+
c

a
− 3 ≥ (a− c)2

a(b+ c)
.

(a) According to the upper inequality, it suffices to show that

1

a(b+ c)
≥ 4

(a+ b+ c)2
.

Indeed,
1

a(b+ c)
− 4

(a+ b+ c)2
=

(a− b− c)2

a(b+ c)(a+ b+ c)2
≥ 0.

The equality holds for a = b = c.



Noncyclic Inequalities 415

(b) According to the upper identity, write the inequality as

(a+ b+ c)

(
a

b
+
b

c
+
c

a
− 3

)
≥ 5(a− c)2

a+ b+ c
,

∑ (a− b)2

b
+

1

2

∑ a(b− c)2

bc
≥ 5(a− c)2

a+ b+ c
,

(a− b)2

b
+

(b− c)2

c
+
c(a− b)2

2ab
+
a(b− c)2

2bc
≥
(

5

a+ b+ c
− 1

a
− b

2ac

)
(a− c)2.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+

(b− c)2

c
≥ [(a− b) + (b− c)]2

b+ c
,

c(a− b)2

2ab
+
a(b− c)2

2bc
≥ [(a− b) + (b− c)]2

2ab
c

+ 2bc
a

=
ac(a− c)2

2b(a2 + c2)
.

Thus, we only need to show that

1

b+ c
+

ac

2b(a2 + c2)
≥ 5

a+ b+ c
− 1

a
− b

2ac
,

which is equivalent to (
1

a
+

1

b+ c

)
+

ac

2b(a2 + c2)
+

b

2ac
≥ 5

a+ b+ c
.

This inequality is true because, by the AM-HM inequality and the AM-GM inequality, we
have

1

a
+

1

b+ c
≥ 4

a+ (b+ c)

and
ac

2b(a2 + c2)
+

b

2ac
≥ 1√

a2 + c2
>

1

a+ c
>

1

a+ b+ c
.

The equality holds for a = b = c.

P 2.29. If a ≥ b ≥ c > 0, then

a

b
+
b

c
+
c

a
≥ 3 +

3(b− c)2

ab+ bc+ ca
.
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First Solution. Since

a

b
+
c

a
− 1− c

b
=

(a− b)(a− c)
ab

≥ 0,

it suffices to show that
b

c
+
c

b
− 2 ≥ 3(b− c)2

ab+ bc+ ca
.

Indeed, we have

b

c
+
c

b
− 2− 3(b− c)2

ab+ bc+ ca
=

(b− c)2(ab+ ac− 2bc)

bc(ab+ bc+ ca)
.

The equality holds for a = b = c.

Second Solution. Since

ab+ bc+ ca ≥ 3bc,

it suffices to show that
a

b
+
b

c
+
c

a
≥ 3 +

(b− c)2

bc
,

which is equivalent to
a

b
+
c

a
≥ 1 +

c

b
,

(a− b)(a− c)
ab

≥ 0.

P 2.30. Let a, b, c be positive real numbers such that abc = 1. Prove that

(a) if a ≥ b ≥ 1 ≥ c, then

a

b
+
b

c
+
c

a
≥ 3 +

2(a− b)2

ab
;

(b) if a ≥ 1 ≥ b ≥ c, then

a

b
+
b

c
+
c

a
≥ 3 +

2(b− c)2

bc
.

(Vasile Cı̂rtoaje, 2010)
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Solution. (a) Write the inequality as

f(c) ≥ a

b
+ 2

b

a
− 1,

where

f(c) =
b

c
+
c

a
.

From
b3 ≥ 1 = abc,

we find
b2 ≥ ac.

We will show that

f(c) ≥ f

(
b2

a

)
≥ a

b
+ 2

b

a
− 1.

The left inequality is equivalent to

b

c
+
c

a
≥ a

b
+
b2

a2
,

b2 − ac
bc

≥ b2 − ac
a2

≥ 0,

(a2 − bc)(b2 − ac) ≥ 0.

The right inequality reduces to (
b

a
− 1

)2

≥ 0.

The equality holds for a = b = c = 1.

(b) Write the inequality as

f(a) ≥ b

c
+ 2

c

b
− 1,

where
f(a) =

a

b
+
c

a
.

From
b3 ≤ 1 = abc,

we find
b2 ≤ ac.

We will show that

f(a) ≥ f

(
b2

c

)
≥ b

c
+ 2

c

b
− 1

The left inequality is equivalent to

a

b
+
c

a
≥ b

c
+
c2

b2
,
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ac− b2

bc
≥ c(ac− b2

ab2
≥ 0,

(ab− c2)(ac− b2) ≥ 0.

The right inequality reduces to (c
b
− 1
)2
≥ 0.

The equality holds for a = b = c = 1.

P 2.31. Let a, b, c be positive real numbers such that

a ≥ 1 ≥ b ≥ c, abc = 1.

prove that
a

b
+
b

c
+
c

a
≥ 3 +

9(b− c)2

ab+ bc+ ca
.

(Vasile Cı̂rtoaje, 2010)

Solution. From b3 ≤ 1 = abc, we find b2 ≤ ac. We will show that

a

b
+
b

c
+
c

a
≥ 2b

c
+
c2

b2
≥ 3 +

9(b− c)2

ab+ bc+ ca
.

The left inequality is equivalent to

a

b
+
c

a
≥ b

c
+
c2

b2
,

a

b
− b

c
+

(
c

a
− c2

b2

)
≥ 0,

ac− b2

bc
+
c(b2 − ac)

ab2
≥ 0,

(ac− b2)(ab− c2)
ab2c

≥ 0.

The right inequality is equivalent to

2b

c
+
c2

b2
− 3 ≥ 9(b− c)2

ab+ bc+ ca
.

(b− c)2(2b+ c)

b2c
≥ 9(b− c)2

ab+ bc+ ca
.

We need to show that
(2b+ c)

b2c
≥ 9

a(b+ c) + bc
.
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This is true if
(2b+ c)

b2c
≥ 9

b(b+ c) + bc
,

which is equivalent to
2(b− c)2

b2c(b+ 2c)
≥ 0.

The equality holds for a = b = c = 1.

P 2.32. Let a, b, c be positive real numbers such that

a ≥ 1 ≥ b ≥ c, a+ b+ c = 3.

prove that
a

b
+
b

c
+
c

a
≥ 3 +

4(b− c)2

b2 + c2
.

(Vasile Ĉırtoaje, 2010)

Solution. From
3b ≤ 3 = a+ b+ c,

we find
2b ≤ a+ c, a ≥ 2b− c.

We will show that

a

b
+
b

c
+
c

a
≥ 2b− c

b
+
b

c
+

c

2b− c
≥ 3 +

4(b− c)2

b2 + c2
.

The left inequality is equivalent to

a

b
+
c

a
≥ 2b− c

b
+

c

2b− c
,

a+ c− 2b

b
− c(a+ c− 2b)

a(2b− c)
≥ 0,

(a+ c− 2b)[a(b− c) + b(a− c)]
ab(2b− c)

≥ 0.

The right inequality is equivalent to

(b− c)2(2b+ c)

bc(2b− c)
≥ 4(b− c)2

b2 + c2
.

We need to show that
(2b+ c)

bc(2b− c)
≥ 4

b2 + c2
,
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which is equivalent to
2b3 − 7b2c+ 6bc2 + c3 ≥ 0,

2b(b− 2c)2 + (b− c)2c ≥ 0.

The equality holds for a = b = c = 1.

P 2.33. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1 ≥ c, a+ b+ c = 3.

Prove that
a

b
+
b

c
+
c

a
≥ 3 +

3(a− b)2

ab
.

(Vasile Ĉırtoaje, 2008)

Solution. From
3b ≥ 3 = a+ b+ c,

we get
2b ≥ a+ c, c ≤ 2b− a.

We will show that

a

b
+
b

c
+
c

a
≥ a

b
+

b

2b− a
+

2b− a
a
≥ 3 +

3(a− b)2

ab
.

The left inequality is equivalent to

b

c
+
c

a
≥ b

2b− a
+

2b− a
a

,

(2b− a− c)[b(a− c) + c(a− b)] ≥ 0.

The right inequality is equivalent to

a

b
+

b

2b− a
+

2b− a
a
− 3 ≥ 3(a− b)2

ab
,

(a− b)2(4b− a)

ab(2b− a)
≥ 3(a− b)2

ab
,

2(a− b)3

ab(2b− a)
≥ 0.

The equality holds for a = b = c = 1.
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P 2.34. If a, b, c are positive real numbers, then

a

b
+
b

c
+
c

a
≥ 3 +

2(a− c)2

(a+ c)2
.

Solution. Since
a

b
+
b

c
≥ 2

√
a

c
,

it suffices to show that
c

a
+ 2

√
a

c
≥ 3 +

2(a− c)2

(a+ c)2
.

Using the substitution x =

√
a

c
, this inequality becomes as follows:

1

x2
+ 2x ≥ 3 +

2(x2 − 1)2

(x2 + 1)2
,

(x− 1)2(2x+ 1)

x2
≥ 2(x2 − 1)2

(x2 + 1)2
.

We need to show that
2x+ 1

x2
≥ 2(x+ 1)2

(x2 + 1)2
,

which is equivalent to

2x5 − 3x4 + 2x+ 1 ≥ 0.

For 0 < x ≤ 1, we have

2x5 − 3x4 + 2x+ 1 > −3x4 + 2x+ 1 ≥ −3x+ 2x+ 1 ≥ 0.

Also, for x ≥ 1, we have

2x5 − 3x4 + 2x+ 1 > 2x5 − 3x4 + 2x− 1 = (x− 1)2(2x3 + x2 − 1) ≥ 0.

The equality holds for a = b = c.

P 2.35. If a, b, c are positive real numbers, then

a2

b
+
b2

c
+
c2

a
≥ a+ b+ c+

4(a− c)2

a+ b+ c
.

(Balkan MO, 2005, 2008)
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Solution. Write the inequality as follows:(
a2

b
+ b− 2a

)
+

(
b2

c
+ c− 2b

)
+

(
c2

a
+ a− 2c

)
≥ 4(a− c)2

a+ b+ c
,

(a− b)2

b
+

(b− c)2

c
+

(a− c)2

a
≥ 4(a− c)2

a+ b+ c
.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+

(b− c)2

c
+

(a− c)2

a
≥ [(a− b) + (b− c) + (a− c)]2

b+ c+ a
=

4(a− c)2

a+ b+ c
.

The equality holds for a = b = c, and also for a = b+ c and
b

c
=

1 +
√

5

2
.

P 2.36. If a ≥ b ≥ c > 0, then

a2

b
+
b2

c
+
c2

a
≥ a+ b+ c+

6(b− c)2

a+ b+ c
.

(Vasile Cı̂rtoaje, 2014)

Solution. Write the inequality as follows:(
a2

b
+ b− 2a

)
+

(
b2

c
+ c− 2b

)
+

(
c2

a
+ a− 2c

)
≥ 6(b− c)2

a+ b+ c
,

(a− b)2

b
+

(b− c)2

c
+

(a− c)2

a
≥ 6(b− c)2

a+ b+ c
,

(a− b)2

b
+

(a− c)2

a
+

(a+ b− 5c)(b− c)2

c(a+ b+ c)
≥ 0.

Since
(a− c)2 = [(a− b) + (b− c)]2 = (a− b)2 + 2(a− b)(b− c) + (b− c)2,

we have
(a− b)2

b
+

(a− c)2

a
≥ (a− c)2

a
≥ 2(a− b)(b− c) + (b− c)2

a
.

Therefore, it suffices to show that

2(a− b)(b− c) + (b− c)2

a
+

(a+ b− 5c)(b− c)2

c(a+ b+ c)
≥ 0,

which can be written as

2(a− b)(b− c)
a

+
(a− c)2 + ab+ bc− 2ca

ac(a+ b+ c)
(b− c)2 ≥ 0.
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Since
(a− c)2 + ab+ bc− 2ca = (a− c)2 + a(b− c)− c(a− b) ≥ −c(a− b),

it is enough to prove that

2(a− b)(b− c)
a

− a− b
a(a+ b+ c)

(b− c)2 ≥ 0.

Indeed,

2(a− b)(b− c)
a

− a− b
a(a+ b+ c)

(b− c)2 =
(a− b)(b− c)

a

(
2− b− c

a+ b+ c

)
≥ 0.

The equality holds for a = b = c.

P 2.37. If a ≥ b ≥ c > 0, then

a2

b
+
b2

c
+
c2

a
> 5(a− b).

(Vasile Cı̂rtoaje, 2014)

Solution. Consider two cases: a ≤ 2b and a ≥ 2b.

Case 1: a ≤ 2b. It suffices to show that

a2

b
+
b2

b
≥ 5(a− b),

which is equivalent to the obvious inequality

(2b− a)(3b− a) ≥ 0.

Case 2: a ≥ 2b. Since

b2

c
+
c2

a
− b− b2

a
= (b− c)

(
b

c
− b+ c

a

)
≥ (b− c)

(
b

c
− b+ c

2b

)
=

(b− c)2(2b+ c)

2bc
≥ 0,

it suffices to show that
a2

b
+ b+

b2

a
≥ 5(a− b),

which is equivalent to
x(x− 2)(3− x) < 1,

where x = a/b ≥ 2. For the non-trivial case 2 ≤ x ≤ 3, we have

x(x− 2)(3− x) ≥ x

[
(x− 2) + (3− x)

2

]2
=
x

4
< 1.
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P 2.38. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1 ≥ c, a+ b+ c = 3.

Prove that
a2

b
+
b2

c
+
c2

a
≥ 3 +

11(a− c)2

4(a+ c)
.

(Vasile Cı̂rtoaje, 2010)

Solution. We have
a+ b+ c = 3 ≤ b, 2b ≥ a+ c.

Thus, we need to prove the homogeneous inequality

a2

b
+
b2

c
+
c2

a
≥ a+ b+ c+

11(a− c)2

4(a+ c)

for

a ≥ b ≥ a+ c

2
.

Denote

f(a, b, c) =
a2

b
+
b2

c
+
c2

a
− a− b− c.

We will show that

f(a, b, c) ≥ f

(
a,
a+ c

2
, c

)
≥ 11(a− c)2

4(a+ c)
.

Write the left inequality as follows:(
a2

b
− 2a2

a+ c

)
+

[
b2

c
− (a+ c)2

4c

]
−
(
b− a+ c

2

)
≥ 0,

(2b− a− c)
[
− a2

b(a+ c)
+

2b+ a+ c

4c
− 1

2

]
≥ 0.

Since 2b− a− c ≥ 0, we only need to show that

2b+ a+ c

4c
≥ a2

b(a+ c)
+

1

2
.

It suffices to prove this inequality for b =
a+ c

2
. Making this, the inequality becomes

a(a− c)2

2c(a+ c)2
≥ 0.

To prove the right inequality, we find

f

(
a,
a+ c

2
, c

)
=

(a− c)2(a2 + 7ac+ 4c2)

4ac(a+ c)
,
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hence

f

(
a,
a+ c

2
, c

)
− 11(a− c)2

4(a+ c)
=

(a− c)2(a− 2c)2

4ac(a+ c)
≥ 0.

The equality holds for a = b = c = 1, and also for
a

4
=
b

3
=
c

2
(that is, for a =

4

3
, b = 1,

c =
2

3
).

P 2.39. If a, b, c are positive real numbers, then

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

27(b− c)2

16(a+ b+ c)2
.

(Vasile Cı̂rtoaje, 2014)

Solution. Write the inequality as follows:∑(
a

b+ c
+ 1

)
≥ 9

2
+

27(b− c)2

16(a+ b+ c)2
,

[∑
(b+ c)

](∑ 1

b+ c

)
≥ 9 +

27(b− c)2

2 [
∑

(b+ c)]2
.

Replacing b+ c, c+ a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9 +

27(b− c)2

2(a+ b+ c)2
,

where a, b, c are the side-lengths of a non-degenerate triangle. Write this inequality in the
form

a+ b+ c

a
+ (a+ b+ c)

(
1

b
+

1

c

)
+

54bc

(a+ b+ c)2
≥ 9 +

27(b+ c)2

2(a+ b+ c)2
.

Applying the AM-GM inequality gives

(a+ b+ c)

(
1

b
+

1

c

)
+

54bc

(a+ b+ c)2
≥ 6

√
6(b+ c)

a+ b+ c
.

Therefore, it suffices to show that

a+ b+ c

a
+ 6

√
6(b+ c)

a+ b+ c
≥ 9 +

27(b+ c)2

2(a+ b+ c)2
,

which can be rewritten as

1

1− b+ c

a+ b+ c

+ 6

√
6(b+ c)

a+ b+ c
≥ 9 +

27(b+ c)2

2(a+ b+ c)2
.
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Using the substitution
b+ c

a+ b+ c
=

2

3
t2, t2 >

3

4
,

this inequality becomes
1

3− 2t2
+ 4t ≥ 3 + 2t4,

2t6 − 3t4 − 4t3 + 3t2 + 6t− 4 ≥ 0,

(t− 1)2(2t4 + 4t3 + 3t2 − 2t− 4) ≥ 0,

(t− 1)2
[
(4t2 − 3)(t2 + 2t+ 2) + t2 + 2t− 2

]
≥ 0.

Clearly, the last inequality is true for t2 > 3/4. The original inequality is an equality for
a = b = c.

P 2.40. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

9(b− c)2

4(a+ b+ c)2
.

(Vasile Cı̂rtoaje, 2014)

Solution. Write the inequality as∑(
a

b+ c
+ 1

)
≥ 9

2
+

9(b− c)2

4(a+ b+ c)2
,

[∑
(b+ c)

](∑ 1

b+ c

)
≥ 9 +

18(b− c)2

[(b+ c) + (c+ a) + (a+ b)]2
.

Replacing b+ c, c+ a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9 +

18(b− c)2

(a+ b+ c)2
,

where a, b, c are the side-lengths of a non-degenerate triangle, a = max{a, b, c}. Since

(a+ b+ c)2 ≥ 9

4
(b+ c)2 ≥ 9bc,

it suffices to show that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9 +

2(b− c)2

bc
.

Write the inequality as follows:

(a− b)2

ab
+

(a− c)2

ac
+

(b− c)2

bc
≥ 2(b− c)2

bc
,



Noncyclic Inequalities 427

c(a− b)2 + b(a− c)2 ≥ a(b− c)2,

(b+ c)a2 − (b+ c)2a+ bc(b+ c) ≥ 0,

(b+ c)(a− b)(a− c) ≥ 0.

Clearly, the last inequality is true. The original inequality is an equality for a = b = c.

P 2.41. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

2(b+ c)2
.

(Vasile Cı̂rtoaje, 2014)

First Solution. Write the inequality as follows:

2bc

(b+ c)2
+

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 2,

a(b+ c) + 2bc

(b+ c)2
+

b

c+ a
+

c

a+ b
≥ 2,

By the Cauchy-Schwarz inequality, we have

b

c+ a
+

c

a+ b
≥ (b+ c)2

b(c+ a) + c(a+ b)
=

(b+ c)2

a(b+ c) + 2bc
.

Therefore, it suffices to prove that

a(b+ c) + 2bc

(b+ c)2
+

(b+ c)2

a(b+ c) + 2bc
≥ 2,

which is obvious. The original inequality is an equality for a = b = c, for a = b and c = 0,
and for a = c and b = 0.

Second Solution. Write the inequality as follows:∑(
a

b+ c
+ 1

)
≥ 9

2
+

(b− c)2

2(b+ c)2
,

[∑
(b+ c)

](∑ 1

b+ c

)
≥ 9 +

(b− c)2

(b+ c)2
.

Replacing b+ c, c+ a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 9 +

(b− c)2

a2
,
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where a, b, c are the lengths of the sides of a triangle. Write this inequality as

(a− b)2

ab
+

(a− c)2

ac
+

(b− c)2

bc
≥ (b− c)2

a2
,

a[c(a− b)2 + b(a− c)2] ≥ (bc− a2)(b− c)2.
Without loss of generality, assume that b ≥ c. Since a ≥ b− c, it suffices to show that

c(a− b)2 + b(a− c)2 ≥ (bc− a2)(b− c).

Indeed, we have

c(a− b)2 + b(a− c)2 − (bc− a2)(b− c) = 2b(a− c)2 ≥ 0.

P 2.42. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

4bc
.

(Vasile Cı̂rtoaje, 2014)

First Solution (by Nguyen Van Quy). Notice that for a = min{a, b, c}, we have

4bc = (2b)(2c) ≥ (a+ b)(a+ c) ≥ 2a(b+ c),

hence
a

b+ c
≥ 2a2

(a+ b)(a+ c)
,

(b− c)2

4bc
≤ (b− c)2

(a+ b)(a+ c)
.

So, it suffices to show that

2a2

(a+ b)(a+ c)
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

(a+ b)(a+ c)
,

which is equivalent to the obvious inequality

(a− b)(a− c) ≥ 0.

The proof is completed. The original inequality is an equality for a = b = c.

Second Solution. Let

E(a, b, c) =
a

b+ c
+

b

c+ a
+

c

a+ b
.

Without loss of generality, assume that b ≤ c, hence a ≤ b ≤ c. We will show that

E(a, b, c) ≥ E(b, b, c) ≥ 3

2
+

(b− c)2

4bc
.



Noncyclic Inequalities 429

We have

E(a, b, c)− E(b, b, c) =
a− b
b+ c

+
b(b− a)

(a+ c)(b+ c)
+

c(b− a)

2b(a+ b)

= (b− a)

[
(b− a)− c

(a+ c)(b+ c)
+

c

2b(a+ b)

]
=

(b− a)[2b(b2 − a2) + c(c− b)(a+ 2b+ c)]

2b(a+ b)(a+ c)(b+ c)
≥ 0

and

E(b, b, c)− 3

2
− (b− c)2

4bc
=

(
2b

b+ c
+

c

2b
− 3

2

)
− (b− c)2

4bc

=
(b− c)2

2b(b+ c)
− (b− c)2

4bc

=
(c− b)3

4bc(b+ c)
≥ 0.

P 2.43. Let a, b, c be positive real numbers such that

a ≤ 1 ≤ b ≤ c, a+ b+ c = 3,

then
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

3(b− c)2

4bc
.

(Vasile Cı̂rtoaje, 2014)

Solution. From
3b ≥ 3 = a+ b+ c,

we get
a ≤ 2b− c, 2b > c.

Let

E(a, b, c) =
a

b+ c
+

b

c+ a
+

c

a+ b
.

We will show that

E(a, b, c) ≥ E(2b− c, b, c) ≥ 3

2
+

3(b− c)2

4bc
.

We have
E(a, b, c)− E(2b− c, b, c) = (2b− a− c)F,

where

F =
−1

b+ c
+

1

2(c+ a)
+

c

(a+ b)(3b− c)
.
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Since 2b− a− c ≥ 0, we need to show that F ≥ 0. This is true because

F =
1

2

(
− 1

b+ c
+

1

c+ a

)
− 1

2(b+ c)
+

c

(a+ b)(3b− c)

≥ − 1

2(b+ c)
+

c

(a+ b)(3b− c)
≥ − 1

2(a+ b)
+

c

(a+ b)(3b− c)

=
3(c− b)

2(a+ b)(3b− c)
≥ 0.

In what concerns the right inequality, we have

E(2b− c, b, c)− 3

2
− 3(b− c)2

4bc
= 3(b− c)2

[
1

(b+ c)(3b− c)
− 1

4bc

]
=
−3(b− c)3(3b+ c)

4bc(b+ c)(3b− c)
≥ 0.

The proof is completed. The original inequality is an equality for a = b = c = 1.

P 2.44. Let a, b, c be nonnegative real numbers such that

a ≥ 1 ≥ b ≥ c, a+ b+ c = 3,

then
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
+

(b− c)2

(b+ c)2
.

(Vasile Cı̂rtoaje, 2014)

Solution. From
3b ≤ 3 = a+ b+ c,

we get
a ≥ 2b− c.

Let

E(a, b, c) =
a

b+ c
+

b

c+ a
+

c

a+ b
.

We will show that

E(a, b, c) ≥ E(2b− c, b, c) ≥ 3

2
+

(b− c)2

(b+ c)2
.

We have
E(a, b, c)− E(2b− c, b, c) = (a− 2b+ c)F,

where

F =
1

b+ c
− 1

2(c+ a)
− c

(a+ b)(3b− c)
.
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Since a− 2b+ c ≥ 0, we need to show that F ≥ 0. This is true because

F =
1

2

(
1

b+ c
− 1

c+ a

)
+

1

2(b+ c)
− c

(a+ b)(3b− c)

≥ 1

2(b+ c)
− c

(a+ b)(3b− c)
≥ 1

2(a+ b)
− c

(a+ b)(3b− c)

=
3(b− c)

2(a+ b)(3b− c)
≥ 0.

The right inequality is also true because

E(2b− c, b, c)− 3

2
− (b− c)2

(b+ c)2
=

(b− c)2

b+ c

[
3

3b− c
− 1

b+ c

]
=

4c(b− c)2

(b+ c)2(3b− c)
≥ 0.

The proof is completed. The original inequality is an equality for a = b = c = 1, and also
for a = 2, b = 1, c = 0.

P 2.45. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

(a)
ab+ bc+ ca

a2 + b2 + c2
+

2(b− c)2

3(b2 + c2)
≤ 1;

(b)
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

b2 + bc+ c2
≤ 1;

(c)
ab+ bc+ ca

a2 + b2 + c2
+

(a− b)2

2(a2 + b2)
≤ 1.

(Vasile Cı̂rtoaje, 2014)

Solution. (a) First Solution. Since

3(b2 + c2) ≥ 2(a2 + b2 + c2),

it suffices to show that
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

a2 + b2 + c2
≤ 1.

This inequality is equivalent to
(a− b)(a− c) ≥ 0,

which is clearly true. The equality holds for a = b = c.

Second Solution. Write the inequality as follows:

4(b− c)2

3(b2 + c2)
≤ (b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,
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3(b2 + c2)[(a− b)2 + (a− c)2] ≥ (b− c)2(4a2 + b2 + c2),

3(b2 + c2)[(b− c)2 + 2(a− b)(a− c)] ≥ (b− c)2(4a2 + b2 + c2),

6(b2 + c2)(a− b)(a− c) + 2(b− c)2(b2 + c2 − 2a2) ≥ 0.

The last inequality is true because (a− b)(a− c) ≥ 0 and b2 + c2 − 2a2 ≥ 0.

(b) Without loss of generality, assume that

a ≤ b ≤ c.

Write the inequality as
ab+ bc+ ca

a2 + b2 + c2
≤ 3bc

b2 + bc+ c2
;

that is,

E(a, b, c) ≥ 0,

where

E(a, b, c) = 3bca2 − (b+ c)(b2 + c2 + bc)a+ bc(2b2 + 2c2 − bc).

We will show that

E(a, b, c) ≥ E(b, b, c) ≥ 0.

We have

E(a, b, c)− E(b, b, c) = 3bc(a2 − b2)− (b+ c)(b2 + c2 + bc)(a− b)
= (b− a)[(b+ c)(b2 + c2 + bc)− 3bc(a+ b)]

≥ (b− a)[(b+ c)(b2 + c2 + bc)− 3bc(c+ b)]

= (b− a)(b+ c)(b− c)2 ≥ 0.

Also,

E(b, b, c) = b(c− b)3 ≥ 0.

The equality holds for a = b = c, and also for a = b = 0 or a = c = 0.

(c) Write the inequality as follows:

ab+ (a+ b)c

a2 + b2 + c2
≤ (a+ b)2

2(a2 + b2)
,

(a+ b)2c2 − 2(a+ b)(a2 + b2)c+ (a2 + b2)2 ≥ 0,

[(a+ b)c− (a2 + b2)]2 ≥ 0.

The equality holds for c =
a2 + b2

a+ b
.
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P 2.46. Let a, b, c be positive real numbers such that

a ≤ 1 ≤ b ≤ c, a+ b+ c = 3,

then
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

bc
≤ 1.

(Vasile Cı̂rtoaje, 2014)

Solution. From
3b ≥ 3 = a+ b+ c,

we get
a ≤ 2b− c.

Write the inequality as follows:

2(b− c)2

bc
≤ (b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(b− a)2 + (c− a)2 ≥
(

2a2 + 2b2 + 2c2

bc
− 1

)
(c− b)2,

(c− b)2 + 2(b− a)(c− a) ≥
(

2a2 + 2b2 + 2c2

bc
− 1

)
(c− b)2,

(b− a)(c− a) ≥
(
a2 + b2 + c2

bc
− 1

)
(c− b)2.

Since

b− a ≥ b− (2b− c) = c− b ≥ 0, c− a ≥ c− (2b− c) = 2(c− b) ≥ 0,

it suffices to show that

2 ≥ a2 + b2 + c2

bc
− 1,

which is equivalent to
3bc ≥ a2 + b2 + c2.

This is true if
3bc ≥ (2b− c)2 + b2 + c2,

which reduces to
7bc ≥ 5b2 + 2c2,

(c− b)(5b− 2c) ≥ 0.

Thus, we only need to show that 5b− 2c ≥ 0. Indeed, we have

5b− 2c > 2(2b− c) ≥ 2a > 0.

The equality holds for a = b = c = 1.
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P 2.47. Let a, b, c be nonnegative real numbers such that a = max{a, b, c} and b + c > 0.
Prove that

(a)
ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

2(ab+ bc+ ca)
≤ 1;

(b)
ab+ bc+ ca

a2 + b2 + c2
+

2(b− c)2

(a+ b+ c)2
≤ 1.

(Vasile Cı̂rtoaje, 2014)

Solution. Without loss of generality, assume that a ≥ b ≥ c.
(a) Write the inequality as follows:

(b− c)2

ab+ bc+ ca
≤ (b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(ab+ bc+ ca)[(a− b)2 + (a− c)2] ≥ (b− c)2(a2 + b2 + c2 − ab− bc− ca).

Since
ab+ bc+ ca ≥ ab ≥ b2 ≥ (b− c)2,

it suffices to show that

(a− b)2 + (a− c)2 ≥ a2 + b2 + c2 − ab− bc− ca.

Indeed,

(a− b)2 + (a− c)2 − (a2 + b2 + c2 − ab− bc− ca) = (a− b)(a− c) ≥ 0.

The equality holds for a = b = c, for a = b and c = 0, and for a = c and b = 0.

(b) Write the inequality as follows:

4(b− c)2

(a+ b+ c)2
≤ (b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(a+ b+ c)2[(a− b)2 + (a− c)2] ≥ (b− c)2[3(a2 + b2 + c2)− 2(ab+ bc+ ca)],

(a+ b+ c)2[(b− c)2 + 2(a− b)(a− c)] ≥ (b− c)2[3(a2 + b2 + c2)− 2(ab+ bc+ ca)],

(a+ b+ c)2(a− b)(a− c) ≥ (b− c)2[a2 + b2 + c2 − 2(ab+ bc+ ca)].

Since
a2 + b2 + c2 − 2(ab+ bc+ ca) = (a− b)2 − c(2a+ 2b− c) ≤ (a− b)2,

it suffices to show that
(a+ b+ c)2(a− c) ≥ (b− c)2(a− b).

This inequality is true because

(a+ b+ c)2 ≥ (b− c)2

and
a− c ≥ a− b.

The equality holds for a = b = c, for a = b and c = 0, and for a = c and b = 0.
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P 2.48. Let a, b, c be positive real numbers. Prove that

(a) if a ≥ b ≥ c, then

ab+ bc+ ca

a2 + b2 + c2
+

(a− c)2

a2 − ac+ c2
≥ 1;

(b) if a ≥ 1 ≥ b ≥ c and abc = 1, then

ab+ bc+ ca

a2 + b2 + c2
+

(b− c)2

b2 − bc+ c2
≤ 1.

(Vasile Cı̂rtoaje, 2014)

Solution. (a) Write the inequality as follows:

ab+ bc+ ca

a2 + b2 + c2
≥ ac

a2 − ac+ c2
,

acb2 − (a+ c)(a2 − ac+ c2)b+ a2c2 ≤ 0,

acb2 − (a3 + c3)b+ a2c2 ≤ 0,

(ab− c2)(bc− a2) ≤ 0.

Because ab−c2 ≥ 0 and bc−a2 ≤ 0, the conclusion follows. The equality holds for a = b = c.

(b) From

b3 ≤ 1 = abc,

it follows that

b2 ≤ ac.

Write the inequality as follows:

ab+ bc+ ca

a2 + b2 + c2
≤ bc

b2 − bc+ c2
,

bca2 − (b+ c)(b2 − bc+ c2)a+ b2c2 ≥ 0,

bca2 − (b3 + c3)a+ b2c2 ≥ 0,

(ab− c2)(ac− b2) ≥ 0.

The inequality is true because ab− c2 ≥ 0 and ac− b2 ≥ 0. The equality holds for a = b =
c = 1.
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P 2.49. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that

(a)
a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

4(b− c)2

3(b+ c)2
;

(b)
a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

(a− b)2

(a+ b)2
.

(Vasile Cı̂rtoaje, 2014)

Solution. (a) First Solution. Since

3(b+ c)2 ≥ 12bc ≥ 4(ab+ bc+ ca),

it suffices to prove that
a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

(b− c)2

ab+ bc+ ca
,

which is equivalent to the obvious inequality

(a− b)(a− c) ≥ 0.

The equality holds for a = b = c.

Second Solution. Since (b+ c)2 ≥ 4bc, it suffices to prove that

a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

(b− c)2

3bc
.

Write this inequality as follows:

(a− b)2 + (a− c)2 + (b− c)2

ab+ bc+ ca
≥ 2(b− c)2

3bc
,

3bc[(a− b)2 + (a− c)2] ≥ (b− c)2(2ab+ 2ac− bc),
3bc[(b− c)2 + 2(a− b)(a− c)] ≥ (b− c)2(2ab+ 2ac− bc),

6bc(a− b)(a− c) + 2(b− c)2(2bc− ab− ac) ≥ 0.

The last inequality is true because (a− b)(a− c) ≥ 0 and

2bc− ab− ac = b(c− a) + c(b− a) ≥ 0.

(b) Write the inequality as follows:

a2 + b2 + c2

ab+ (a+ b)c
≥ 2(a2 + b2)

(a+ b)2
,

(a+ b)2c2 − 2(a+ b)(a2 + b2)c+ (a2 + b2)2 ≥ 0,

[(a+ b)c− (a2 + b2)]2 ≥ 0.

The equality holds for c =
a2 + b2

a+ b
.
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P 2.50. If a, b, c are positive real numbers, then

a2 + b2 + c2

ab+ bc+ ca
≥ 1 +

9(a− c)2

4(a+ b+ c)2
.

(Vasile Cı̂rtoaje, 2014)

Solution. Write the inequality as follows:

(b− c)2 + (a− b)2 + (a− c)2

ab+ bc+ ca
≥ 9(a− c)2

2(a+ b+ c)2
,

2(a+ b+ c)2[(b− c)2 + (a− b)2] ≥ (a− c)2[5(ab+ bc+ ca)− 2(a2 + b2 + c2)],

2(a+ b+ c)2[(a− c)2 − 2(a− b)(b− c)] ≥ (a− c)2[5(ab+ bc+ ca)− 2(a2 + b2 + c2)],

(a− c)2[4(a2 + b2 + c2)− (ab+ bc+ ca)] ≥ 4(a+ b+ c)2(a− b)(a− c).
Consider further the nontrivial case (a− b)(a− c) ≥ 0. Since

(a− c)2 = [(a− b) + (b− c)]2 ≥ 4(a− b)(b− c),

it suffices to show that

4(a2 + b2 + c2)− (ab+ bc+ ca) ≥ (a+ b+ c)2.

Indeed,

4(a2 + b2 + c2)− (ab+ bc+ ca)− (a+ b+ c)2 = 3(a2 + b2 + c2 − ab− bc− ca) ≥ 0.

The equality holds for a = b = c.

P 2.51. Let a, b, c be nonnegative real numbers, no two of which are zero. If a = min{a, b, c},
then

1√
a2 − ab+ b2

+
1√

b2 − bc+ c2
+

1√
c2 − ca+ a2

≥ 6

b+ c
.

Solution. Since

1√
a2 − ab+ b2

+
1√

b2 − bc+ c2
+

1√
c2 − ca+ a2

≥ 1

b
+

1√
b2 − bc+ c2

+
1

c
,

it suffices to show that
1

b
+

1√
b2 − bc+ c2

+
1

c
≥ 6

b+ c
.

Write this inequality as
b

c
+
c

b
+

√
b2 + c2 + 2bc

b2 + c2 − bc
≥ 4,
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which is equivalent to √
x+ 2

x− 1
≥ 4− x,

where x =
b

c
+
c

b
, x ≥ 2. Consider the non-trivial case 2 ≤ x ≤ 4. The inequality is true if

x+ 2

x− 1
≥ (4− x)2,

which is equivalent to
(x− 2)(x2 − 7x+ 9) ≤ 0.

This inequality is true because

x2 − 7x+ 9 < x2 − 7x+ 10 = (x− 2)(x− 5) ≤ 0.

The equality holds for a = b = c, and also a = 0 and b = c.

P 2.52. If a ≥ 1 ≥ b ≥ c ≥ 0 such that

ab+ bc+ ca = abc+ 2,

then
ac ≤ 4− 2

√
2.

(Vasile Cı̂rtoaje, 2012)

Solution. By hypothesis, we have

a =
2− bc

b+ c− bc
.

Since

ac ≤ 1

2
a(b+ c) =

(2− bc)(b+ c)

2(b+ c− bc)
=

2− bc
2− 2bc

b+c

≤ 2− bc
2−
√
bc
,

it suffices to show that
2− bc

2−
√
bc
≤ 4− 2

√
2,

which is equivalent to
(
√
bc− 2 +

√
2)2 ≥ 0.

The equality holds for a = 2 and b = c = 2−
√

2.
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P 2.53. If a, b, c are nonnegative real numbers such that

ab+ bc+ ca = 3, a ≤ 1 ≤ b ≤ c,

then

(a) a+ b+ c ≤ 4;

(b) 2a+ b+ c ≤ 4.

Solution. From
(1− b)(1− c) ≥ 0,

we get
bc ≥ b+ c− 1.

Therefore, we have

3 = a(b+ c) + bc ≥ a(b+ c) + b+ c− 1 = (a+ 1)(b+ c)− 1,

b+ c ≤ 4

a+ 1
,

hence

a+ b+ c− 4 ≤ a+
4

a+ 1
− 4 =

a(a− 3)

a+ 1
≤ 0,

2a+ b+ c− 4 ≤ 2a+
4

a+ 1
− 4 =

2a(a− 1)

a+ 1
≤ 0.

The equality holds for a = 0, b = 1 and c = 3. In addition, the inequality (b) is also an
equality for a = b = c = 1.

P 2.54. Let a, b, c be nonnegative real numbers such that a ≤ b ≤ c. Prove that

(a) if a+ b+ c = 3, then
a4(b4 + c4) ≤ 2;

(b) if a+ b+ c = 2, then
c4(a4 + b4) ≤ 1.

(Vasile Cı̂rtoaje, 2012)

Solution. (a) Let x, y be nonnegative real numbers. We claim that

x4 − y4 ≥ 4y3(x− y).

Indeed, this inequality follows from

x4 − y4 − 4y3(x− y) = (x− y)(x3 + x2y + xy2 − 3y3)

= (x− y)[(x3 − y3) + y(x2 − y2) + y2(x− y)].
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Using this inequality, we can show that

b4 + c4 ≤ a4 + (b+ c− a)4.

Indeed, we have

a4 + (b+ c− a)4 − b4 − c4 = (a4 − b4) + (b+ c− a)4 − c4

≥ 4b3(a− b) + 4c3(b+ c− a− c)
= 4(a− b)(b3 − c3) ≥ 0.

Thus, it suffices to show that

a4[a4 + (b+ c− a)4] ≤ 2,

which is equivalent to f(a) ≤ 2, where

f(a) = a8 + a4(3− 2a)4, 0 ≤ a ≤ 1.

If f ′(a) ≥ 0 for 0 ≤ a ≤ 1, then f(a) is increasing, hence f(a) ≤ f(1) = 2. From the
derivative

f ′(a) = 4a3[2a4 − (4a− 3)(3− 2a)3],

we need to show that
2a4 ≥ (4a− 3)(3− 2a)3.

This inequality is true for the trivial case 0 ≤ a ≤ 3/4. Consider further that 3/4 < a ≤ 1.
We need to show that h(a) ≥ 0, where

h(a) = ln 2 + 4 ln a− ln(4a− 3)− 3 ln(3− 2a), 3/4 < a ≤ 1.

From

h′(a) =
4

a
− 4

4a− 3
+

6

3− 2a
=

6(7a− 6)

a(4a− 3)(3− 2a)
,

it follows that h(a) is decreasing on (3/4, 6/7] and increasing on [6/7, 1]. Thus,

h(a) ≥ h

(
6

7

)
= ln 2 + 4 ln

6

7
− ln

3

7
− 3 ln

9

7
= ln

32

27
> 0.

The equality holds for a = b = c = 1.

(b) Since a4 + b4 ≤ (a+ b)4, it suffices to show that

c4(a+ b)4 ≤ 1,

which is true if
c(a+ b) ≤ 1.

Indeed, we have
1− c(a+ b) = 1− c(2− c) = (c− 1)2 ≥ 0.

The equality holds for a = 0 and b = c = 1.
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P 2.55. Let a, b, c be nonnegative real numbers such that

a ≤ b ≤ c, a+ b+ c = 3.

Find the greatest real number k such that√
(56b2 + 25)(56c2 + 25) + k(b− c)2 ≤ 14(b+ c)2 + 25.

(Vasile Cı̂rtoaje, 2014)

Solution. For a = b = 0 and c = 3, the inequality becomes

115 + 9k ≤ 126 + 25, k ≤ 4.

To show that 4 is the greatest possible value of k, we need to prove the inequality√
(56b2 + 25)(56c2 + 25) + 4(b− c)2 ≤ 14(b+ c)2 + 25,

which is equivalent to√
(56b2 + 25)(56c2 + 25) ≤ 10(b2 + c2) + 36bc+ 25.

By squaring, the inequality becomes as follows:

(10b2 + 10c2 + 36bc)2 − 562b2c2 ≥ 50[28(b2 + c2)− (10b2 + 10c2 + 36bc)],

20(b− c)2(5b2 + 5c2 + 46bc) ≥ 900(b− c)2,
20(b− c)2(5b2 + 5c2 + 46bc− 45) ≥ 0.

Therefore, we need to show that

5(b+ c)2 + 36bc− 45 ≥ 0.

From (a− b)(a− c) ≥ 0, we get

bc ≥ a(b+ c)− a2 = a(3− a)− a2 = 3a− 2a2.

Thus,

5(b+ c)2 + 36bc− 45 ≥ 5(3− a)2 + 36(3a− 2a2)− 45 = a(78− 67a) ≥ 0.

The proof is completed. If k = 4, then the equality holds for a = b = c = 1 and also for
a = b = 0 and c = 3.

P 2.56. If a ≥ b ≥ c > 0 such that abc = 1, then

3(a+ b+ c) ≤ 8 +
a

c
.

(Vasile Cı̂rtoaje, 2009)
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Solution. Write the inequality in the homogeneous form

3(a+ b+ c)
3
√
abc

≤ 8 +
a

c
,

which is equivalent to

3(x3 + y3 + z3)

xyz
≤ 8 +

x3

z3
, x ≥ y ≥ z > 0.

We show that
x3 + y3 + z3

xyz
≤ x3 + 2z3

xz2
≤ 1

3

(
8 +

x3

z3

)
.

Write the left inequality as

(y − z)[x3 + z3 − yz(y + z)] ≥ 0.

This is true since

x3 + z3 − yz(y + z) ≥ y3 + z3 − yz(y + z) = (y + z)(y − z)2 ≥ 0.

Write the right inequality as

(x− z)(x3 − 2x2z − 2xz2 + 6z3) ≥ 0.

This is also true since

x3 − 2x2z − 2xz2 + 6z3 = (x− z)3 + z(x2 − 5xz + 7z2) ≥ 0.

The equality holds for a = b = c = 1.

P 2.57. If a ≥ b ≥ c > 0, then

(a+ b− c)(a2b− b2c+ c2a) ≥ (ab− bc+ ca)2.

Solution. Making the substitution

a = (p+ 1)c, b = (q + 1)c, p ≥ q ≥ 0,

we get
a+ b− c = (p+ q + 1)c,

a2b− b2c+ c2a = (p2q + p2 + 2pq − q2 + 3p− q + 1)c3,

ab− bc+ ca = (pq + 2p+ 1)c2.
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Thus, the inequality becomes

(p+ q + 1)(p2q + p2 + 2pq − q2 + 3p− q + 1) ≥ (pq + 2p+ 1)2,

which is equivalent to the obvious inequality

p3(q + 1) + q2(p− q) + 2q(p− q) ≥ 0.

The equality holds for a = b = c.

P 2.58. If a ≥ b ≥ c > 0, then

ab+ bc

a2 + b2 + c2
≤ 1 +

√
3

4
.

Solution. Denote

k =
1 +
√

3

4
≈ 0.683,

and write the inequality as E(a, b, c) ≥ 0, where

E(a, b, c) = k(a2 + b2 + c2)− ab− bc.

We show that

E(a, b, c) ≥ E(b, b, c) ≥ 0.

We have

E(a, b, c)− E(b, b, c) = (a− b)[ka− (1− k)b] ≥ (2k − 1)(a− b)b ≥ 0

and

E(b, b, c) = (2k − 1)b2 + kc2 − bc ≥ 2
√
k(2k − 1)bc− bc = 0.

The equality holds for a = b =
1 +
√

3

2
c.

P 2.59. If a ≥ b ≥ c ≥ d > 0, then

ab+ bc+ cd

a2 + b2 + c2 + d2
≤ 2 +

√
7

6
.
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Solution. Write the inequality as E(a, b, c, d) ≥ 0, where

E(a, b, c, d) = k(a2 + b2 + c2 + d2)− ab− bc− cd, k =
2 +
√

7

6
≈ 0.774.

We show that
E(a, b, c, d) ≥ E(b, b, c, d) ≥ E(c, c, c, d) ≥ 0.

We have

E(a, b, c, d)− E(b, b, c, d) = (a− b)[ka− (1− k)b] ≥ (2k − 1)(a− b)b ≥ 0,

E(b, b, c, d)− E(c, c, c, d) = (b− c)[(2k − 1)b− (2− 2k)c] ≥ (4k − 3)(b− c)c ≥ 0

and
E(c, c, c, d) = (3k − 2)c2 + kd2 − cd ≥ 2

√
k(3k − 2)cd− cd = 0.

The equality holds for a = b = c =
2 +
√

7

3
d.

P 2.60. If
a ≥ 1 ≥ b ≥ c ≥ d ≥ 0, a+ b+ c+ d = 4,

then
ab+ bc+ cd ≤ 3.

Solution. Write the inequality in the homogeneous form E(a, b, c, d) ≥ 0, where

E(a, b, c, d) = 3(a+ b+ c+ d)2 − 16(ab+ bc+ cd).

From
a+ b+ c+ d = 4 ≥ 4b,

we get
a ≥ 3b− c− d.

We will show that
E(a, b, c, d) ≥ E(3b− c− d, b, c, d) ≥ 0.

We have

E(a, b, c, d)− E(3b− c− d, b, c, d) = 3[(a+ b+ c+ d)2 − (4b)2]− 16b(a− 3b+ c+ d)

= (a− 3b+ c+ d)(3a− b+ 3c+ 3d) ≥ 0.

Also,
E(3b− c− d, b, c, d) = 48b2 − 16(3b2 − bd+ cd) = 16d(b− c) ≥ 0.

The equality holds for
a ∈ [2, 3], b = 1, c = 3− a, d = 0.
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P 2.61. Let k and a, b, c be positive real numbers, and let

E = (ka+ b+ c)

(
k

a
+

1

b
+

1

c

)
, F = (ka2 + b2 + c2)

(
k

a2
+

1

b2
+

1

c2

)
.

(a) If k ≥ 1, then √
F − (k − 2)2

2k
+ 2 ≥ E − (k − 2)2

2k
;

(b) If 0 < k ≤ 1, then √
F − k2
k + 1

+ 2 ≥ E − k2

k + 1
.

(Vasile Cı̂rtoaje, 2007)

Solution. Due to homogeneity, we may assume that bc = 1. Under this assumption, if we
denote

x = a+
1

a
, y = b+

1

b
= c+

1

c

(x ≥ 2, y ≥ 2), then

E =

(
ka+ b+

1

b

)(
k

a
+ b+

1

b

)
= (ka+ y)

(
k

a
+ y

)
= k2 + kxy + y2

and

F =

(
ka2 + b2 +

1

b2

)(
k

a2
+ b2 +

1

b2

)
= (ka2 + y2 − 2)

(
k

a2
+ y2 − 2

)
= k2 + k(x2 − 2)(y2 − 2) + (y2 − 2)2.

(a) Write the inequality as

2kF − 2k(k − 2)2 ≥ (E − k2 − 4)2.

We have
E − k2 − 4 = kxy + y2 − 4 > 0,

(E − k2 − 4)2 = k2x2y2 + 2kxy(y2 − 4) + (y2 − 4)2,
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and
F − (k − 2)2 = 4k + k(x2 − 2)(y2 − 2) + y2(y2 − 4),

2kF − 2k(k − 2)2 = 8k2 + 2k2(x2 − 2)(y2 − 2) + 2ky2(y2 − 4).

Therefore,

2kF − 2k(k − 2)2 − (E − k2 − 4)2 = (y2 − 4)[k2(x2 − 4)− 2ky(x− y)− (y2 − 4)].

Since y2 − 4 ≥ 0, we still need to show that

k2(x2 − 4)− 2ky(x− y) ≥ y2 − 4.

We will show that

k2(x2 − 4)− 2ky(x− y) ≥ (x2 − 4)− 2y(x− y) ≥ y2 − 4.

The right inequality reduces to (x− y)2 ≥ 0, and the left inequality is equivalent to

(k − 1)[(k + 1)(x2 − 4)− 2y(x− y)] ≥ 0.

This is true because

(k + 1)(x2 − 4)− 2y(x− y) ≥ 2(x2 − 4)− 2y(x− y) = 2(x− y)2 + 2(xy − 4) ≥ 0.

The equality holds for b = c. If k = 1, then the equality holds for a = b or b = c or c = a.

(b) Write the inequality as

(k + 1)(F − k2) ≥ (E − k2 − 2k − 2)2.

We have
E − k2 − 2k − 2 = k(xy − 2) + y2 − 2 > 0,

(E − k2 − 2k − 2)2 = k2(xy − 2)2 + 2k(xy − 2)(y2 − 2) + (y2 − 2)2,

and
(k + 1)(F − k2) = k2(x2 − 2)(y2 − 2) + k(y2 − 2)(x2 + y2 − 4) + (y2 − 2)2.

Thus,
(k + 1)(F − k2)− (E − k2 − 2k − 2)2 = k(x− y)2(y2 − 2k − 2)

≥ k(x− y)2(y2 − 4) ≥ 0.

If 0 < k < 1, then the equality holds for a = b or a = c.

P 2.62. If a, b, c are positive real numbers, then

a

2b+ 6c
+

b

7c+ a
+

25c

9a+ 8b
> 1.
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Solution. By the Cauchy-Schwarz inequality, we have

a

2b+ 6c
+

b

7c+ a
+

25c

9a+ 8b
≥ (a+ b+ 5c)2

a(2b+ 6c) + b(7c+ a) + c(9a+ 8b)
.

Therefore, it suffices to show that

(a+ b+ 5c)2 ≥ 3ab+ 15bc+ 15ca,

which is equivalent to
a2 + b2 + 25c2 − ab− 5bc− 5ca ≥ 0.

Indeed, we have

2(a2 + b2 + 25c2 − ab− 5bc− 5ca) = (a− b)2 + a2 + b2 + 50c2 − 10bc− 10ca

= (a− b)2 + (a− 5c)2 + (b− 5c)2 ≥ 0.

P 2.63. If a, b, c are positive real numbers such that

1

a
≥ 1

b
+

1

c
,

then
1

a+ b
+

1

b+ c
+

1

c+ a
≥ 55

12(a+ b+ c)
.

(Vasile Cı̂rtoaje, 2014)

Solution. Denote

x =
bc

b+ c
, a ≤ x,

and write the desired inequality as ∑ a+ b+ c

b+ c
≥ 55

12
,

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 19

12
.

Using the Cauchy-Schwarz inequality

b

c+ a
+

c

a+ b
≥ (b+ c)2

b(c+ a) + c(a+ b)
,

it suffices to show that

F (a, b, c) ≥ 19

12
,



448 Vasile Ĉırtoaje

where

F (a, b, c) =
a

b+ c
+

(b+ c)2

a(b+ c) + 2bc
.

We will show that

F (a, b, c) ≥ F (x, b, c) ≥ 19

12
.

Since

F (a, b, c)− F (x, b, c) = (x− a)

[
− 1

b+ c
+

(b+ c)3

(a(b+ c) + 2bc)(x(b+ c) + 2bc)

]
,

we need to prove that

(b+ c)4 ≥ [a(b+ c) + 2bc][(x(b+ c) + 2bc].

Since

a(b+ c) + 2bc ≤ x(b+ c) + 2bc,

it is enough to show that

(b+ c)2 ≥ x(b+ c) + 2bc,

which is equivalent to the obvious inequality

(b+ c)2 ≥ 3bc.

Also, we have

F (x, b, c)− 19

12
=

bc

(b+ c)2
+

(b+ c)2

3bc
− 19

12
=

(b− c)2(4b2 + 5bc+ 4c2)

12bc(b+ c)2
≥ 0.

The equality occurs for 2a = b = c.

P 2.64. If a, b, c are positive real numbers such that

1

a
≥ 1

b
+

1

c
,

then
1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
≥ 189

40(a2 + b2 + c2)
.

(Vasile Cı̂rtoaje, 2014)
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Solution. Denote

x =
bc

b+ c
, a ≤ x,

and write the desired inequality as∑ a2 + b2 + c2

b2 + c2
≥ 189

40
,

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥ 69

40
.

Using the Cauchy-Schwarz inequality

b2

c2 + a2
+

c2

a2 + b2
≥ (b2 + c2)2

b2(c2 + a2) + c2(a2 + b2)
,

it suffices to show that

F (a, b, c) ≥ 69

40
,

where

F (a, b, c) =
a2

b2 + c2
+

(b2 + c2)2

a2(b2 + c2) + 2b2c2
.

We will show that

F (a, b, c) ≥ F (x, b, c) ≥ 69

40
.

Since

F (a, b, c)− F (x, b, c) = (x2 − a2)
[
− 1

b2 + c2
+

(b2 + c2)3

(a2(b2 + c2) + 2b2c2) (x2(b2 + c2) + 2b2c2)

]
,

we need to prove that

(b2 + c2)4 ≥ [a2(b2 + c2) + 2b2c2][x2(b2 + c2) + 2b2c2].

Since
a2(b2 + c2) + 2b2c2 ≤ x2(b2 + c2) + 2b2c2,

it is enough to show that
(b2 + c2)2 ≥ x2(b2 + c2) + 2b2c2,

which is equivalent to
(b4 + c4)(b+ c)2 ≥ b2c2(b2 + c2).

This inequality follows from b4 + c4 > b2c2 and (b+ c)2 > b2 + c2. Also, we have

F (x, b, c) =
x2

b2 + c2
+

(b2 + c2)2

x2(b2 + c2) + 2b2c2
.

Since
2b2c2 ≤ 4x2(b2 + c2),
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we have

F (x, b, c) ≥ x2

b2 + c2
+

(b2 + c2)2

5x2(b2 + c2)
=

1

t
+
t

5
,

where

t =
b2 + c2

x2
≥ 8.

Therefore,

F (x, b, c)− 69

40
≥ 1

t
+
t

5
− 69

40
=

(t− 8)(8t− 5)

40t
≥ 0.

The equality occurs for 2a = b = c.

P 2.65. Find the best real numbers k,m, n such that

(
√
a+
√
b+
√
c)
√
a+ b+ c ≥ ka+mb+ nc

for all a ≥ b ≥ c ≥ 0.

Solution. For a = 1 and b = c = 0, for a = b = 1 and c = 0, and for a = b = c = 1, we get
respectively

k ≤ 1, k +m ≤ 2
√

2, k +m+ n ≤ 3
√

3,

which yield

ka+mb+ nc = k(a− b) + (k +m)(b− c) + (k +m+ nz)c

≤ a− b+ 2
√

2 (b− c) + 3
√

3 c

= a+ (2
√

2− 1)b+ (3
√

3− 2
√

2)c.

Therefore, if the following inequality holds(√
a+
√
b+
√
c
)√

a+ b+ c ≥ a+ (2
√

2− 1)b+ (3
√

3− 2
√

2)c,

then
k = 1, m = 2

√
2− 1, n = 3

√
3− 2

√
2

are the best real k,m, n. Since(√
a+
√
b+
√
c
)2

= a+
(

2
√
ab+ b

)
+
(

2
√
ac+ 2

√
bc+ c

)
≥ a+ 3b+ 5c,

it suffices to show that

(a+ 3b+ 5c)(a+ b+ c) ≥ [a+ (2
√

2− 1)b+ (3
√

3− 2
√

2)c]2,

which is equivalent to the obvious inequality

(3− 2
√

2)b(a− b) + (3 + 2
√

2− 3
√

3)c(a− b) + 3(5− 2
√

6)c(b− c) ≥ 0.

If k = 1, m = 2
√

2 − 1, n = 3
√

3 − 2
√

2, then the equality holds for a = b = c, for a = b
and c = 0, and for b = c = 0.
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P 2.66. Let a, b ∈ (0, 1] , a ≤ b.

(a) If a ≤ 1

e
, then

2aa ≥ ab + ba;

(b) If b ≥ 1

e
, then

2bb ≥ ab + ba.

(Vasile Cı̂rtoaje, 2012)

Solution. (a) We need to show that f(a) ≥ f(b), where

f(x) = ax + xa, x ∈ [a, b].

This is true if f(x) is decreasing; that is, if f ′(x) ≤ 0 on [a, b]. Since the derivative

f ′(x) = a(xa−1 + ax−1 ln a) ≤ a(xa−1 − ax−1),

it suffices to show that
xa−1 ≤ ax−1

for 0 < a ≤ x ≤ 1. Consider the non-trivial case 0 < a ≤ x < 1, and write the inequality as
g(x) ≥ g(a), where

g(x) =
lnx

1− x
.

It suffices to show that g′(x) ≥ 0 for 0 < x < 1. We have

g′(x) =
h(x)

(1− x)2
, h(x) =

1

x
− 1 + ln x.

Since

h′(x) =
x− 1

x2
< 0,

h(x) is strictly decreasing, h(x) > h(1) = 0, g′(x) > 0. This completes the proof. The
equality holds for a = b.

(b) We need to show that f(b) ≥ f(a), where

f(x) = xb + bx, x ∈ [a, b].

This is true if f(x) is increasing; that is, if f ′(x) ≥ 0 on [a, b]. Since the derivative

f ′(x) = b(xb−1 + bx−1 ln b) ≥ b(xb−1 − bx−1),

it suffices to show that
xb−1 ≥ bx−1

for 0 < x ≤ b ≤ 1. As we shown at (a), this inequality is true. The equality holds for a = b.
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P 2.67. If 0 ≤ a ≤ b and b ≥ 1

2
, then

2b2b ≥ a2b + b2a.

(Vasile Cı̂rtoaje, 2012)

Solution. We need to show that f(a) ≤ f(b), where

f(x) = x2b + b2x, x ∈ [0, b].

From the derivative

f ′′(x) = 2b
[
2b2x−1 ln2 b+ (2b− 1)x2b−2

]
> 0, x ∈ (0, b],

it follows that f(x) is convex on [0, b]. Therefore, we have

f(a) ≤ max{f(0), f(b)}.

From this, it follows that f(a) ≤ f(b) if f(0) ≤ f(b). To prove that f(0) ≤ f(b), we apply
Bernoulli’s inequality as follows:

f(b)− f(0) = 2b2b − 1 = 2[1 + (b− 1)]2b − 1

≥ 2[1 + 2b(b− 1)]− 1 = (2b− 1)2 ≥ 0.

The equality holds for a = b ≥ 1

2
, and also for a = 0 and b =

1

2
.

P 2.68. If a ≥ b ≥ 0, then

(a) ab−a ≤ 1 +
a− b√
a

;

(b) aa−b ≥ 1− 3(a− b)
4
√
a

.

(Vasile Cı̂rtoaje, 2010)

Solution. (a) Write the inequality as

(a− b) ln a+ ln

(
1 +

a− b√
a

)
≥ 0,

which follows by adding the inequalities

ln

(
1 +

a− b√
a

)
− a− b√

a
+

(a− b)2

2a
≥ 0,
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(a− b) ln a+
a− b√
a
− (a− b)2

2a
≥ 0.

Denoting

x =
a− b√
a
,

we can write the first inequality as f(x) ≥ 0 for x ≥ 0, where

f(x) = ln(1 + x)− x+
x2

2
.

From the derivative

f ′(x) =
x2

1 + x
≥ 0,

it follows that f is increasing, hence f(x) ≥ f(0) = 0.
The second inequality is true if

ln a+
1√
a
− a− b

2a
≥ 0.

It suffices to prove that g(a) ≥ 0, where

g(a) = ln a+
1√
a
− 1

2
.

From

g′(a) =
2
√
a− 1

2a
√
a
,

it follows that g is decreasing on (0, 1/4] and increasing on [1/4,∞); therefore,

g(a) ≥ g

(
1

4

)
=

3

2
− ln 4 > 0.

The equality holds for a = b.

(b) Consider the non-trivial case 1− 3(a− b)
4
√
a

> 0, write the inequality as

(a− b) ln a ≥ ln

(
1− 3a− 3b

4
√
a

)
,

and prove it by adding the inequalities

0 ≥ ln

(
1− 3a− 3b

4
√
a

)
+

3(a− b)
4
√
a

,

(a− b) ln a+
3(a− b)

4
√
a
≥ 0.
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Denoting

x =
3(a− b)

4
√
a

, 0 ≤ x < 1,

we can write the first inequality as f(x) ≤ 0, where

f(x) = ln(1− x) + x.

From the derivative

f ′(x) =
−x

1− x
≤ 0,

it follows that f is decreasing, hence f(x) ≤ f(0) = 0.
The second inequality is true if g(a) ≥ 0, where

g(a) = ln a+
3

4
√
a
.

From the derivative

g′(a) =
8
√
a− 3

8a
√
a
,

it follows that

g(a) ≥ g

(
9

64

)
= 2 ln

3e

8
> 0.

The equality holds for a = b.

P 2.69. If a, b, c are positive real numbers such that

a ≥ b ≥ c, ab2c3 ≥ 1,

then

a+ 2b+ 3c ≥ 1

a
+

2

b
+

3

c
.

(Vasile Cı̂rtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality

a+ 2b+ 3c ≥ 3
√
ab2c3

(
1

a
+

2

b
+

3

c

)
.

Replacing a, b, c with a3, b3, c3, the inequality becomes as follows:

a3 + 2b3 + 3c3 ≥ b2c3

a2
+

2ac3

b
+ 3ab2,

a3 + 2b3 − 3ab2 ≥ c3

a2b
(2a3 − 3a2b+ b3),
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(a− b)2(a+ 2b) ≥ c3

a2b
(a− b)2(2a+ b).

Thus, we need to show that
a2b(a+ 2b) ≥ c3(2a+ b)

for a ≥ b ≥ c. Since c3 ≤ ab2, we have

a2b(a+ 2b)− c3(2a+ b) ≥ a2b(a+ 2b)− ab2(2a+ b) = ab(a2 − b2) ≥ 0.

The equality occurs for a = b = 1/c ≥ 1.

P 2.70. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
1

a
+

2

b
≥ a2 + b2 + c2.

(Vasile Cı̂rtoaje, 2020)

Solution. Let

f(a, b, c) =
1

a
+

2

b
− a2 − b2 − c2.

We will show that
f(a, b, c) ≥ f(a, x, x) ≥ 0,

where

x =
b+ c

2
=

3− a
2

.

Since

f(a, b, c)− f(a, x, x) =
2

b
− 2

x
− (b2 + c2 − 2x2)

=
2(c− b)
b(b+ c)

− (c− b)2

2
=

(c− b)(b3 − bc2 + 4)

2b(b+ c)
,

we need to show that
b3 − bc2 + 4 ≥ 0.

Since b+ c < 3, we have

b3 − bc2 + 4 > b3 − b(3− b)2 + 4 = 6b2 + 4− 9b ≥ (4
√

6− 9)b > 0.

Also, since a ≤ 1, we have

f(a, x, x) =
1

a
+

2

x
− a2 − 2x2 =

1

a
+

4

3− a
− a2 − 1

2
(3− a)2

=
a4 − 5a3 + 9a2 − 7a+ 2

a(3− a)
=

(1− a)3(2− a)

a(3− a)
≥ 0.

The equality occurs for a = b = c = 1.
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P 2.71. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
2

a
+

3

b
+

1

c
≥ 2(a2 + b2 + c2).

(Vasile Cı̂rtoaje, 2020)

Solution. From
a ≤ b = 3− a− c,

we get

a ≤ 3− c
2

.

For fixed b, write the inequality as f(a) ≥ 0, where

f(a) =
2

a
+

3

b
+

1

c
− 2(a2 + b2 + c2), c = 3− a− b.

We have

f ′(a) = − 2

a2
+

1

c2
− 4(a− c) =

1

c2
+ 4c− 2g(a), g(a) = 2a+

1

a2
.

Since

g′(a) = 2− 2

a3
≤ 0,

g(a) is decreasing, hence

g(a) ≥ g

(
3− c

2

)
and

f ′(a) ≤ 1

c2
+ 4c− 2g

(
3− c

2

)
= 6(c− 1)− 7c2 + 6c− 9

c2(3− c)2

≤ 6(c− 1)− 16

81
(7c2 + 6c− 9) =

−2

81
(56c2 + 171− 195c)

≤ −2

27
(4
√

266− 65)c < 0.

Therefore, f(a) is decreasing. On the other hand, from a ≤ b and b ≤ c = 3− a− b, we get

a ≤ b, a ≤ 3− 2b.

There are two cases to consider: b ∈ (0, 1] and b ∈ [1, 3/2).

Case 1: b ∈ (0, 1]. Since a ≤ b, we have

f(a) ≥ f(b) =
5

b
+

1

c
− 2(2b2 + c2), c = 3− 2b,
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hence

f(a) ≥ 5

b
+

1

3− 2b
− 4b2 − 2(3− 2b)2

=
3(5− 3b)

b(3− 2b)
− 3(4b2 − 8b+ 6)

=
3(8b4 − 28b3 + 36b2 − 21b+ 5)

b(3− 2b)

≥ 3(8b4 − 27b3 + 35b2 − 21b+ 5)

b(3− 2b)

=
3(b− 1)2(8b2 − 11b+ 5)

b(3− 2b)
≥ 0.

Case 2: b ∈ [1, 3/2). Since a ≤ 3− b, we have

f(a) ≥ f(3− b) =
2

3− 2b
+

3

b
+

1

c
− 2(3− 2b)2 − 2(b2 + c2), c = b,

hence

f(a) ≥ f(3− b) =
2

3− 2b
+

4

b
− 2(3− 2b)2 − 4b2

=
6(2− b)
b(3− 2b)

− 6(2b2 − 4b+ 3)

=
12(2b4 − 7b3 + 9b2 − 5b+ 1)

b(3− 2b)

=
12(b− 1)3(2b− 1)

b(3− 2b)
≥ 0.

The equality occurs for a = b = c = 1.

Remark. Since
2

a
+

3

b
+

1

c
≤ 2

(
1

a
+

2

b

)
,

the inequality is stronger than the one of P 2.70.

P 2.72. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
31

a
+

25

b
+

25

c
≥ 27(a2 + b2 + c2).

(Vasile Cı̂rtoaje, 2020)
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Solution. From
a ≤ b = 3− a− c,

we get

a ≤ 3− c
2

.

For fixed c ∈ [1, 3),write the inequality as f(a) ≥ 0, where a ≤ 3− c
2

and

f(a) =
31

a
+

25

b
+

25

c
− 27(a2 + b2 + c2), b = 3− a− c.

We will show that

f(a) ≥ f

(
3− c

2

)
≥ 0.

Since a+ b ≤ 2, we have
a+ b

a2b2
≥ 16

(a+ b)3
≥ 2,

therefore

f ′a) = −31

a2
+

25

b2
− 27(2a− 2b) < −27

a2
+

27

b2
− 54(a− b)

= 27(a− b)
(
a+ b

a2b2
− 2

)
≤ 0,

f(a) is decreasing, hence f(a) is minimum for a =
3− c

2
, when

b = 3− a− c =
3− c

2
= a.

So, we have

f

(
3− c

2

)
=

56

a
+

25

c
− 27(2a2 + c2)

=
112

3− c
+

25

c
− 27(3− c)2

2
− 27c2

=
3(27c4 − 135c3 + 243c2 − 185c+ 50)

2c(3− c)

=
3(c− 1)(3c− 2)(3c− 5)2

2c(3− c)
≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
2

3
and c =

5

3
.

Remark. Actually, the following stronger inequalities are true:

29

a
+

27

b
+

25

c
≥ 27(a2 + b2 + c2),
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28

a
+

28

b
+

25

c
≥ 27(a2 + b2 + c2). (*)

For (*), we have

f(a) =
28

a
+

28

b
+

25

c
− 27(a2 + b2 + c2), b = 3− a− c,

f ′a) = −28

a2
+

28

b2
− 27(2a− 2b) ≤ −27

a2
+

27

b2
− 54(a− b)

= 27(a− b)
(
a+ b

a2b2
− 2

)
≤ 0

and

f

(
3− c

2

)
=

56

a
+

25

c
− 27(2a2 + c2)

=
3(c− 1)(3c− 2)(3c− 5)2

2c(3− c)
≥ 0.

On the other hand, we can prove the inequality (*) by showing that

f(a, b, c) ≥ f(x, x, c) ≥ 0,

where

f(a, b, c) =
28

a
+

28

b
+

25

c
− 27(a2 + b2 + c2), x =

a+ b

2
=

3− c
2

.

We have

f(a, b, c)− f(x, x, c) = 28

(
1

a
+

1

b
− 2

x

)
− 27(a2 + b2 − 2x2)

=
1

2
(a− b)2

[
56

ab(a+ b)
− 27

]
≥ 27

2
(a− b)2

[
2

ab(a+ b)
− 1

]
≥ 0

and

f(x, x, c) =
56

x
+

25

c
− 27(2x2 + c2) =

3(c− 1)(3c− 2)(3c− 5)2

2c(3− c)
≥ 0.

P 2.73. If a, b, c are the lengths of the sides of a triangle, then

a3(b+ c) + bc(b2 + c2) ≥ a(b3 + c3).

(Vasile Cı̂rtoaje, 2010)
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First Solution. Because the inequality is symmetric in b and c, we may assume that b ≥ c.
Consider the following two cases.

Case 1: a ≥ b. It suffices to show that

a3(b+ c) ≥ a(b3 + c3).

We have
a3(b+ c)− a(b3 + c3) ≥ ab2(b+ c)− a(b3 + c3) = ac(b2 − c2) ≥ 0.

Case 2: a ≤ b. Write the inequality as

c(a3 + b3)− c3(a− b) + ab(a2 − b2) ≥ 0.

It suffices to show that
c(a3 + b3) + ab(a2 − b2) ≥ 0.

We have

c(a3 + b3) + ab(a2 − b2) ≥ c(a3 + b3)− abc(a+ b) = c(a+ b)(a− b)2 ≥ 0.

The equality holds for a degenerate triangle with a = b and c = 0, or a = c and b = 0.

Second Solution. Consider two cases.

Case 1: b2 + c2 ≥ a(b+ c). Write the inequality as

bc(b2 + c2) ≥ a(b+ c)(b2 + c2 − bc− a2).

It suffices to show that
bc ≥ b2 + c2 − bc− a2,

which is equivalent to the obvious inequality

a2 ≥ (b− c)2.

Case 2: a(b+ c) ≥ b2 + c2. Write the inequality as

a(b+ c)(a2 + bc) ≥ (b2 + c2)(ab+ ac− bc).

It suffices to show that
a2 + bc ≥ ab+ ac− bc,

which is equivalent to the obvious inequality

bc ≥ (a− c)(b− a).
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P 2.74. If a, b, c are the lengths of the sides of a triangle, then

(a+ b)2

2ab+ c2
+

(a+ c)2

2ac+ b2
≥ (b+ c)2

2bc+ a2
.

(Vasile Cı̂rtoaje, 2010)

Solution. By the Cauchy-Schwarz inequality, we have

(a+ b)2

2ab+ c2
+

(a+ c)2

2ac+ b2
≥ (2a+ b+ c)2

2a(b+ c) + b2 + c2
.

Therefore, it suffices to show that

(2a+ b+ c)2

2a(b+ c) + b2 + c2
≥ (b+ c)2

2bc+ a2
.

We will show that
(2a+ b+ c)2

2a(b+ c) + b2 + c2
≥ 2 ≥ (b+ c)2

2bc+ a2
.

The left inequality reduces to 4a2 ≥ (b−c)2, and the right inequality reduces to 2a2 ≥ (b−c)2.
These are true because a2 ≥ (b−c)2. The equality holds for a degenerate triangle with a = 0
and b = c.

P 2.75. If a, b, c are the lengths of the sides of a triangle, then

a+ b

ab+ c2
+

a+ c

ac+ b2
≥ b+ c

bc+ a2
.

(Vasile Cı̂rtoaje, 2010)

Solution. Without loss of generality, assume that b ≥ c. Since a+ b ≥ a+ c and

ab+ c2 − (ac+ b2) = (b− c)(a− b− c) ≤ 0,

by Chebyshev’s inequality, we have

a+ b

ab+ c2
+

a+ c

ac+ b2
≥ 1

2
[(a+ b) + (a+ c)]

(
1

ab+ c2
+

1

ac+ b2

)

≥ 2(2a+ b+ c)2

a(b+ c) + b2 + c2
.

On the other hand,
b+ c

bc+ a2
≤ b+ c

1

2
(b− c)2 + bc

=
2(b+ c)

b2 + c2
.
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Therefore, it suffices to show that

2(2a+ b+ c)

a(b+ c) + b2 + c2
≥ 2(b+ c)

b2 + c2
,

which is equivalent to a(b− c)2 ≥ 0. The equality holds for a degenerate triangle with a = 0
and b = c.

P 2.76. If a, b, c are the lengths of the sides of a triangle, then

b(a+ c)

ac+ b2
+
c(a+ b)

ab+ c2
≥ a(b+ c)

bc+ a2
.

(Vo Quoc Ba Can, 2010)

Solution. Without loss of generality, assume that b ≥ c. Since

ab+ c2 − (ac+ b2) = (b− c)(a− b− c) ≤ 0,

it suffices to prove that
b(a+ c)

ac+ b2
+
c(a+ b)

ac+ b2
≥ a(b+ c)

bc+ a2
,

which is equivalent to
2bc+ a(b+ c)

ac+ b2
≥ a(b+ c)

bc+ a2
,

2bc

ac+ b2
≥ a(b+ c)

(
1

bc+ a2
− 1

ac+ b2

)
,

2bc(bc+ a2) ≥ a(b+ c)(b− a)(a+ b− c).

Consider the nontrivial case b ≥ a. Since c ≥ b− a, it suffices to show that

2b(bc+ a2) ≥ a(b+ c)(a+ b− c).

We have

2b(bc+ a2)− a(b+ c)(a+ b− c) = ab(a− b) + c(2b2 − a2 + ac)

≥ −abc+ c(2b2 − a2 + ac) = ac(b+ c− a) + 2bc(b− a) ≥ 0.

The equality holds for a degenerate triangle with a = b and c = 0, or a = c and b = 0.
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P 2.77. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, ab2c3d6 ≥ 1,

then

a+ 2b+ 3c+ 6d ≥ 1

a
+

2

b
+

3

c
+

6

d
.

(Vasile Cı̂rtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality

a+ 2b+ 3c+ 6d ≥ 6
√
ab2c3d6

(
1

a
+

2

b
+

3

c
+

6

d

)
.

Replacing a, b, c, d with a6, b6, c6, d6, we need to show that

a6 + 2b6 + 3c6 ≥
(
b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6

)
d6 + 6ab2c3

for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6 ≥ 6

6

√
b2c3

a5
·
(
ac3

b4
·
)2(

ab2

c3

)3

− 6 = 0.

Since d6 ≤ ab2c3, it suffices to show that

a6 + 2b6 + 3c6 ≥
(
b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6

)
ab2c3 + 6ab2c3,

which is equivalent to

a6 + 2b6 + 3c6 ≥ b4c6

a4
+

2a2c6

b2
+ 3a2b4,

a6 + 2b6 − 3a2b4 ≥
(
b4

a4
+

2a2

b2
− 3

)
c6,

(a2 − b2)2(a2 + 2b2) ≥ (a2 − b2)2(2a2 + b2)c6

a4b2
.

We need to show that
a4b2(a2 + 2b2) ≥ (2a2 + b2)c6.

Since c6 ≤ a2b4, we have

a4b2(a2 + 2b2)− (2a2 + b2)c6 ≥ a4b2(a2 + 2b2)− (2a2 + b2)a2b4 = a2b2(a4 − b4) ≥ 0.

The equality occurs for a = b = c = d = 1.

Remark. By induction method, we can prove the following generalization.
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• If a1, a2, . . . , an (n ≥ 3) are positive real numbers such that

a1 ≥ a2 ≥ · · · ≥ an, a1a
2
2a

3
3a

6
4 · · · aknn ≥ 1, kn = 3 · 2n−3,

then

a1 + 2a2 + 3a3 + 6a4 + · · ·+ knan ≥
1

a1
+

2

a2
+

3

a3
+

6

a4
+ · · ·+ kn

an
,

with equality for a1 = a2 = · · · = an.

For n = 3, we get the inequalities in P 2.69

P 2.78. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, abc2d4 ≥ 1,

then

a+ b+ 2c+ 4d ≥ 1

a
+

1

b
+

2

c
+

4

d
.

(Vasile Cı̂rtoaje, 2018)

Solution. It suffices to prove the homogeneous inequality

a+ b+ 2c+ 4d ≥ 4
√
abc2d4

(
1

a
+

1

b
+

2

c
+

4

d

)
.

Replacing a, b, c, d with a4, b4, c4, d4, we need to show that

a4 + b4 + 2c4 ≥
(
bc2

a3
+
ac2

b3
+

2ab

c2
− 4

)
d4 + 4abc2

for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

bc2

a3
+
ac2

b3
+

2ab

c2
− 4 ≥ 4

4

√
bc2

a3
· ac

2

b3
·
(
ab

c2

)2

− 4 = 0.

Since d4 ≤ abc2, it suffices to show that

a4 + b4 + 2c4 ≥
(
bc2

a3
+
ac2

b3
+

2ab

c2
− 4

)
abc2 + 4abc2

which is equivalent to

a4 + b4 + 2c4 ≥ b2c4

a2
+
a2c4

b2
+ 2a2b2,

(a2 − b2)2 ≥ (a2 − b2)2c4

a2b2
,
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(a2 − b2)2
(

1− c4

a2b2

)
≥ 0.

The equality occurs for a = b = c = d = 1.

Remark. By induction method, we can prove the following generalization.

• If a1, a2, . . . , an (n ≥ 3) are positive real numbers such that

a1 ≥ a2 ≥ · · · ≥ an, a1a2a
2
3a

4
4 · · · a2

n−2

n ≥ 1,

then

a1 + a2 + 2a3 + 4a4 + · · ·+ 2n−2an ≥
1

a1
+

1

a2
+

2

a3
+

4

a4
+ · · ·+ 2n−2

an
,

with equality for a1 = a2 = · · · = an.

For n = 4, we get the inequalities in P 2.78.

P 2.79. If a, b, c, d, e, f are positive real numbers such that

abcdef ≥ 1, a ≥ b ≥ c ≥ d ≥ e ≥ f, af ≥ be ≥ cd,

then

a+ b+ c+ d+ e+ f ≥ 1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

1

f
.

(Vasile Cı̂rtoaje, 2018)

Solution. Write the inequality as

(a+ f)

(
1− 1

af

)
+ (b+ e)

(
1− 1

be

)
+ (c+ d)

(
1− 1

cd

)
≥ 0.

For
af = k = constant,

we claim that the sum a+ f is minimum for a =
k

e
≥ b and f = e. Indeed, we have

a+ f − k

e
− e = a+ f − af

e
− e = a− e−

(a
e
− 1
)
f =

(a− e)(e− f)

e
≥ 0.

In addition, for
cd = k = constant,

we claim that the sum c+ d is maximum for c =
k

e
≤ b and d = e. Indeed, we have

c+ d− k

e
− e = c+ d− cd

e
− e = c− e−

(c
e
− 1
)
d =
−(c− e)(d− e)

e
≤ 0.
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Thus, it suffices to prove the inequality for f = e and d = e, that is for d = e = f . So, we
need to show that

a+ b+ c+ 3d ≥ 1

a
+

1

b
+

1

c
+

3

d
for

a ≥ b ≥ c ≥ d, abcd3 ≥ 1.

It suffices to prove the homogeneous inequality

a+ b+ c+ 3d ≥ 3
√
abcd3

(
1

a
+

1

b
+

1

c
+

3

d

)
.

Replacing a, b, c, d with a3, b3, c3, d3, we need to show that

a3 + b3 + c3 ≥
(
bc

a2
+
ca

b2
+
ab

c2
− 3

)
d3 + 3abc

for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

bc

a2
+
ca

b2
+
ab

c2
− 3 ≥ 0.

Since d3 ≤ c3, it suffices to show that

a3 + b3 + c3 ≥
(
bc

a2
+
ca

b2
+
ab

c2
− 3

)
c3 + 3abc,

which can be written as follows:

a3 + b3 + 4c3 ≥ bc4

a2
+
ac4

c2
+ 4abc,

(a3 + b3)

(
1− c4

a2b2

)
− 4c(ab− c2) ≥ 0,

(ab− c2)[(a3 + b3)(ab+ c2)− 4a2b2c] ≥ 0.

It is true since

(a3 + b3)(ab+ c2)− 4a2b2c ≥ 2ab
√
ab
(
ab+ c2

)
− 4a2b2c = 2ab

√
ab
(√

ab− c
)2
≥ 0.

The equality occurs for af = be = cd = 1.

P 2.80. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
(a+ b)(c+ d) ≥ 2(ab+ cd).

(Vasile Cı̂rtoaje, 2000)
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Solution. Let
x = a2 − ab+ b2 = c2 − cd+ d2.

Without loss of generality, assume that ab ≥ cd. Then,

x ≥ ab ≥ cd, (a+ b)2 = x+ 3ab, (c+ d)2 = x+ 3cd.

By squaring, the desired inequality can be restated as

(x+ 3ab)(x+ 3cd) ≥ 4(ab+ cd)2.

It is true since

(x+ 3ab)(x+ 3cd)− 4(ab+ cd)2 ≥ (ab+ 3ab)(ab+ 3cd)− 4(ab+ cd)2

= 4cd(ab− cd) ≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any cyclic
permutation).

P 2.81. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

a2 + b2
+

1

c2 + d2
≤ 8

(a+ b)2 + (c+ d)2
.

(Vasile Cı̂rtoaje and Relic-93, 2021)

Solution. Let
x = a2 − ab+ b2 = c2 − cd+ d2.

Without loss of generality, assume that ab ≥ cd. Then, x ≥ ab ≥ cd and

a2 + b2 = x+ ab, c2 + d2 = x+ cd, (a+ b)2 = x+ 3ab, (c+ d)2 = x+ 3cd.

The required inequality can be rewritten as

1

x+ ab
+

1

x+ cd
≤ 8

2x+ 3(ab+ cd)
,

3(a2b2 + c2d2) ≤ 4x2 + 2abcd.

It is true if
3(a2b2 + c2d2) ≤ 4a2b2 + 2abcd,

which is equivalent to
(ab− cd)(ab+ 3cd) ≥ 0.

The equality occurs for a = b = c = d.
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P 2.82. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

a2 + ab+ b2
+

1

c2 + cd+ d2
≤ 8

3(a+ b)(c+ d)
.

(Anhduy98, 2021)

Solution. Without loss of generality, assume that ab ≥ cd. Let

x = a2 − ab+ b2 = c2 − cd+ d2, y = ab, z = cd.

Then, x ≥ y ≥ z and

a2 + ab+ b2 = x+ 2y, c2 + cd+ d2 = x+ 2z, (a+ b)2 = x+ 3y, (c+ d)2 = x+ 3z.

The required inequality can be rewritten as F (x, y, z) ≤ 0, where

F (x, y, z) =
1

x+ 2y
+

1

x+ 2z
− 8

3
√

(x+ 3y)(x+ 3z)
.

We will show that
F (x, y, z) ≤ F (x, x, z) ≤ 0.

The left inequality is equivalent to

4√
x+ 3z

(
1√

x+ 3y
− 1

2
√
x

)
≥ x− y
x(x+ 2y)

,

6(x− y)√
x(x+ 3y)(x+ 3z)

(
2
√
x+
√
x+ 3z

) ≥ x− y
x(x+ 2y)

.

It is true if
6√

(x+ 3y)(x+ 3z)
(
2
√
x+
√
x+ 3z

) ≥ 1

(x+ 2y)
√
x
.

Since x ≥ y ≥ z, we only need to show that

6

(x+ 3y)
(
2
√
x+
√

4x
) ≥ 1

(x+ 2y)
√
x
,

which is clearly true.
The right inequality F (x, x, z) ≤ 0 is equivalent to

1

3x
+

1

x+ 2z
≤ 4

3
√
x(x+ 3z)

,

(2x+ z)2(x+ 3z) ≤ 4x(x+ 2z)2.
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It is true because

4x(x+ 2z)2 − (2x+ z)2(x+ 3z) = 3(x− z)z2 ≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any cyclic
permutation).

P 2.83. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd+ d2.

Prove that
1

(ac+ bd)4
+

1

(ad+ bc)4
≤ 2

(ab+ cd)4
.

(Vasile Cı̂rtoaje, 2021)

Solution. Due to homogeneity, we may set

a2 − ab+ b2 = c2 − cd+ d2 = 1.

Let
x = ab, y = cd, s = x+ y, p = xy.

From 1 = a2 − ab+ b2 ≥ ab, we get x ≤ 1. Similarly, y ≤ 1, hence p ≤ 1. In addition, from

(1− x)1− y) ≥ 0,

we get
s ≤ 1 + p.

Since

(ac+ bd)(ad+ bc) = ab(c2 + d2) + cd(a2 + b2) = x(1 + y) + y(1 + x) = s+ 2p,

(ac+ bd)2 + (ad+ bc)2 = (a2 + b2)(c2 + d2) + 4abcd = (1 + x)(1 + y) + 4xy = 1 + s+ 5p,

(ac+ bd)4 + (ad+ bc)4 =
[
(ac+ bd)2 + (ad+ bc)2

]2 − 2(ac+ bd)2(ad+ bc)2

= (1 + s+ 5p)2 − 2(s+ 2p)2 ,

we need to show that
(1 + s+ 5p)2 − 2(s+ 2p)2

(s+ 2p)4
≤ 2

s4
,

that is equivalent to f(s, p) ≥ g(s, p), where

f(s, p) = 2

(
1 +

2p

s

)4

, g(s, p) = (1 + s+ 5p)2 − 2(s+ 2p)2 .
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Since
f(s, p) ≥ f(1 + p, p)

and

g(s, p)− g(1 + p, p) = (s− 1− p)(3 + s+ 11p)− 2(s− 1− p)(1 + s+ 5p) = −(s− 1− p)2 ≤ 0,

it is enough to show that
f(1 + p, p) ≥ g(1 + p, p),

that is
2(1 + 3p)4

(1 + p)4
≥ 2(1 + 3p)2,

p(1− p)(1 + 3p)2(2 + 5p+ p2) ≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any cyclic
permutation).

P 2.84. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
ab ≥ cd+ 3.

(PMO, 2021)

Solution (by Doxuantrong). From

43− a2 = b2 + c2 + d2 ≥ 1

3
(b+ c+ d)2 =

1

3
(13− a)2,

we get
(a− 4)(2a− 5) ≤ 0,

hence
5

2
≤ a, b, c, d ≤ 4. On the other hand, we write the required inequality as follows:

2ab ≥ 2cd+ 6,

(a+ b)2 − (a2 + b2) ≥ (c+ d)2 − (c2 + d2) + 6,

(13− c− d)2 − (43− c2 − d2) ≥ (c+ d)2 − (c2 + d2) + 6,

c2 + d2 + 60 ≥ 13(c+ d),

(c− d)2 + (c+ d)2 + 120 ≥ 26(c+ d),

(c− d)2 ≥ (c+ d− 6)(20− c− d).
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Thus, it suffices to show that c+ d ≤ 6, that is equivalent to a+ b ≥ 7. If a = 4, then

a+ b ≥ a+
b+ c+ d

3
= a+

13− a
3

= 7.

Consider further that a < 4. From

(b− c)(b− d) ≥ 0,

we get
b2 − (c+ d)b+ cd ≥ 0,

that is equivalent to
2b2 − 2(c+ d)b+ (c+ d)2 − (c2 + d2) ≥ 0,

b2 + (b− c− d)2 − (c2 + d2) ≥ 0,

b2 + (a+ 2b− 13)2 − (43− a2 − b2) ≥ 0,

3b2 − 2(13− a)b+ a2 − 13a+ 63 ≥ 0,

3b ≥ 13− a+
√

(4− a)(2a− 5).

Note that we cannot have 3b ≤ 13− a−
√

(4− a)(2a− 5) because this involves a contradic-
tion:

13− a = b+ c+ d ≤ 3b ≤ 13− a−
√

(4− a)(2a− 5) < 13− a.

From
3a ≥ 3b ≥ 13− a+

√
(4− a)(2a− 5),

we get
4a− 13 ≥

√
(4− a)(2a− 5),

(2a− 7)(a− 3) ≥ 0,

hence a ≥ 7/2. As a consequence, we have

3(a+ b− 7) = 3(a− 7) + 3b ≥ 3(a− 7) + 13− a+
√

(4− a)(2a− 5)

=
√

4− a
(√

2a− 5− 2
√

4− a
)

=
3
√

4− a (2a− 7)√
2a− 5 + 2

√
4− a

≥ 0.

The equality occurs for a = 4 and b = c = d = 3.

Second solution (by KaiRain) To show that a+ b ≥ 7, the key is

a2 + b2 + c2 + d2 + 6 (ab+ cd) = (a+ b+ c+ d)2 + 2 (a− c) (b− d) + 2 (a− d) (b− c)

≥ (a+ b+ c+ d)2 ,

which gives
ab+ cd ≥ 21,

(a+ b)2 + (c+ d)2 ≥ a2 + b2 + c2 + d2 + 42,
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(a+ b)2 + (13− a− b)2 ≥ 85,

(a+ b− 6)(a+ b− 7) ≥ 0,

a+ b ≥ 7.

Hence,

ab− cd ≥ ab− c2 + d2

2
= ab+

a2 + b2 − 43

2
=

(a+ b)2 − 43

2
≥ 3.

P 2.85. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
83

4
≤ ac+ bd ≤ 169

8
.

(Vasile Cı̂rtoaje, 2021)

Solution. As shown at P 2.84, we have

5

2
≤ a, b, c, d ≤ 4.

Since

2(ac+ bd) = (a+ c)2 + (b+ d)2 − (a2 + b2 + c2 + d2) = (a+ c)2 + (13− a− c)2 − 43

= 2(a+ c)2 − 26(a+ c) + 126,

the left required inequality is equivalent to(
a+ c− 13

2

)2

≥ 0 ,

and the right required inequality is equivalent to

8(a+ c)2 − 104(a+ c) + 335 ≥ 0.

Since

a+ c ≥ a+ b+ c+ d

2
=

13

2
,

we only need yo show that

a+ c ≤ 26 +
√

6

4
.

From
(c− b)(c− d) ≤ 0,
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we get
c2 − (b+ d)b+ bd ≤ 0,

that is equivalent to
c2 + (b+ d− c)2 − b2 − d2 ≤ 0 ,

c2 + (13− a− 2c)2 + a2 + c2 − 43 ≤ 0 ,

3c2 − 2(13− a)c+ a2 − 13a+ 63 ≤ 0 ,

c ≤ C, C =
13− a+

√
(4− a)(2a− 5)

3
.

So, it suffices to show that

a+ C ≤ 26 +
√

6

4
,

which is equivalent to
26 + 3

√
6− 8a ≥ 4

√
(4− a)(2a− 5),

(
√

6 + 2)(4− a) +

√
6− 2

2
(2a− 5) ≥ 4

√
(4− a)(2a− 5) .

Clearly, the last inequality is true (by the AM-GM inequality).

The left inequality is an equality for a+ c = b+ d =
13

2
and ac+ bc =

83

4
, while the right

inequality is an equality for a =
13 +

√
6

4
, b = c =

13

4
and d =

13−
√

6

4
.

P 2.86. If a, b, c, d are positive real numbers such that

a2 + b2 + c2 + d2 = 4, a ≤ b ≤ c ≤ d,

then
1

a
+ a+ b+ c+ d ≥ 5.

(Vasile Cı̂rtoaje, 2021)

Solution. Write the inequality in the homogeneous form

a2 + b2 + c2 + d2

4
+ a(a+ b+ c+ d) ≥ 5a

√
a2 + b2 + c2 + d2

4
.

For fixed a, b, d, we need to prove that f(c) ≥ 0, where

f(c) = 5a2 + b2 + c2 + d2 + 4a(b+ c+ d)− 10a
√
a2 + b2 + c2 + d2, c ∈ [b, d].

From

f ′(c) = 2c+ 4a− 10ac√
a2 + b2 + c2 + d2

≥ 4a+ 2c− 10ac√
2(a2 + c2)
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≥ 4
√

2ac− 5
√
ac = (4

√
2− 5)

√
ac > 0,

it follows that f(c) is increasing, hence f(c) ≥ f(b). The inequality f(b) ≥ 0 is equivalent to

5a2 + 2b2 + d2 + 4a(2b+ d)− 10a
√
a2 + 2b2 + d2 ≥ 0.

For fixed a and d, we need to show that g(b) ≥ 0, where

g(b) = 5a2 + 2b2 + d2 + 4a(2b+ d)− 10a
√
a2 + 2b2 + d2, b ∈ [a, d].

From

g′(b) = 4b+ 8a− 20ab√
a2 + 2b2 + d2

≥ 4b+ 8a− 20ab√
a2 + 3b2

≥ 8
√

2ab− 20
√
ab√

2
√

3
= 4

(
2
√

2− 5√
2
√

3

)
√
ab > 0,

it follows that g(b) is increasing, hence g(b) ≥ g(a), that is

g(b) ≥ 15a2 + 4ad+ d2 − 10a
√

3a2 + d2.

Thus, we only need to show that

15a2 + 4ad+ d2 ≥ 10a
√

3a2 + d2.

Due to homogeneity, we may set a = 1, hence d ≥ 1. We need to show that

(15 + 4d+ d2)2 ≥ 100(3 + d2),

which is equivalent to
d4 + 8d3 − 54d2 + 120d− 75 ≥ 0,

(d− 1)(d3 + 9d2 − 45d+ 75) ≥ 0.

This is true because

d3 + 9d2 − 45d+ 75 > 9d2 − 45d+ 63 = 9(d2 − 5d+ 7) > 0.

The equality holds for a = b = c = d = 1.

Remark. Similarly, we can prove the following stronger inequality

3

4a
+ a+ b+ c+ d ≥ 19

4
.

P 2.87. If a, b, c, d are real numbers, then

6(a2 + b2 + c2 + d2) + (a+ b+ c+ d)2 ≥ 12(ab+ bc+ cd).

(Vasile Cı̂rtoaje, 2005)
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Solution. Let

E(a, b, c, d) = 6(a2 + b2 + c2 + d2) + (a+ b+ c+ d)2 − 12(ab+ bc+ cd).

First Solution. We have
E(x+ a, x+ b, x+ c, x+ d) =

= 4x2 + 4(2a− b− c+ 2d)x+ 7(a2 + b2 + c2 + d2) + 2(ac+ ad+ bd)− 10(ab+ bc+ cd)

= (2x+ 2a− b− c+ 2d)2 + 3(a2 + 2b2 + 2c2 + d2 − 2ab+ 2ac− 2ad− 4bc+ 2bd− 2cd)

= (2x+ 2a− b− c+ 2d)2 + 3(b− c)2 + 3(a− b+ c− d)2.

For x = 0, we get

E(a, b, c, d) = (2a− b− c+ 2d)2 + 3(b− c)2 + 3(a− b+ c− d)2 ≥ 0.

The equality holds for 2a = b = c = 2d.

Second Solution. Let
x = a− b, y = c− d.

We have

E = 6[(a− b)2 + (c− d)2] + (a+ b+ c+ d)2 − 12bc

= 6(x2 + y2) + [x+ y + 2(b+ c)]2 − 12bc

= 3(x− y)2 + 3(x+ y)2 + [x+ y + 2(b+ c)]2 − 12bc

= 3(x− y)2 + 4(x+ y)2 + 4(x+ y)(b+ c) + (b+ c)2 + 3(b− c)2

= 3(x− y)2 + (2x+ 2y + b+ c)2 + 3(b− c)2 ≥ 0.

P 2.88. If a, b, c, d are positive real numbers, then

1

a2 + ab
+

1

b2 + bc
+

1

c2 + cd
+

1

d2 + da
≥ 4

ac+ bd
.

Solution. Write the inequality as follows:∑(
ac+ bd

a2 + ab
+ 1

)
≥ 8,

∑ a(c+ a) + b(d+ a)

a(a+ b)
≥ 8,

∑ c+ a

a+ b
+
∑ b(d+ a)

a(a+ b)
≥ 8.
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By the AM-GM inequality, we have

∑ b(d+ a)

a(a+ b)
≥ 4 4

√∏ b(d+ a)

a(a+ b)
= 4.

Therefore, it suffices to prove the inequality∑ c+ a

a+ b
≥ 4,

which is equivalent to

(a+ c)

(
1

a+ b
+

1

c+ d

)
+ (b+ d)

(
1

b+ c
+

1

d+ a

)
≥ 4.

This inequality follows immediately from

1

a+ b
+

1

c+ d
≥ 4

(a+ b) + (c+ d)

and
1

b+ c
+

1

d+ a
≥ 4

(b+ c) + (d+ a)
.

The equality occurs for a = b = c = d.

P 2.89. If a, b, c, d are positive real numbers, then

1

a(1 + b)
+

1

b(1 + a)
+

1

c(1 + d)
+

1

d(1 + c)
≥ 16

1 + 8
√
abcd

.

(Vasile Cı̂rtoaje, 2007)

Solution. Let
x =
√
ab, y =

√
cd.

Write the inequality as

a+ b+ 2ab

ab(1 + a)(1 + b)
+

c+ d+ 2cd

cd(1 + c)(1 + d)
≥ 16

1 + 8
√
abcd

.

We claim that

x ≥ 1 =⇒ a+ b+ 2ab

ab(1 + a)(1 + b)
≥ 1

ab
,

and

x ≤ 1 =⇒ a+ b+ 2ab

ab(1 + a)(1 + b)
≥ 2√

ab+ ab
.
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The first inequality is equivalent to ab ≥ 1, while the second inequality is equivalent to(
1−
√
ab
)(√

a−
√
b
)2
≥ 0.

Similarly, we have

y ≥ 1 =⇒ c+ d+ 2cd

cd(1 + d)(1 + d)
≥ 1

cd

and

y ≤ 1 =⇒ c+ d+ 2cd

cd(1 + d)(1 + d)
≥ 2√

cd+ cd
.

There are four cases to consider.

Case 1: x ≥ 1, y ≥ 1. It suffices to show that

1

x2
+

1

y2
≥ 16

1 + 8xy
.

Indeed, we have
1

x2
+

1

y2
≥ 2

xy
>

16

1 + 8xy
.

Case 2: x ≤ 1, y ≤ 1. It suffices to show that

2

x+ x2
+

2

y + y2
≥ 16

1 + 8xy
.

Putting s = x+ y and p =
√
xy, this inequality becomes

s2 + s− 2p2

p2(s+ p2 + 1)
≥ 8

1 + 8p2
,

(1 + 8p2)s2 + s− 24p4 − 10p2 ≥ 0.

Since s ≥ 2p, we get

(1 + 8p2)s2 + s− 24p4 − 10p2 ≥ 4(1 + 8p2)p2 + 2p− 24p4 − 10p2

= 2p(p+ 1)(2p− 1)2 ≥ 0.

Case 3: x ≥ 1, y ≤ 1. It suffices to show that

1

x2
+

2

y + y2
≥ 16

1 + 8xy
.

This inequality is equivalent in succession to

(1 + 8xy)(2x2 + y2 + y) ≥ 16x2y(1 + y),

(1 + 8xy)(x− y)2 + 8x3y + 8xy2 − 16x2y + 2xy + x2 + y ≥ 0,

(1 + 8xy)(x− y)2 + 8xy(x− 1)2 + 8xy2 + x2 + y ≥ 6xy.
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The last inequality is true since the AM-GM inequality yields

8xy2 + x2 + y ≥ 3 3
√

8xy2 · x2 · y = 3 3
√

8x3y3 = 6xy.

Case 4: x ≤ 1, y ≥ 1. It suffices to show that

2

x+ x2
+

1

y2
≥ 16

1 + 8xy
,

which is equivalent to

(1 + 8xy)(x− y)2 + 8xy(y − 1)2 + 8x2y + y2 + x ≥ 6xy.

As in the case 3, we have

8x2y + y2 + x ≥ 3 3
√

8x2y · y2 · x = 3 3
√

8x3y3 = 6xy.

The proof is completed. The equality holds for a = b = c = d =
1

2
.

P 2.90. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 4,

then

ac+ bd ≤ 2.

(Vasile Cı̂rtoaje, 2019)

Solution. Write the inequality in the homogeneous form

(a+ b+ c+ d)2 ≥ 8(ac+ bd).

We have

(a+ b+ c+ d)2 − 8(ac+ bd) = a2 + 2(b+ d− 3c)a+ (b+ c+ d)2 − 8bd

= (a+ b+ d− 3c)2 − (b+ d− 3c)2 + (b+ d+ c)2 − 8bd

= (a+ b+ d− 3c)2 + 8(b− c)(c− d) ≥ 0.

The equality holds for b = c = 1 and a+ d = 2.
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P 2.91. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c+ d = 4,

then

2

(
1

b
+

1

d

)
≥ a2 + b2 + c2 + d2.

(Vasile Cı̂rtoaje, 2019)

Solution. Write the inequality in the homogeneous form

(a+ b+ c+ d)3
(

1

b
+

1

d

)
− 32(a2 + b2 + c2 + d2) ≥ 0.

For fixed b, c, d, the inequality becomes f(a) ≥ 0, with

f ′(a) = 3(a+ b+ c+ d)2
(

1

b
+

1

d

)
− 64a.

For a+ b+ c+ d = 4, when a = 4− b− c− d ≤ 4− b− 2d, we have

1

16
f ′(a) ≥ 3

(
1

b
+

1

d

)
− 4(4− b− 2d)

=

(
3

b
+ 4b

)
+

(
3

d
+ 8d

)
− 16 ≥ 4(

√
3 +

√
(6)− 4) > 0.

Therefore, f(a) is increasing, hence f(a) ≥ f(b). Similarly, for fixed a, b, d, the inequality
becomes g(c) ≥ 0, with

g′(c) = 3(a+ b+ c+ d)2
(

1

b
+

1

d

)
− 64c ≥ f ′(a) > 0.

Therefore, g(c) is increasing, hence g(c) ≥ g(d). As a consequence, it suffices to prove the
original inequality for a = b and c = d. So, we only need to show that b+ d = 2 involves

1

b
+

1

d
≥ b2 + d2,

which is equivalent to

(bd− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1.
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P 2.92. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 3.

Prove that
a3bcd < 4.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the desired inequality as

4(ab+ bc+ cd+ da)3 > 27a3bcd,

4

(
b+ d+

bc+ cd

a

)3

> 27bcd.

It suffices to show that
4(b+ d)3 ≥ 27bcd.

Indeed, by the AM-GM inequality, we have

(b+ d)3 =

(
b

2
+
b

2
+ d

)3

≥ 27

(
b

2

)2

d ≥ 27bcd

4
.

P 2.93. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 6.

Prove that
acd ≤ 2.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the desired inequality in the homogeneous form

(a+ c)3(b+ d)3 ≥ 54a2c2d2.

Since b ≥ c, we only need to show that

(a+ c)3(c+ d)3 ≥ 54a2c2d2.

By the AM-GM inequality, we have

(a+ c)3 =
(a

2
+
a

2
+ c
)3
≥ 27

(a
2

)(a
2

)
c =

27

4
a2c.

Thus, it suffices to show that
(c+ d)3 ≥ 8cd2.

Indeed,
(c+ d)3 − 8cd2 = (c− d)(c2 + 4cd− d2) ≥ 0.

The equality holds for a = 2 and b = c = d = 1.
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P 2.94. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc+ cd+ da = 9.

Prove that
abd ≤ 4.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the desired inequality in the homogeneous form

(a+ c)3(b+ d)3 ≥ 729

16
a2b2d2.

Since c ≥ d, we only need to show that

(a+ d)3(b+ d)3 ≥ 729

16
a2b2d2.

By the AM-GM inequality, we have

(a+ d)3 =
(a

2
+
a

2
+ d
)3
≥ 27

(a
2

)(a
2

)
d =

27

4
a2d

and, similarly,

(b+ d)3 ≥ 27

4
b2d

Multiplying these inequalities, the desired inequality holds. The equality occurs for a = b = 2
and c = d = 1.

P 2.95. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 10.

Prove that
2b+ 4d ≤ 3c+ 5.

(Vasile Cı̂rtoaje, 2012)

Solution. Write the desired inequality in the homogeneous form

2b− 3c+ 4d ≤
√

5

2
(a2 + b2 + c2 + d2).

It is true if
5(a2 + b2 + c2 + d2) ≥ 2(2b− 3c+ 4d)2.

Since a ≥ b, it remains to show that

5(2b2 + c2 + d2) ≥ 2(2b− 3c+ 4d)2,
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which is equivalent to

2b2 + 24bc+ 48cd ≥ 13c2 + 27d2 + 32bd.

Since d2 ≤ cd, it suffices to prove that

2b2 + 24bc+ 48cd ≥ 13c2 + 27cd+ 32bd,

which is equivalent to
2b2 + 24bc ≥ 13c2 + (32b− 21c)d.

Since 32b− 21c > 0 and c ≥ d, it is enough to show that

2b2 + 24bc ≥ 13c2 + (32b− 21c)c.

This reduces to the obvious inequality

2(b− 2c)2 ≥ 0.

The equality holds for a = b = 2 and c = d = 1.

P 2.96. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d and

abcd = 1.

Prove that

4 +
a

b
+
b

c
+
c

d
+
d

a
≥ 2(a+ b)(c+ d).

Solution. Since
b

c
+
d

a
− b

a
− d

c
=

(d− b)(c− a)

ca
≥ 0,

we only need to prove that

4 +
a

b
+
b

a
+
c

d
+
d

c
≥ 2(a+ b)(c+ d),

which is equivalent to
(a+ b)2

ab
+

(c+ d)2

cd
≥ 2(a+ b)(c+ d),(

a+ b√
ab
− c+ d√

cd

)2

≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1.



Noncyclic Inequalities 483

P 2.97. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

3(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2.

Prove that

(a)
a+ d

b+ c
≤ 2;

(b)
a+ c

b+ d
≤ 7 + 2

√
6

5
;

(c)
a+ c

c+ d
≤ 3 +

√
5

2
.

(Vasile Cı̂rtoaje, 2010)

Solution. (a) Since

(a+ d)(b+ c)− 2(ad+ bc) = (a− b)(c− d) + (a− c)(b− d) ≥ 0,

we have

a2 + b2 + c2 + d2 = (a+ d)2 + (b+ c)2 − 2(ad+ bc)

≥ (a+ d)2 + (b+ c)2 − (a+ d)(b+ c),

hence
1

3
(a+ b+ c+ d)2 ≥ (a+ d)2 + (b+ c)2 − (a+ d)(b+ c),(

a+ d

b+ c
− 2

)(
a+ d

b+ c
− 1

2

)
≤ 0,

from where the desired result follows. The equality holds for a/3 = b = c = d.

(b) From (a− d)(b− c) ≥ 0 and the AM-GM inequality, we have

2(ac+ bc) ≤ (a+ d)(b+ c) ≤ (a+ b+ c+ d)2

4
,

hence

a2 + b2 + c2 + d2 = (a+ c)2 + (b+ d)2 − 2(ac+ bd)

≥ (a+ c)2 + (b+ d)2 − (a+ b+ c+ d)2

4
,

1

3
(a+ b+ c+ d)2 ≥ (a+ c)2 + (b+ d)2 − (a+ b+ c+ d)2

4
,(

a+ c

b+ d
− 7 + 2

√
6

2

)(
a+ c

b+ d
− 7− 2

√
6

2

)
≤ 0,



484 Vasile Ĉırtoaje

from where the desired result follows. The equality holds for

(3−
√

6)a = b = c = (3 +
√

6)d.

(c) Writing the hypothesis 3(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2 as

b2 − (a+ c+ d)b+ a2 + c2 + d2 − ac− cd− da = 0,

(2b− a− c− d)2 = 3(2ac+ 2cd+ 2da− a2 − c2 − d2),

it follows that
2ac+ 2cd+ 2da ≥ a2 + c2 + d2,

a2 − 2(c+ d)a+ (c− d)2 ≤ 0,

a ≤ c+ d+ 2
√
cd.

Thus, it suffices to prove that

2c+ d+ 2
√
cd

c+ d
≤ 3 +

√
5

2
,

which is equivalent to
(
√

5− 1)c+ (
√

5 + 1)d ≥ 4
√
cd.

This inequality follows immediately from the AM-GM inequality. The equality holds for

a

3 +
√

5
=
b

4
=
c

2
=

d

3−
√

5
.

P 2.98. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

2(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2.

Prove that
a ≥ b+ 3c+ (2

√
3− 1)d.

(Vasile Cı̂rtoaje, 2010)

First Solution. For c = d = 0, the desired inequality is an equality. Assume further that
c > 0. From the hypothesis 2(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2, we get

a = b+ c+ d± 2
√
bc+ cd+ db.

It is not possible to have
a = b+ c+ d− 2

√
bc+ cd+ db,
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because this equality and a ≥ b involve

c+ d ≥ 2
√
bc+ cd+ db,

(c− d)2 ≥ 4b(c+ d),

(c− d)2 ≥ 4c(c+ d),

d2 ≥ 3c(c+ 2d),

which is not true. Thus, we have

a = b+ c+ d+ 2
√
bc+ cd+ db.

Using this equality, we can rewrite the desired inequality as

b+ c+ d− 2
√
bc+ cd+ db ≥ b+ 3c+ (2

√
3− 1)d,√

b(c+ d) + cd ≥ c+ (
√

3− 1)d.

Since b ≥ c, it suffices to show that√
c(c+ d) + cd ≥ c+ (

√
3− 1)d.

By squaring, we get the obvious inequality d(c − d) ≥ 0. The equality holds for a = b and

c = d = 0, for
a

4
= b = c and d = 0, and for

a

3 + 2
√

3
= b = c = d.

Second Solution (by Vo Quoc Ba Can). Write the hypothesis 2(a2 + b2 + c2 + d2) =
(a+ b+ c+ d)2 as

(a− b)2 + (c− d)2 ≥ 2(a+ b)(c+ d).

Since
a+ b ≥ (a− b) + 2c,

we get
(a− b)2 + (c− d)2 ≥ 2[(a− b) + 2c](c+ d),

which is equivalent to

(a− b)2 − 2(c+ d)(a− b)− 3c2 − 6cd+ d2 ≥ 0.

From this, we get
a− b ≥ c+ d+ 2

√
c2 + 2cd.

Thus, the desired inequality
a− b ≥ 3c+ (2

√
3− 1)d

is true if
c+ d+ 2

√
c2 + 2cd ≥ 3c+ (2

√
3− 1)d,

that is, √
c2 + 2cd ≥ c+ (

√
3− 1)d.

By squaring, we get the obvious inequality d(c− d) ≥ 0.
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P 2.99. If a, b, c, d, e are real numbers, then

ab+ bc+ cd+ de

a2 + b2 + c2 + d2 + e2
≤
√

3

2
.

Solution. Using the AM-GM inequality, we have

a2 + b2 + c2 + d2 + e2 =

(
a2 +

1

3
b2
)

+

(
2

3
b2 +

1

2
c2
)

+

(
1

2
c2 +

2

3
d2
)

+

(
1

3
d2 + e2

)

≥ 2

√
a2 · 1

3
b2 + 2

√
2

3
b2 · 1

2
c2 + 2

√
1

2
c2 · 2

3
d2 + 2

√
1

3
d2 · e2

≥ 2√
3

(ab+ bc+ cd+ da).

The equality holds for

a =
b√
3

=
c

2
=

d√
3

= e.

Remark. The following more general inequality holds

a1a2 + a2a3 + · · ·+ an−1an
a21 + a22 + · · ·+ a2n

≤ cos
π

n+ 1
,

with equality for
a1

sin π
n+1

=
a2

sin 2π
n+1

= · · · = an
sin nπ

n+1

.

Denoting

ci =
sin (i+1)π

n+1

2 sin iπ
n+1

, i = 1, 2, · · · , n− 1,

we have

c1 = cos
π

n+ 1
, 4cn−1 =

1

cos π
n+1

,

1

4ci
+ ci+1 = cos

π

n+ 1
, i = 1, 2, · · · , n− 2,

hence

(a21 + a22 + · · ·+ a2n) cos
π

n+ 1
=

= c1a
2
1 +

(
1

4c1
+ c2

)
a22 + · · ·+

(
1

4cn−2
+ cn−1

)
a2n−1 +

1

4cn−1
a2n

=

(
c1a

2
1 +

1

4c1
a22

)
+

(
c2a

2
2 +

1

4c2
a23

)
+ · · ·+

(
cn−1a

2
n−1 +

1

4cn−1
a2n

)
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≥ 2

√
c1a21 ·

1

4c1
a22 + 2

√
c2a22 ·

1

4c2
a23 + · · ·+ 2

√
cn−1a2n−1 ·

1

4cn−1
a2n

≥ a1a2 + a2a3 + · · ·+ an−1an.

P 2.100. If a, b, c, d, e are positive real numbers, then

a2b2

bd+ ce
+

b2c2

cd+ ae
+

c2a2

ad+ be
≥ 3abc

d+ e
.

Solution. Using the Cauchy-Schwarz inequality

a2b2

bd+ ce
+

b2c2

cd+ ae
+

c2a2

ad+ be
≥ (ab+ bc+ ca)2

(bd+ ce) + (cd+ ae) + (ad+ be)
,

it suffices to show that

(ab+ bc+ ca)2

(bd+ ce) + (cd+ ae) + (ad+ be)
≥ 3abc

d+ e
,

which is equivalent to
(ab+ bc+ ca)2

a+ b+ c
≥ 3abc,

a2(b− c)2 + b2(c− a)2 + c2(a− b)2 ≥ 0.

The equality holds for a = b = c.

P 2.101. Let a, b, c and x, y, z be positive real numbers such that

x+ y + z = a+ b+ c.

Prove that
ax2 + by2 + cz2 + xyz ≥ 4abc.

(Vasile Cı̂rtoaje, 1989)

First Solution. Write the inequality as E ≥ 0, where

E = ax2 + by2 + cz2 + xyz − 4abc.

Among the numbers

a− y + z

2
, b− z + x

2
, c− x+ y

2
,
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there are two of them with the same sign; let

pq ≥ 0,

where

p = b− z + x

2
, q = c− x+ y

2
.

We have

b = p+
x+ z

2
, c = q +

x+ y

2
, a = x+ y + z − b− c =

y + z

2
− p− q.

Then,

E =

(
y + z

2
− p− q

)
x2 +

(
p+

x+ z

2

)
y2 +

(
q +

x+ y

2

)
z2

+ xyz − 4

(
y + z

2
− p− q

)(
p+

x+ z

2

)(
q +

x+ y

2

)
=4pq(p+ q) + 2p2(x+ y) + 2q2(x+ z) + 4pqx

=4q2
(
p+

x+ z

2

)
+ 4p2

(
q +

x+ y

2

)
+ 4pqx

=4(q2b+ p2c+ pqx) ≥ 0.

The equality holds for a =
y + z

2
, b =

z + x

2
, c =

x+ y

2
.

Second Solution. Consider the following two cases.

Case 1: x2 ≥ 4bc. We have

ax2 + by2 + cz2 + xyz − 4abc > ax2 − 4abc ≥ 0.

Case 2: x2 ≤ 4bc. Let
u = x+ y + z = a+ b+ c.

Substituting
z = u− x− y, a = u− b− c,

the inequality can be restated as

Au2 +Bu+ C ≥ 0,

where
A = c,

B = (x2 − 4bc)− 2c(x+ y) + xy,

C = −(b+ c)(x2 − 4bc) + by2 + c(x+ y)2 − xy(x+ y).

Since the quadratic function Au2 +Bu+ C has the discriminant

D = (x2 − 4bc)(2c− x− y)2 ≤ 0,

the conclusion follows.
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P 2.102. Let a, b, c and x, y, z be positive real numbers such that

x+ y + z = a+ b+ c.

Prove that
x(3x+ a)

bc
+
y(3y + b)

ca
+
z(3z + c)

ab
≥ 12.

(Vasile Cı̂rtoaje, 1990)

Solution. Write the inequality as

ax2 + by2 + cz2 +
1

3
(a2x+ b2y + c2z) ≥ 4abc.

Applying the Cauchy-Schwarz inequality, we have

a2x+ b2y + c2z ≥ (a+ b+ c)2

1

x
+

1

y
+

1

z

=
xyz(x+ y + z)2

xy + yz + zx
≥ 3xyz.

Therefore, it suffices to show that

ax2 + by2 + cz2 + xyz ≥ 4abc,

which is just the inequality in the previous P 2.101. The equality holds for

x = y = z = a = b = c.

P 2.103. Let a, b, c be given positive numbers. Find the minimum value F (a, b, c) of

E(x, y, z) =
ax

y + z
+

by

z + x
+

cz

x+ y
,

where x, y, z are nonnegative real numbers, no two of which are zero.

(Vasile Cı̂rtoaje, 2006)

Solution. Assume that
a = max{a, b, c}.

There are two cases to consider.

Case 1:
√
a <
√
b+
√
c. Using the Cauchy-Schwarz inequality, we get

E =
∑ a(x+ y + z)− a(y + z)

y + z
= (x+ y + z)

∑ a

y + z
−
∑

a

≥ (x+ y + z)
(
∑√

a)
2∑

(y + z)
−
∑

a =
√
ab+

√
bc+

√
ca− a+ b+ c

2
.
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The equality holds for
y + z√
a

=
z + x√

b
=
x+ y√

c
;

that is, for
x√

b+
√
c−
√
a

=
y

√
c+
√
a−
√
b

=
z

√
a+
√
b−
√
c
.

Case 2:
√
a ≥
√
b+
√
c. Let us denote

A = (
√
b+
√
c)2,

X =
y + z

2
, Y =

z + x

2
, Z =

x+ y

2
,

hence
x = Y + Z −X, y = Z +X − Y, z = X + Y − Z.

We have

E ≥ Ax

y + z
+

by

z + x
+

cz

x+ y

=
A(Y + Z −X)

2X
+
b(Z +X − Y )

2Y
+
c(X + Y − Z)

2Z

=
1

2

(
A
Y

X
+ b

X

Y

)
+

1

2

(
b
Z

Y
+ c

Y

Z

)
+

1

2

(
c
X

Z
+ A

Z

X

)
− b− c−

√
bc

≥
√
Ab+

√
bc+

√
cA− b− c−

√
bc = 2

√
bc.

The equality holds for x = 0 and
y

z
=

√
c

b
. Therefore, for a = max{a, b, c}, we have

F (a, b, c) =


√
ab+

√
bc+

√
ca− a+ b+ c

2
,
√
a <
√
b+
√
c

2
√
bc,

√
a ≥
√
b+
√
c
.

P 2.104. Let a, b, c and x, y, z be positive real numbers such that

a

yz
+

b

zx
+

c

xy
= 1.

Prove that

(a) x+ y + z ≥
√

4(a+ b+ c+
√
ab+

√
bc+

√
ca ) + 3 3

√
abc;

(b) x+ y + z >
√
a+ b+

√
b+ c+

√
c+ a.
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Solution. (a) Write the desired inequality in the form(
a

yz
+

b

zx
+

c

xy

)
(x+ y + z)2 ≥ 4

(
a+ b+ c+

√
ab+

√
bc+

√
ca
)

+ 3
3
√
abc.

We have (
a

yz
+

b

zx
+

c

xy

)
(x2 + y2 + z2) =

∑ ax2

yz
+
∑ a(y2 + z2)

yz
.

In addition, by the AM-GM inequality, we get∑ ax2

yz
≥ 3

3
√
abc,

∑ a(y2 + z2)

yz
≥ 2(a+ b+ c).

Therefore, (
a

yz
+

b

zx
+

c

xy

)
(x2 + y2 + z2) ≥ 3

3
√
abc+ 2(a+ b+ c).

Adding this inequality to the Cauchy-Schwarz inequality

2

(
a

yz
+

b

zx
+

c

xy

)
(yz + zx+ xy) ≥ 2

(√
a+
√
a+
√
c
)2

yields the desired inequality. The equality holds for

x = y = z =
√

3a =
√

3b =
√

3c.

(b) According to the inequality in (a), it suffices to show that

4
(
a+ b+ c+

√
ab+

√
bc+

√
ca
)
≥
(√

a+ b+
√
b+ c+

√
c+ a

)2
.

This inequality is equivalent to(√
a+
√
b+
√
c
)2
≥
√

(a+ b)(b+ c) +
√

(b+ c)(c+ a) +
√

(c+ a)(a+ b) ,

which follows immediately from the inequality P 2.24 in Volume 2.

P 2.105. If a, b, c and x, y, z are nonnegative real numbers, then

2

(b+ c)(y + z)
+

2

(c+ a)(z + x)
+

2

(a+ b)(x+ y)
≥ 9

(b+ c)x+ (c+ a)y + (a+ b)z
.

(Ji Chen and Vasile Cı̂rtoaje, 2010)
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Solution. Since

(b+ c)x+ (c+ a)y + (a+ b)z = a(y + z) + (b+ c)x+ bz + cy,

we can write the inequality as∑ 2a(y + z) + 2(b+ c)x+ 2(bz + cy)

(b+ c)(y + z)
≥ 9,

∑ 2a

b+ c
+
∑ 2x

y + z
≥ 9−

∑ 2(bz + cy)

(b+ c)(y + z)
,

∑ 2a

b+ c
+
∑ 2x

y + z
≥ 6 +

∑[
1− 2(bz + cy)

(b+ c)(y + z)

]
,

∑ 2a

b+ c
+
∑ 2x

y + z
≥ 6 +

∑ (b− c)(y − z)

(b+ c)(y + z)
.

Since ∑ (b− c)(y − z)

(b+ c)(y + z)
≤ 1

2

∑(
b− c
b+ c

)2

+
1

2

∑(
y − z
y + z

)2

,

it suffices to show that∑ 2a

b+ c
+
∑ 2x

y + z
≥ 6 +

1

2

∑(
b− c
b+ c

)2

+
1

2

∑(
y − z
y + z

)2

,

which is equivalent to∑ 2a

b+ c
+
∑ 2x

y + z
≥ 9−

∑ 2bc

(b+ c)2
−
∑ 2yz

(y + z)2
,

∑[
2a

b+ c
+

2bc

(b+ c)2

]
+
∑[

2x

y + z
+

2yz

(y + z)2

]
≥ 9,

2(ab+ bc+ ca)
∑ 1

(b+ c)2
+ 2(xy + yz + zx)

∑ 1

(y + z)2
≥ 9.

This inequality can be obtained by summing the known inequalities (see P 1.72 in Volume
2, case k = 2)

4(ab+ bc+ ca)
∑ 1

(b+ c)2
≥ 9,

4(xy + yz + zx)
∑ 1

(y + z)2
≥ 9.

The equality holds for a = b = c and x = y = z, and also for a = x = 0, b = c and y = z (or
any cyclic permutation).

Remark. For x = a, y = b and z = c, we get the known inequality (Iran 1996):

1

(a+ b)2
+

1

(a+ c)2
+

1

(b+ c)2
≥ 9

4(ab+ bc+ ca)
.
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P 2.106. Let a, b, c be the lengths of the sides of a triangle. If x, y, z are real numbers, then

(ya2 + zb2 + xc2)(za2 + xb2 + yc2) ≥ (xy + yz + zx)(a2b2 + b2c2 + c2a2).

(Vasile Cı̂rtoaje, 2001)

First Solution. Write the inequality as follows:

x2b2c2 + y2c2a2 + z2a2b2 ≥
∑

yza2(b2 + c2 − a2),

x2b2c2 + y2c2a2 + z2a2b2 ≥ 2abc
∑

yza cosA,

x2

a2
+
y2

b2
+
z2

c2
≥ 2yz cosA

bc
+

2zx cosB

ca
+

2xy cosC

ab
,(x

a
− y

b
cosC − z

c
cosB

)2
+
(y
b

sinC − z

c
sinB

)2
≥ 0.

The equality holds for
x

a2
=

y

b2
=

z

c2
.

Second Solution. Write the inequality as

b2c2x2 −Bx+ C ≥ 0,

where
B = c2(a2 + b2 − c2)y + b2(a2 − b2 + c2)z,

C = a2[c2y2 − (b2 + c2 − a2)yz + b2z2].

It suffices to show that
B2 − 4b2c2C ≤ 0,

which is equivalent to
A(c2y − b2z)2 ≥ 0,

where
A = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4.

This inequality is true since

A = (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b) ≥ 0.

Remark 1. For x = 1/b, y = 1/c and z = 1/a, we get the well-known inequality from P
1.168-(a):

a3b+ b3c+ c3a ≥ a2b2 + b2c2 + c2a2.

Remark 2. For x = 1/c2, y = 1/a2 and z = 1/b2, we get the elegant cyclic inequality of
Walker :

3

(
a2

b2
+
b2

c2
+
c2

a2

)
≥ (a2 + b2 + c2)

(
1

a2
+

1

b2
+

1

c2

)
.
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P 2.107. If a, b, c are nonnegative real numbers such that

2(a+ b+ c) + ab+ bc+ ca = 9,

then

(a+ 1)bc+ 3(b+ c) ≤ 16

a+ 1
.

(Vasile Cı̂rtoaje, 2021)

Solution. Assume that a is fixed, and denote

x =
b+ c

2
, y = bc, x2 ≥ y.

Thus, we need to show that
(a+ 1)2y + 6(a+ 1)x ≤ 16

for

2(a+ 2)x+ y = 9− 2a, 0 ≤ a ≤ 9

2
, x2 ≥ y ≥ 0.

From
2(a+ 2)x+ x2 ≥ 9− 2a,

we get
x ≥ xm, xm = −a− 2 +

√
a2 + 2a+ 13,

with equality for x2 = y, and from

2(a+ 2)x ≤ 9− 2a,

we get

x ≤ xM , xM =
9− 2a

2(a+ 2)
,

with equality for y = 0. Write now the required inequality in the form

2(a+ 1)(a2 + 3a− 1)x+ 16 ≥ (a+ 1)2(9− 2a).

Case 1: a2 + 3a − 1 ≥ 0. It suffices to prove the required inequality for x = xm, that is
for x2 = y. So, we need to show that (a+ 1)2y + 6(a+ 1)x ≤ 16 for x2 = y, when

2(a+ 2)x+ x2 = 9− 2a, a =
9− 4x− x2

2(1 + x)
.

The inequality (a+ 1)2x2 + 6(a+ 1)x ≤ 16 is true if (a+ 1)x ≤ 2, which is equivalent to

x(11− 2x− x2)
2(1 + x)

≤ 2,

x3 + 2x2 − 7x+ 4 ≥ 0,
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(x− 1)2(x+ 4) ≥ 0.

Case 2: a2 + 3a − 1 ≤ 0. It suffices to prove the required inequality for x = xM , that is
for y = 0. So, we need to show that (a+ 1)2y + 6(a+ 1)x ≤ 16 for y = 0, when

2(a+ 2)x = 9− 2a.

We have
16− (a+ 1)2y − 6(a+ 1)x = 16− 6(a+ 1)x

= 16− 3(a+ 1)(9− 2a)

a+ 2
=

6a2 − 5a+ 5

a+ 2
> 0.

The equality holds for a = b = c = 1.

P 2.108. If a, b, c are nonnegative real numbers such that

2(a+ b+ c) + ab+ bc+ ca = 9,

then
1

ab+ 4
+

1

ac+ 4
+

1

b+ 4
+

1

c+ 4
≥ 4

5
.

(Vasile Cı̂rtoaje, 2021)

Solution. By the AM-HM inequality, we have

1

ab+ 4
+

1

b+ 4
≥ 4

(ab+ 4) + (b+ 4)
=

4

b(a+ 1) + 8

and
1

ac+ 4
+

1

c+ 4
≥ 4

c(a+ 1) + 8
.

Thus, it suffices to show that

1

b(a+ 1) + 8
+

1

c(a+ 1) + 8
≥ 1

5
,

which is equivalent to

(a+ 1)(b+ c) + 16 ≥ [b(a+ 1) + 8][c(a+ 1) + 8]

5
,

(a+ 1)(b+ c) + 16 ≥ (a+ 1)2bc+ 8(a+ 1)(b+ c) + 64

5
,

16 ≥ (a+ 1)2bc+ 3(a+ 1)(b+ c),

16

a+ 1
≥ (a+ 1)bc+ 3(b+ c).

The last inequality was proved at the previous P 2.107.

The equality holds for a = b = c = 1.
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P 2.109. If a, b, c are nonnegative real numbers such that

6a2 + 4a(b+ c) + bc = 15,

then
4

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
≥ 3.

(Vasile Cı̂rtoaje, 2021)

Solution. For a = 0, the inequality is clearly true. Assume that a > 0 and b ≥ c ≥ 0. For
fixed a, from

6a2 + 8a
√
bc+ bc ≤ 15,

it follows that the product p = bc has the maximum value when b = c (for b + c = 2
√
bc),

and the minimum value when c = 0. There are two cases to consider: p ≥ 1 and p ≤ 1.

Case 1: p ≥ 1. Since

1

b2 + 1
+

1

c2 + 1
− 2

bc+ 1
=

(b− c)2(bc− 1)

(b2 + 1)(c2 + 1)(bc+ 1)
≥ 0,

it suffices to show that
4

a2 + 1
+

2

p+ 1
≥ 3.

For fixed a, p has the maximum value when b = c. Thus, we only need to consider the case
b = c, that is to show that 6a2 + 8ab+ b2 = 15 implies

4

a2 + 1
+

2

b2 + 1
≥ 3.

Write the inequality in the homogeneous form

4

21a2 + 8ab+ b2
+

1

3a2 + 4ab+ 8b2
≥ 3

6a2 + 8ab+ b2
.

It suffices to prove this inequality for b = 0 and b = 1. For b = 0, the inequality is clearly
true, while for b = 1, it is equivalent to

(11a2 + 8a+ 11)(6a2 + 8a+ 1) ≥ (21a2 + 8a+ 1)(3a2 + 4a+ 8),

3a4 + 28a3 − 62a2 + 28a+ 3 ≥ 0,

(a− 1)2(3a2 + 34a+ 3) ≥ 0.

Case 2: p ≤ 1. Since

1

b2 + 1
+

1

c2 + 1
=

b2 + c2 + 2

b2c2 + 1 + b2 + c2
= 1 +

1− p2

(1− p)2 + (b+ c)2
,
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we may write the inequality in the form

1− p2

(1− p)2 + (b+ c)2
≥ a2 − 1

2(a2 + 1)
.

For a ≤ 1, the inequality is clearly true. For fixed a > 1, since

b+ c =
15− 6a2 − p

4a
,

the inequality is equivalent to

32a2(1− p2)
16a2(p− 1)2 + (15− 6a2 − p)2

≥ a2 − 1

a2 + 1
,

or

Ap2 +Bp+ C ≥ 0,

where

A = −32a2(a2 + 1)− (a2 − 1)(16a2 + 1) = −(48a4 + 17a2 − 1).

Since A < 0 for a > 1, the polynomial Ap2 + Bp + C has the minimum value when p is
minimum (when c = 0) or maximum (when b = c). Thus, we only need to consider these
cases.

Sub-case 1: c = 0. We need to show that

4

a2 + 1
+

1

b2 + 1
≥ 2

for

b =
3(5− 2a2)

4a
, 1 < a2 ≤ 5

2
.

The inequality is equivalent to

2

a2 + 1
+

8a2

36a4 − 164a2 + 225
≥ 1,

225− 381a2 + 208a4 − 36a6 ≥ 0,

(3− 2a2)2(25− 9a2) ≥ 0.

It is true since

25− 9a2 ≥ 25− 45

2
> 0.

Sub-case 2: b = c. As shown previously, for the nontrivial case b = c > 0, the inequality
reduces to the obvious form

(a− 1)2(3a2 + 34a+ 3) ≥ 0.
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The equality holds for a = b = c = 1, for a = b =

√
3

2
and c = 0, and for a = c =

√
3

2
and b = 0.

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers such that

k(k − 1)a2 + 2ka(b+ c) + 2bc = (k + 1)(k + 2),

where k ≥ 1. Then
k

a2 + 1
+

1

b2 + 1
+

1

c2 + 1
≥ k + 2

2
,

with equality for a = b = c = 1, for a = b =

√
k + 2

k
and c = 0, and for a = c =

√
k + 2

k
and b = 0.

P 2.110. Let a1, a2, . . . , an be positive real numbers such that a1 ≥ 2a2. Prove that

(5n− 1)(a21 + a22 + · · ·+ a2n) ≥ 5(a1 + a2 + · · ·+ an)2.

(Vasile Cı̂rtoaje, 2009)

Solution. Let
a1 = ka2, k ≥ 2.

By the Cauchy-Schwarz inequality, we have

a21 + a22 + · · ·+ a2n = (k2 + 1)a22 + a23 + · · ·+ a2n

≥ [(k + 1)a2 + a3 + · · ·+ an]2

(k + 1)2

k2 + 1
+ n− 2

=
(a1 + a2 + · · ·+ an)2

2k

k2 + 1
+ n− 1

.

Therefore, it suffices to show that

5n− 1

5
≥ 2k

k2 + 1
+ n− 1,

which is equivalent to the obvious inequality

(k − 2)(2k − 1) ≥ 0.

The equality holds if and only if k = 2 and

5a22 + a23 + · · ·+ a2n =
(3a2 + a3 + · · ·+ an)2

9
5

+ n− 2
;

that is, if and only if
5a1
6

=
5a2
3

= a3 = · · · = an.
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P 2.111. If a1, a2, . . . , an are positive real numbers such that a1 ≥ 4a2, then

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥
(
n+

1

2

)2

.

Solution. Setting
a1 = ka2, k ≥ 4,

the inequality becomes

[(1 + k)a2 + a3 + · · ·+ an]

(
1 + k

ka2
+

1

a3
+ · · ·+ 1

an

)
≥
(
n+

1

2

)2

.

By the Cauchy-Schwarz inequality, we have

[(1 + k)a2 + a3 + · · ·+ an]

(
1 + k

ka2
+

1

a3
+ · · ·+ 1

an

)
≥
(

1 + k√
k

+ n− 2

)2

.

Thus, we only need to show that

1 + k√
k

+ n− 2 ≥ n+
1

2
,

which reduces to (√
k − 2

)(
2
√
k − 1

)
≥ 0.

The equality holds if and only if k = 4 and

a1
2

= 2a2 = a3 = · · · = an.

P 2.112. Suppose n ≥ 3 and a1, a2, . . . , an are nonnegative real numbers such that a1 ≤ a2 ≤
· · · ≤ an.

(a) Prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
a1 + a2 + · · ·+ an−1

n− 1

)2

;

(Vasile Cı̂rtoaje, GM-B, 2, 2023)

(b) If k ≥ k1 =
2

1 +

√
n

n− 2

, prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
ka1 + a2 + · · ·+ an−1

n− 2 + k

)2

.
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(Vasile Cı̂rtoaje, Recreatii Matematice, 2, 2023)

(c) If 0 ≤ k ≤ k2 = 1 +
1

1 +

√
n

n− 2

, prove that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
a1 + · · ·+ an−2 + kan−1

n− 2 + k

)2

.

(Vasile Cı̂rtoaje, Math. Reflections, 2, 2025)

Solution. Denote

S = a2 + · · ·+ an−1, (n− 2)a1 ≤ S ≤ (n− 2)an,

and write the inequality as follows:

a1a2 + a2a3 + · · ·+ ana1 ≥
n(ka1 + S)2

(k + n− 2)2
,

(n− 1)(a1a2 + a2a3 + · · ·+ an−1an) + (n− 1)ana1 ≥
n(n− 1)(ka1 + S)2

(k + n− 2)2
.

Since the sequences (a1, a2, . . . , an−1) and (a2, a3, . . . , an) are increasing, by Chebyshev’s
inequality we have

(n−1)(a1a2+a2a3+· · ·+an−1an) ≥ (a1+a2+· · ·+an−1)(a2+a3+· · ·+an) = (a1+S)(S+an).

Thus, it suffices to show that

(a1 + S)(S + an) + (n− 1)ana1 ≥
n(n− 1)(ka1 + S)2

(k + n− 2)2
.

Since an ≥
S

n− 2
, it is enough to prove that

(a1 + S)

(
S +

S

n− 2

)
+

(n− 1)a1S

n− 2
≥ n(n− 1)(ka1 + S)2

(k + n− 2)2
,

which is equivalent to

(a1 + S)S + a1S ≥
n(n− 2)(ka1 + S)2

(k + n− 2)2
,

[S − (n− 2)a1](AS + nk2a1) ≥ 0,

where
A = (k + n− 2)2 − n(n− 2) = k2 + 2(n− 2)k − 2(n− 2) ≥ 0.
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Clearly, the inequality holds if A ≥ 0.

(a) For k = 1, we have A = 1. The equality occurs for a1 = a2 = · · · = an.

(b) We have A ≥ 0 for k ≥ k1. The equality occurs for a1 = a2 = · · · = an. If k = k1,
then the equality also occurs when a1 = 0 and a2 = · · · = an.

(c) Since an−1an ≥ a2n−1 and ana1 ≥ an−1a1, it suffices to show that

(a1a2 + a2a3 + · · ·+ an−1a1) + a2n−1 ≥
n

(n− 2 + k)2
· (a1 + · · ·+ an−2 + kan−1)

2 (*)

for a1, a2, . . . , an−2 ∈ [0, an−1], which is a weaker condition than the original 0 ≤ a1 ≤ a2 ≤
· · · ≤ an−1. For fixed an−1, we write the inequality as F (a1, a2, . . . , an−2) ≥ 0, where

F (a1, a2, . . . , an−2) = a1a2+a2a3+· · ·+an−1a1)+a2n−1−
n

(n− 2 + k)2
·(a1+· · ·+an−2+kan−1)2.

Since F (a1, a2, . . . , an−2 is a concave function in each variable, it has the minimum value for
a1, a2, . . . , an−2 ∈ {0, an}. So, due to symmetry, it suffices to prove (*) for

a1 = · · · = aj = 0, aj+1 = · · · = an−2 = an−1,

where j ∈ {0, 1, . . . , n−2}. For j = 0, the inequality (*) is an equality. For j ∈ {1, . . . , n−2},
the inequality (*) is true if f(j) ≥ 0, where

f(j) = (n− 2 + k)2(n− j − 1)− n(n− 2 + k − j)2.

We will show that f(j) ≥ 0 for all real j ∈ [1, n− 2]. Since f is concave and j ∈ [1, n− 2],
it suffices to show that f(1) ≥ 0 and f(n− 2) ≥ 0. The inequality f(1) ≥ 0 is equivalent to

(n− 2 + k)2(n− 2) ≥ n(n− 3 + k)2, (n− 2 + k)
√
n− 2 ≥ (n− 3 + k)

√
n,

k ≤ (n− 2)
√
n− 2− (n− 3)

√
n

√
n−
√
n− 2

=

√
n(n− 2)− n+ 4

2

= 1 +

√
n− 2(

√
n−
√
n− 2)

2
= 1 +

√
n− 2

√
n+
√
n− 2

= k2.

The inequality f(n− 2) ≥ 0 is equivalent to

(n− 2 + k)2 ≥ nk2, n− 2 + k ≥ k
√
n, k ≤ n− 2√

n− 1
.

For n = 3, the last inequality is equivalent to k ≤ k2, while for n ≥ 4 we have

k ≤ k2 < 2 ≤ n− 2√
n− 1

.

For 0 ≤ k ≤ k2, the equality occurs when a1 = a2 = · · · = an. For k = k2, the equality also
occurs when a1 = 0 and a2 = · · · = an.
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Remark 1. Actually, k1 is the least positive value of k such that such that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
ka1 + a2 + · · ·+ an−1

k + n− 2

)2

for n ≥ 3 and all 0 ≤ a1 ≤ a2 ≤ · · · ≤ an. Indeed, for a1 = 0 and a2 = a3 = · · · = an = 1,
the inequality leads to the necessary condition k ≥ k1.

Remark 2. Actually, k2 is the largest positive value of k such that such that

a1a2 + a2a3 + · · ·+ ana1
n

≥
(
a1 + · · ·+ an−2 + kan−1

n− 2 + k

)2

for n ≥ 3 and all 0 ≤ a1 ≤ a2 ≤ · · · ≤ an. Indeed, for a1 = 0 and a2 = a3 = · · · = an = 1,
the inequality leads to the necessary condition k ≥ k3.

P 2.113. If k ≥ k0 = 7− 2
√

6 ≈ 2.101 and a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ 0, then(
ka+ b+ c+ d+ e+ f

k + 5

)2

≥ ab+ bc+ cd+ de+ ef + fa

6
.

(Vasile Cı̂rtoaje, Math. Reflections, 3,2025)

Solution. Since 5a− b− c− d− e− f ≥ 0 and

ka+ b+ c+ d+ e+ f

k + 5
= a− 5a− b− c− d− e− f

k + 5
,

it suffices to prove the desired inequality, for k = k0, that is (k + 5)2 = 24k. Write the
inequality in the homogeneous form F (a, b, c, d, e) ≥ 0, where

F (a, b, c, d, e) = (ka+ b+ c+ d+ e+ f)2 − 4k(ab+ bc+ cd+ de+ ef + fa).

We will show that

F (a, b, c, d, e, f) ≥ F (S, S, S, d, e, f) ≥ F (S, S, S, d, s, s) ≥ 0,

where

S =
ka+ b+ c

k + 2
, s =

e+ f

2
, S ≥ d ≥ s.

We have

F (a, b, c, d, e, f)− F (S, S, S, d, e, f)

4k
= 2S2 + d(S − c)− f(a− S)− ab− bc
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≥ 2S2 + d(S − c)− d(a− S)− ab− bc = 2S2 + d(2S − a− c)− ab− bc.

Since

2S − a− c =
(k − 2)a+ 2(b− c)

k + 2
> 0,

we get
F (a, b, c, d, e, f)− F (S, S, S, d, e, f)

4k
≥ 2S2 − ab− bc =

E

(k + 2)2
,

where

E = 2(ka+ b+ c)2− (k+ 2)2b(a+ c) = (2a2− ab− bc)k2 + 4c(a− b)k+ 2(b+ c)2− 4b(a+ c)

≥ 4(2a2 − ab− bc) + 2(b+ c)2 − 4b(a+ c) = 4a(a− b) + (b− c)2 ≥ 0.

We have

F (S, S, S, d, e, f)− F (S, S, S, d, s, s)

4k
= s2 − ef + d(s− e) + S(s− f)

=
(e− f)2

4
+

(e− f)(S − d)

2
≥ 0.

We have

F (S, S, S, d, s, s) = [(k + 2)S + d+ 2s]2 − 4k(2S4 + Sd+ ds+ s2 + sS)

= −As2 +B(S, d)s+ C(S, d),

where A = 4(k−1). Since A > 0 and 0 ≤ s ≤ d, to prove the inequality F (S, S, S, d, s, s) ≥ 0,
it suffices to consider the cases s = 0 and s = d. For s = 0, we need to show that

[(k + 2)S + d]2 − 4k(2S2 + Sd) ≥ 0,

which is equivalent to
[(k − 2)S − d]2 ≥ 0.

For s = d, we need to show that

[(k + 2)S + 3d]2 − 8k(S2 + Sd+ d2) ≥ 0,

that is
(k − 2)S2 + 2(6− k)Sd− (8k − 9)d2 ≥ 0.

Indeed, we have

(k−2)S2+2(6−k)Sd−(8k−9)d2 ≥ (k−2)d2+2(6−k)d2−(8k−9)d2 = (k2−14k+25)d2 = 0.

The equality occurs for a = b = c = d = e = f . If k = 7−2
√

6, then the equality also occurs
for for a = b = c = d/(k − 2) and e = f = 0.
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P 2.114. If a1 ≥ a2 ≥ · · · ≥ a9 ≥ 0, then(
4a1 + a2 + · · ·+ a9

12

)2

≥ a1a2 + a2a3 + · · ·+ a9a1
9

.

(Vasile Cı̂rtoaje, Math. Reflections, 6, 2023)

Solution. Write the inequality as F (a1, a2, . . . , a9) ≥ 0, where

F (a1, a2, . . . , a9) = (4a1 + a2 + · · ·+ a9)
2 − 16(a1a2 + a2a3 + · · ·+ a9a1).

We will show that

F (a1, a2, a3, . . . , a9) ≥ F (a2, a2, a3, . . . , a9) ≥ · · · ≥ F (a8, a8, . . . , a8, a9) ≥ F (a9, a9, . . . , a9, a9) = 0,

that is

F (ai, . . . , ai, ai+1, . . . , a9) ≥ F (ai+1, . . . , ai+1, ai+2, . . . , a9), i ∈ {1, 2, . . . , 8}.

Write this inequality as follows:

[(i+ 3)ai + ai+1 + · · ·+ a9]
2 − 16[(i− 1)a2i + aiai+1 + · · ·+ a9ai] ≥

≥ [(i+ 4)ai+1 + ai+2 + · · ·+ a9]
2 − 16[ia2i+1 + ai+1ai+2 + · · ·+ a9ai+1],

(i+ 3)(ai − ai+1)[(i+ 3)ai + (i+ 5)ai+1 + 2ai+2 + · · ·+ 2a9]

−16[(i− 1)(a2i − a2i+1) + ai+1(ai − ai+1) + a9(ai − ai+1)] ≥ 0,

(ai − ai+1)Ei ≥ 0,

where

Ei = (i− 5)2ai + (i2 − 8i+ 15)ai+1 + 2(i+ 3)(ai+2 + · · ·+ a8) + 2(i− 5)a9.

Since

(i− 5)2ai + (i2 − 8i+ 15)ai+1 ≥ (i− 5)2ai+1 + (i2 − 8i+ 15)ai+1 = 2(i− 4)(i− 5)ai+1 ≥ 0,

it suffices to show that

(i+ 3)(ai+2 + · · ·+ a8) + (i− 5)a9 ≥ 0.

This is true for i ≥ 5, while for i ≤ 4 we have

(i+3)(ai+2+· · ·+a8)+(i−5)a9 ≥ (i+3)(7−i)a9+(i−5)a9 ≥ 3(i+3)a9+(i−5)a9 = 4(i+1)a9 ≥ 0.



Noncyclic Inequalities 505

The equality occurs for a1 = a2 = · · · = a9 = 1, and also for a1 = · · · = a5 =
3

2
and

a6 = a7 = a8 = a9 = 0.

Remark. Similarly, we can prove the following generalization:

• Let n ≥ 4 be a perfect square. Then, k0 = (
√
n − 1)2 is the least positive value of the

constant k such that(
ka1 + a2 + · · ·+ an

k + n− 1

)2

≥ a1a2 + a2a3 + · · ·+ ana1
n

whenever a1 ≥ a2 ≥ · · · ≥ an ≥ 0.

For a1 = · · · = ak0+1 = 1 and ak0+2 = · · · = an = 0, the inequality becomes(
k + k0

k + n− 1

)2

≥ k0
n
,

k + k0
k + n− 1

≥
√
n− 1√
n

, k ≥ k0.

To show that k0 is the least positive value of k, it suffices to prove the inequality for k = k0,
that is to show that F (a1, a2, . . . , an) ≥ 0, where

F (a1, a2, . . . , an) = n(ka1 + a2 + · · ·+ an)2 − (k + n− 1)2(a1a2 + a2a3 + · · ·+ ana1).

We will show that

F (a1, a2, a3, . . . , an) ≥ F (a2, a2, a3, . . . , an) ≥ · · ·

≥ F (an−1, an−1, . . . , an−1, an) ≥ F (an, an, . . . , an, an) = 0,

that is

F (ai, . . . , ai, ai+1, . . . , an) ≥ F (ai+1, . . . , ai+1, ai+2, . . . , an), i ∈ {1, 2, . . . , n− 1}.

Write this inequality as follows:

n[(i+ k − 1)ai + ai+1 + · · ·+ an]2 − (k + n− 1)2[(i− 1)a2i + aiai+1 + · · ·+ anai] ≥

≥ n[(i+ k)ai+1 + ai+2 + · · ·+ an]2 − (k + n− 1)2[ia2i+1 + ai+1ai+2 + · · ·+ anai+1],

n(i+ k − 1)(ai − ai+1)[(i+ k − 1)ai + (i+ k + 1)ai+1 + 2ai+2 + · · ·+ 2an]

−(k + n− 1)2[(i− 1)(a2i − a2i+1) + ai+1(ai − ai+1) + an(ai − ai+1)] ≥ 0,

(ai − ai+1)Ei ≥ 0,

with

Ei = Aiai + Ai+1ai+1 + 2n(i+ k − 1))(ai+2 + · · ·+ an−1) + 2n(i− k − 1)an,



506 Vasile Ĉırtoaje

where

Ai = n(i+ k − 1)2 − (i− 1)(k + n− 1)2, Ai+1 = n(i+ k − 1)(i+ k + 1)− i(k + n− 1)2.

Since
(k + n− 1)2 = 4(n−

√
n)2 = 4nk,

we have
Ai = n(i+ k − 1)2 − 4nk(i− 1) = n(i− k − 1)2 ≥ 0,

Ai+1 = n(i+ k − 1)(i+ k + 1)− 4nik = n(i− k − 1)(i− k + 1).

Since
Aiai + Ai+1ai+1 ≥ (Ai + Ai+1)ai+1 = 2n(i− k − 1)(i− k) ≥ 0,

it suffices to show that

2n(i+ k − 1)(ai+2 + · · ·+ an−1) + 2n(i− k − 1)an ≥ 0.

This is true for i ≥ k + 1, while for i ≤ k we have

2n(i+k−1)(ai+2 + · · ·+an−1)+2n(i−k−1)an ≥ 2n(i+k−1)(n− i−2)an+2n(i−k−1)an

≥ 2n(i+ k − 1)(n− k − 2)an + 2n(i− k − 1)an = 2n[(i− 1)(n− k − 1) + k(n− k − 3)]an

≥ 2nk(n− k − 3)an = 4nk(
√
n− 2) ≥ 0.

For k = k0, the equality occurs when a1 = a2 = · · · = an = 1, and also for a1 = · · · = ak+1

and ak+2 = · · · = an = 0.

P 2.115. Prove that
3

4
is the least positive value of k such that

(
ka+ b+ c+ d

k + 3

)2

≥ ab+ bc+ cd+ de+ ea

5

whenever a ≥ b ≥ c ≥ d ≥ e ≥ 0.

(Vasile Cı̂rtoaje, Math. Reflections, 3, 2024)

Solution. Setting b = c = d = e = 1, which involves and a ≥ 1, the inequality becomes(
ka+ 3

k + 3

)2

≥ 2a+ 3

5
,

(
ka+ 3

k + 3

)2

− 1 ≥ 2a+ 3

5
− 1,

(a− 1)(5k2a+ 3k2 + 18k − 18) ≥ 0.

It is true for a ≥ 1 only if
5k2a+ 3k2 + 18k − 18 ≥ 0.
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Setting a = 1, we get the necessary condition (4k − 3)(k + 3) ≥ 0, i.e. k ≥ 3

4
. To show that

3

4
is the least positive value of k, we need to prove the original inequality for k =

3

4
. Since

ab+ bc+ cd+ de+ ea ≤ ab+ bc+ cd+ d2 + da,

it suffices to prove that F (a, b, c, d) ≥ 0, where

F (a, b, c, d) = (3a+ 4b+ 4c+ 4d)2 − 45(ab+ bc+ cd+ d2 + da).

We will show that

F (a, b, c, d) ≥ F (a, b, s, s) ≥ 0,

where s =
c+ d

2
, s ≥

√
cd ≥ d. We have

F (a, b, c, d)− F (a, b, s, s)

45
= (ab+ bs+ s2 + s2 + sa)− (ab+ bc+ cd+ d2 + da)

= b(s− c) + (s2 − cd) + (s2 − d2) + a(s− d) ≥ b(s− c) + a(s− d) =
(c− d)(a− b)

2
≥ 0.

Next, for fixed a and b, we write the inequality F (a, b, s, s) ≥ 0 as f(s) ≥ 0, where

f(s) = (3a+ 4b+ 8s)2 − 45[2s2 + (a+ b)s+ ab].

Since f(s) is concave and s ∈ [0, b], it suffices to show that f(0) ≥ 0 and f(b) ≥ 0. Indeed,

f(0) = (3a+ 4b)2 − 45ab = (3a− 4b)2 + 3ab > 0

and

f(b) = (3a+ 12b)2 − 45(2ab+ 3b2) = 9(a− b)2 ≥ 0.

For k =
3

4
, the equality occurs when a = b = c = d = e ≥ 0.

P 2.116. If a1 ≥ a2 ≥ · · · ≥ a8 ≥ 0, then

(2a1 + a2 + · · ·+ a7)
2 ≥ 8(a1a2 + a2a3 + · · ·+ a8a1).

(Vasile Cı̂rtoaje, Mathproblems, 1, 2024)
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Solution. Since

a1a2 + a2a3 + · · ·+ a8a1 ≤ a1a2 + a2a3 + · · ·+ a6a7 + a27 + a7a1,

it suffices to prove that F (a1, a2, . . . , a7) ≥ 0, where

F (a1, a2, . . . , a7) = (2a1 + a2 + · · ·+ a7)
2 − 8(a1a2 + a2a3 + · · ·+ a6a7 + a27 + a7a1).

We will show that

F (a1, a2, a3, a4, a5, a6, a7) ≥ F (a2, a2, a3, a4, a5, a6, a7) ≥ · · · ≥ F (a6, a6, a6, a6, a6, a6, a7) ≥ 0.

Since

F (a6, a6, a6, a6, a6, a6, a7) = (7a6 + a7)
2 − 8(5a26 + 2a6a7 + a27) = (a6 − a7)(9a6 + 7a7) ≥ 0,

we only need to show that

F (ai, . . . , ai, ai+1, ai+2, . . . , a7) ≥ F (ai+1, . . . , ai+1, ai+1, ai+2, . . . , a7)

for i = 1, . . . , 5. Write the inequality as follows:

[(i+ 1)ai + ai+1 + ai+2 + · · ·+ a7]
2− 8[(i− 1)a2i + aiai+1 + ai+1ai+2 + · · ·+ a6a7 + a27 + a7ai] ≥

≥ [(i+ 2)ai+1 + ai+2 + · · ·+ a7]
2 − 8[ia2i+1 + ai+1ai+2 + · · ·+ a6a7 + a27 + a7ai+1],

(i+1)(ai−ai+1)[(i+1)ai+(i+3)ai+1 +2ai+2 + · · ·+2a7] ≥ 8(ai−ai+1)[(i−1)ai+ iai+1 +a7].

Since ai − ai+1 ≥ 0, the inequality holds if

(i+ 1)[(i+ 1)ai + (i+ 3)ai+1 + 2ai+2 + · · ·+ 2a7] ≥ 8[(i− 1)ai + iai+1 + a7],

that is

(i− 3)2ai + (i− 1)(i− 3)ai+1 + 2(i+ 1)(ai+2 + · · ·+ a6) + 2(i− 3)a7 ≥ 0.

This inequality is clearly true for i ≥ 3. It also holds for i = 1 and i = 2, because

(i− 3)2ai + (i− 1)(i− 3)ai+1 ≥ (i− 3)2ai+1 + (i− 1)(i− 3)ai+1 = 2(2− i)(3− i)ai+1 ≥ 0

and

2(i+ 1)a6 + 2(i− 3)a7 ≥ 2(i+ 1)a7 + 2(i− 3)a7 = 4(i− 1)a7 ≥ 0.

The equality occurs when a1 = a2 = · · · = a8, and also when a1 = a2 = a3 and a4 = · · · =
a8 = 0.

Remark. Similarly, we can prove the following generalization:
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• Let n ≥ 3 be an integer such that 2n is a perfect square. Then, k0 = (
√
n− 2)2 is the

least positive value of the constant k such that(
ka1 + a2 + · · ·+ an−1

k + n− 2

)2

≥ a1a2 + a2a3 + · · ·+ ana1
n

whenever a1 ≥ a2 ≥ · · · ≥ an ≥ 0.

Setting a1 = a2 = · · · = ak0+1 = 1 and ak0+2 = · · · = an = 0, the desired inequality
becomes (

k + k0
k + n− 2

)2

≥ k0
n
,

k + k0
k + n− 2

≥
√
n−
√

2√
n

, k ≥ k0.

To show that k0 is the smallest positive value of k, we need to show that the original inequality
holds for k = k0. Since

(k + n− 2)2 = 4kn

and
a1a2 + a2a3 + · · ·+ ana1 ≤ a1a2 + a2a3 + · · ·+ an−2an−1 + a2n−1 + an−1a1,

it suffices to prove that F (a1, a2, . . . , an−1) ≥ 0, where

F (a1, a2, . . . , an−1) = (ka1+a2+· · ·+an−2+an−1)2−4k(a1a2+a2a3+· · ·+an−2an−1+a2n−1+an−1a1).

We will show that

F (a1, a2, a3, . . . , an−1) ≥ F (a2, a2, a3, . . . , an−1) ≥ · · · ≥ F (an−2, an−2, · · · , an−2, an−1) ≥ 0.

Since

F (an−2, an−2, · · · , an−2, an−1) = [(n−3+k)an−2 +an−1]
2−4k[(n−3)a2n−2 +2an−2an−1 +a2n−1]

= (an−2 − an−1)[(n− 3− k)2an−2 + (4k − 1)an−1] ≥ 0,

we only need to show that

F (ai, · · · , ai, ai+1, ai+2, . . . , an−1) ≥ F (ai+1, · · · , ai+1, ai+1, ai+2, . . . , an−1)

for i = 1, . . . , n− 3. Write the inequality as follows:

[(i−1+k)ai+ai+1+ai+2+· · ·+an−1]2−4k[(i−1)a2i+aiai+1+ai+1ai+2+· · ·+an−2an−1+a2n−1+an−1ai] ≥

≥ [(i+ k)ai+1 + ai+2 + · · ·+ an−1]
2− 4k[ia2i+1 + ai+1ai+2 + · · ·+ an−2an−1 + a2n−1 + an−1ai+1],

(i−1+k)(ai−ai+1)[(i−1+k)ai+(i+1+k)ai+1+2ai+2+· · ·+2an−1]
2 ≥ 4k(ai−ai+1)[(i−1)(ai+ai+1)+an−1],

(ai−ai+1)[(i−1−k)2ai+(i−1−k)(i+1−k)ai+1+2(i−1+k)ai+2+· · ·+2(i−1+k)an−2+2(i−1−k)an−1] ≥ 0.
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Since

(i−1−k)2ai+(i−1−k)(i+1−k)ai+1 ≥ (i−1−k)2ai+1+(i−1−k)(i+1−k)ai+1 = 2(i−k−1)(i−k)ai+1 ≥ 0

and

2(i− 1 + k)an−2 + 2(i− 1− k)an−1 ≥ 2(i− 1 + k)an−1 + 2(i− 1− k)an−1 = 4(i− 1)an−1,

the last inequality is true and the proof is completed. For k = k0, the equality occurs when
a1 = a2 = · · · = an, and also when a1 = a2 = · · · = ak+1 and ak+2 = · · · = an = 0.

P 2.117. Let a, b, c, d be nonnegative real numbers such that ab+ bc+ cd = 7. Prove that

1

a+ 1
+

1

b+ 1
+

1

c+ 1
+

1

d+ 1
≥ 3

2
.

(Vasile Cı̂rtoaje, Crux Mathematicorum, 1, 2025)

Solution. By the Cauchy-Schwarz inequality, we have

[(a+ 1)b+ (d+ 1)c]

(
1

a+ 1
+

1

d+ 1

)
≥ (
√
b+
√
c)2,

1

a+ 1
+

1

d+ 1
≥ b+ c+ 2

√
bc

b+ c− bc+ 7
.

So, it suffices to show that

1

b+ 1
+

1

c+ 1
+

b+ c+ 2
√
bc

b+ c− bc+ 7
≥ 3

2
.

Let

s =
b+ c

2
, p =

√
bc, s ≥ p.

We need to show that
2s+ 2

2s+ p2 + 1
+

2s+ 2p

2s− p2 + 7
≥ 3

2
,

which is equivalent to F ≥ 0, where

F = 4s2 + 8(p− 1)s+ 3p4 + 4p3 − 22p2 + 4p+ 7

= 4(s+ p− 1)2 + 3p4 + 4p3 − 26p2 + 12p+ 3.

For p ≤ 1

2
, we have

F ≥ 3p4 + 4p3 − 26p2 + 12p+ 3 > −28p2 + 12p+ 1 = (1− 2p)(1 + 14p) ≥ 0.
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For p ≥ 1

2
, we have s+ p− 1 ≥ 2p− 1 ≥ 0, therefore

F ≥ 4(2p− 1)2 + 3p4 + 4p3 − 26p2 + 12p+ 3

= 3p4 + 4p3 − 10p2 − 4p+ 7 = (p− 1)2(p+ 1)(3p+ 7) ≥ 0.

The equality occurs for a = d = 3 and b = c = 1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
√
a1a2 · · · an,

with equality if and only if a1 = a2 = · · · = an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap11 a
p2
2 · · · apnn ,

with equality if and only if a1 = a2 = · · · = an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2,

with equality if and only if a1 = a2 = · · · = an.
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an,

Mk =


(
ak1+a

k
2+···+akn
n

) 1
k
, k 6= 0

n
√
a1a2 · · · an, k = 0

,

is an increasing function with respect to k ∈ R. For instant, M2 ≥ M1 ≥ M0 ≥ M−1 is
equivalent to√

a21 + a22 + · · ·+ a2n
n

≥ a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an ≥

n
1

a1
+

1

a2
+ · · ·+ 1

an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1 + x)r ≥ 1 + rx for r ≥ 1 and r ≤ 0;
b) (1 + x)r ≤ 1 + rx for 0 ≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1 ≤ a1, a2, . . . , an ≤ 0,

then
(1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c− a)(c− b) ≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c+ a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc+ ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc+ ca),

(b− c)2(b+ c− a) + (c− a)2(c+ a− b) + (a− b)2(a+ b− c) ≥ 0.
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For k = 2, we get the fourth degree Schur’s inequality, which holds for any real numbers
a, b, c, and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c) ≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 − a2b2 − b2c2 − c2a2 ≥ (ab+ bc+ ca)(a2 + b2 + c2 − ab− bc− ca),

(b− c)2(b+ c− a)2 + (c− a)2(c+ a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q − p2), p = a+ b+ c, q = ab+ bc+ ca.

A generalization of the fourth degree Schur’s inequality, which holds for any real numbers
a, b, c and any real number m, is the following (Vasile Cı̂rtoaje, 2004)∑

(a−mb)(a−mc)(a− b)(a− c) ≥ 0,

where the equality holds for a = b = c, and for a/m = b = c (or any cyclic permutation).
This inequality is equivalent to∑

a4 +m(m+ 2)
∑

a2b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),∑
(b− c)2(b+ c− a−ma)2 ≥ 0.

A more general result is given by the following theorem (Vasile Cı̂rtoaje, 2004).

Theorem. Let

f4(a, b, c) =
∑

a4 + α
∑

a2b2 + βabc
∑

a− γ
∑

ab(a2 + b2),

where α, β, γ are real constants such that 1 + α + β = 2γ. Then,

(a) f4(a, b, c) ≥ 0 for all a, b, c ∈ R if and only if

1 + α ≥ γ2;

(b) f4(a, b, c) ≥ 0 for all a, b, c ≥ 0 if and only if

α ≥ (γ − 1) max{2, γ + 1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2,

with equality for
a1
b1

=
a2
b2

= · · · = an
bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1 ≤ i ≤ n.



516 Vasile Ĉırtoaje

8. HÖLDER’S INEQUALITY

If xij (i = 1, 2, · · · ,m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m∏
i=1

(
n∑
j=1

xij

)
≥

 n∑
j=1

m

√√√√ m∏
i=1

xij

m

.

9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n∑
i=1

aibi ≥

(
n∑
i=1

ai

)(
n∑
i=1

bi

)
;

b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n∑
i=1

aibi ≤

(
n∑
i=1

ai

)(
n∑
i=1

bi

)
.

10. REARRANGEMENT INEQUALITY

(1) If a1, a2, . . . , an and b1, b2, . . . , bn are two increasing (or decreasing) real sequences,
and (i1, i2, · · · , in) is an arbitrary permutation of (1, 2, · · · , n), then

a1b1 + a2b2 + · · ·+ anbn ≥ a1bi1 + a2bi2 + · · ·+ anbin .

(2) If a1, a2, . . . , an is decreasing and b1, b2, . . . , bn is increasing, then

a1b1 + a2b2 + · · ·+ anbn ≤ a1bi1 + a2bi2 + · · ·+ anbin .

(3) Let b1, b2, . . . , bn and c1, c2, . . . , cn be two real sequences such that

b1 + · · ·+ bk ≥ c1 + · · ·+ ck, k = 1, 2, · · · , n.

If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1b1 + a2b2 + · · ·+ anbn ≥ a1c1 + a2c2 + · · ·+ ancn.

11. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f(αx+ βy) ≤ αf(x) + βf(y)
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for all x, y ∈ I and any α, β ≥ 0 with α+ β = 1. If the inequality is reversed, then f is said
to be concave.
If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′ is (strictly)
increasing. If f ′′ ≥ 0 on I, then f is convex on I. Also, if f ′′ ≥ 0 on (a, b) and f is continuous
on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex
function on a real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1f(a1) + p2f(a2) + · · ·+ pnf(an)

p1 + p2 + · · ·+ pn
≥ f

(
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

)
.

For p1 = p2 = · · · = pn, Jensen’s inequality becomes

f(a1) + f(a2) + · · ·+ f(an) ≥ nf

(
a1 + a2 + · · ·+ an

n

)
.

12. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

p = a+ b+ c, q = ab+ bc+ ca, r = abc,

s =
√
p2 − 3q =

√
a2 + b2 + c2 − ab− bc− ca.

From the identity

(a− b)2(b− c)2(c− a)2 = −27r2 + 2(9pq − 2p3)r + p2q2 − 4q3,

it follows that

−2p3 + 9pq − 2(p2 − 3q)
√
p2 − 3q

27
≤ r ≤ −2p3 + 9pq + 2(p2 − 3q)

√
p2 − 3q

27
,

which is equivalent to

p3 − 3ps2 − 2s3

27
≤ r ≤ p3 − 3ps2 + 2s3

27
.

Therefore, for constant p and q, the product r is minimal and maximal when two of a, b, c
are equal.

13. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A = (a1, a2, . . . , an), ai ∈ I,
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majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f(a1) + f(a2) + · · ·+ f(an) ≥ f(b1) + f(b2) + · · ·+ f(bn).

We say that a sequence A = (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a
sequence B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A � B,

if
a1 ≥ b1,

a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.

14. VASC’S CYCLIC INEQUALITY

The following theorem gives Vasc’s cyclic inequality (Vasile Cı̂rtoaje, 1991).

Theorem 1. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3b+ b3c+ c3a),

with equality for a = b = c, and also for

a

sin2 4π
7

=
b

sin2 2π
7

=
c

sin2 π
7

(or any cyclic permutation).

A generalization of Vasc’s inequality is the following (Vasile Cı̂rtoaje, 2009).

Theorem 2. Let

f4(a, b, c) =
∑

a4 + A
∑

a2b2 +Babc
∑

a+ C
∑

a3b+D
∑

ab3,

where A,B,C,D are real constants such that

1 + A+B + C +D = 0.

The inequality f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if

3(1 + A) ≥ C2 + CD +D2.
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Notice that

4

S
f4(a, b, c) =(U + V + C +D)2 + 3

(
U − V +

C −D
3

)2

+
4

3
(3 + 3A− C2 − CD −D2),

where
S =

∑
a2b2 −

∑
a2bc,

U =

∑
a3b−

∑
a2bc

S
,

V =

∑
ab3 −

∑
a2bc

S
.

For A = B = 0, C = −2 and D = 1, we get the following inequality

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3b+ b3c+ c3a),

with equality for a = b = c, and also for

a

sin π
9

=
b

sin 7π
9

=
c

sin 13π
9

(or any cyclic permutation) - Vasile Cı̂rtoaje, 1991.

15. CYCLIC INEQUALITIES OF DEGREE THREE AND FOUR

Consider the third degree cyclic homogeneous polynomial

f3(a, b, c) =
∑

a3 +Babc+ C
∑

a2b+D
∑

ab2,

where B,C,D are real constants. The following theorem holds.

Theorem 1. The cyclic inequality f3(a, b, c) ≥ 0 holds for all nonnegative numbers
a, b, c if and only if

f3(1, 1, 1) ≥ 0

and
f3(a, 1, 0) ≥ 0

for all a ≥ 0.

Consider now the fourth degree cyclic homogeneous polynomial

f4(a, b, c) =
∑

a4 + A
∑

a2b2 +Babc
∑

a+ C
∑

a3b+D
∑

ab3,

where A,B,C,D are real constants.
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The following theorem states the necessary and sufficient conditions that f4(a, b, c) ≥ 0
for all real numbers a, b, c.

Theorem 2 (Vasile Cı̂rtoaje, 2012). The inequality f4(a, b, c) ≥ 0 holds for all real
numbers a, b, c if and only if g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 3(2 + A− C −D)t4 − Ft3 + 3(4−B + C +D)t2 + 1 + A+B + C +D,

F =
√

27(C −D)2 + E2, E = 8− 4A+ 2B − C −D.

Note that in the special case f4(1, 1, 1) = 0 (when 1 +A+B+C+D = 0), Theorem 1 yields
Theorem 0 from the preceding section 21.

The following theorem states some strong sufficient conditions that f4(a, b, c) ≥ 0 for all
real numbers a, b, c.

Theorem 3 (Vasile Cı̂rtoaje, 2012). The inequality f4(a, b, c) ≥ 0 holds for all real
numbers a, b, c if the following two conditions are satisfied :

(a) 1 + A+B + C +D ≥ 0;
(b) there exists a real number t ∈ (−

√
3,
√

3) such that f(t) ≥ 0, where

f(t) = 2Gt3 − (6 + 2A+B + 3C + 3D)t2 + 2(1 + C +D)Gt+H,

G =
√

1 + A+B + C +D, H = 2 + 2A−B − C −D − C2 − CD −D2.

The following theorem states the necessary and sufficient conditions that f4(a, b, c) ≥ 0
for all a, b, c ≥ 0.

Theorem 4 (Vasile Cı̂rtoaje, 2013). Let

E = 8− 4A+ 2B − C −D, F =
√

27(C −D)2 + E2,

g4(t) = 3(2 + A− C −D)t4 − Ft3 + 3(4−B + C +D)t2 + 1 + A+B + C +D,

g3(t) =
2E

F
t3 + 3t2 − 1.

For F = 0, the inequality f4(a, b, c) ≥ 0 holds for all a, b, c ≥ 0 if and only if g4(t) ≥ 0
for all t ∈ [0, 1].

For F 6= 0, the inequality f4(a, b, c) ≥ 0 holds for all a, b, c ≥ 0 if and only if the
following two conditions are satisfied:

(a) g4(t) ≥ 0 for all t ∈ [0, t1], where t1 ∈ [1/2, 1] such that g3(t1) = 0;
(b) f4(a, 1, 0) ≥ 0 for all a ≥ 0.

The following theorem states some strong sufficient conditions that f4(a, b, c) ≥ 0 for all
a, b, c ≥ 0.

Theorem 5 (Vasile Cı̂rtoaje, 2013). The inequality f4(a, b, c) ≥ 0 holds for all a, b, c ≥
0 if

1 + A+B + C +D ≥ 0
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and one of the following two conditions is satisfied :

(a) 3(1 + A) ≥ C2 + CD +D2;

(b) 3(1 + A) < C2 + CD +D2, and there exists t ≥ 0 such that
(C + 2D)t2 + 6t+ 2C +D ≥ 2

√
(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A).

16. VASC’S EXPONENTIAL INEQUALITY

Let 0 < k ≤ e.
(a) If a, b > 0, then (Vasile Cı̂rtoaje, 2006)

aka + bkb ≥ akb + bka;

(b) If a, b ∈ (0, 1], then (Vasile Cı̂rtoaje, 2010)

2
√
akabkb ≥ akb + bka.
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