This is Volume 5 of the five-volume book Mathematical Inequalities, which
introduces and develops the main types of elementary inequalities. The first
three volumes are a great opportunity to look into many old and new
inequalities, as well as elementary procedures for solving them: Volume 1 -
Symmetric Polynomial Inequalities, Volume 2 - Symmetric Rational and
Nonrational Inequalities, Volume 3 - Cyclic and Noncyclic Inequalities. As a
rule, the inequalities in these volumes are increasingly ordered according to
the number of variables: two, three, four, ... , n-variables. The last two
volumes (Volume 4 — Extensions and Refinements of Jensen’s Inequality,
Volume 5 — Other Recent Methods for Creating and Solving Inequalities)
present beautiful and original methods for solving inequalities, such as
Half/Partial convex function method, Equal variables method, Arithmetic
compensation method, Highest coefficient cancellation method, pqgr
method etc. The book is intended for a wide audience: advanced middle
school students, high school students, college and university students, and
teachers. Many problems and methods can be used as group projects for
advanced high school students.
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Chapter 1

Arithmetic Mean Method and
Arithmetic Compensation Method

1.1 Theoretical Basis

The Arithmetic Mean - Theorem (AM-Theorem) is useful to prove some symmetric
inequalities of n real variables a;,a,,...,a,, where the equality occurs when n or
n—1 variables are equal.

AM-THEOREM. Let
F(a;,ay,...,a,):A—>R, AeR"

be a symmetric continuous function satisfying

a, +a a, +a
F(al,az,...,an_l,an)ZF(—”a ")

L s
forall a;,a,,...,a, € A such thata; < a, <---<a,ora; >a,=--2>a, Then,
forall aj,a,,...,a, €A, the following inequality holds:

_a1+a2+"'+an
n .

F(a;,a,,...,a,) = F(a,aq,...,a), a

Proof. Let
Aj:(ajl,ajz,...,ajn), j:0,1,2,...,

where each A; is constructed from the preceding A;_, by replacing its smallest and
largest elements with their arithmetic mean, and

AO == (a01, aoz, ooy aon) == (al, az, ceey an).
By hypothesis, we have

F(al,az,...,an)ZF(all,alz,...,aln)2F(a21,a22,...,a2n)2 ctty,

1



2 Vasile Cirtoaje

and by Lemma below it follows that

F(a,,a,,...,a,) = jl_i)rgoF(aﬂ,aﬂ,...,ajn) =F(a,a,...,a).

Lemma. Let

Ay, A, A, ...
be an infinite sequence of n-tuples A; = (a;,0;,...,a;,) € R", where each A; is
constructed from the preceding A;_, by replacing its smallest and largest elements with
their arithmetic mean. Then

Cljl+Clj2+"'+ajn:a01+a02+"'+a0n

and
a01+a02+"'+a0n
a= .

lim A; =(a,aq,...,a),
j—oo n
Proof. For any n-tuple A;, define the closed interval J; = [a;, b;], where
a] = min{aﬂ, ajz, ceey ajn}, b] = I‘l’laX{ajl, ajz, ceey al‘n},
and denote by |J;| the length of the closed interval J;:
Clearly, we have

J02J12J22"‘, |J0|2|J1|2|J2|2

We infer that for any integer j there exists an integer k; such that

2
kjS 5 |Jj+kj|S§|Jj|'

NS

Under this assumption, we have
Jj—00

therefore
_ aOl +a02+"'+a0n

lim A; =(a,qa,...,a),
jooo n

To end the proof, let

2a;+b; 2a.+b. a;+2b; a:+2b;
] J ] J J J J J
Bj: a],— B} (C]: F) B} ]Dj: —’b] .
3 3 3 3

Consider that A; has k;; elements in B;, k;, elements in D; and n—k;; —k;, elements
in C;. Let

k] - min{kll, ka}.
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If c; € B; and ¢, € D;, then

2

2 2 3
2 2 3
therefore
¢ +c
— (.

e
Asa consequence, Ajyi, .has kj; —k; elements in B}, k;, —k; elements in D;, and the
other elements in C;. Since

(kjl - kj)(ka - kj) =0,

all elements of A; s belong to

B.UC aj+2bj
.U L= a.’—
j j j 3
or
2aj+ bj
Because 2(b )
_ _albj—a;) 2
B, UC;| =|C; UD;| = T §|Jj|:

it follows that 5

i) < 1041

This Lemma is a known result (see, for example, problem 2389 in Crux Mathe-
maticorum, 1999, page 171 and page 520).

Assuming that a, = min{a,, a,,...,a,} or a, = max{a,,a,,...,a,} and fixing it,
we get

AM-Corollary (Vasile Cirtoaje, 2005). Let
F(ay,a,,...,a,):A—>R, AeR"

be a symmetric continuous function satisfying

a, +a,, a, +a,

— 2,...,an_2,T, n

forall ay,a,,...,a, € Asuchthata, <a, <---<a, (ora; =>a,>--->a,). Then,

for all ay,a,,...,a, € A such thata; <a, <---<a, (ora; =a, =>--- = a,), the
following inequality holds:

F(a,,ay,...,0, 5,0, 1,a,) = F(

ay+ay++a,
F(aj,ay,...,a, 1,a,) > F(t,t,....t,a,), t=—="2 nl

n—1
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From the AM-Theorem and the AM-Corollary, we get the SM-Theorem and the
SM-Corollary, respectively.

SM-THEOREM (Vasile Cirtoaje, 2005). Let
G(ay,a,,...,a,):A—>R, A€R],

be a symmetric continuous function satisfying

a; + a? a;i + a?
G(ay,ay,...,a,.4,a,) =G 2 y Aoy e ey Ayqs

for a;,a,,...,a, € Asuchthata, <a, <---<a,ora, >a,=---2=a, Then, for
a;,a,,...,a, € A, the following inequality holds:

\Jaf+a§+---+a,21

n

G(ay,a,,...,a,) = G(t,t,...,t), =

Proof. Let
by=a’, b,=d, ..., b,=a’
and
F(by, by, b)) =G (V/by, /by, V/B).
Since

2., 2 2 _
a;+a,+---+a, =b;+by+---+b,

G(ay,a5,...,a,) = G (/b1 /by, y/by) = F(by, by, by,

\| @ +a? a; + a? b,+b, b+b
G( %:az a1, ! ) ( - s>V 2: sV nl) !

b+ b b +b
:F( 1t ”,bz,...,bn_l,—1+ )
2 n

the SM-Theorem follows immediately from the AM-Theorem.
SM-Corollary (Vasile Cirtoaje, 2005). Let
G(ay,a,,...,a,):A—>R, A€R],

be a symmetric continuous function satisfying

2 2 2 2
1, Uos e, Uy o, U,y 1,U,) = 2 sUg5 e, Upy_9, 2 ¥ n
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forall a,,a,,...,a, € Asuch thata, <a,<---<a, (ora, >a,>---2>a,). Forall
a,,ds,,...,a, € Asuchthata, <a,<---<a, (ora, >a,>--->a,), the following
inequality holds:

2 2 2
a?+a2+-+d

n—1

G(ay,a,,...,a,4,a,) = G(t,t,...,t,a,), :\J

In addition, the GM-Theorem and the GM-Corollary are valid.
GM-THEOREM (Vasile Cirtoaje, 2005). Let
G(ay,a,,...,a,):A—>R, A€R],
be a symmetric continuous function satisfying

G(ab a21 ] an—l: an) 2 G (V alan: a2: ceey an—17 vV alan)

for a;,a,,...,a, € Asuchthata; <a, <---<a,ora, >a,=---2>a, Then, for
a;,a,,...,a, € A, the following inequality holds:

G(al;az:-'-:an) = G(t, t,..., t), t=4a,a,-a,.

GM-Corollary (Vasile Cirtoaje, 2005). Let
G(a;,ay,...,a,):A—>R, A€eR],
be a symmetric continuous function satisfying

G(ay,as,...,0, 5,0, 1,a,) =G (1/a1an_1, Aoyevny Uy oy /A1, 1, an)

foralla,,a,,...,a, € Asuchthata, <a,<---<a, (ora, >a,>--->a,). Forall
a,,q,,...,a, € Asuchthata; <a, <---<a, (ora, 2 a,>--->a,), the following
inequality holds:

G(ay,ay,...,a,4,a,) = G(t,t,...,t,a,), = "Vaa,---a,_4.

bod
bl
S

The Arithmetic Compensation - Theorem (AC-Theorem) is a power tool for solving
some symmetric inequalities of the form F(a,,a,,...,a,) = 0, where a,,a,,...,a,
are nonnegative real variables satisfying a, + a, +--- +a, = s, s > 0. Notice that
the AC-method can be applied especially to those inequalities where the equality
occurs when n — k variables are zero and the other k are equal to s/k, where k €
{1,2,...,n}.
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AC-THEOREM (Vasile Cirtoaje, 2005). Let s > 0 and let F be a symmetric continuous
function on the compact set in R"

S={(ay,a,,...,a,):a;+a,+--+a,=s,a,=>20,i=1,2,...,n}.

If
F(a,,a,,as,...,a,) =
. a, +a, a; +a }
Zmln{F( 12 ey 12 2,a3,...,an ,F(O,a1+a2,a3,...,an)} ™

forall (ay,a,,...,a,) €S, then

. s s
F(ay,. s Qg Qus1s -~ > y) = glklgnF(O’”"O’E"”’E)

forall (ay,a,,...,a,) €S.

Proof The AC-Theorem is clearly true for n = 2. Consider further n > 3. Since the
function F is continuous on the compact set S, F achieves its minimum at one or
more points of the set. We need to show that among these global minimum points
there is one having n — k coordinates equal to zero and k coordinates equal to
s/k, where k € {1,2,...,n}. Using the mathematical induction, it is easy to prove
that this is true if among the global minimum points there is one having either a
coordinate equal to zero or all coordinates equal to s/n. Let
B, =(by,by,...,b,), b <b,<---<b,

be a global minimum point of F over the setS. If by =0or by =b,=---=b
then the proof is completed. Consider further that

n»

0<b; <b,.
From the hypothesis (*), it follows that at least one of

Al — (0, b2,...’ bn_l’ bl + bn)

b, +b b,+b
B—_l:( 1; n’bz,...,bn_l, 1;— n)

is also a global minimum point of F over the set S. In the first case, the proof is
completed. In the second case, starting from B; as a global minimum point of F,
we repeat the process infinitely to get A, with a coordinate equal to zero and, by

Lemma above,
s s s
Bo=(2,2,...,2).
nn n

Since at least one of A, and B, is a global minimum point of F, the conclusion
follows.

and
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AC-Corollary. Let s > 0 and let F be a symmetric continuous function on the compact
set in R"

S={(aj,ay,...,a,):a;,+a,+---+a,=s,a=>0,i=1,2,...,n}.

If
F(alaaZ)a?n'--Jan)ZF(O)al+a25a3)'--5an)

for all (ay,a,,...,a,) €S satisfying

a,+a, a;+a,
2 72

F(al,az,ag,...,an)<F( ,a3,...,an), a, # a,,

then F(aq,a,,...,a,) is minimal when n — k of the variables a,,a,,...,a, are zero
: s
and the other k variables are equal to o where k € {1,2,...,n}.

Proof. Consider the following two possible cases:

a+a, a;+a,
2’ 2

F(al,az,ag,...,an)ZF( ,a3,...,an)

and
a+a, a;+a,

2 7 2
If the first case, the condition (*) in AC-Theorem is obviously satisfied. In the
second case, which implies a; # a,, the hypothesis in the AC-Corollary gives

F(al,az,aB,...,an)<F( ,a3,...,an).

F(a,,a,,as,...,a,) = F(0,a; +ay,as,...,a,),
and the condition (*) in AC-Theorem is also satisfied.

AC1-Corollary. Let s > 0 and let G be a symmetric continuous function on the com-
pact set in R"

S={(ay,ay,...,a,):al+a}+---+a’=s,a,>0,i=1,2,...,n}.

If

G(a;,a,,as,...,a,) > G(O, \/af+a§,a3,...,an)

forall (ay,a,,...,a,) €S satisfying

2 2 2 2
aj +a; aj +a;
5 5 ,dg ..

G(a;,ay,as,...,a,) <G \J Sy |, ap Fay,

then G(ay,a,,...,a,) is minimal when n — k of the variables a,,a,,...,a, are zero

and the other k variables are equal to \/% where k € {1,2,...,n}.
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AC2-Corollary. Let s > 0 and let G be a symmetric continuous function on the com-
pact set in R"

S={(ay,a,,...,a,):aq;a,---a,=p, a;,>0,i=1,2,...,n}.

If

G(ay,a,,as,...,a,) = G(1,a,a,,as,...,4a,)

forall (ay,a,,...,a,) €S satisfying

G(a,,ay,as,...,a,) < G(w/alaz, Va,a,,a;. ..,an), a, # a,,

then G(ay,a,,...,a,) is minimal when n — k of the variables a,,a,,...,a, are 1 and
the other k variables are equal to {/p, where k € {1,2,...,n}.
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1.2 Applications

1.1. If ay,a,,...,a, are real numbers such that a; +a, +---+ a, = 2, then

(1+af)(1+a§)---(1+a§)2(1+%)n.

1.2. If a;,a,,...,a, (n>5) are real numbers such that a; +a, +--- +a, = 4, then

16\"
(1+af)(1+a§)---(1+aﬁ)2(1+—2) )
n

1.3. If a, b, c,d are nonnegative real numbers such that a + b + ¢ +d = 4, then

V9(a3 + b3 + 3 +d3) + 28 < 2(a® + b% + 2 + d?).

1.4. Ifa,b,c,d,e,f =0suchthata+b+c+d+e+ f =6, then

5@ +b+c+d*+e+£3)+36>11(a* + b*+ 2 +d* +e* + f2).

1.5. If a,b,c,d > 0suchthata+b+c+d =4, then

abc + bed + cda + dab + a®b?c? + b?c?d? + c2d?a?® + d*a*b?® < 8.

1.6. If a,b,c,d >0 suchthata+ b+c+d =4, then

1 1 1 1

<1.
5—abc+5—bcd +5—cda+5—dab o

1.7. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that

a,+a,+---+a,=n,

and let )
1 \" n—1e,
en_1=(1+ ) S Gl
n—1 n—e,
Then,
1 1 1 n
4+t <
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1.8. Ifa,b,c,d >0suchthata+ b+c+d =4, then

1 + 1 + 1 + 1 <E
4—abc 4—bcd 4—cda 4—dab” 11

1.9. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that

a,t+a,+---+a,=n,

and let Loy (n—1)e
e"_1:(1+n—1) , en_1<kS7n_"ll.
Then,
1 N 1 - 1 -1 o1
k—aa,---a,; k—ayas---a, k—a,a,---a,., k k—e,

1.10. If a,b,c,d > 0 suchthata+ b +c+d =4, then

1 + 1 + 1 + 1 + 1 + 1
10—ab 10—bc 10—cd 10—da 10—ac 10—bd

2
<-.
3

1.11. If a,b,c,d = 0 such thata+ b+c+d =4, then

3@+b3+c+d]—4)>(a®+ b2+ 2+ d*—4)(a®> + b2+ 2 +d*—1).

1.12. If a,b,c,d = 0 such thata+ b+c+d =4, then

7B+ ++d®—4)>(a®>+ b2+ c2+d*—4)(a®> + b*> + 2 +d* +11).

1.13. Let a,,a,,...,a, (n = 3) be nonnegative real numbers such that
a1+a2+"'+an:n.

Then

203 3 3 Mo, 2 2
g(a1+a2+---+a)+ Z ailaizaisZg(a1+a2+---+an).

1<i; <ip<iz<n
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1.14. Let a,,ay,...,a, (n = 4) be nonnegative real numbers such that
a,t+a,+---+a,=n.
Then

6
3 3 3
Ctal+ +ddt—s > @

>2(a?+a2+---+ad?).
n n(n—3) (1 2 n)

a. a

i iy g

1<i;<iy<iz<n
1.15. Let a,,a,,...,a, (n = 3) be nonnegative real numbers such that
a1+a2+"'+an:n.

Then

a a

m+D(a®+a+-+a)+ © > a

)t — >2n(a%+a§+---+afl).

i1 iy iy =

1<i;<iy<iz<n

1.16. Let a4, a,, ..., a, be nonnegative real numbers such that a; +a, +---+a, = 1.
If
me{l,2,...,n+1},

then

mm—1)(C+c+--+a®)+1>2m—-1)(?+a%+---+d?).

1.17. If a;, a,, ..., a, are nonnegative real numbers such that a; +a,+---+a, =n,
then
2, 2 2 2, 3, 3 3
m+1D)(+@+-+a))zn*+a+d+---+d’.

1.18. If aq,a,,...,a, are nonnegative real numbers such that a, +a,+---+a, =n,
then
(M +n+1)(a?+a?+---+a*—n)>al+a}+--+a'—n.

1.19. Letay, ay, ..., a, be nonnegative real numbers such that a, +a,+---+a, =n.
If m > 3 is an integer, then

nm -1
] (+a+-+a*—n)=a'+al+--+a"—n.
n—
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1.20. If a, b, c,d, e are nonnegative real numbers such thata+b+c+d+e =75,

then c
a?+b*+c*+d*+e*—5> Z(l—abcde).

1.21. If a;, a,, ..., a, are nonnegative real numbers such that a; +a,+-

then

n
2 2 2
a1+a2+---+an—nzm(1—a1a2---an).

~+a,=n,

1.22. If a, b, c,d, e are nonnegative real numbers such thata+b+c+d+e =75,

then 45
aA+b3++d3+e2—-5> E(l—abcde).

1.23. If aq,a,,...,a, are nonnegative real numbers such that a, +a, +---
then (2n—1)

S a3+ +a3— men—=21)

a;+a,+--+a,—n= (i—1)? (1—a;ay---ay,).

1.24. If a,,a,,...,a, are nonnegative real numbers such that a, +a, +---
then

1.5 3 3 2 2 2 n—2)\?
;(al+a2+---+an—n)2a1+a2+---+an—n+ 2 (aay---

1.25. If a;,a,, ..., a, are nonnegative real numbers such that a; +a,+---

then

n(n—1
\J¥ (@+d+-+ad—n)=a’+ai+--+a®—n.

n+1

+a,=n,

+a,=n,
a,—1).

+a,=n,

1.26. If a, b, c,d are nonnegative real numbers such that a + b +c +d = 4, then

313 5
\jz(a‘*+b4+c4+d4)+8—1 + §2a2+b2+c2+d2.

1.27. If a, b, c,d are nonnegative real numbers such that a + b +c + d = 4, then

>a?+b2+c?+d>—4.

Z\J a+ bt +ct+d*—4
7
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1.28. If a, b, c,d are nonnegative real numbers such that a + b + c + d = 4, then

16 4 3
\/a4+b4+c4+d4+——82(———) a®+b*+c*+d?).

1.29. If a, b, c,d are nonnegative real numbers such that a + b +c + d = 4, then

1
\/a4+b4+c4+d4+8(2—\/§)2(Z—E)(a2+b2+c2+d2).

1.30. If a, b, c,d are nonnegative real numbers such that a + b +c +d = 4, then

1 1 3 2
\/a4+b4+c4+d4+16(———) > (———) a?+ b2+ c*+d?).
1.31. If a, b, c, d are nonnegative real numbers such that a®+ b%+c2+d? = 1, then

aA+b2+c+d®+abc+bed +cda+dab <1.

1.32. If a, b, c,d are nonnegative real numbers such that a®?+b?+c?+d? = 2, then

a®+b®+c®+d®+abc+ bed +cda+dab > 2.

1.33. If a, b, c,d are nonnegative real numbers such that a®+b?+c2+d? = 3, then

3(a®+ b2 +c2+d>®) +2(abc + bed + cda+dab) > 11.

1.34. If a, b, c,d are nonnegative real numbers such that a®+ b?+c?+d? = 4, then

4(a®>+b*+c*+d*)+abc + bed + cda + dab > 20.

1.35. If a, b, c,d are nonnegative real numbers such that a®+b?+c2+d? = 4, then

28
+bP+E+d3+3(a+b+c+d) < —.
( ) V3
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1.36.

1.37.

1.38.

1.39.

1.40.

then

1.41.

1.42.

If a, b, c,d are nonnegative real numbers such that a®+b?+c2+d? = 4, then

A+ +c+d3+4a+b+c+d)<20.

If a, b, c,d are nonnegative real numbers such that a®+b?+c?+d? = 4, then

CHbP+E+d+2vV2(a+b+c+d) =42+ V2).

If a, b, c,d are nonnegative real numbers such that a®>+b?+c?+d? = 4, then

a3+b3+c3+d3+2\l§(a+b+c+d)24(«/§+i).
3 V3

If a, b, c,d are nonnegative real numbers such that a®>+b?+c?+d? = 4, then
3 3 3 3 2
a+b’+c’+d°—4+—=(a+b+c+d—4)=0.
V3
If a,a,,...,a, are real numbers such that
a,t+a,+---+a,=n,

2_ 2 n(n—1)

(@ +ay+--ta)) —n*z 2=

(a‘1‘+ag+---+a§—n).

If a, b, c,d are real numbers such that a+ b+ c+d =4, then

26
(a2+b2+cz+d2—4)(a2+b2+cz+d2+?)2a4+b4+c4+d4—4.

If a, b, c,d are nonnegative real numbers such that a + b + ¢ +d =4, then

11
(a2+b2+c2+d2—4)(a2+b2+c2+d2+g)2%(a4+b4+c4+d4—4).

1.43.

If a, b, c,d are nonnegative real numbers such that a + b+ ¢ +d =4, then

(@®+b*+c*+d*—4)(2a* +2b* + 22 +2d*— 1) = a* + b* + c* +d* — 4.
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1.44. 1f a, b, c,d are nonnegative real numbers such that a + b + c + d = 4, then

(a2+b2+c2+d2—4)(a2+b2+c2+d2+12)2g(a4+b4+c4+d4—4).

1.45. If a, b, c,d are nonnegative real numbers such that a + b +c +d = 4, then

6 12
(a2+b2+c2+d2—4)(a2+b2+c2+d2+Z—l)2E(a4+b4+c4+d4—4).

1.46. If a;,a,,...,a, are nonnegative real numbers such that
a,+a,+---+a,=m, me{l,2,...,n},
then
1 1 1 m
S+ S+t > .
1+a7 1+a; 1+a? 2

1.47. 1If a, b, c,d are nonnegative real numbers such that a + b +c+d =2, then

1 1 1 1 16

+ + + >—.
1+3a2 1+43b2 1+3c2 1+3d2~ 7

1.48. If a, b, c,d are nonnegative real numbers such that a + b +c +d =4, then

(1+a*)(1+b*)(1+c*)(1+d?) < 25.

1.49. If a, b, c,d are nonnegative real numbers such that a+ b +c+d =1, then

(14+2a)(1+2b)(1+2c)(1+2d) . 125
(1—-a)1-b)(1—-c)(1—-d) — 8 °

. 2
1.50. Ifa;,a,,...,a, are nonnegative real numbers such that a, +a,+---+a, = 3’

then
a,a; 1
5
1<i<j<n (1—-a)(1—a;) 4
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1.51. If a;, a,, ...,a, are nonnegative real numbers such that a; +a,+---+a, =1
and no one of which is 1, then

Z ala] > n
~ (1—a)(1—a;)  2(n—1)

1<i<j<n

1.52. If a, b, c,d are nonnegative real numbers such that a + b +c +d = 4, then

(14+3a)(1+3b)(1+3c)(1+3d) <125+ 131abcd.

1.53. If a, b, c,d are nonnegative real numbers such that a + b +c + d = 4, then

(1+3a®)(1+3b%)(1+3c¢*)(1 +3d?) < 255+ a*b>c%d>.

1.54. If ay,a,,...,a, (n > 3) are nonnegative real numbers, then
4n(n 2)
Za% +22a1a2a3 3( 12 2Z:a1a2
sym sym

1.55. If a, b, ¢, d are nonnegative real numbers such that a+ b +c+d = +/3 , then

ab(a+2b+3c)+ be(b+2c+3d)+cd(c+2d+3a)+da(d +2a+3b) <2.

1.56. If a, b,c,d > 0 such that abcd = 1, then

a+b+c+d 1 1 1 1 9
+ + + - >
16 a+1 b+1 c¢c+1 d+1 4

1.57. Let
F(a,b,c,d)=4(a*+b*+c*+d*)—(a+b+c+d)?,

where a, b, c,d, e are positive real numbers such thata < b < c¢ < d and
a(b+c+d)=3.

Then,
1111
F(a,b,c,d)=F|—,—,—,—|.
(a’ ’C’ )— (a’b’c,d)
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1.58. Let 5
F(a,b,c,d,e) = v abcde — -

1 1 1 17
atptetate

where a, b, ¢,d, e are positive real numbers such that
a =max{a, b,c,d,e}, bcde>1.

Then,

11111
F b ;d; >F BERENEN T K
(a,b,c.d,e) (a b’c’d e)

1.59. Let
F(al,az,...,an):al +a2+.‘-+an_n‘n/a]_a2.“an;

where a,,a,,...,a, are positive real numbers such that a; > a, > --- > q, and

n—1
a0y a,qa, =1

Then,
1 1 1
F(alsaZJ 3an) 2 F R s
a a, a,
1.60. Let
24+b2+c2+d2 a+b+c+d
F(a,b,c,d)=%a 4c - 4C )

where a, b, c,d are positive real numbers such thata < b < ¢ < d and
a(b+c+d)>1.

Then,

1111
F(a,b,c,d)>F|—,—,—,=|.
(a7 7C’ )— (an7C7d)

1.61. If a, b, c,d are positive real numbers such that
a+b+c+d=4, d =max{a, b,c,d},

then 111
—+—+-+1=a*+b*+c*+d>
a b ¢
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1.3 Solutions

P 1.1. If a,a,,...,qa, are real numbers such that a, +a, +---+a, = 2, then
l+a)1+a) -1 +a)> 1+ '
(Q+a))A+ay)-(1+a))= +ﬁ .

Solution. Clearly, it suffices to consider that a,,a,,...,a, are nonnegative num-
bers. Assume that 0 < a; < a, <--- < a, and write the inequality as

F(a,,a,,...,a,) =0,

where .
4
F(ay,ay,...,a,)=1+a})(1+ad?)---(1 +a3)—(1+—2) )
n
If
F(a;,a,,...,a,) = F(t,a,,...,a, 1,t)
for
a, +a,
t=—1—"
2

then, by the AM-Theorem, we have
2 2 2
F(a,,ay,...,a,) > F(—,—,.,_,—) =0.
n n

The inequality F(a;,a,,...,a,) = F(t,a,,...,a,_1,t) is equivalent to
(1+a)(1+a) = (147,
(a; —a,)*(2—t*—aya,) > 0.

Since a,a, < t?, it suffices to show that t < 1. We have

a, +a a+a,+---+a
t = 1 nS 1 2 n:]ﬂ
2 2

2
The equality holds for a; =a, =---=a, = —.
n

n

P1.2. Ifa;y,a,,...,a, (n>5) are real numbers such that a, +a,+---+a, = 4, then

(1+af)(1+a§)---(1+ai)2(1+711—§)n.
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Solution. It suffices to consider that a;,a,,...,a, are nonnegative numbers. As-
sume that 0 < a; < a, < -+ < a,, and write the inequality as F(a,,a,,...,a,) =0,
where

16\"
F(al,az,...,an)=(1+af)(1+a§)---(1+a§)—(1+E) .

If
F(a;,a,,...,a,) = F(x,a,,...,a, 5,X,a,)
for
_a;ta,,
2 )

then, by the AM-Corollary, we have

F(a,,a,,...,a,1,a,) = F(t,t,...,t,a,)
a1+a2+"'+an_1

fort = . The inequality F(a;,a,,...,a,) = F(x,a,,...,a, 5, X, a,)

) ) n—1
is equivalent to

2 2 242
(I1+a))A+a,_)=(1+x%)7,

((11 - an—l)z(z - XZ - alan—l) = 0.

Since a;a,_; < x?, it suffices to show that x < 1. We have
x = a1+an_1 S a1+a2+"'+an — 1.
2 4

Thus, we only need to prove the original inequality for a; =a, =--- =a,_,, thatis
f(x) =0, where

FO)= (14221 +y2)—(1 ¥ i—6)

where
y=4—(n—1x, 0<x<

4
m
Since y’ =—n+ 1, we have
f/(X) = 2(Tl - 1)X(1 + X2)n—2(1 + yz) + 2(1 4 XZ)n—ly/y
=2(n— 1A +x*)"?[x(1+y") — (1 +x*)y]
=2(n—1)1+x*)"?*(x—y)(1—xy)<O0.
Because x —y < 0 and

l—-xy=1—-x[4—(n—Dx]=1—-4x+(n—1)x*=(1—-2x)*+(n—5)x*>0,

4
we get f'(x) <0, f is decreasing, hence f is minimal for x = — = y. Therefore
n

f(x)Zf(%)zO.

The equality holds for a; =a, =---=a, = i
n
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P 1.3. If a, b, c,d are nonnegative real numbers such that a + b+ c+d =4, then

V/9(a3 + b3 + 3 + d3) + 28 < 2(a* + b + ¢ + d?).
(Vasile C., 2006)

Solution. Assume that
a<b<c<d,

and write the inequality as F(a, b,c,d) = 0, where
F(a,b,c,d)=4(a*+b*+c*+d*)*>—9(a®+ b*>+ 3 +d>)—28.
First Solution. If
F(a,b,c,d) > F(t,b,c,t)

for
a+d
t =

2 2

then, by the AM-Theorem, we have
F(a,b,c,d)>F(1,1,1,1)=0.
Using the identities
a’*+d*—2t*=2(t>—ad), a*+d*—23=3(t>—ad)(a+d),
we may write the inequality F(a, b,c,d) > F(t, b,c, t) as follows:
4(a®+d*—2t?)(2t* +a® +2b* + 22 +d*) —9(a® + d*—2t%) > 0,

8(t*—ad)(2t*+ a* + 2b* + 2¢* + d*) —27(t* —ad)(a + d) > 0.

Since .
t>—ad = ‘—‘(a—d)2 >0,

this inequality is true if
8(2t* +a*+2b*+2c*+d?*)—28(a+d) >0,
which is equivalent to the homogeneous inequalities
12(a®+d?) +8ad + 16(b* +c*)—7(a+d)(a+b+c+d) >0,

5(a®+d?*)—6ad + 16(b*+c*)—7(a+d)(b +c) > 0.

Since
2(b*+c?) > (b+c),
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it suffices to show that
5(a®>+d*)—6ad +8(b+c)*—7(a+d)(b+c)>0.

Using the substitution
_b+c

2 b
we may write the inequality as E(a, x,d) = 0, where

X x <d,

E(a,x,d) =5(a*+ d?)—6ad + 32x* — 14x(a + d).
We will show that
E(a,x,d) = E(x,x,d) > 0.

We have
E(a,x,d)—E(x,x,d)=(x—a)(9x +6d —5a) >0

and
E(x,x,d) =5d*—20dx + 23x* = 5(d —2x)*+ 3x* > 0.

The equality holds fora=b=c=d =1.
Second Solution. We will apply the AM-Corollary. Thus, we need to show that

F(a,b,c,d)> F(t.b,t.d), t= azc <d.

As shown at the first solution, this inequality is true if
5(a® +c?)—6ac+16(b*>+d?*)—7(a+c)(b+d) >0,

which can be written as

+ 2 + 2
5(a® + c?)—6ac + 16d* + (4b _7a S 7C) — 49(24 o _ 7(a+c)d = 0.
It suffices to show that
3 2
5(a® + c?) — 6ac + 16d? — Slatey 7(a+c)d > 0.

Since
5(a®+c¢?)—6ac > (a +c)* = 4t2,

it suffices to show that
4t* +16d* — 6t> —14td > 0,
which is equivalent to the obvious inequality

(d—t)(8d+t)=>0.
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By the AM-Corollary, it suffices to prove the original inequality for a = b = c. That
is, to show that 3a + d = 4 involves

4[(3a*+d?)*—16]—9(3a* +d*—4) > 0,
which is equivalent to
4(3a*+d*—4)(3a* +d* +4)—9(3a® +d*—4) > 0.

Since
3a2+d*—4=12(a—1)%, 3a’+d*+4=4(3a*>—6a+5),

3a®+d®*—4=12(a—1)*(5—2a),

the inequality reduces to
(a—1)*(48a*—78a +35) = 0,
which is true because
48a? —78a+ 35> 3(16a% —26a + 11)
and

13)?
16a2—26a+11=(4a——) +1>0.
4 16

P 1.4. Ifa,b,c,d,e,f 20suchthata+b+c+d+e+f =6, then
5@+ b2+ +d3+e+£3)+36>11(a® + b +c? +d* +e? + f2).
(Vasile C., 2006)
Solution. Write the inequality as F(a, b,c,d,e, f) = 0, where
F(a,b,c,d,e,f)=5(a®+b>++d>+e3+3)+36—11(a*+b*+c*+d*+e*+ f2).
First Solution. Apply the AM-Corollary. We will show first that
F(a,b,c,d,e,f) = F(t,b,c,d,t,f)

for 4
a+e
azbzczdzexf, t=——.

Using the identities

a?+e?—2t* = 2(t* —ae), a®+e*—2t> =3(a+e)(t* —ae),
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we write the desired inequality F(a, b,c,d,e, f) > F(t,b,c,d,t, f) as
5(a®+e®—2t3)—11(a® +e*—2t*) >0,

15(a + e)(t?> —ae) — 22(t* —ae) > 0.
Since
t>—ae = 1(a—e)2 >0,
4
we only need to show that
15(a+e)—222>0.

This inequality is equivalent to
45(a+e)—11(a+b+c+d+e+f) >0,

34a—11(b+c+d)+34e—11f >0,
a+11(B3a—b—c—d)+23e+11(e—f) = 0.

Clearly, the last inequality is true. By the AM-Corollary, it suffices to prove the
original inequality for a = b = ¢ = d = e. Thus, we need to show that 5a + f =6
involves

5(5a® + £3)+36 > 11(5a* + f?),

which is equivalent to
6—17a+ 16a*>—5a®> >0,

(1—a)*(6—5a) <0,
(1—a)*b>0.
The equality holds fora=b=c=d =e = f =1, and also for

a=b=c=d=e=

6
= =0
o f

(or any cyclic permutation).

Second Solution. Apply the AC-Corollary. We will show that

F(a,b,c,d,e,f) <F(t,t,c,d,e,f)

involves
F(a,b,c,d,e,f)=F(0,2t,c,d,e, f),
where T h
a
t= , b.
2 a7

As shown at the first solution, the hypothesis F(a, b,c,d,e, f) < F(t,t,c,d,e,f)
involves
15(a+b)—22 < 0. *)
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Write now the required inequality F(a, b, c,d,e, f) > F(0,a+b,c,d,e, f ) as follows:
5[a®+ b®—(a+b)}]—11[a®+ b2 —(a+ b)*] >0,
—15ab(a+ b) +22ab >0,
ab[15(a+ b)—22]<0.

Clearly, this inequality follows immediately from (*).
By the AC-Corollary, it suffices to prove that F(a, b,c,d,e, f) = 0 when 6 — k of

the variables a, b, c,d, e, f are zero and the other k variables are equal to o where
ke{1,2,3,4,5,6}; that is,

6)\° 62
5k =] +36—11k{ =] >0
%) (%) =o

which is equivalent to the obvious inequality

(k—=5)(k—6)=0.

P 1.5. Ifa,b,c,d = 0suchthata+b+c+d =4, then
abc + bed + cda + dab + a?b*c? + b*c*d?* + c*d?*a* + d*a*b* < 8.
(Vasile C., 2006)
Solution. Write the desired inequality as F(a, b,c,d) + 8 > 0, where
F(a,b,c,d) =—(abc+ bcd + cda +dab + a?b?c? + b*c?d? + c2d?a® + d*a®b?).
First Solution. According to the AM-Corollary, we need to show that
F(a,b,c,d) > F(t,b,t,d)

for N
a-+c
a>b>c>d, t= 5

Taking into account that
F(a,b,c,d)=—ac(b+d)—(a+c)bd —a*c*(b*+d?)— (a* + c*)b*d?,
we write the desired inequality F(a, b,c,d) > F(t, b, t,d) as
(t?—ac)(b+d)+ (t* —a*c?)(b* + d*) — (a®* + 2 —2t*)b*d* > 0,

(t2—ac)[b+d + (t* +ac)(b* +d*)—2b*d*] > 0.
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Since 1
t?—ac= A—}(a—c)2 >0,

this inequality is true if
ac(b?®+d?*)—2b%d* > 0.

We have
ac(b?+d?)—2b%d? > bd(b? +d?)—2b%d® = bd(b—d)* > 0.

By the AM-Corollary, it suffices to prove the original inequality for a = b = c;
that is, to show that 3a + d = 4 involves

a® + 3a?d + a® + 3a*d? < 8,

which is equivalent to

7a®—18a® + 12a* — 2a® + 3a*—2 <0,

(a—1)*(7a*—4a®> —3a®>—4a—2) < 0.
It suffices to show that

70" —4d® —3° —4a—2+ = < 0,
81
which is equivalent to
567a* — 324a® —243a*> —324a —160 < 0,

(3a—4)(189a> + 144a* + 111a + 40) < 0,
d(189a® + 144a% + 111a + 40) > 0.
The equality holds fora=b=c=d =1.
Second Solution. Apply the AC-Corollary. First, we write F(a, b,c,d) in the form
F(a,b,c,d)=—ab(c+d)—(a+ b)cd —a?*b?*(c? + d?) — (a® + b?)c2d>.
We will show that
F(a,b,c,d) < F(t,t,c,d)

involves
F(a,b,c,d) > F(0,2t,c,d),
where

a+b
= , b.
2 af

Write the hypothesis F(a, b,c,d) < F(t,t,c,d) as follows:

(t2—ab)(c+d)+ (t* —a®*b?)(c* +d?) — (a® + b*> —2t*)c*d?* < 0,
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(t*—ab) |:c +d+(t*+ab)(c*+d*)— 2c2d2] <O0.
Dividing by the positive factor t* — ab, the inequality becomes
c+d+(t?+ab)(c2+d?)—2c%d? <. ()
Write now the required inequality F(a, b,c,d) = F(0, 2t,c,d) as follows:
—ab(c +d) —a®b*(c® +d*) + [(a + b)* —a®*— b*]|?d* > 0,
—ab[c+d+ab(c? +d?)—2c2d*] > 0,
ab |:c +d+ab(c*+d?)— 2c2d2] <0.

Clearly, this inequality follows immediately from (*).

By the AC-Corollary, it suffices to prove the original inequality fora = b =c¢ =
d =1, and for a =0 and b + ¢ +d = 4. In the first case, the equality occurs. In the
second case, the inequality becomes

bed + b%c?d? < 8.

By the AM-GM inequality, we have

3
bed < (b+c+d) :@’
3 27
therefore 64 64 g
bcd+b2c2d2£—(1+—)=8—— < 8.
27 27 729

P 1.6. Ifa,b,c,d = 0suchthata+b+c+d =4, then

1 1 1 1

<1.
5—abc+5—bcd +5—cda+5—dab =1

Solution. By the AM-GM inequality, we have
+b+c)? 71
5—abc > 5—(u) > 5—(‘—‘) _ Lo,
3 3 27
Write the desired inequality as F(a, b,c,d) = 0, where

1 B 1 B 1 _ 1
5—abc 5—bcd 5—cda 5—dab’

F(a,b,c,d)=1—

and apply the AC-Corollary. First, we will show that

F(a,b,c,d) < F(t,t,c,d)
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involves
F(a’ b’ C! d) 2 F(O’ Zt’ CJ d)’

+b

where t = a , @ # b. Write the hypothesis F(a, b,c,d) < F(t,t,c,d) as

( 11 )+( 11 )< 2(5—cdt) 2
5—ct2 5—abc 5—dt2 5—dab (5—bcd)(5—cda) 5—cdt
Dividing by the positive factor t*> — ab, the inequality becomes

c N d - 2c2d?
(5—abc)(5—ct?) (5—dab)(5—dt2) (5—bcd)(5—cda)(5—cdt)’

Since

c N d S c + d
(5—abc)(5—ct?) (5—dab)(5—dt2)  5(5—abc) 5(5—dab)’

we get
c d 10c2d?

+ < :
5—abc 5—dab (5—bcd)(5—cda)(5—cdt)
Similarly, write the required inequality F(a, b,c,d) > F(0,2t,c,d) as follows:

(e ) () ()
5 5—2cdt 5—bcd 5—cda) \5—abc 5 5—dab 5)°

)

2(5—cdt) _ 10(5 —cdt) S abc N dab
5—2cdt (5—bcd)(5—cda)  5—abc 5—dab’
2c2d?(5—cdt) c d
>

+ .
(5—bcd)(5—cda)(5—2cdt) ~ 5—abc 5—dab

Since

5—cdt S 5
5—2cdt ~ 5—cdt’
it suffices to show that
10c%d? c d
> + .
(5—bcd)(5—cda)(5—cdt) ~ 5—abc 5—dab

Taking into account (*), the conclusion follows.

By the AC-Corollary, it suffices to prove the original inequality fora = b =c¢ =
d =1, and for a =0 and b + ¢ +d = 4. In the first case, the equality occurs. In the
second case, since

3 3
5_bcd25_(w) :5_(1‘) _
3 3) 27
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we have

L,y .t 1 3.2 3
5—abc 5—bcd 5—cda 5—dab 5—bed 571 5

The equality holds fora=b=c=d =1.
Remark. In the same manner, we can prove the following generalization:

e Ifa;,a,,...,a, (n>4) are nonnegative real numbers such that
a,+a,+---+a,=n,

then

1 1 1
+ ot
n+l—aay---a,, n+l—ayas---q, n+l—a,a;---a,,

with equality fora; =a, =---=a, = 1.

P 1.7. Let a,a,,...,a, (n = 3) be nonnegative real numbers such that

a1+a2+"'+an:n,

and let Ly (n—1)e
en_1=(1+n_1) , kZﬁ:.
Then,
1 N 1 . 1 <
k—ayay--+a,; k—ayas---a, k—aa ---a,, k—1

(Vasile C., 2005)

Solution. By the AM-GM inequality, we have

a;+a,+--+a, \"? n \v!
alaz"'an—ls( U L 1) S( ) =e, ; <k.
n—1 n—1
Write the desired inequality as
F( )+ >0
a,d,,...,a >0,
1 2 n k—]_
where
1 1 1
F(al,az,...,an):_ —+ + ..+
k—a,a;---a, k—aas;---a, k—aa,---a,
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We assert that

F(a,,a,,as,...,a,) < F(t,t,as,...,a,) (D
involves
F(a,,a,,as,...,a,) = F(0,2t,as,...,a,) (2)
for any k > e,_;, where
t = %, a, # a,.

Let us denote
b=asa,---a,.

Since

1 1 a;
—F(ay,ay,as,...,a,) = — + P—— +
1 2

b
—! ka; —a,a,b

and

2 a;
—F(t,t,a,,...,a,) = +Z—l

the hypothesis (1) is equivalent to

, 2b N a
b(t*—aja,) |:(k— tb)(k —a,b)(k — a,b) ; (ka; — t2b)(ka; —alazb)] >0,

which involves

n

2b > Z a;
(k—tb)(k—a,b)(k—a,b) (ka; — t2b)(ka; — a;a,b)

i=3

Because

this inequality involves

2kb - Z 1
(k_tb)(k_alb)(k_azb) i=3 kai_a]_azb‘

()

On the other hand, since

F(a;,ay,a a)_1+1+n v
1,05,03,...,0, _k—alb k—a,b = kai_alaZb,

and
n—1 1

k + k—2tb’

—F(0,2t,as,...,a,) =
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the required inequality (2) can be written as follows:

( 1 1) ( 1 1) ( 1 1) ( a; 1)
T T S PN (e E—_
k—2tb k k—ab k k—a,b k ka;—a,a,b k

i=3

2tb 2(kt —a;a,b)b S . a,a,b
k_ztb (k_alb)(k_azb) - i=3 kal’_alazb’

2b(k —tb) . 1
b N |so
12 [(k—th)(k—alb)(k—azb) Zkai—alazb]_

=3
Because

k—tb k
= )
k—2tb — k—tb
this inequality is true if
2kb - 1

>
(k—tb)(k —a,b)(k—a,b) ; ka; —a,a,b’

which is exactly (3).

According to the AC-Corollary, it suffices to prove the original inequality for a; =
a, =---=a, =1, and for aq; = 0 and a, + a; + --- + a, = n. For the first case,
the original inequality is an equality. For the second case, the original inequality

becomes
1 n—1 n
+ < .
k_azag"'an k k_]_

which is equivalent to

Since a,as---a, <e,_;, it suffices to show that

kn

O "

which is equivalent to the hypothesis

k > (Tl - 1)en—1 )
n—e,
. o . . (Tl - 1)en—l
The equality holds for a; = a, = --- = a,, = 1. In addition, if k = ——— then
n—e,
the equality holds also for
a; =0, Ay =Aa3 =-+=a, = n
n—1

(or any cyclic permutation).
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Remark. For n =4, we get the following statement:

e Ifa,b,c,d are nonnegative real numbers such that a+ b+ c+d =4, then
1 1 1 1 4
+ + + <—,
48 —1labc 48—11bcd 48—11cda 48—11ldab 37

with equality fora=b=c=d =1, andalsofora=0andb=c=d=g(orany

cyclic permutation).
O

P 1.8. Ifa,b,c,d 2O such thata+b+c+d =4, then
1 + 1 + 1 + 1 <E
4—abc 4—bcd 4—cda 4—dab” 11

Solution. The proof is similar to the one of the preceding P 1.7. Finally, it suffices to
prove the original inequality fora =b=c=d =1,and fora =0and b+c+d = 4.
The first case is trivial, while the second case leads to the inequality
1 3 15
+-<—,
4—bcd 4 11

which is equivalent to

bed < %
27
By the AM-GM inequality, we have
3
bed < (M) _ %
3 27
The equality holds for
a=0, b=c=d= ﬂ
3

(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

e Letay,a,,...,a, (n=>4) be nonnegative real numbers such that

a,t+a,+---+a,=n.

and let
1 n—1
e,1 =11+
n—1 ( n—1 )
Then,
1 1 1 e, 1
+ oot <1+—"=,
n—aa,--+a,; N—a,ds;: - -a, n—a,a, -, n(n—e,_;)
n
with equality fora;, =0and a, =---=a, = 1 (or any cyclic permutation).
n —_—
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P 1.9. Let a;,a,,...,a, (n = 3) be nonnegative real numbers such that

a,+a,+---+a,=n,

and let .
" n—1)e,_
en_lz(l-l— ) , en_1<ks@.
n—1 n—e,_,
Then,
1 + 1 - 1 < n—1 + 1
k—aa,---a,; k—ayas---a, k—a,a;---a,., k k—e,
(Vasile C., 2005)
Solution. Write the desired inequality as
n—1 1
F(a,,a,,...,a,)+ + >0,
( 1> %2 n) k k_en_l
where
1 1 1
F(a;,ay,...,a,) =— + +-oe .
k—aay---a,; k—ayas;---a, k—a,a,---a,,

As shown in the proof of P 1.7, the inequality
F(ay,ay,as,...,a,) < F(t,t,as,...,a,)

involves
F(a,,a,,as,...,a,) = F(0,2t,as,...,a,)

for any k > e,_;, where
o +a,

t , 4 #a,.
2 1 7& 2
According to the AC-Corollary, it suffices to prove the original inequality for a; =
a, =---=a, =1, and for a; =0 and a, + a; + --- + a, = n. In the first case, the
original inequality becomes
n n—1 1

< + ,
k—1 k k—e, ;
which is equivalent to the hypothesis

(Tl - 1)en—1
n—e, .

k<

In the second case, the original inequality becomes

1 1
<

J
k—a,a;---a, k—e,,
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which is equivalent to
a2a3 c an S el‘l—l'

By the AM-GM inequality, we have

a,+ay,+---+a, \"! n \1
alaz...an_lg( 1 2 nl) S( ) —e

n—1 n—1 o
The equality holds for
n
a; =0, Ay =d3 =-+=4a, =
n—1
. . .. . (n - 1)en—l .
(or any cyclic permutation). In addition, if k = ——————, then the equality holds
n—e,
also fora; =a,=---=a,=1.
O
P 1.10. Ifa,b,c,d = O such thata+ b+ c+d =4, then
1 + 1 + 1 + 1 + 1 + 1 < %
10—ab 10—bc 10—cd 10—da 10—ac 10—bd ~ 3’
Solution. By the AM-GM inequality, we have
2
10—ab > 10—(‘”r b) >10—4>0.
Write the desired inequality as
2
F(a,b,c,d)+ 3 >0,
where
1 1 1 1 1 1
F s b’ ) d = — + + + + + ,
(a,b,¢,d) (10—ab 10—ac ' 10—ad ' 10—bc 10— bd 10—cd)

and apply the AC-Corollary. First, we will show that
F(a,b,c,d) < F(t,t,c,d)

involves
F(a,b,c,d)>F(0,2t,c,d),
+b

where t = a , @ # b. Write the hypothesis F(a, b,c,d) < F(t,t,c,d) as

( 1 N 1 _ 2 )+( 1 N 1 _ 2 )>
10—ac 10—bc 10—tc 10—ad 10—bd 10—td
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1 1
> — .
10—t2 10—ab

Dividing by the positive factor t> — ab, the inequality becomes

2¢2 N 2d? - 1
(10 —ac)(10—bc)(10—tc) (10—ad)(10—bd)(10—td) =~ (10—ab)(10—t2)

Since
1 1

(10— ab)(10 — ¢2) = 10(10—ab)’

we get

20c? N 20d? o1
(10— ac)(10—bc)(10—tc) (10—ad)(10—bd)(10—td) = 10—ab’

)

Similarly, write the required inequality F(a, b,c,d) > F(0, 2t,c,d) as follows:

(oma 1) (o " 7o)~ (o 1o )
—— |+ + —| =+
10—ab 10 10—ac 10—bc 10 10—2tc
| (omar tiomwa) (6 * o= 2ma) | <°
10—ad 10—bd 10 10—2td -

ab [ 2(10—tc) _ 2(10—tc) ]
10(10—ab) ' | (10—ac)(10—bc) 10(10—2tc)

[ 2(10—td) 2(10—td) ]s ’

(10—ad)(10—bd) 10(10—2td)

abc?(10—tc) abd?(10 —td) o ab
(10—ac)(10—bc)(5—tc) (10—ad)(10—bd)(5—td) ~ 10—ab’

This is true if

c2(10—tc) N d?(10—td) .1
(10—ac)(10—bc)(5—tc) (10—ad)(10—bd)(5—td) — 10—ab’

Since

10 —tc > 20 10— td > 20
5—tc  10—tc’ 5—td  10—td’
it suffices to show that

20c? + 20d? > 1
(10 —ac)(10—bc)(10—tc) (10—ad)(10—bd)(10—td) ~— 10—ab

According to (*), the conclusion follows.
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By the AC-Corollary, it suffices to prove the original inequality fora = b =c¢ =
d=1,fora=0and b=c=d=4/3,and fora=b =0 and c + d = 4. In the first
case, the equality holds. In the second case, the inequality becomes

3 27 2
<

—+=<
10 7473

We have
2 3 27 11 27 4

2l = =——>0
3 10 74 30 74 2220
In the third case, the inequality becomes

We have

The equality holds fora=b=c=d =1,and fora=b =2and c =d =0 (or any
permutation).

Remark. In the same manner, we can prove the following generalizations (Vasile
Cirtoaje, 2005):

e Letay,a,,...,a, (n > 3) be nonnegative numbers such that a,+a,+---+a, =n.

1
(@) If k= M, then
Z 1 < n(n—1) ’
1<i<j<n k_aiaj 2(k—=1)
with equality fora;, =a, =---=a,=1;
2 n(n+1)

) Ifnz<k$T,then

Z 1 S(n—Z)(n+1)+ 4 ’
k—a:a; 2k 4k — n2

with equality for

(or any permutation).

e Letay,a,,...,a, (n > 3) be nonnegative numbers such that a, +a,+---+a, =n,
and let 1
G(ay,ay,...,a,) = Z .
k—a a ---a

1<i; <-<ip<n 1171 Im
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(@) If k=

() ()

P 1.11. Ifa,b,c,d = O such thata+ b+ c+d =4, then
(@ +b3++d>—4)>(a®+ b2+ 2+ d*—4)(a®* + b*+ 2 +d*—1).
(Vasile C., 2005)
Solution. Write the inequality as
F(a,b,c,d)>0,

where
5 9
F(a,b,c,d)=3(a3+b3+c3+d3—4)—(a2+b2+c2+d2—§) o

and apply the AC-Corollary. We will show that

F(a,b,c,d) < F(t,t,c,d) )
involves
F(a,b,c,d) > F(0,2t,c,d), ()
where b
=" 5 @ #b.

Using the identities
a’?+b2—2t2=2(t>—ab), a+b>—-2t>=3(t>—ab)(a+D),
we may write (*) as

3(a®+ b —2t3)—(a®> + b* —2t*)(2t* + a®* + b* + 2c* +2d*—5) < 0,
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9(t>—ab)(a+b)—2(t*—ab)(2t* + a®* + b* + 2c*+2d*—5) <0,
9(a+b)—2(2t2+ a4+ b2 +2c%>+2d*>—5) < 0. (A)
Since
a?+ b —(a+b)P?=—-2ab, a®+b*—(a+Db)?®=—-3abla+b),
we may write (**) as
3[a®+ b —(a+b)*|-{a®+ b*—(a+ b)*][(a+b)*+a*+ b*+2c* +2d*—5] > 0,
—9ab(a+ b)+2ab(4t*> +a®>+ b*+2c2 +2d*—5) >0,
which is true if
9(a+b)—2(4t2+a®>+b*+2c2+2d*2—5)<0.

Clearly, this inequality follows immediately from (A). As a consequence, (*) implies
(**). Thus, by the AC-Corollary, we have

F(a,b,c,d) = min f(k),
1<k<4

where 16(k — 1)(4— k)

flik) = ===

is the value of F for the case where 4 — k of the variables a, b, c,d are zero and the
other k variables are equal to 4/k. We have

F)=f@)=0, f(2)=8, ﬂm=%,

therefore F(a, b,c,d) > 0.
The equality holds for a = b =c¢ =0 and d = 4 (or any cyclic permutation), and

alsofora=b=c=d=1.
O

P 1.12. Ifa,b,c,d = O such thata+ b+ c+d =4, then
7B+ ++d>—4)>(a®>+b*+c2+d*—4)(a®> + b* +c*+d* +11).
(Vasile C., 2005)

Solution. Write the inequality as F(a, b,c,d) = 0, where

4 b

7)2 225
2

F(a,b,c,d)z7(a3+b3+c3+d3—4)—(a2+b2+c2+d2+—
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First Solution. Apply the AM-Corollary. We will show first that
F(a,b,c,d) > F(t,b,t,d)

for N
a+c
a=>b>=>c>d, t= 7

Using the identities
a?+c?=2t*=2(t*—ac), a®+c—-2t>=3(a+c)(t*—ac),
we write the desired inequality F(a, b,c,d) > F(t, b, t,d) as
7(a®+cc—2t)—(a®> + 2 =2t)(2t2 +a®> + 2+ 2b2+2d%+7) > 0,
21(t* —ac)(a+c)—2(t* —ac)(2t* + a® + c* + 2b*+ 2d* + 7) > 0.
This is true if
21(a+c)— (4t*>+2a* + 2c* + 4b* + 4d> + 14) > 0.
Since
4t242a%+2c?+4b%+4d? = (a+c)*+2(a®+c?)+4(b%+d?) < 3(a+c)*+4(b+d)?,
it suffices to show that
21(a+c)—3(a+c)*—4(b+d)*—14>0.

Substituting
xX=a+c, y=b+d,

we need to prove that
21x —3x*—4y*—14>0

forx+y =4, x > y. We have

_ 2Ix(x+y) 7(x+y)?

21x —3x*—4y*—14 3

3x*—4y*—

_ 11x*+28xy —39y?
B 8

_ (x—y)11x +39y) S
= . >

0.

By the AM-Corollary, it suffices to prove the original inequality for a = b = c; that
is, to show that 3a + d = 4 involves

7(3a® +d®—4) > (3a® +d* —4)(3a* + d* + 11),
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which is equivalent to
84(1—a)*(5—2a) > 36(1 —a)*(4a*—8a+9),
(1—a)*(1+2a)(4—3a) =0,
(1—a)*(1+2a)d =0,

The equality holds fora = b =c =d =1, and also fora = b = ¢ = 4/3 and
d = 0 (or any cyclic permutation).

Second Solution. Apply the AC-Corollary. We will show that

F(a,b,c,d) < F(t,t,c,d) )
involves
F(a,b,c,d) > F(0,2t,c,d), ()
where .
t= a; , a#b.

As shown at the first solution, (*) involves
21(a+b)—2(2t2 +a® + b*>+2c¢2+2d*>+7) < 0. (A)
Since
a’+ b —(a+b)?=—-2ab, a®+b*—(a+Db)®=—-3abla+b),
we may write (**) as
7[@ +b*—(a+b)’[-[a®+ b*>—(a+ b)*][(a+b)*+a®+ b* +2c*+2d* + 7] > 0,
—21ab(a+ b) +2ab(4t* + a* + b* + 2c* +2d* +7) > 0,
which is true if
21(a+b)—2(4t* +a*+ b*+2c*+2d*+7) <0.

Clearly, this inequality follows immediately from (A). As a consequence, (*) implies
(**). Thus, by the AC-Corollary, we have

F(a,b,c,d) > min f(k),
1<k<n

where 16(k—3)(k—4
k= 1SN

is the value of F for the case where 4 — k of the variables a, b, c,d are zero and the
other k variables are equal to 4/k. We have

f()=96, f(2)=8, fB)=f(4)=0,
therefore F(a, b,c,d) > 0.
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P 1.13. Let a;,a,,...,a, (n = 3) be nonnegative real numbers such that
a,t+a,+---+a,=n.
Then

203, 3 3 e o> o 2
g(a1+a2+---+a)+ Z ailaizaisZg(a1+a2+---+an).
1§i1<i2<i3$n

(Vasile C., 2005)

Solution. Let

and

3 3 2 2
F(al,az,...,an)=k1(a1+---+a )+ Z a; a;,a;, —kyn(ajy +---+ay),

n
1<i; <ip<iz<n

where k; and k, are fixed real numbers. We claim that

F(a,,a,,as,...,a,) < F(t,t,as,...,a,)

involves
F(a,,a,,as,...,a,) = F(0,2t,as,...,a,)
where
t= %, a, # a,.
Since

E a; a;,a;, = a;a,b + (a; + ay) E a; a;, + E a; a;a;,

1<i; <ip<iz<n 3<ij<ip<n 3<i; <ip<iz<n
@ +a-2t =2("—aya,), a}+a—2t°=3(a; +a,)(t* —a,a,),
the inequality F(a,, a,, as,...,a,) < F(t,t,as,...,a,) is equivalent to
ki(a} + a3 —26%) + (a;a, — t2)b —kon(a® + ai — 2t%) < 0,
(t* —aya,)[3k,(a; + a,)—b—2k,n] <0,
3k,(a; +a,)—b—2k,n <O0. ™
On the other hand, since

@ +ai—(aq;+a)* =—-2aa,, @ +a—(a;+a,)’=-3a,a,(a; +ay),
the required inequality F(a,,a,,as,...,a,) = F(0,2t,a,,...,a,) is equivalent to

ky [Cl“;’ +a—(a; + a2)3:| +a;a,b —kyn [af +a—(a; + a2)2:| >0,
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Clearly, this inequality follows immediately from (*).

According to the AC-Corollary, F(a,,a,,...,a,) is minimal when n — k of the
variables a;,a,, ..., a, are zero and the other k variables are equal to n/k, where
ke{1,2,...,n}. Thus,

n n®

n
> i — - | = — i
F(ay,...,Qn i, Ay ji1se-->Ay) = 112{1211'7(0,...,0, PERRRE k) 6 1rgklgnf(k),

n’ _(n\[(n\?  Kkn® kyn®
Ef(k)_(:s)(i) e T Tk
N 3(2k12<+ D, 2(3kk12+ 0]

We only need to show that f(k) > 0 for all k € {1,2,...,n}.
For the original inequality, we have

where

2 1
ki ==, ky=-,
'3 73
hence 5 6 (k—2)(k—3)
K=1->4—=-— """~
fk) k k2 k2
Clearly, for k € {1,2,...,n}, we have
f(k) =0,
with equality when k = 2 and k = 3. The original inequality is an equality for
n
a1=a2=§, a;=---=a,=0

(or any permutation), and also for

n
a; =a,=as ==, a4:---:an:O

3

(or any permutation).

Remark. We can rewrite the inequality in the following homogeneous forms:

3 3 3 2 2 2
2(a1+a2+---+an)+3 Z a;a;,a;, = (a;+ay+---+a,)(a;+a;+--+a;)

1<i;<iy<iz<n

and

3, 3 3
a;ta,+---+a +3 Z a; a;,a;, = Z a; a; (a; +a;,).

1<i) <ip<iz<n 1<i; <iy<n
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For n = 3, we get the third degree Schur’s inequality
@’ +al +aj +3a,a,a3 > a;a,(a; + a,) + a,a5(a, + as) + asa; (as + ay),

with equality for a; = a, and a; = 0 (or any cyclic permutation), and also for
a, =a, =as.
OJ

P 1.14. Let a,,a,,...,a, (n = 4) be nonnegative real numbers such that
a1+a2+"'+an:n.

Then

a a

6
CHa++ad+ —= Z a

>2(a®>+a®+---+ad?).
n Tl(Tl—B) (1 2 n)

i 4, i,

1<i, <ip<iz<n
(Vasile C., 2005)

Solution. As shown at the preceding P 1.13, it suffices to show that f (k) > 0 for
allke{1,2,...,n}, where

3(2ky +1) , 23k +1)

f)=1-==2 L,

with
_n(n—3) ~n—3

k k, =
1 6 ’ 2 3

We get

2n—3 N (n—1)(n—2) (k—n+1)(k—n+2)
k k> B k> '

Clearly, for k € {1,2,...,n}, we have

f(k)=0,

fR)=1-

with equality when k = n—2 and k = n— 1. The original inequality is an equality
for

(or any cyclic permutation).
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P 1.15. Let a;,a,,...,a, (n = 3) be nonnegative real numbers such that
a1+a2+"'+an:n.

Then

(n+1)(af+ag+---+a2)+ 6 Z a

1<i) <ip<iz<n

22n(a§+a§+-~+a§).

a. a

i iy g

(Vasile C., 2005)

Solution. Asshown atP 1.13, it suffices to show that f (k) > Oforallk € {1,2,...,n},
where
3(2ky +1) | 23k, +1)

flk)=1-="2 o

with

:(n+1)(n—2) _n—2

k
1 6 )

We get

_ _ k—n)(k—
f(k)zl_an 1+n(nk2 1):( n)(k2 n+1).

Clearly, for k € {1,2,...,n}, we have
fk)=0,

with equality when k =n—1 and k = n. The original inequality is an equality for

G =-=dap1 = s a,=0
n—1
(or any cyclic permutation), and also for
a,=a,=---=a,=1.

Remark. For n = 4, we get the homogeneous inequality
3. 134 3 43 2 2
a’+b’+c’+d°+abc+ bcd+cda+dab > §Za (b+c+d),

where a, b,c,d are nonnegative real numbers. The equality holds fora = b = ¢
and d = 0 (or any cyclic permutation), and also fora =b =c =d.
O
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P 1.16. Let a;,a,,...,a, be nonnegative real numbers such that a; +a,+---+a, = 1.

If
me{l,2,...,n+1},

then
m(m—l)(ai’+a§’+---+a2)+12(2m—1)(af+a§+~-~+a,21).
(Vasile C., 2005)
Solution. We need to prove that F(a,,a,,...,a,) = 0, where
F(al,az,...,an)zm(m—l)(af+a§+---+a2)+1—(2m—1)(a%+a§+---+a,21).

Assume that

F(ay,a,,as,...,a,) < F(t,t,as,...,a,) @)
involves
F(ay,ay,as,...,a,) > F(0,2t,as,...,a,), (**)
where
t = %, a, # a,.

Then, by AC-Corollary, we have

> .
F(Cl]) a2) e an) - 1lgklgnf(k),

where k (k 1)
—m)(k—m+
£lk) = -
is the value of F fora; =+ =a,, =0and a,_;,; = --- = a, = 1/k. Obviously,
fork€{1,2,...,n}, we have
f(k) =0,

with equality when k = m—1 (m = 2) and k = m (m < n). From f(k) > 0 for
ke{1,2,...,n}, it follows that F(a,,a,,...,a,) = 0.
To prove that (*) implies (**), we write (*) as

m(m— 1)(af + ag’ —2t3)—(2m— 1)(af + ag —2t%) <0,
(t>* —aya,)[3m(m—1)(a, +a,) —2(2m—1)] < 0,

3m(m—1)(a; +a,)—2(2m—1) <0, (A)

and (**) as
m(m—1)(a} +a} —8t%)—(2m—1)(a® + a} —4t*) > 0,

a,a,[3m(m—1)(a; +a,)—2(2m—1)] < 0. (B)
Clearly, (A) implies (B), hence (*) implies (**). This completes the proof.
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For m = 1, the equality holds when n — 1 of the numbers a; are zero. For m €
{2,3,...,n}, the equality holds when m or m — 1 of the numbers a; are equal and
the other numbers are zero. For m = n + 1, the equality holds when all numbers
a,da,,...,a, are equal.

Remark. Actually, the inequality holds for allm € [0,1]U{2,3,...,n}U[n+1, 00),
but it does not hold for m € (1,2)U(2,3)U---U(n,n+1).
[

P1.17. Ifa,,a,, ..., a, are nonnegative real numbers such that a, +a,+---+a, =n,
then
2 2 2 2 3 3 3
(n+1)(a1 +a2+---+an) >n"tata,+-+a.

(Vasile C., 2002)
Solution. Write the desired inequality as F(a,, a,,...,a,) = 0, where
F(al,az,...,an)Z(n+1)(af+a§+~~-+ai)—n2—a‘;’—a§—-~-—a2.
First Solution. Apply the AM-Corollary. First, we will show that
F(ay,ag,..-,qy 5,0,1,a,) = F(t,ay,...,a, 5, t,a,)

for
a; +a,_4

alﬁazﬁ"'ﬁan_lﬁan, t= 2

Write this inequality as follows:

(n+ 1)(af +a?  —2t?) —(a? +a  —2t3)>0,

n—1 n—1
(t*—aya,_)[2(n+1)—3(a; +a, ;)] > 0.

It is true if
2(n+1)—3(a; +a,_,) =0,

which is equivalent to the homogeneous inequalities
2(n+1)(a; +ay+---+a,)—3n(a; +a,_,) =0,

2(n+1)(ay+---+a, ,+a,)—(n—2)a; +a,,)=>0.

It suffices to show that
2(n+1)a,—(n—2)(a; +a,_,) = 0.
We have

2(n+1)a,—(n—2)(a; +a,_;) > ((n—2)(2a,—a, —a,_,)=0.
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By the AM-Corollary, it suffices to prove the original inequality for a; = a, =--- =
a,_,; that is, to show that (n —1)a; + a,, = n involves

(n+1) [(n — 1)af + ai] >n®+(n— 1)af + ai.
This inequality is equivalent to
n(n—1)(n—2)a,(a, —1)*>0.
The equality holds when a; =a, =--- =a, =1, and also when
a=---=a,,=0, a,=n

(or any cyclic permutation).

Second Solution. Apply the AC-Corollary. Assume that

F(a,,a,,as,...,a,) < F(t,t,as,...,a,) ™
involves
F(a;,a,,as,...,a,) = F(0,2t,as,...,a,), (**)
where
t = %, a, # a,.
Then, by AC-Corollary, we have
F(ay,a,...,a,) 2 min f(k),
where n> , n* n*k—1)(n—k)
f(k)=(n+1)?—n i 2
is the value of F fora, =---=a,_ =0and a,_4,; = -+ = a,, = n/k. Obviously,
f(k)y=0
forke{1,2,...,n}.
To prove that (*) implies (**), we write (*) as
(n+ 1)(af + ag —2t%) — (ail)’ + ag’ —-2t3) <0,
(t*—a,a,)[2(n+1)—3(a; + a,)] <0,
2(n+1)—3(a; +a,) <0, (A)
and (**) as
(n+D[a?+a2—(a; +a,)* ][+ —(a, + a)*] = 0,
a,a,[2(n+1)—3(a; +a,)] <0. (B)

Clearly, (A) implies (B), hence (*) implies (**). This completes the proof.
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P 1.18. Ifa,,a,,...,a, are nonnegative real numbers such that a, +a,+---+a, =n,
then

(M*+n+1)(?+a+--+a2—n)zal+at+--+a'—n.
(Vasile C., 2002)

Solution. We need to prove that F(a,,a,,...,a,) = 0, where
F(ay,ay....a,) =M +n+1)(+Z+-+a*—n)—(a?+al+---+a'—n).
First Solution. Apply the AM-Corollary. Let us show that
F(ay,ay,...,a, 5,0, 1,a,) = F(t,a,,...,a,_5,t,a,)

for
a; +a,,
a,<a,<---<a,;<4a, tzT.
Since

a@+a -2t =2(t>—a,a,,),

1
al+at —2tt= E(t2 —aya, 1)(7a} +7a> | +10a;a, ;),

n—1

the inequality F(ay,a,,...,a,_5,a,.1,a,) = F(t,a,,...,a,_,,t,a,) can be written
as follows:

(n*+n+1)(a+a’ | —2t)—(a}+at [ —2t°) >0,

4(n* +n+1)(t* —aya,,)— (t* —aya,,)(7a® + 7a>_, +10a,a, ,) > 0.

Since t2—a,a,_, > 0, we need to show that

4(n*+n+1)>7a} +7a>_, +10a,a, ;.
It suffices to prove that

2 2 2
4n® = 7a;+7a;_, +10a;a, 4
for n > 3, which is equivalent to the homogeneous inequality
Hay+ay+---+a,)=7a}+7a> | +10a,q, ;.
Since
a,+ay,+:--+a,=2(n—2)a; +a, ,+a,=>n—-2)a; +2a,_, =>a, +2a,_4,

we only need to prove that

4(a, +2a,,)* > 7a> +7a>_, +10a,a,_,,
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which reduces to the obvious inequality

3a’_, +2a,a, ;> dl.

By the AM-Corollary, it suffices to prove the original inequality for a; =a, =--- =
a,_,; that is, to show that (n —1)a; + a, = n involves

(> +n+D[(n—Da+a’—n]l=>(n—1daf+a’—n.

Since
(n— 1)af + arzl —n=n(n—1)(a, — 1)

(n—l)a‘1‘+aﬁ—n = n(n—1)(a;—1)? [(n2 —3n+ 3)af —2(n*—n—1)a; +n*+n+ 1] ,
the inequality is equivalent to

n(n—1a,(a; —1)*[2(n*—n—1)— (n*—3n+3)a;] > 0.
It is true because

(n*—3n+3)n _n®*—n*—3n+2
n—1 B n—1

> 0.

2(n*—n—1)—(n*-3n+3)a, > 2(n*-—n—1)—
The equality holds when a; =a, =--- =a,, =1, and also when
a=--=a,,=0, a,=n

(or any cyclic permutation).

Second Solution. Apply the AC-Corollary. Assume that

F(a1’a2)a3:'--’an)<F(t) t)a?n"-)an) (*)
involves
F(ay,a,,as,...,a,) > F(0,2t,as,...,a,), ")
where N
a; +d
t = T, Cl1 # a2.

Then, by AC-Corollary, we have
F(ala a29 e an) Z 11;1klélnf(k)’

where

f(k)=(n2+n+1)(%2_n)_(z_;‘_n): nz(k—l)(n—klz)(nk+n+k)

is the value of F fora; =---=a,_ =0and a,_4,; = -+ = a,, = n/k. Obviously,

f(k)=0
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forke{1,2,...,n}.
Let us show now that (*) involves (**). Since

1
@ +al—2t*=2(t>—aya,), dat+ai-2t"= E(t2 —a,a,)(7a% + 7a; + 10a,a,),

we may write (*) as follows:
(n*+n+1)(a®+a2—2t*)—(a} +ai —2t") <0,

4(n* +n+1)(t* — aya,) — (t* — aya,)(7a® + 7a; + 10a,a,) < 0,
74} +7a2 4+ 10a,a, > 4(n* +n+1). (A)
Since

2

@

+al—(a;+a,)* =—2aya,, ai+a;—(a,+ay)*=—aya,(4a’ +4a2 + 6a,a,),
we may write (**) as follows:
(M+n+1)[a?+a?—(a; +ay)*]—[a} + &t —(a; + ay)*] > 0,

a;a,[—2(n* + n+ 1) + (4a? + 4a2 + 6a,a,)] > 0.

This is true if
2(4a2 +4a; + 6a,a,) > 4(n* +n+1). (B)

Taking intp account (A), it suffices to show that
2(4a® + 4a3 + 6a,a,) > 7a} + 7a2 + 10a, a,,

which is equivalent to (a, —a,)? > 0.

P 1.19. Let a;,a,,...,a, be nonnegative real numbers such that a; +a,+---+a, =n.
If m > 3 is an integer, then

n" 1 —1
(@+a+-+a*—n)=a"+al+---+a"—n.
n—

(Vasile C., 2002)

Solution. Let
nmt—1

n—1

r=
We need to prove that F(a,,a,,...,a,) = 0, where

F(al,az,...,an):r(af+a§+---+ai—n)—(a§”+a;”+~--+a:f—n).
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Assume that

F(a;,ay,as,...,a,) < F(t,t,as,...,a,) *)
involves
F(a;,a,,as,...,a,) > F(0,2t,a,,...,a,), (%)
where
t:al-;—az’ 0 £ a,

Then, by AC-Corollary, we have

> .
F(ala a2: LR an) = 1l’£kl~2~nf(k):

where )
n n™
f(k)zr(?—n)—km_l +n
is the value of F fora; =---=a,, =0and a,_;,; =+ = a, = n/k. We need to

show that f (k) > 0 for k € {1,2,...,n—1}. Write the inequality f (k) > 0 in the
form

nm—l _ km—l
r>—-—-:
km=2(n—k)
We have
m—1 . . I .
r=———=n""+n""+--+12|~ +| +otlm—
n—1 k k km=2(n — k)
Let us show now that (*) involves (**). We may write (*) as
al' +ay —2t™
Ty 7D
aj +a; —2t?
ay' +ay —2t™
——>2r (A)

t2—a,a,
For the nontrivial case a;a, # 0, the desired inequality (**) is equivalent to
al' +al’ —(a; +a)"

ai+a;—(a;+ay)? ~

a+al'—(2t)"
12 > or.

a;a

This is true if - - . . - .
al' +ay —(2t) S al' +ay —2t

a1a2 tZ - alaz

al'+ay +(2"— 2)a,a,t™ % —(2t)" < 0.
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For m = 3, the inequality is an identity. Consider next that m > 4. Due to homo-
geneity, we may set t = 1. Using the substitution

a,=1+x, a,=1—x, 0<Zx<1,
we need to show that f(x) < 0, where
FO)=0+x)"+(1—x)"+2™"—2)(1—x*)—2", 0<x<1.

We have
Fl)=m[A+x)" =1 —x)""]- (2™ —4)x,

f/)=mm—1D[Q+x)" 2+ (1 —x)"2]—2m" +4,
f(x)=m(m—1)(m—2)[(1+x)">—(1—x)"2].
Since f/ > 0, f” is strictly increasing. Because
f’O)=2(m*—m+2-2")<0, f"(1)=2"?(m*—m—8)+4>0,

there exists x; € (0,1) such that f”(x;) = 0, f”(x) < 0 for x € [0,x;) and
f”(x) > 0 for x € (x;,1]. Consequently, f’ is strictly decreasing on [0, x;] and
strictly increasing on [x;, 1]. Since

f(0)=0, f'(1)=4+(m—4)2™""'>0,

there exists x, € (x;, 1) such that f'(x,) =0, f'(x) < 0 for x € (0, x,) and f"(x) >
0 for x € (x,,1]. Thus, f is strictly decreasing on [0, x,] and strictly increasing on
[x,,1]. Since f(0) = f(1) =0, it follows that f(x) <0 for0 < x < 1.

The equality holds when a; = a, =--- =aq, =1, and also when

(or any cyclic permutation).

P 1.20. If a, b, c,d, e are nonnegative real numbers such thata+b+c+d+e =35,
then

5
a’+ b +c+d*+e*—5> Z(l—abcde).
(Vasile C., 2005)

Solution. We apply the AM-Corollary to the function

F(a,b,c,d,e)=a2+b2+c2+d2+e2—5—§r(1—abcde).
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So, we need to show that
F(a,b,c,d,e) = F(t,b,c,t,e)

for
a+d

a=>b>c>d>e, t = 7

We have
F(a,b,c,d,e)—F(t,b,c,t,e) =a®+d*—2t>— Zbce(tz—ad)
=2(t>—ad)— Zbce(t2 —ad)
= %(t2 —ad)(8—5bce).

It suffices to show that
8 —5bce >0,

which is equivalent to the homogeneous inequality
8(a+b+c+d+e)®>625bce.

By the AM-GM inequality, we have

a+b+c+d+e22b+c+2e23\3/(2b)c(26)=3\3/4bce,

hence
8(a+b+c+d+e)>8-27-(4bce) = 864bce > 625hce.

According to AM-Corollary, it suffices to prove the original inequality for a = b =

¢ =d. Thus, we need to show that 4a + e =5 implies
2 2 S 4
4a°+e“—5> Z(l—a e),
which is equivalent to
5
20(1—a)?> Z(l —a)*(4a® +3a*+2a +1),

(1—a)*(15—2a—3a*>—4da®) >0,
(1—a)*(3+2a+a*)(5—4a) >0,
(1—a)*(3+2a+a*)e>0.

The equality holds fora=b=c=d=e=1,and alsofora=b=c=d =

and e = 0 (or any cyclic permutation).

O 1w
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P 1.21. Ifa,,a,,...,a, are nonnegative real numbers such that a, +a,+---+a, =n,
then

n
2 2 2
aj+a;+---+a,—n= 1(1—a1a2---an).

n—

Solution. Write the inequality as F(a,,a,,...,a,) = 0, where

n
F(al,az,...,an)=af+a§+---+ai—n——1 (1—a,a,---a,).

Assume that

F(a,,a,,as,...,a,) < F(t,t,as,...,a,) ™)
involves
F(ay,a,,as,...,a,) > F(0,2t,as,...,a,), (%)
where
t = %, a, # a,.

On this assumption, by the AC-Corollary, we have

> .
F(al) a2) e an) - 1lgl(lgnf(k),

where
f(n)=F(1,1,...,1)=0
and ) )
fly="-T— kefi2,..,n—1}
k n—1
is the value of F for a; = -+ = a,., = 0 and q,_4,; = -** = a, = n/k. Since

f(k)=0forke{1,2,...,n—1} (with equality when k = n— 1), we have
F(ay,ay,...,a,)=>0.

To prove that (*) implies (**), we write these inequalities as

(tz—alaz)(Z— nlag---an)<0 (A)

and
n

a1a2 (2_ 1a3"'an) S O, (B)

respectively. Clearly, (A) implies (B), therefore (*) implies (**). This completes the
proof.
The equality holds when a; = a, =--- =aq, =1, and also when

(or any cyclic permutation).
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P 1.22. Ifa,b,c,d, e are nonnegative real numbers such thata+b+c+d+e =35,
then

5
ac+b+c+d>+e*—-5> %(1—abcde).
(Vasile C., 2005)

Solution. We apply the AM-Corollary to the function
5
F(a,b,c,d,e)=a®>+b>+c3+d° +e3—5—%(1—abcde).

So, we need to show that
F(a,b,c,d,e) > F(t,b,c,t,e)

for
a+d

a>b>c>d>e, t= 5

We have
3 3 3 45 2
F(a,b,c,d,e)—F(t,b,c,t,e)=a’+d>—2t —Ebce(t —ad)
:S(tz—ad)(a+d)—T—Zbce(tz—ad)
= %(t2 —ad)(16a + 16d — 15bce).

It suffices to show that
a+d = bce,

which is equivalent to the homogeneous inequality
(a+d)a+b+c+d+e)* > 16bce.

Let

x = V be.

Since
a+d=>b+e>2x, a+b+c+d+e=>2b+c+2e>4x+c,

it suffices to show that
2x(4x +c)* > 16¢x?,

which is equivalent to
2x(16x%+c?)>0.

According to AM-Corollary, it suffices to prove the original inequality for a = b =
¢ =d. Thus, we need to show that 4a + e =5 implies

45
43+ e —5> —(1—a'e),
16( )
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which is equivalent to
2 45 2 2 3
60(1—a)(2—a) > E(l—a) (1+2a+3a*+4a>),

(1—a)*(125—70a —9a*—12a®) >0,
(1—a)*(25+ 6a +3a%)(5—4a) >0,
(1—a)*(25+ 6a +3a*)e > 0.

The equality holds fora=b=c=d=e=1,and alsofora=b=c=d =

and e = 0 (or any cyclic permutation).

O Hlw

P 1.23. Ifa,,a,,...,a, are nonnegative real numbers such that a; +a,+---+a, =n,
then

n(2n—1
CHa+-+ad— n2n—1)

n= 1—a,ay---a,).
iz (e

Solution. Write the inequality as F(a,,a,,...,a,) = 0, where
_ 3, 3, .., 3__ n—1)
F(ay,ay,...,a,)=a;+a,+---+a,—n (17
We claim that
F(a1’a2:a3:"-’an)<F(t2 t:aSJ"':an) (*)
involves
F(a;,a,,as,...,a,) = F(0,2t,as,...,a,), **)

where
a; +a,

2 >
On this assumption, by the AC-Corollary, we have

t a, # a,.

F(al) a2) e an) 2 1lgl<lgnf(k),
where
f(n)=F(1,1,...,1)=0

and
3 3

n n
k)= —————,
fl) =2 =1
is the value of F fora; = --- = a, = 0 and a,_4,; = --- = a, = n/k. Since
f(k)=0forke{l,2,...,n—1} (with equality when k = n— 1), we have

ke{1,2,...,n—1},

F(ay,ay,...,a,) > 0.
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To prove that (*) implies (**), we write these inequalities as

(tz_alaz) |:3(Cl1 2) n((zn 1)]2_)(13 “an:| <0 (A)
and @ 1)
a,a, [3(a1 a)— n( - 1) as- '-an] <0, (B)

respectively. Clearly, (A) implies (B), therefore (*) implies (**). This completes the
proof.
The equality holds when a; =a, =--- =aq, =1, and also when

(or any cyclic permutation).

P 1.24. Ifa,,a,,...,a, are nonnegative real numbers such that a; +a,+---+a, =n,
then

n—2)\2
5 )(alaz"'an_l)-

1 3 3 3 2 2 2
;(al+a2+---+an—n)2a1+a2+---+an—n+

(Vasile C., 2005)

Solution. Write the inequality as F(a,, a,,...,a,) = 0, where

1
F(ay,ay....,a,)=—(a®+al+--+a—n)—(®+a%+---+a*—n)
n

—(n_z)z(alaz---an—l).

2
If
F(a13a23a33"'3an)<F(t, t:a3>---:an) (*)

involves

P‘(al’aZ’aSl'""an)2 F(Oazt:a?,:---:an)) (**)
where N

a, v ap
t= Ta a, # a,,

then, by the AC-Corollary, we have

> i
F(a;,a,,...,a,) > 1ISI1k1£1nf(k),

where

f(n)=F(1,1,...,1)=0
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and

1(n® n? n—2\> (k—2)*n?
fw=(H-n)-(%-n)+("52) =Hoa keluzoan-n,
is the value of F fora; = --- = a,_;, = 0 and a,_4,; = -+ = a, = n/k. Since

f (k) = 0 (with equality when k = 2), we have
F(a,,a,,...,a,) = 0.
To prove that (*) implies (**), we write these inequalities as

(n—2)?

(tz—alaz)[%(a1+a2)—2+ a3---an] <0 (A)

and
(n—2)?

3
alaz[—(a1+a2)—2+ a3---an] <0, (B)
n

respectively. Clearly, (A) implies (B), therefore (*) implies (**). This completes the
proof.
The equality holds when a; = a, =--- =aq, =1, and also when

a=-+=a,,=0, a,,=a,=n/2

(or any permutation).

P 1.25. Ifay,a,,...,a, are nonnegative real numbers such that a, +a,+---+a, =n,
then

n(n—l) 3 3 2 2 2
\Jﬁ (al+a2+---+a§—n)2a1+a2+---+an—n.

(Vasile C., 2006)

Solution. Write the inequality as F(a,,a,,...,a,) = 0, where

nn—1
F(al,az,...,an)=% (@+d+-+a®—n)—(+a2+-+a>—n)

n
If

F(a1:a23a37'--zan)<F(t) t,ag,...,an) (*)
involves

F(ay,a,,as,...,a,) = F(0,2t,as,...,a,), **)
where n

a, +a
tz#: al#aZ:

2
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then, by the AC-Corollaz y, We have
F(a,,a a.) > min f k
( J 2)"" ]l) et 1<k<n ( )}

where f (k) is the value of F fora; =---=a,  =0and a, ;,; = =a, =n/k;
that is,

Since f (k) > 0 (with equality when k = 1 and k = n), we have

fk)=

F(ay,ay,...,a,)=0.
Using the identities
@ +a—2t* =2("—aya,), a}+a—2°=3(a; +a,)(t* —a,a,),
we may write (*) as

n(n—1) a+a’

ﬁ (af+a§—2t3)—2(af+a§—2t2)(t2+1T+a§+...+ai_n) <0,
3n(n—1)

2 2
a’+a
3 (a1+a2)—4(t2+%+a§+---+afi—n)]<O,
n

(t* —a,a,) |:

2 2
3n(n—1 aj+a
%(a1+a2)—4(t2+%+a§+---+a§—n)<0. (A)
n

Since

@ +a:—(aq;+a) =—-2aa,, @ +a—(a;+a,)’=-3a,a,(a; +ay),

we may write (**) as

n(n—1)
arl [a +a]—(a; +ay)’] —

2 2

a?+a
1 2
—2[af+a§—(a1+a2)2](2t2+T+a§+---+a§—n)20,

2 2

9 a1+a2 9 9
(a; +ay)—4| 2t +T+a3+---+an—n <0. B

3n(n—1)
a,a,| ———=
12 n+1
Clearly, (A) implies (B), therefore (*) implies (**). This completes the proof.
The equality holds when a; =a, =--- =a, =1, and also when

aq=--=a,,=0, a,=n

(or any cyclic permutation).
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P 1.26. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then

313 5
\jz(a4+b4+c4+d4)+§ + §2a2+b2+c2+d2.

(Vasile C., 2006)

Solution. Write the inequality in the form

313 5\
2(a4+b4+c4+d4)+8—12(a2+b2+c2+d2—§) .

Consider the more general inequality F(a, b,c,d) = 0, where
F(a,b,c,d) =k, (a*+b*+c* +d*) + k, — [ky(a® + B>+ 2 +d*) —k, |,

with
2k}>k; >0, 4ks>k, ks>0.

We will show that

F(a,b,c,d) < F(t,t,c,d) )
involves
F(a,b,c,d) = F(0,2t,c,d), ()
where b
a
t= > b.
2 a#

Using the identities
1
a’?+b?—=2t2=2(t>—ab), a*+b*—2t*= E(t2 —ab)(7a® + 7b% + 10ab),

we may write (*) as

a’+b

2
k,(a*+ b* — 2t*) — 2k;(a® + b* — 2t?) (I<3(t2 + +c2+d?H)— k4) <0,

k,(7a® + 7b%+ 10ab 24 p?
(tz_ab)[ 1(7a 72 a )—4k3 (kg(t2+%+cz+d2)_k4)] <O,
k 2 b%+10ab 2 2
1(7a +72 +10a )—4k3[k3(t2+a il +c2+d2)—k4]<0. @A)

Since
a’+b%>—(a+b)?>=—2ab, a*+b*—(a+b)*=—ab(4a®+4b?+6ab),
we may write (**) as

a’® + b?

ki[a*+b*—(a+b)*]—2k; [a* + b> — (a + b)?*] [k3(2t2 + +c24d*)— k4] >0,
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a® + b?

abk,(4a* + 4b* + 6ab) — 4k,ab [k3(2t2 + +c24d?)— k4] <0.

This inequality is true if

a’® + b?

k,(4a® + 4b* + 6ab) — 4k, [k3(2t2+ +c2+d2)—k4] <0,

which is equivalent to

2 2

k,(7a*+ 7b* + 10ab) a’+b

2

+2k1t2—4k3[k3(2t2+ +c2+d2)—k4] <0. (B)

Clearly, (A) implies (B) if
2k, t* —4k3t* <0,

which is true because k; < 2k§. As a consequence, (*) implies (**). Thus, by the
AC-Corollary, we have
F(a,b,c,d) > min f(k),
1<k<n

where

4k 2k 2
f (k)= min F(O,...,O,%,,,,,i)zh+k2_(%_k4)

1<k<4 k k3

is the value of F for the case where 4 — k of the variables a, b, c,d are zero and the
other k variables are equal to 4/k. Since

42k,
k
we only need to show that g(k) > 0 for k € {1, 2, 3,4}, where

_k424k3_k420,

256k, 16k,

g =\ otk ——=

+ k4-

For the original inequality, we have

313

5
k1:2’ kz—g, k3:]_, k4:§,

5

512 313 16 5
=\22+22 - 242 ke{1,2,3,4).
s=\22+32 2005 kepasg
\ 313 5

Since
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\ 313 5
g(2): 64+8—1—8+§>\/64—8:O,

512 313 _E 5 43 16 5

)=\ —+— +
&) 27 "81 3 '9 9 3

the conclusion follows.
The equality holds for a = 0 and b = ¢ = d = 4/3 (or any cyclic permutation),
and also fora=b=c=d =1.
O

P 1.27. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then

>a?+b*>+c?+d*>—4.

Z\J a*+ b4+t +d*—4
7

(Vasile C., 2006)

Solution. Write the inequality as F(a, b,c,d) > 0, where
F(a,b,c,d) =k, (a*+b*+c* +d*) + k, — [ky(a® + B2 + >+ d?) —k, ],

with 4 16
; k2:_7, k3:1, k4:4,
2k} —k, :2—§>0, 4kys—k, =0 ky>0.

As shown in the proof of the preceding P 1.26, we only need to show that g(k) >0
fork=1,2,3,4, where

256Kk 16k 4.[64—Kk5 16
)=\ =5tk ——— +ky =7\ —— 14
g(k) koo T T TRT N Tk K

.| 63
g()=4\|=-12=0,
7
.| 56

2)=2\|=—-4=0,
g(2) 14

4,137 16 4 16
gB) ==\ ——+4>-——+4=0,
3\21 3 3 3

g(4)=0.
The equality holds for a = b =c¢ =0 and d = 4 (or any cyclic permutation), for
a=>b=0and c =d =2 (or any permutation), and also fora=b=c=d = 1.

We have

O
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P 1.28. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then

16 4 3
\/a4+b4+c4+d4+——82(———) a®+b*+c*+d?).

(Vasile C., 2006)
Solution. Write the inequality as F(a, b,c,d) > 0, where
F(a,b,c,d) =k (a*+ b*+c* +d*) + k, —[ky(a® + B>+ 2+ d*) =k, ',
with

91 —48+/3

2k2 —k, = >4(3—2v3)>0, 4ks—k,=2>0.

As shown in the proof of P 1.26, we only need to show that g(k) > 0 for k =
1,2,3,4, where

256k 16k
gl =\ =5 +k —73+k4=8h(k),
2 2 (4 3
h) == - (F-1)+2-1
W AV AR

We have
h(1)=2(2—+v3)>0,

1 2 1

h(3) =0,
h(4) =0.

The equality holds when a = 0 and b = ¢ = d = 4/3 (or any cyclic permutation),
and alsowhena=b=c=d =1.
O

P 1.29. Ifa, b, c,d are nonnegative real numbers such that a + b+ c +d =4, then

\/a4+b4+c4+d4+8(2—\/§)2(2—%)(a2+b2+c2+d2).

(Vasile C., 2006)
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Solution. Write the inequality as F(a, b,c,d) > 0, where

F(a,b,c,d) =k, (a*+b*+c* +d*) + k, — [ky(a® + B2 + >+ d*) —k, ],
with
1
\/E’
2k2—k,>2-1>0, 4k;—k,=2(3v2—4)>0.

ky=1, k,=0, kyi=2— k,=8(2—+v2),

As shown in the proof of P 1.26, we only need to show that g(k) > O for k =
1,2,3,4, where

1 2 1 1
h(k =—+1————(1——).
A A G
We have
h(1) =0,
h(2)=0,

h(3)=%(1+%—«/§)>0,

h(4) =

> 0.

5—3v2
8

The equality holds when a = b = ¢ = 0 and d = 4 (or any cyclic permutation),
and also when a = b =0 and ¢ = d = 2 (or any permutation).
O

P 1.30. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then

11 3 2
\/a4+b4+c4+d4+16(———)2(———) a®+b*+c*+d?).

(Vasile C., 2006)
Solution. Write the inequality as F(a, b,c,d) > 0, where
F(a,b,c,d) =k, (a*+b*+c* +d*) + k, — [ky(a® + B2 + >+ d*) —k, ],

with
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2 1
2k2—k, >0, 4k,—k =4(———)>0
s Ve V2

As shown in the proof of P 1.26, we only need to show that g(k) > 0 for k =
1,2,3,4, where

g(k) = 25k63k1 +k, — 16kk3 +k, = 16h(k),
1 3 1 2
0=zt s e E 00
We have 1 3 1
h(1)=1—«/§+ﬁ>1—§+§:0,
h(2) =0,
h(3) =0,
11 1
= (4 7_7)

The equality holds when a = b = 0 and ¢ = d = 2 (or any permutation), and
also when a =0 and b = c =d = 4/3 (or any cyclic permutation).
O

P 1.31. Ifa, b, c,d are nonnegative real numbers such that a*+ b*+c*+d? = 4, then
a®*+b*+c*+d?®+abc+ bed +cda+dab < 8.
(Vasile C., 2006)
Solution. Write the inequality as G(a, b,c,d) = 0, where
G(a,b,c,d)=8—ac(b+d)—(a+c)bd—(a®+b>+ 3+ a3,
and apply the SM-Corollary. First, we will show that
G(a,b,c,d) > G(t,b,t,d)

for
a2+ c?

a<b<c<d, t=
2

Write this inequality as follows:

(t?—ac)(b+d)+ (2t —a—c)bd —(a® +c*—2t3) >0,

2_ 2 3, 3\2_ 446
t*—(a+c) bd—(a +c°) 4t>

4
t2—ac)(b+d)+
( X ) 2t+a+c ad+c3+2¢3
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(a—c)*(b+d) N (a—c)? b — (a—c)?[(a® + ac +c?)? — 3a?c?]
2 2t+a+c 2(ad +c3+ 2t3)
which is true if

>0

_ 2

2bd - (a? + ac + c?)?

b+d+ > .
2t +a+c ad+c3+2¢3
Since
b+d>a+c, bd > ac,
2t+a+c<3(a+c)
and

1
A+ +23>a+c3+ §(a+c)(a2+c2) >a®+cE+acla+c)=(a+c)a®+c?),

it suffices to show that
2ac (a? + ac + c?)?
3(a+c) ~ (a+c)(az+c2)

a+c+

which is equivalent to

3(a? + ac +c?)?
a2+ c?

2ac(a® + c?) > 3a’c?,

2ac(a—c)*+a%*>0.

By the SM-Corollary, it suffices to prove the original inequality for a = b = c;
that is, to show that 3a® + d? = 4 involves

4a® + d® + 3a%d < 8.

3(a®+c?)+8ac >

J

This inequality is equivalent to
4a® +4d < 8,
2—a’>d.
Since 3a® < 4, we have
2-a*>2- -2 >o.

343

Thus, we only need to show that
(2—a®)=d?
which is equivalent to
(2—a*)*>4—3d?%
a’(a*—4a+3)>0,
a’(a—1)*(a®>+2a+3) > 0.

The equality holds fora=b=c=d=1,and alsofora=b=c=0and d =2 (or
any cyclic permutation).
OJ
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P 1.32. Ifa, b, c,d are nonnegative real numbers such that a®+ b?+c?+d? = 2, then
a®+b*+c*+d?®+abc + bed +cda+dab > 2.
(Vasile C., 2006)
Solution. Write the inequality as G(a, b,c,d) = 0, where
G(a,b,c,d)=a*+b*+c+d*+kab(c+d)+k(a+b)ed—m, k=1, m=2,
and apply the AC1-Corollary. First, we will show that
G(a, b,c,d) < G(t,t,c,d)

involves
G(a,b,c,d) > G(0,v2 t,c,d)

for any k > 0 and real m, where

24 p2
t = a—;b’ a#b.

Write the hypothesis G(a, b,c,d) < G(t,t,c,d) as

(a®+b>—2t3)—k(t?—ab)(c+d)—k(2t —a—Db)cd < 0,

(a® + b3)? — 4t ) 4t2—(a+b)?
—k(t*—ab)(c+d)—k-————cd <0
ad + b3+ 2¢3 (" —ab)(c+d) 2tta+b 7
(a—b)’[a* +b*+2ab(a®+b*)] k(a—b)*(c+d) k(a—b)*
2(a3 + b3 + 2t3) 2 2t+a+b

a*+ b*+ 2ab(a® + b?) 2cd

<k d+ — . *
as+ b3+ 2t3 (c+ +2t+a+b) )

Write now the required inequality G(a, b,c,d) > G(0, v2 t,c,d) as follows:

cd <0,

kab(c+d)+k(a+b—+2 t)ed > 2V2 t*—a® —b?,

(a+b)2—2tzcd - 8t —(a® + b3)?
a+b+v2t  2/233+a3+ b3
2kabcd - a’b?(3a® + 3b>—2ab)
a+b++v/2t  2V/2t3+a3+b3
2kcd o ab(3a?+ 3b%—2ab)
a+b+v2t  2V/2t3+a3+b3

kab(c+d)+k-

kab(c+d)+

k(c+d)+

This inequality is true if

2kcd - ab(3a?+3b%—2ab)

k(c+d)+
(c )a+b+2t_ 2t3 + a3 + b3
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Having in view (*), it suffices to show that
ab(3a®+3b%—2ab) < a* + b* + 2ab(a® + b?),

which is equivalent to
(a®+ b?*)(a* + b*—ab) > 0.

By the AC1-Corollary, it suffices to prove that

(F2TF)ze (o3 {55)=e

G(0,0,1,1)>0, G(0,0,0,v2)>0.
We have

(ZLLEL) s (\(\(\D:__z
222 2

G(0,0,1,1)=0, G(0,0,0,v2)=2v2—2.
The equality holds fora = b =0 and ¢ =d =1 (or any permutation).

P 1.33. Ifa, b, c,d are nonnegative real numbers such that a®>+ b*+c?+d? = 3, then
3(@®>+b*+c*+d?)+2(abc + bed + cda +dab) > 11.

(Vasile C., 2006)

Solution. Write the inequality as G(a, b,c,d) = 0, where
G(a,b,c,d)=3(a®+b>+c3+d>) +2ab(c +d)+2(a+ b)ed — 11,
and apply the AC1-Corollary. As shown at the preceding P 1.32, if

G(a,b,c,d) <G(t,t,c,d),

then
G(a,b,c,d) > G(0,v2 t,c,d),
where
24 b2
t=142 ; , a#b.

By the AC1-Corollary, it suffices to prove that

(ffff

s 5 T 20, G(0,1,1,1)=0,
2727272
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1' 3 4]3
G (O) O) E) E) = O, G(O, O, O, '\/§) > 0.
We have

o(LL 5 5) 10
2727272

‘"TZ__11>0’ G(0,1,1,1)=0,
G QQ\§5\§
2’ \ 2

The equality holds fora =0 and b =c =d =1 (or any cyclic permutation).

3
9 5—11>o, G(0,0,0,v3)=9v/3—11>0.
O

P 1.34. Ifa, b, c,d are nonnegative real numbers such that a®+ b*+c?+d? = 4, then
4(a®+ b2+ +d®) +abc+ bed + cda +dab > 20.
(Vasile C., 2006)
Solution. Write the inequality as G(a, b,c,d) = 0, where
G(a,b,c,d) =4(a®+ b+ +d3)+ac(b+d) + (a+c)bd —20.
First Solution. Apply the SM-Corollary. First, we will show that
G(a, b,c,d) > G(t,b,t,d)

for
a2+ c2

a>b>c>d, t=
2

Write this inequality as follows:

4(a®+c2—2t3)—(t2—ac)(b+d)—(2t—a—c)bd >0,

34 (3)2 _ 446 2 _ 2
Mla+ eV —40] o gy — =@ sy

a3 +c3+2t3 2t+a+c
4(a—c)2[a4+b4+2ab(a2+b2)]_(a—c)z(b+d)_ (a—c)? bd >0
2(ad + ¢3 + 2t3) 2 2t +a+c

which is true if
4 4 24 .2
4a” + 4c* + 8ac(a® +c¢ )2b+d+ 2bd .
a3 +c3+2¢3 2t+a+c

Since
2t3<a*+c3, 2t>a+c,
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it suffices to show that

4a* + 4c* + 8ac(a® + c?) 2bd
>b+d+ ,
2(a3+c3) 2(a+c)

which is equivalent to

2a* + 2c* + 4ac(a® +c?)
az+c2—ac

>(a+c)(b+d)+bd,

Since b+d < a+c and bd < ac, we only need to prove that

2a* + 2c* + 4ac(a® + ¢?)

> (a+c)* +ac,
a?+c?—ac ( )

which is equivalent to
2a* + 2c¢* + 4ac(a® + ¢?) > (a® + ¢ —ac)(a® + ¢ + 3ac),

a*+c*+2ac(a® +c*) +a*c*>>0.

By the SM-Corollary, it suffices to prove the original inequality for a = b = c;
that is, to show that 3a? + d? = 4 involves

4(3a® + d®) + a® + 3a%d > 20,

which is equivalent to
13a® 4+ 4d® + 3a*d > 20,

13a® + 4d(4 — 3a®) + 3a*d > 20,
(16 —9a?)d > 20 — 13a°. @)

Since 3a? < 4 involves 16 — 9a® > 0, we only need to show that

(16 —9a*)*d? > (20 — 13a>)?
20
for a® < 13’ which is equivalent to
312 —960a” + 260a> + 594a* — 206a°® > 0,
9 312 9 3
a(l1—a)*f(a) =0, f(a)=—+624—24a—412a*—206a".
a

20
Since f is decreasing, it suffices to show that f(a) > 0 for a® = 'ES This is true

20
because (*) holds for a® = —.
The equality holds fora=b=c=d =1.
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Second Solution. Apply the AC1-Corollary. As shown at P 1.32, if
G(aJ b) c) d) < G(t7 tJ c) d)’

then
G(a,b,c,d) > G(0,v2 t,c,d),

24 p2
t= a—;b’ a#b.

Therefore, by the AC1-Corollary, it suffices to prove that

where

2 2 2
G(1; 13 1) 1) > 0; G(O) T = = _) > 07
V3 V3 V3

G(0,0,v2,v2)>0, G(0,0,0,2)>0.
We have

2 2 2 104
G(1,1,1,1) =0, G( )

0,—,—,—= |=—=—20>0,
V3 V3 Y3/ 343

G(0,0,v2,V/2)=16V2—-20>0, G(0,0,0,2)=12.

P 1.35. Ifa, b, c,d are nonnegative real numbers such that a®+ b?+c?+d? = 4, then

28
aA+bP++d®+3(a+b+c+d) < —.
V3

(Vasile C., 2006)

28
Solution. Write the inequality as G(a, b,c,d) + ﬁ > 0, where

G(a,b,c,d)=—(a®+ b2+ +d®)—k(a+b+c+d), k=3,
and apply the SM-Corollary. First, we will show that
G(a, b,c,d) > G(t,b,t,d)

for k > 3 and
a2+ c2

a<b<c<d, t=
2

Write this inequality as follows:

k(2t —a—c)—(a®+c*—2t3)>0,
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k[4t>—(a+c)*] (a®+c%) — 4t -

5

2t+a+c a3 +c3 +2t3
k(a—c)* (a—c)’[a*+c*+2ac(a® +c?)] -0
2t+a+c 2(ad + ¢3 + 2t3) -

which is true if
2k - a*+c* + 2ac(a?+c?)

2t+a+c ad+c3+(a2+c2)t
Write this inequality in the homogeneous form

k(a®+ b +c?+d?) o a*+c*+2ac(a®+c?)
2(2t+a+c) T oad+ i+ (a2 + )t

5

Since
k(a?+ b*+c*+d?) > 2k(a® + ¢*) > 6(a® + ¢?),

it suffices to show that
3(a?+c?) o a*+c* + 2ac(a?+c?)
2t+a+c - ad+c3+(az+c2)t

2

which is equivalent to
(a—c)*t+(a—c)*(2a®* +2c*—ac) > 0.

By the SM-Corollary, it suffices to prove the original inequality for a = b = c;
that is, to show that 3a? + d2 = 4 involves

28
3a+d®>+3Ba+d) < ek
Using the substitution
X Y
=—, =, x,y=20,
V3 V3

we need to prove that
3x*+y*=12, x<2

involves s

x3+%+9x+3y <28,
which is equivalent to
x}+(4—x*)y+9x+3y <28,
(7—x%)y <28—9x —x°.
Since x < 2 implies

28— 9x —x>=24+9(2—x)+(8—x3)>0,
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we only need to show that
(7—x*)’y* < (28 —9x —x°)?,
which is equivalent to
(7—x*)*(12—3x7) < (28 —9x — x°)?,

x®—9x* —14x3 +99x2 —126x +49 > 0,
(x—1)*f(x)=0,

where

f(x)=x*+2x>—6x*—28x +49
=(x—2)*(x*+6x+14)+4x—7
=(2—x)(24—2x —4x*>—x3)+1.

Since f(x) > 0 for 4x — 7 > 0, it suffices to show that 24 — 2x — 4x> — x3 > 0 for

0<x< ‘Zl Indeed, we have

105
+—>0.

24—2x —4x*—x*=(4—2x)+(13—4x*)+ (7—x%) > % )

1
~+
2

and d = +/3 (or any cyclic permutation).
U

The equality holds fora=b =c =

-

P 1.36. Ifa, b, c,d are nonnegative real numbers such that a®+ b?+c?+d? = 4, then
A+b3+c+d*+4a+b+c+d)<20.
(Vasile C., 2006)
Solution. Write the inequality as G(a, b,c,d) + 20 > 0, where
G(a,b,c,d)=—(a®+ b2+ +d®)—k(a+b+c+d), k=4,
and apply the SM-Corollary. As shown at the preceding P 1.35, we have
G(a,b,c,d) > G(t,b,t,d)

for k > 3 and
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By the SM-Corollary, it suffices to prove the original inequality for a = b = c; that
is, to show that 3a? + d? = 4 involves

3a® +d>®+4(3a+d) < 20,
which is equivalent to
3a® + (4—3a%)d + 12a + 4d < 20,

(8 —3a?)d <20—12a—3d°.

Since 3a* < 4 implies
20—12a—3a®>>20—12a—4a =4(5—4a) > 0,
we only need to show that
(8 —3a*)*d* < (20 —12a —3a®)?,
which is equivalent to
(8 —3a*)*(4—3a*) < (20— 12a —3a%)?,

3a® —9a* —10a® + 44a%> — 40a + 12 > 0,
(a—1)*f(a) =0, f(a)=3a*+6a>—16a+12.

It suffices to show that f(a) > 0. We have
f(a)>6a®—18a+12=6(a—1)*(a+2)>0.

The equality holds fora=b=c=d = 1.

P 1.37. Ifa, b, c,d are nonnegative real numbers such that a®+ b*+c?+d? = 4, then
S+l +d3+2vV2(a+b+c+d)>4(2+V2).
(Vasile C., 2006)
Solution. Write the inequality as G(a, b,c,d) = 0, where
Gla,b,c,d)=a’+b3+c+d®+k(a+b+c+d)—m, k=2v2, m=4(2+v2),
and apply the AC1-Corollary. First, we will show that

G(a,b,c,d) < G(t,t,c,d)
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involves
G(a,b,c,d) > G(0,v2 t,c,d)

for any k > 0 and real m, where

24 p2
t = a—;b’ a#b.

Write the hypothesis G(a, b,c,d) < G(t,t,c,d) as

(a®+b>—2t3)—k(2t —a—b) <0,

(a®+ b%)2 — 4t 4t2—(a+ b)?
@ +b3+2t3  2t+a+b
(a—Db)*[a*+ b*+2ab(a®+b?)] k(a—Db)?
2(ad + b3 + 2t3) C 2t+a+b
[a®+ b*+ 2ab(a* + b*)](2t + a + b) -
a3+ b3+ 2t3

cd <0,

2k. )
Write now the required inequality G(a, b,c,d) > G(0, v2 t,c,d) as follows:
k(a+b—+v21t)=2v2 t3—a®—b°,

k[(a + b)*—2t?] S 8t° —(a® + b3)?
a+b+v2t  2/2t3+ad+b¥
2kab - a’b?(3a® +3b%—2ab)
a+b+v2t  2/2t3+a%+b3
ab(a+ b+ v2 t)(3a?+3b%—2ab)
24/2 t3 4 a3+ b3 '
Having in view (*), it suffices to show that

5

2k >

[a*+ b*+2ab(a®+ b?)](2t +a + b) - (a+ b+ /2 t)[ab(3a®+ 3b%—2ab)]
ad+b3+2t3 - 2v/2 t3+ad+ b3

We can get this inequality by multiplying the inequalities
2[a*+ b* + 2ab(a®+ b?)] > 3[ab(3a® + 3b* — 2ab)]

and
3(2t+a+b) 2a+b+21t)

a®+b3+2t> T 242 3+ a3+ b3’
The first inequality is equivalent to

(a—b)*(2a* +2b*—ab) >0,
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and the second inequality to
8v2t* +2(3v2—2)(a+ b)t3 +2(3— v2)(a® + b*)t + (a + b)(a® + b*) > 0.

By the AC1-Corollary, it suffices to prove that

G(1,1,1,1) >0 G(oi 2 i)>0
> +y 4> - Y5 ’ﬁ’ﬁ’ﬁ = YU,

G(0,0,v2,v2)>0, G(0,0,0,2)>0.

We have
G(1,1,1,1)=4(vV2—-1) >0,

G(0,0,v2,v2)=0, G(0,0,0,2)=0.

The equality holds fora=b=0and c=d = V2 (or any permutation), and also
fora=b=c=0and d =2 (or any cyclic permutation).
]

P 1.38. Ifa, b, c,d are nonnegative real numbers such that a®+ b*+c?+d? = 4, then

a3+b3+c3+d3+2\l§(a+b+c+d)24(«/§+i).
3 V3
(Vasile C., 2006)

Solution. Write the inequality as G(a, b,c,d) = 0, where

2 2
G(a,b,c,d) = a®>+b3+c*+d>+k(a+b+c+d)—m, k= 2\]75, m=+4 (1/5+ ﬁ) ,

and apply the AC1-Corollary. As shown at the preceding P 1.37, if
G(aJ b’ c) d) < G(t’ t’ C) d)J

then
G(a,b,c,d) > G(0,v2 t,c,d)

for any k > 0 and real m, where

24 p2
t = a—;b’ a#b.
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As a consequence, by the AC1-Corollary, it suffices to prove that

2 2 2
G(]-; 13 17 1) > O; G(O: T = = _) > O:
V3 V3 V3

G(0,0,v2,v2)>0, G(0,0,0,2)>0.

We have
2 2 2 2
GL1JJ):4J§—U(———1)>0, G(Q——,—z——):o

( 7 3 V3V
1

G(0,0,v2,v2) =0, aaaam:4@—¢2(yn—->a
V3

The equality holds for a = 0 and b = ¢ = d = — (or any cyclic permutation),

V3

and also for a = b =0 and ¢ = d = +/2 (or any permutation).
O

P 1.39. Ifa, b, c,d are nonnegative real numbers such that a®+ b*+c?+d? = 4, then
2
AC+b+c+d®—4+——=(a+b+c+d—4)>0.

V3

(Vasile C., 2006)

Solution. Write the inequality as G(a, b,c,d) = 0, where

G(a,b,c,d)=a’+b3+c2+d*—4+k(a+b+c+d—4), k=

Sl

First Solution. Apply the SM-Corollary. First, we will show that
G(a,b,c,d) > G(t,b,t,d)

fork < g and

a>b>c>d, t=

Write this inequality as follows:
(a®+c—2t3)—k(2t—a—c) >0,

(a®+c®)?—4t°  k[4t?—(a+c)?]
ad+c3+2t3  2t+a+c
(a—cP[a* +c*+2ac(a®+c*)]  k(a—c)? -0
2(a3 + c3 +2t3) 2t+a+c

>0,

>
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which is true if
a*+c* + 2ac(a?+c?) - 2k
ad+c3+(a2+c)t  2t+a+c

Write this inequality in the homogeneous form

a*+c*+ 2ac(a? + c?) - k(a? + b%+c?+d?)
ad+c3+(az2+c2)t 22t +a+c)
Since y
8 +
k(a®+ b2 +c?2+d?) <2k(a®>+cH) < %,
it suffices to show that

a*+c* + 2ac(a?+c?) - 4(a®+c?)
as+c3+(a2+c)t  3Q2t+a+c)

)

This inequality can be written in the form 2At + B > 0, where
A=a*+c*+6ac(a®+ ¢?) — 4a’c>.

. a+c
SinceA>0andt >

+
, it suffices to prove the inequality (*) for t = %. That
means to show that
a*+c*+2ac(a® +c?) - 4(a%+c?)
at+c3+(a2+c2)(a+c)/2 6(a+c)’

which is true if
a*+c*+2ac(a®+ c?) - 2(a*+¢?)
az+c2—ac+(a2+c2)/2 3

which is equivalent to

a*+c*+2ac(a®+c?) _ a®+c?
3(a2+c2)—2ac 3’

ac(4a® + 4c*—3ac) > 0.
According to the SM-Corollary, it suffices to prove the original inequality for a =

b = c. Write the original inequality

2
C+b*++d®+k(a+b+c+d)>4(1+k), kzﬁ,

in the homogeneous inequality

4(a®+ b2 +c2+d3)

o Hhatbrerd)=20+k)Vat+ b+ +d2
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We only need to prove this inequality fora =b=c=0and fora =b =c =1. The
first case reduces to (2 —k)d > 0, while the second case to

4(d°+3) 3)
d2
By squaring, the inequahty becomes

+k(d+3)=>2(1+k)Vd2+3.

Ak*+2Bk+C >0,

where
3d(d —1)>? co 3(d —1)*(d*+2d® + 6d + 3)
dz+3 ’ B (d? +3)2 '

3
A=—=(d—1)>, B=
4( )
Thus, we need to show that
3
—Zkz(d2 +3)? +6kd(d*+3)*+3(d* +2d®+6d +3) >0,

which is equivalent to
—(d*+3)* +6kd(d*+3)+3(d* +2d®+6d +3) >0,
6kd(d* + 3) + 2d(d® + 3d*—3d +9) > 0.

2
The equality holds fora =b =c=d =1, and also fora = b = ¢ = ﬁ and

d =0 (or any cyclic permutation).

Second Solution. Apply the AC1-Corollary. As shown at P 1.37, if
G(a) bJ C) d) < G(t7 t’ C’ d)’
then
G(a,b,c,d) > G(0,v2 t,c,d)
for any k > 0, where
a?+ b?

t= 5 a#b.

Therefore, by the AC1-Corollary, it suffices to prove that

G(1,1,1,1)>0, G(O j_ j_ 5_)>0,

G(0,0,v2,v2)>0, G(0,0,0,2)>0.
G(1,1,1,1)=0 G(oiii)—
Y ’ V3 V33
1

G(0,0,v2,vV2)=4(2— «/‘)(7—7)>0 G(0,0,0,2):4(1—%)>0.

We have

O
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P 1.40. If a;,a,,...,a, are real numbers such that
a1+a2+"'+an:n,

then ( n

2, 2 2)2_ o2 Mn— 4, 4 4
(a1+a2+---+an) —n an_—m(a1+a2+---+an—n).

(Vasile C., 2006)

Solution. Write the inequality as F(a,, a,,...,a,) = 0, where
2
F(a;,ay,...,a,) = (af+a§+---+ai) —nz—k(af+a§+---+a2—n),

with

n(n—1)
n2—n+1
Without loss of generality, assume that

k =

alsa2S"'San

or
a;=2ay, =+ 2d,,
such that
a’ =max{a},a,...,a’}.
If
F(ay,ay,...,a, 5,0, 1,a,) = F(t,a,,...,a,_5,t,a,), t= %,

then, by the AM-Corollary, it suffices to prove the original inequality for

a1:a2:"':an_1.

That means to show that
(n—1a+a,=n

involves ,
[(n—l)a2+ai:| —n?> k[(n—l)a4+a2—n].

Since

[(n—1)a®+ ai]2 —n?*=[(n—1a*+a*—n][(n—1)a®+a>+n]
=n*(n—1)(a—1?*[(n—1)a*—2(n—1)a+n+1]

and

(n—1)a4+a2'—n =n(n—1)(a—1)>? |:(n2 —3n+3)a*—2(n*—n—1a+n*+n+ 1] ,
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the desired inequality can be written in the obvious form
(a—1?*[(n—1)a—1]*=0.
Using the identities

a? + a’%_l - 2t2 - Z(tz - alan_l),

n—1

1
4, 4 4_ L2 2 2
a/+a,_ —2t"= E(t —a,a,1)(7a; +7a;_, +10a;a,_,),
we may write the inequality F(a,, a,,...,a, 5,a, 1,a,) = F(t,a,,...,a, 5, t,a,) as

follows:

(af +a?  —2t?)(2t* + a% + 2a§ +- 4 2a§_2 + aﬁ_l + 2ar21) > k(a‘l‘ +at  —2th,

n—1 n—1

2 —aya, )22 +al +2a2+---+2d> ,+a> | +2a>) >

k
E(t2 —aa, 1)(7a} +7a> | +10a,a, ;).
Since t* —a;a, ; > 0 and 2a2 + -+ 2a>_, > 0, we only need to prove that
4(2t2 +al+a’  + 2ar21) > k(7a}+7a> | +10a;a, ;).
Since

2 2 2
2a; 2 aj+a, ,,

it suffices to show that
8(t*+a*+a> )= k(7a+7a*_, +10a;a,_,2).
This is true because k < 1 and

8(t*+a®+a? ) =10a+10a> | +4aya, , > 7a® +7a>_, + 10a;a, ;.

n—1
The equality holds when a; = a, =--- =a, =1, and also when

1
a;=--=a, 1= , a,=n—1
n—1

(or any cyclic permutation).

P 1.41. Ifa,b,c,d are real numbers such that a+ b + c + d = 4, then
26
(a2+b2+c2+d2—4)(a2+b2+c2+d2+?)2a4+b4+c4+d4—4.

(Vasile C., 2006)
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Solution. Write the inequality as F(a, b,c,d) > 0, where
2,712, 2, 42,3 2 17 414 4 g4
Fla,b,e,d)=(a*+b*+c?+d*+2 | —( = —(a*+b*+c*+d*—4).

Without loss of generality, assume thata < b <c<d ora> b > c > d, such that
d? = max{a?, b2, c?,d?}. We will show that

F(a,b,c,d)> F(t.b,t.d), t= a—zi—c.

Using the identities
1
a’?+c2—2t?=2(t>—ac), a*+ct—2t*= E(t2 —ac)(7a®+ 7¢? + 10ac),
we may write the inequality F(a, b,c,d) > F(t, b, t,d) as follows:

6
(a® +c2—2t2)(2t2 +a®+2b%+c*+2d* + g)—(a“ +ct=2t") >0,

2(t*> —ac) (th +a?+2b%+c%+2d*+ g) — %(t2 —ac)(7a®+ 7¢® +10ac) > 0.

The inequality is true if
4 (2t2 +a?+2b%+c242d%+ g) —(7a*+ 7¢? +10ac) > 0,
which is equivalent to
—5(a®* + c*)—30ac +40(b* + d*) + 24 > 0.
It suffices to show that
—5(a? + c?)—30ac +40d? > 0.

Since 2d? > a? + c?, we have

—5(a® + c*)—30ac +40d?* > —5(a® + ¢*) — 30ac + 20(a* + c*) = 15(a —¢)* > 0.

By the AM-Corollary, it suffices to prove the original inequality for a = b = c. That
is, to show that 3a + d = 4 implies

(3a2+d2—4)(3a2+d2+25—6)23a4+d4—4.

Since
3a°+d*—4=12(a—1)?,

a4 g2 s 26 _ 2(30a2 — 60a + 53)
5 5
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and
3a* +d*—4=12(a—1)*(7a* —22a + 21),

the desired inequality can be written in the obvious form
(a—1)*(5a—1)*>0.

1 1
The equality holdsfora=b=c=d =1,and alsofora=b=c = < andd = ?7
(or any cyclic permutation).

P 1.42. Ifa,b,c,d are nonnegative real numbers such that a+ b+ c +d =4, then

11\ _ 3
(a2+b2+c2+d2—4)(a2+b2+c2+d2+€)2Z(a4+b4+c4+d4—4).

(Vasile C., 2006)

Solution. Write the inequality as F(a, b,c,d) = 0, where

13)* (35)* 3
F(a,b,c,d)z(a2+b2+c2+d2—ﬁ) —(E) —Z(a4+b4+c4+d4—4),

Assume that a < b < ¢ < d and show that

F(a,b,c,d)>F(t,b,t,d), t= a;rc.

Using the identities
1
a’+c2—2t>=2(t>—ac), a*+ct—2t*= E(t2 —ac)(7a®+ 7¢? + 10ac),
we may write the inequality F(a, b,c,d) > F(t, b, t,d) as follows:
2 2 2 2 2 2 2 2 13 3 4 4 4
(a® +c*—2t%)| 2t*+a*+2b“ + c* + 2d s _Z(a +c*—2t") >0,

13 3
2(t?> —ac) (2t2 +a?+2b%+c?+2d°— E) — §(t2 —ac)(7a®+ 7¢® +10ac) > 0.

The inequality is true if

13
16 (2t2 +a?+2b%+c%+2d%— ?) —3(7a®+7¢* 4+ 10ac) > 0,

which is equivalent to

13
3(a* + ¢*) — 14ac + 32(b* + d?) — Z(a +b+c+d) =0,
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18(a® + c*)—84ac + 192(b*+d?*)—13(a+ b+c+d)* >0,
18(a® + c*)—84ac + 179b* + 192d* —26b(a+c+d)—13(a+c +d)* > 0,
18(a* + c*) —84ac + 10b* +192d* + (13b—a—c—d)*—14(a+c+d)* > 0.

The inequality is true if
18(a® + ¢?)—84ac +192d*>—16(a+c+d)* > 0,
which is equivalent to
9(a® +c?)—42ac +96d> —8(a+c+d)*>0.

Since
9(a® +c?)—42ac > —6(a + c)* = —24t2,

it suffices to show that
—24t2 +96d2—8(2t +d)* >0,
which is equivalent to the obvious inequality
(d—1t)(11d +7t) = 0.

By the AM-Corollary; it suffices to prove the original inequality for a = b = c. That
is, to show that 3a + d = 4 implies

(3a2+d2—4)(3a2+d2+1—61)2 %(3a4+d4—4).

Since
3a2+d*—4=12(a—1)%,
11 72a® —144a + 107
32 +d?+ — = 222 e
6 6
and

3a*+d*—4=12(a—1)*(7a*—22a + 21),

the desired inequality can be written in the obvious form
(a—1)*(9a—5)*>0.

5
The equality holds fora=b=c=d =1, andalsofora=b=c:§andd=§

(or any cyclic permutation).
[
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P 1.43. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then
(@®+b*+c*+d*—4)(2a* +2b* + 22 +2d* — 1) > a* + b* + c* +d* — 4.
(Vasile C., 2006)
Solution. Write the inequality as F(a, b,c,d) > 0, where

2
F(a,b,c,d)=2(a2+b2+cz+d2—§) —%—(a4+b4+c4+d4—4).

Assume that a < b < ¢ < d and show that

F(a,b.c,d)> F(t,b.t.d), t= a;’c.

Using the identities
a?+c2=2t*=2(t*—ac), a*+c*—2t'= %(t2 —ac)(7a®+ 7c¢? + 10ac),
we may write the inequality F(a, b,c,d) > F(t, b, t,d) as follows:
2(a®+c?—2t?) (Zt2 +a?4+2b%+c%+2d%— g) —(a*+c*=2tY >0,
8(t*—ac) (th +a*+2b*+c*+2d*— ;) — (t*—ac)(7a* + 7¢* + 10ac) > 0.
The inequality is true if
8 (2t2 +a?+2b%+c%2+2d%— ;) —(7a*+ 7¢?+10ac) > 0,

which is equivalent to
5(a*+ ¢?)—2ac + 16(b* +d?*)—36 >0,

20(a?+c?)—8ac +64(b>+d>)—9(a+b+c+d)?* >0,
20(a® + c¢*)—8ac + 64d* +55b*—18b(a+c+d)—9(a+c+d)* >0,

9 > 522
20(a* + c*) —8ac + 64d* + 6b* + [7b— ;(a +c +d)] — 4—9(a+c +d)*>0.
The inequality is true if
2 2 2 522 2
20(a® + c*) —8ac + 64d —E(a+c+d) >0,
which is equivalent to

261
10(a® + ¢*) — 4ac + 32d* — 4—9(a +c+d)*>0.
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Since
10(a® + ¢*) —4ac > 4(a + ¢)* = 16t>
and
261 16
- < _’
49 3

it suffices to show that
2 , 16 2
16t“ +32d —?(2t+d) >0,

which is equivalent to the obvious inequality
(d—t)(5d +t)=>0.

According to the AM-Corollary, it suffices to prove the original inequality for a =
b = c. That is, to show that 3a + d = 4 implies

(3a® +d?—4)(6a® +2d*—1) > 3a* +d* —4.

Since
3a’+d*—4=12(a—1)?,

6a® +2d?—1=24a®>—48a + 31

and
3a*+d*—4=12(a—1)*(7a*—22a + 21),

the desired inequality can be written as
(a—1)*(17a* —26a + 10) > 0.
This is true because
17(17a* —26a +10) = (17a—13)*+1 > 0.

The equality holds fora=b=c=d =1.

P 1.44. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then

(@ +b2+c*+d*—4)(a® +b*+2+d*+12) > = (a* + b* +c* +d*—4).

Wb

(Vasile C., 2006)



Arithmetic Mean Method and Arithmetic Compensation Method 87

Solution. Write the inequality as F(a, b,c,d) > 0, where
F(a,b,c,d)=(a*+ b2+c2+d2+4)2—64—g(a4+ b*+ct+d*—4).

Assume that a < b < ¢ < d and show that

F(a,b,c,d)>F(t,b,t,d), t= a;rc,

Using the identities
1
a’?+c2—2t2=2(t>—ac), a*+ct—2t*= E(t2 —ac)(7a®+ 7¢? + 10ac),
we may write the inequality F(a, b,c,d) > F(t, b, t,d) as

4
(a®+c?—2t?)(2t* + a®> + 2b* + > +2d* + 8) — g(a“ +ct =2t >0,

2
2(t* —ac)(2t* + a* + 2b* + c* +2d* + 8) — 5(t2 —ac)(7a*+ 7c¢* + 10ac) > 0,

(t? —ac)(—5a% — 5¢% —14ac + 12b> + 12d* + 48) > 0.

This inequality is true if

—5a* —5¢* — 14ac + 12b* + 12d* + 48 > 0,
which is equivalent to

—5a? —5c%—14ac + 12b% +12d*+3(a+ b+c+d)?> > 0.

It suffices to show that

—5a*—5c¢*—14ac +12d* + 3(a + ¢)* > 0.
Since 2d? > a® + c2, we only need to show that

—5a® —5c¢%—14ac + 6(a® +c*)+3(a+¢c)* >0,

which reduces to
4(a—c)*>0.

By the AM-Corollary, it suffices to prove the original inequality for a = b = c. That
is, to show that 3a + d = 4 involves

3(3a*+d*—4)(3a* +d*+12) > 4(3a* +d* —4).

Since
3a*+d*—4=12(a—1)?,
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3a>+d*+12=4(3a*—6a+7)

and
3a* +d*—4=12(a—1)*(7a* —22a + 21),

the desired inequality can be written in the obvious form
ala—1)*(a+2)>0.

The equality holds fora=b=c=d =1,and alsofora=b=c=0and d =4
(or any cyclic permutation).
O

P 1.45. If a, b, c,d are nonnegative real numbers such that a + b+ c +d =4, then

6 12
(a2+b2+c2+d2—4)(a2+b2+c2+d2+Z—l)2E(a4+b4+c4+d4—4).

(Vasile C., 2006)

Solution. Write the inequality as F(a, b,c,d) > 0, where

2 1o, 2, 2, 16
F(a,b,c,d)=(a*+b*+c"+d*°+— | —

60)2 12
11

o 11(a4+b4+c4+d4—4).

Assume that a < b < ¢ < d and show that

F(a,b,c,d)>F(t,b,t,d), t= a;rc.

Using the identities
1
a?+c?2=2t>=2(t*—ac), a*+ct—2t*= E(t2 —ac)(7a%+ 7¢? + 10ac),

we may write the inequality F(a, b,c,d) > F(t, b, t,d) as follows:
32 12

(a2+c2—2t2)(2t2+a2+2b2+62+2d2+ﬁ)—ﬁ(a4+c4—2t4)20,

32
22(t% —ac) (th +a?4+2b%+c?+2d* + ﬁ) —6(t?>—ac)(7a® + 7¢*+10ac) > 0,

(t? —ac)(—9a* — 9c* — 38ac + 44b* + 44d> + 64) > 0.

This inequality is true if

—9a* —9c® — 38ac + 44b* + 44d* + 4(a+ b+ c+d)* = 0.
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It suffices to show that
—9a* —9c¢* —38ac +44d* + 4(a +c)* > 0.
Since 2d* > a® + c?, we only need to show that
—9a* —9c¢%? —38ac +22(a* + c*) + 4(a +c)* > 0.

which reduces to
2(a®>+c?)+15(a—c)* > 0.

By the AM-Corollary, it suffices to prove the original inequality for a = b = c. That
is, to show that 3a + d = 4 involves

(3a*+d*—4)(33a® +11d*+76) > 12(3a* + d* —4).

Since
3a*+d*—4=12(a—1)?,
33a%2+11d%*+ 76 = 12(11a® — 22a + 21)

and
3a* +d*—4=12(a—1)*(7a*—22a + 21),

the desired inequality can be written in the obvious form
a*(a—1)*>0.
The equality holds fora=b=c=d =1,and alsofora=b=c=0and d =4

(or any cyclic permutation).
O]

P 1.46. If a;,a,,...,a, are nonnegative real numbers such that

a,+a,+---+a,=m, me{l,2,...,n},

then
1 1 1 m
+ oot >n——.
1+a®> 1+a; 1+a? 2
(Vasile C., 2005)
Solution. We need to prove that F(a,,a,,...,a,) = 0, where
F( =yt ] +Z
a;,dy,...,a,) = —n+—.
P2 o 1+ad® 1+a? 1+4a? 2

Assume that
F(a1’a2:a3:"-’an)<F(t2 t:aSJ"':an) (*)
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involves
F(a,,a,,as,...,a,) = F(0,a; + ay,as,...,a,), (%)
where
t = %, a, # a,.

Then, by AC-Corollary, we have

> .
F(aI) a2) e an) - 1121(lgnf(k),

where ( y
m m(m—k
Ky=n—k+ ————n+—-=—"7""=<
flky=n 1+m/k2 2T 2m2 1 k)
is the value of F fora; =---=a, y=0and a, ;= - =aqa, = % Obviously, we

have f (k) > 0 (with equality for k = m), therefore F(a;,a,,...,a,) > 0.
To prove that (*) implies (**), we write (*) as

1 + 1 2 <
14a} 14a; 1+¢2

(1+a®)(1+a3)(1+t2)

a+a’+4a,a,—2<0,

and (**) as
1 1

+
2 2
1+a] 1+a;

- >0,
1+ (a; +a,)?

a,0,[2—2a,a, — ayay(a; + ay)?]
(1+a®)(1+a3)(1+4t2)

We need to show that
2—2a,a, —a,a,(a; + a,)* > 0.
Using (A), we have
2—2a,a, —a,a,(a; + a,)* > 2—2a,a, — a,a,(2 —2a,a,) = 2(a;a, — 1)* > 0.
The equality holds fora; = --- =a,_,, =0and a,_,,,,; =+ =a, =1 (or any

permutation).
O
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P 1.47. If a, b, c,d are nonnegative real numbers such that a+ b +c+d = 2, then
1 1 1 1 16

- + + >—.
14+3a2 1+4+3b%2 1+4+3c2 1+3d2 7

(Vasile C., 2005)

Solution. Write the inequality as F(a, b,c,d) > 0, where

1 1 1 1 16

F ’b) Jd = + + + -
(a,b,c,d) 1+3a2  1+3b%2  1+3c2  1+3d2 7
Assume that
F(a,b,c,d) < F(t,t,c,d) *)
involves
F(a) byc,d) 2 F(O,a+ b’c’d)’ (7':7':)
where ,
a—+
t= b.
;> a7

Then, by AC-Corollary, we have

F(a,b,c,d) > g;gj (k),

where k 16 12(k—3)(k—4)
SR ==k T~ 7 = e+ 12)

is the value of F when 4 — k of the numbers a, b,c,d are zero, and the other k

2
numbers are equal to e Obviously, we have f(k) > 0 for k € {1,2,3,4} (with
equality for k = 3 and k = 4), therefore F(a;,a,,...,a,) > 0.
To prove that (*) implies (**), we write (*) as
1 + 1 2 <
14+3a2 1+4+3b2 1+43t2
(t>—ab)(6t>—1+3ab)
<0,
(1+3a2)(1+3b2)(1+3t2)
6t* <1—3ab, (A)

2

and (**) as
1 1 1

T+3a2 11302 1T 1+3(a+b)? =0,
ab(1—3ab—18abt?)
(14+3a2)(1+3b2)(1+12t2) —
For the nontrivial case ab # 0, this is true if

1
6t < — —1.
3ab
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Using (A), we only need to show that
1
1—-3ab< ——1,
3ab
which is equivalent to

(3ab—1)*>0.

1
Theequalityholdsfora=b=c:d:E, and also fora=0and b=c=d =

(or any cyclic permutation).

0 wiN

P 1.48. Ifa,b,c,d are nonnegative real numbers such that a + b+ c +d =4, then
(1+a*)(1+b*)(1+c>)(1+d?) <25.
(Vasile C., 2005)
Solution. Write the inequality as F(a, b,c,d) > 0, where
F(a,b,c,d)=25—(1+a*)(1+b*)(1+c*)(1+d?).

Assume that

F(a,b,c,d) <F(t,t,c,d) *)
involves
F(a,b,c,d)>F(0,a+b,c,d), (%)
where ,
t= a; , a#b.

By the AC-Corollary, it suffices to prove that
F(1,1,1,1) =0, F(O,ﬂ,ﬂ,ﬂ) 20,

F(0,0,2,2) >0, F(0,0,0,4)> 0.
We have

2600
F(1715111):9) F(05ﬂ44)_ 3
729

3°3’3
F(O’O’ ‘/5’1/5):01 F(OJO’O;4):8
To prove that (*) implies (**), we write (*) as

[+ —(1+a)(1+b)](1+cH(A+d?) <0,

(1+t2)*—1+a®>)(1+b?) <0,
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(t?—ab)(t>*+ab—2) <0,
2—ab > t? (A)
and (**) as
[1+(a+b)*—(1+a®)(1+b)](A+c2)(1+d>) >0,
14+(a+b)32—-1+a®>)(1+b*>0,
ab(2—ab) > 0.
This inequality is true if 2—ab > 0. Using (A), we have

2—ab>t>>0.

The equality holds for a = b =0 and ¢ = d = 2 (or any permutation).

P 1.49. If a, b, c,d are nonnegative real numbers such that a+ b +c+d =1, then

(1+2a)(1+2b)(1+2c)(1+2d) S 125
(1—-a)1-b)(1—-c)(1—-d) ~— 8 °

Solution. Write the inequality as F(a, b,c,d) > 0, where

F(a,b,c,d) = (1+2a)(1+2b)(1+2c)(14+2d)—k(1—a)(1—b)(1—c)(1—d), k= 1%.
If
F(a,b,c,d) <F(t,t,c,d) (*)
involves
F(a,b,c,d)>F(0,a+b,c,d), %)
where ,
t= a; , a#b.

then, by the AC-Corollary, it suffices to prove that

11
F(0,0,0,1)>0, F (0, 0, -, _) >0,
1
4

111 111
F(OJ_)_J_)ZOJ F(_)_J_) )20
333 4744

11 3
F(0,0,0,1) = 3, F(0,0,——)z—

We have
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111 111 2
F(OJ_,_J_):OJ F( )_J_,_):i'
3°3°3 4 4 4 2048

The inequality (*) is equivalent to
[(1+2a)(1+2b)—(1+2t)*](1+2c)(1+2d)—

e L

—k[(1—-a)1-b)—(1—-t)*](1—c)(1—d) <0,
—4(t>—ab)(1+2c)(1 +2d) + k(t?—ab)(1—c)(1—d) <0,
4(1+20)(1 +2d) > k(1—c)(1—4d), (A)

and (**) to

[(14+2a)(1+2b)—(1+2a+2b)](1+2c)(1+2d)—

—k[(1—a)(1—=b)—(1—a—b)](1—c)(1—d) >0,

4ab(1 +2¢)(1+2d) —kab(1—c)(1—d) > 0.
This inequality is true if
414+2c)(1+2d)=k(1—c)(1—d) =0,

which follows immediately from (A); therefore, (*) implies (**).

1
The equality holds fora=0and b=c=d = 3 (or any cyclic permutation).
O

. 2
P 1.50. Ifa,,a,,...,a, are nonnegative real numbers such that a; +a,+---+a, = 3
then

a;a; 1
> <=,
1<i<j<n (1_ai)(1_aj) 4
(Vasile C., 2005)

Solution. We need to prove that F(a,,a,,...,a,) = 0, where

1 a;a;
F(ay,a,,...,a,) = —— .
4 1S§j£n (1_al)(]._a])

Assume that

F(a,,a,,as,...,a,) < F(t,t,as,...,a,) )
involves
F(a,ay,as,...,a,) = F(0,a; + a,,as,...,a,), )
where
t = w, a, # a,.

2
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Then, by AC-Corollary, we only need to prove the original inequality for the case
when n—k of the variables a;, a,, ..., a, are zero and the other k variables are equal

2
to % where k € {1,2,---,n}; that is, to show that

@% =¥

which is equivalent to

2k(k—1) 21
(3k—2)2 ~ 4’
(k—2)*>>0.

To prove that (*) implies (**), we write the inequality (*) as

n

t2 a,a, ( 2t a, a, ) a
- + - - <0,
(1—-t)2 (A—a)(1—a,) 1-t 1—a; 1—a, Zl—ai

i=3

t>—a,a, L
(—a)(1—a)(1— 07 [1_2“2“‘”; 1—a<:| <0

1

a;

n
1-2t—2(1—1) )
Py 1—a;

1

<0, (A)

and (**) as

n
a,a, + ( 2t 4 @ ) a; >0,
(1—ay)(1—a,) 1-2t 1-a; 1-a, )4 1—q

1

a;a, n a.
(1-a)(1—a)(1—2t) [1 —2t—201- f); :] <o.

Clearly, this inequality follows immediately from (A), therefore (*) implies (**).
This completes the proof.
1
The equality holds when a; = a, =+ =a, ,=0and a,_ ; = q, = 3 (or any

permutation).
[

P 1.51. Ifa,,a,,...,qa, are nonnegative real numbers such that a; +a,+---+a, =1
and no one of which is 1, then

Z ala] > n
(1-a)1—a;)  2(n—1)

1<i<j<n

(Gabriel Dospinescu, 2005)
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Solution. For n = 2, the inequality is an equality. Consider next that n > 3. We
need to show that F(ay,a,,...,a,) = 0, where

n
F(a,a,,...,a, Z ’
1<i<j<n (1—(1 )(1_a ) 2(n—1)
Assume that
F(ay,ay,as,...,a,) < F(t,t,as,...,a,) *)
involves
F(al’ dz,0s;---» an) = F(O’ a +a,,ds,..., an): (**)
where
a, +a
-1 5 2’ a £ a,.

Then, by AC-Corollary, we only need to prove the original inequality for the case
when n—k of the variables a,, a,, ..., a, are zero and the other k variables are equal

1
to o where k € {1,2,---,n}; that is, to show that

(2)(1%)%)2 = 2(nn— 1)’

which is equivalent to n—k > 0. As shown at the preceding P 1.50, the inequalities
(*) and (**) are equivalent to

—~ a
2t—1+2(1—t)21 l
i=3

and

a,d, o g
0—a)(1—a,)(1—20) [Zt_l +201- t); 1—a

respectively. Thus, (*) involves (**).

1
The equality holds whena; =a, =+ =aqa, = —.
n

P 1.52. If a, b, c,d are nonnegative real numbers such that a+ b + c +d = 4, then
(1+3a)(1+3b)(1+3c)(1+3d) <125+ 131abcd.

(Pham Kim Hung, 2005)
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Solution. Write the inequality as F(a, b,c,d) > 0, where

F(a,b,c,d)=125—(1+3a)(1+3b)(1+3c)(1+3d)+131abcd.

) F(a,b,c,d) < F(t,t,c,d) *)
involves
F(a,b,c,d)>F(0,a+b,c,d), %)
where
=" ; b, a#b.

then, by the AC-Corollary, it suffices to prove that

F(0,0,0,4)=0, F(0,0,2,2) =0,

F(O, i,ﬂ,i) >0, F(1,1,1,1)=0.
333
We have
F(0,0,0,4)=112, F(0,0,2,2)=76,
F(O, i,ii) =0, F(1,1,1,1)=0.
3’33
The inequality (*) is equivalent to

[(1+36)*—(1+3a)(1+3b)] (1 +3c)(1+3d)—131(t>*—ab)cd <O,

9(t>—ab)(1+3c)(1+3d)—131(t2—ab)cd < 0,
9(1+3¢)(1+3d)—131cd <0, (A)
and (**) to

[(14+3a+3b)—(1+3a)(1+3b)](1+3c)(1+3d)+131labcd >0,

—9ab(1+3c)(1+3d)+131abcd >0,
ab[9(1 + 3¢)(1+3d)—131¢d] <0,
This inequality follows immediately from (A); therefore, (*) implies (**).
The equality holds fora=b=c=d=1,and alsofora=0and b=c=d =

(or any cyclic permutation).

[ wiks

P 1.53. If a, b, c,d are nonnegative real numbers such that a+ b +c +d = 4, then
(14 3a?)(1+3b3)(1 +3c¢?)(1 +3d?) < 255+ a?b?c2d?.

(Vasile C., 2005)
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Solution. Write the inequality as F(a, b,c,d) > 0, where

F(a,b,c,d)=255—(14+3a®)(1+3b>)(1+3c?)(1+3d?)+a®b%c%d?.

If
F(a,b,c,d) < F(t,t,c,d) )
involves
F(a,b,c,d)>F(0,a+b,c,d), ()
where ,
t= a; , a#b.

then, by the AC-Corollary, it suffices to prove that

F(0,0,0,4)>0, F(0,0,2,2)>0,
F(O, f,f,f)zo, F(1,1,1,1)>0.
3°'3°3
We have
F(0,0,0,4) =206, F(0,0,2,2)=86,

F (o, f, f, f) = ﬂ, F(1,1,1,1)=0.
373" 3 3
The inequality (*) is equivalent to
[(1+36%)2—(1+3a®)(1+3bH)] (1 +3cH)(1 +3d*) — (t* — a*b?)c?d* < 0,

3(t2—ab)(3t>+3ab—2)(1 +3c?)(1 +3d?) — (t>*—ab)(t* + ab)c?d? < 0,
3(3t%+3ab—2)(1+3c*)(1+3d*)—(t*+ab)c?*d* <0,
3t2+3ab—2 c2d?
< ,
t2+ab 3(1+3c2)(1+3d?)

(A)
and (**) to
[1+3(a+b)*—(1+3a*)(1+3b»)](1+3c*)(1+3d?) +a’*b%c*d* > 0,
—3ab(3ab—2)(1+ 3c?)(1 + 3d?) + a*b?*c*d* > 0.
This inequality is true if
—3(3ab—2)(1+3c%)(1+3d?) +abc?d®> >0,
c2d? - 3ab—2
3(1+3c2)(1+3d2) ~ ab
Having in view (A), it suffices to show that

3t>+3ab—2 - 3ab—2
t2+ab ~—  ab ’

which reduces to t? > 0; therefore, (*) implies (**).
The equality holds fora=b=c=d =1.
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P 1.54. Ifa;,a,,...,a, (n > 3) are nonnegative real numbers, then
) 4n(n—2) 2)
a;y +2 a,a»a > 2 a,a
St +2Y o+ D223 0

(Vasile C., 2005)

Solution. Let us denote
S:a1+a2+"'+an.

E: — 2 E:z
2) aa,=s"— ) aj,

sym

Since

we need to show that F(a,,a,,...,a,) = 0, where

2n(n—2) 52
F(al,az,...,an)=2a +Z:a1a2a3 3( gD -3
sym

Assume that

b

F(ay,a,,as,...,a,) < F(t,t,as,...,a,) (@)

involves
F(a,,a,,as,...,a,) = F(0,a, +a,,as,...,a,), ")

where
a, +a,

2 )
Then, by AC-Corollary, we only need to prove the original inequality for the case
when n—k of the variables a;, a,, ..., a, are zero and the other k variables are equal

to %, where k € {1,2,--- ,n}; that is, to show that

()2 () ) s =) ()

which is equivalent to

a, # a,.

5. (k—1)(k—2)s® N 8n(n—2) > 6(k—2)s2'
k2 (n—1)2 k

This inequality is clearly true for k = 1 and k = 2. For k € {3,...,n}, using the
AM-GM inequality to three numbers, it suffices to show that

3 (k—1)2(k—2)%° 8n(n—2) - 6(k —2)s?
k4 (n—1)% — k ’
which is equivalent to
n(n—2) S k(k—2)
(n—1)2 ~ (k—1)%’
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(n—17-1_ (k—17-1
(n—12 — (k=13 °
1 1
> .
(k—1)2 " (n—1)2

The inequality (*) is equivalent to

(af + ag —2t*)—(t*—a,a,)(as +--+a,) <0,

2(t* —a,a,) — (t* —aja,)(a; + - +a,) <0,
2<az+---+a,, (A)

and the inequality (**) to
af + ag —(a; +a,)* +a,a,(az +---+a,) >0,

_2a1a2 + alaz(aB + M + an) 2 0,
alaz(z_ag_"'_an) S 0.

This inequality follows from (A), therefore (*) involves (**).
2

The equality holds when a; =a, =---=a, = T
n —_—

P 1.55. Ifa, b, c,d are nonnegative real numbers such that a+b+c+d = +/3, then

ab(a+2b+3c)+ bc(b+2c+3d)+cd(c+2d +3a)+da(d +2a+3b) <2.

Solution. Write the inequality as F(a, b,c,d) < 2, where

F(a,b,c,d)=ab(a+2b+3c)+bc(b+2c+3d)+cd(c+2d+3a)+da(d+2a+3b).

From

F(a,b,c,d)—f(a+c,b,0,d)=c(b—d)(a+c—b—d)
and

F(a,b,c,d)—f(0,b,a+c,d)=a(d—b)(c+a—d—Db),
we get

[F(a,b,c,d)—f(a+c,b,0,d)][F(a,b,c,d)—f(0,b,a+c,d)]=
=—ac(b—d)*(a+c—b—d)*<0,

hence

F(a,b,c,d) <max{f(a+c,b,0,d),f(0,b,a+c,d)}.
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Similarly, we have
F(a,b,c,d) <max{f(a,b+d,c,0),f(a,0,c,b+d)}.

Therefore, f (a, b, c,d) is maximal when one of a and c is zero, and one of b and d
is zero. Thus, it suffices to consider one of these cases. For instance, forc =d =0,
we need to show that a + b = v/3 involves

ab(a+2b) <2.
We have

2—ab(a+2b)=2—b(a®+2ab) =2—b[(a+ b)*>— b?]
=2-3b+b*=(1-b)*(2+b)>0.

The equality holds for a = v3—1, b =1, c =d = 0 (or any cyclic permutation).
O

P 1.56. Ifa,b,c,d > 0 such that abcd = 1, then

a+b+c+d 1 1 1 1
- + + -
16 a+1 b+1 c¢c+1 d+1

>2,
4

(Vasile C., 2018)

Solution. Write the inequality as F(a, b,c,d) = 0 and assume thata > b >c >d,
which implies a?c? > (ab)(cd) = 1, therefore ac > 1. We will show that

F(a; b; C)d) Z F('\/E: b: \/asd)

We have
a+c—24/ac 1 1 2
F(a,b,c,d)—F(+ac,b,+ac,d) = + + — >0,
( ) ( ) 16 a+1l c+1 4ac+1
because
at+c—24ac=0
and

1,12 (Ja—JoRa-1) |
a+1 c+1 yac+1 (a+D(c+D(Vac+1)~
According to GM-Corollary, we have

F(a,b,c,d) =2 F(t,t,t,d),
where t = vabc. So, we need to shoe that t3d = 1 implies

3t+d 3 1 9
+ - > =,
16 t+1 d+1 4
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which is equivalent to

3tt+1 3 t3 9
++ + > =,
16t3 t+1 341 4

3t7 —20t° + 48t° —45t* +12t3+1 >0,
(t—1)%(3t°—14t* + 17t +3t>+ 2t +1) > 0.

The last inequality is true because
3t°—14t* + 173 +3t2 + 2t + 1> 3(3t* — 14t + 17) > 0.

The equality holds fora=b=c=d =1.

P 1.57. Let
F(a,b,c,d)=4(a*+b*+c*+d*)—(a+b+c+d)?,
where a, b, c,d, e are positive real numbers such that a < b < ¢ < d and
a(b+c+d)=3.
Then,

1111
F(a,b,c,d)>F|—,—,—,—|.
(a7 7C’ )— (aJ b’c,d)
(Vasile C., 2018)

Solution. For fixed a, write the inequality as E(b,c,d) > 0, where

E(b,c,d)=4(a®* +b*>+c*>+d*)—(a+b+c+d)?
(A e i)l
a2 b2 ¢2 d2) \a b ¢ d)°’

and show that
E(b,c,d) > E(t,t,t) >0,

where
[ b+c+d
= 3
According to AM-Theorem, the left inequality is true if

at > 1.

E(b,c,d) = E(x,c,x),

where
_b+d

2

X
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We have
becd — A(b% 4 42 5 1 1 2
E( »C, )_E(X,C;X)—4( + —2X )_4 ﬁ—'_ﬁ_;
(1 1 1 1)2 (1 1 1 1)2
Ho+-+=+=) |-+ =+=+=
a b ¢ d a x ¢ X
4(b—d)*(b?+d?+4bd)
=2(b—d)*— +C
( ) b2d2(b + d)> ’
where

C:(l+l_3)(g+l+%+l+%)
b d x)\a b ¢ d x
S (b—d)? (§+§ 4 )_(b—d)2(3b2+3d2+10bd)
“bd(b+d)\b d b+d b2d2(b + d)?

Thus, we need to show that

_ A(b*+d? +4bd) N 3b%+3d?+10bd -
b2d2(b + d)? b2d2(b+d)?

that is
b?+d? + 6bd

>
b2d2(b +d)?
Since
3<a(b+c+d)<b(b+2d),
it suffices to prove the homogeneous inequality
18 - b*+d*+6bd
b2(b+2d)? — b2d2(b+d)?

Due to homogeneity, we may set b = 1 (which involves d > 1), when the inequality

becomes
18 - 1+d?+6d

(1+2d)? ~ d2(1+d)?’°
14d* +8d*—11d*—10d —1 >0,
(d—1)(14d® +22d*+11d + 1) > 0.

Also, we have

2
E(t,t,t) = 4(a* + 3t*) — (a + 3t)? —4(% + %) + (% + %)
_ 3(a— t)>  3(a’t*—1)(a—t)? -

_ 32
=3la-1 a2tz azt2

0.

1
The equality occurs fora=b=c=d>1andfor —=b=c=d > 1.
a
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Remark 1. Similarly, we can prove the following statement:
o Let
F(a,ay,...,a,)=n(@+a +--+a’)—(a,+ay,+---+a,)*,
where aq,a,,...,a, are positive real numbers such that a; < a, < --- < a,, and
a;(ay+as+---+a,)=n—1.

Ifn<6, then

1 1 1
F(aj,ay,...,a,)=F|—,—,...,— |,
a, a, a

1
with equality for — =a, =---=a,.
a;
Actually, the inequality holds for all n > 2.

Remark 2. The inequality
1 1 1
F(a,,a,,...,a,)=2F|—,—,...,—
a, a, a
is also valid in the particular case

a,dy,...,a, = 1.

P 1.58. Let

5
F(a,b,c,d,e)z\/sabcde—1 — 17>
R e

a e

C

where a, b, c,d, e are positive real numbers such that
a =max{a, b,c,d,e}, bcde>1.

Then,
11111
F a,b,C,d,e =>F T 70 s 10
( ) (a b c d e)
(Vasile C., 2018)

Solution. Assume that
a>b>=>c>d=>e.

For fixed a, write the inequality as E(b,c,d,e) = 0, where

E(b,c,d,e) = v abcde — T > — ! >

+ )
lylylii4l Jabede a+b+c+d+e
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and show that
E(b,c,d,e) > E(t,t,t,t) >0,

where
t = v/ bede > 1.
Let as denote
1 1 1 3
a+c+d=3p, —+-+-=-.
a ¢ d g

According to GM-Theorem, the left inequality is true if
E(b,c,d,e) > E(V be,c,d, Vv be),

which is equivalent to
1

(vVb—+e) S (vVb—e) .
be(2+-2)(2+21+1) (3p+2vbe)3p+b+e)

qg  vbe)\q Db
After dividing by (v/b — 4/€)?, we need to show that
3 2 3 b+e
3p+2vbel(3 +b+e)2be(—+—)(—+ ) (D
(p ) P q +be/\q Dbe
that is
A(b+e)+B =0,
where 3 9
A=3p+2vbe————.
P q +be
Since
a—tsp_1
a b’
we have A > C, where
3 2
C=3p+2vVbe————.
P q +be

By Lemma 1 below, we have C > 0, hence A > 0. Since

Alc+d)+B>=2AvVcd +B,

we need to show that 2Av'cd + B > 0. This is equivalent to (1) if the sum b + e is
replaced by 2+/ be:

3p +2\/E)(3p +2v/be) > be (2 + ‘/%) (2 + 1/%)
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that is )
2 3 2
3p+2v be 2be(—+—),
(p ) q Vbe
a+c+d+2vbeZVbe(1+1+%)+2,
a ¢
Since
vbe vbe
a——Zb—T,
a

it suffices to show that

1 1 1
b+C+d+2‘V beZ Vbe(g'i—z'i‘g)'i‘z.

By Lemma 2, this inequality is true.
The right inequality E(t,t,t,t) > 0is true fora >t > 1 if

5 S5 1 S
Vatt— = = — .
4+2 7 Jart a+4t

It suffices to prove the homogeneous inequality
Sat 1 5
Vatt— > tz( — )
4a+t vart a+4t

Setting t = 1 and substituting

a=x>, x>1,

2

the inequality becomes as follows:

5x°
x —
4x>+1

)
x5 +4°

1
> —
X

x2(4x°>—5x*+1) - x°—5x+4
4x5>+1 x5 +4

J

x2(x—1)?(4x3 +3x%+2x + 1) - (x—1)2(x*+2x2+3x+4

5

4x°5+1

x>+ 4

(x —1)°(4x7 + 15x° + 31x° + 45x* + 45x> + 31x* + 15x + 4) > 0.

This completes the proof. The equality holds fora=b=c=d =e>1.

Lemma 1. If b, c,d, e are positive real numbers such that

b>c>d>e, bcde>1,

then
1 2

1 1
b+ +d+21/b >4+ -4 — 4 —,
‘ e_b c d +/be
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Proof. It suffices to consider the case bcde = 1, when the inequality becomes

2 1 1
b+c+d+——>— + +2+vcd
‘ Ja-b T
Since
c+d—2vVed =(vJc—Vd)* =0,
it suffices to show that
c 2 1. 1.1
Jed b ¢ d

Write this inequality as

(-2 () (D)oo

bt =b- \b“ \]7(\/_ /@) 20,

1 1 —

It is true because

- 20,
ved b bM

1 1 1 d
———=—|1-\=|=o0.
ved € +ed c
Lemma 2. If b, c,d, e are positive real numbers such that

b>c>d>e, bcde>1,

then

b+c+d+2\/be2\/be(%+1+%)+2.
C

Proof. Replacing b,c,d,e by b*, c* d* e*, we need to show that
b* +c* +d* + 2b%e* > b?e? L +l+l +2
- b4 d+

for
b>c>d>=e>0, bcde=1.

It suffices to prove the homogeneous inequality

b* +c*+d* + 2b2%e? 1 1 1
¢ ¢ szez(b4 )+2

bcede T + d4
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which is equivalent to

b3 N c3 N d? +2be>£+bzez+bzez
cde bde bce cd = b2 c* d4

+2,

or
A+B+C=0,

where

cde cd c4 d+
We will show that A> 0, B> 0 and C > 0. We have

A_bd3—ce3>0
b2

B>2\£-E—2—2(5—1)>0
““\bde cd = “\d -

where

To show that D > 0, it suffices to consider the case e = d. Thus we need to show
that

We will show that

Indeed, the left inequality is equivalent to
_ A2
(b—c)(bc—d?) S
bcd?

and the right inequality is equivalent to

c2—d?
>

c3

Remark 1. The inequality

F b :d; >F T T T s T T
(a,b,c.d,e) (abcde)
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is also valid in the particular case
a,b,c,d,e>1.
Note that the property is not valid for six numbers a, b,c,d,e, f > 1.

Remark 2. We claim that the following generalization is valid:

e Let
n
F(alaaZ)"'Jan):\/n Ay Ap — 1 1 1°
ottty
1 2 n
where ay,a,,...,a, are positive real numbers such that
n—1)(5—n
a’faz- a,=>1, kzw.
4n—>5
Then,
1 1 1
F(alsaZ: :an)>F D s T
a, a a,
O
P 1.59. Let

F(a,,a,,...,a,)=a;+a,+--+a,—nya,a,---qa,,
where a,,a,,...,a, are positive real numbers such that a, < a, <--- < a, and

n—1
ay axas---a, = 1.

Then,

(Vasile C., 2018)

Solution. By the AM-GM inequality, both sides of the inequality are nonnegative.
For fixed a,, write the inequality as E(a,,as,...,a,) = 0, where
1 1 1 n
E(ay,as,...,a,) =a;+a,+--+a,—ny/a,ay---a, —————++-— —t
al Cl2 Cln U alaz ¢ an
and show that
E(ay,as,...,a,) = E(t,t,...,t) >0,

where
t="Yaaa, atzl, tzaq, =1

According to GM-Theorem, the left inequality is true if

E(a,,as,...,a,4,a,) = E (1/a2an,a3, RO I 1/a2an),
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which can be written as

(¢a—2—\/a_n)2(1— 1 )20.

a,a,

Thus, we need to show that
a,a, =1,

that is true if
(a,a,)"" > alaya,- - a,.
This follows by multiplying the inequalities
n—1 n—1
a, =2a; ,
a’ > a,a5- - a,.

Write now the right inequality E(t, t,...,t) > 0 in the form

n 1 n-—1 n
a, +(n—1)t —ny/a;tm1 > —+ —— .
a, t vatnt

Since a;t > 1, it suffices to show the homogeneous inequality

n 1 n-—1 n
a1+(n—1)t—n\/a1t”—1Zalt(—+ — - ) ,
a, t Vv atnt

that is
(n—2)(t—a;) > n(\"/ a,tm1 — 4/ a?‘lt) )

Setting a; = 1 and substituting t = x", x > 1, we need to show that

(n—2)(x"—1)>n(x""'—x),

that is
n(x—1(x"1+1)—2(x"—1)>0,
(x—D[(n—=2)(x"T+1)—2(x"2+---+x]>0,
n—2
(x—1)> (x = D" —1)> 0.
i=1
The equality holds fora; =a, =---=a, > 1.
Remark 1. The inequality
1 1 1
F(a,,a,,...,a,) > F(—,—,...,—)
a; d ay

is also valid in the particular case

a,dy,...,a, > 1.
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Remark 2. Since a,a,---a, > 1, from P 1.59 it follows that
1 1 1
G tay+ota, > —+—++—
a; a a,
for
a;l_laza3 ceea, > 1.
O
P 1.60. Let

where a, b, c,d are positive real numbers such that a < b < ¢ < d and

Then,

Solution. For fixed a, write the inequality as E(b,c,d) = 0, where

and show that

where

az+b2+c2+d? a+b+c+d

F(a,b,c,d)=
(a c)% , 2

a*(b+c+d)>1.

1111
F(a,b,c,d)=F(=,=,=,= ).
(a) ’C) )— (aJ blc,d)

E(b,c,d) = +/4(a2+ b2+ c2+d2)—(a+b+c+d)

_\14(l+i+l+i)+l+l+l+l
a2 b2 ¢2 d2) a b ¢ d’

E(b,c,d)> E(t,t,t) >0,

- b+c+d
=—

According to AM-Theorem, the left inequality is true if

where

E(b,c,d) = E(x,c,x),

_b+d
=2=

X

Write the inequality E(b, c,d) > E(x,c, x) in the form

A+B>C,

(Vasile C., 2020)
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where

A= +/4(a?+ b2+ c2 + d2) — /4(a? + x2 + ¢ + x2)

(b—d)?
Vaz+ b2 +c2+d2 + va? + c2 + 2x2
(b—d)?

> ,
V/2b2 +2d2 4+ v/ b2 +d2 + 2x2

1,1 2_ (b-dy
b d x bdb+d)

_ 1 1 1 1 1 1 1 1
1 (b—d)X(b? + d? + 4bd)
2brd?x? JL Lyl /helals ]l
< 1 . (b—d)*(b*+d?*+4bd)
(BN e T e e
o (b—d)*(b* + d* + 4bd)
2bdx? /2b2+2d2 + /b2 + d2 + 2b2d2/x2

Thus, we need to show that

B =

1 1
+ >
V22 +2d2+ Vb2 +d2+2x2 bd(b+d)

.1 b%+d?*+ 4bd
"~ 2bdx?  2b2+2d% + /D2 + d2 + 2b2d%/x%

Since
b?+d?+ 4bd = 4x* + 2bd,

the inequality is true if

1 > 1 4x?
bd(b+d) — 2bdx? /2b2+2d?+ /b2 +d? + 2b2d2/x?

and

1 1 2bd

> : :
V2b%>+2d2+ Vb2 +d2+2x2  2bdx* /2p2+2d2+ 4/b2 +d2 + 2b2d2/x2
)

Rewrite the first inequality in the form

V2b2 +2d2 + /b2 + d2 + 2b2d2/x2 > 2(b + d).
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By squaring, it becomes

24/2(b2 + d2)(b2 + d2 + 2b2d2/x2) > b? + d? + 8bd — 2b%d?/x2.

Since

V2(b2 + d2)(b2 + d2 + 2b2d2/x2) > /(b2 + d2 + 2x2)(b2 + d2 + 2b2d2/x2)

> b?+d? +2bd,

it suffices to show that
2(b*+d*+2bd) > b* + d*+8bd — 2b*d?/x?,
which is equivalent to
b%+d? > 4bd —2b%d?/x2,
4bd(b* + d?)
(b+d)2 °
2 2\( 1 )2
(b*+d?)(b—d) > 0.
(b+d)2

From a®(b + ¢ +d) > 3, it follows that

b?+d?*>

b3(b +2d) > 3,

hence y > 1, where
_ b*(b+2d)
y=—">5
To prove the inequality (*), it suffices to show that the following homogeneous
inequality holds:

v/2b2 4 2d2 + /b2 + d2 + 2b2d?/x2 > ‘/—27[¢2b2+2d2+ Vb2 +d2 +2x2).
X

Due to homogeneity, we may set b = 1. Thus, we need to show that d > 1 implies

\/2+2d2+\/1+d2+2d2/x22‘/—27[\/2+2d2+\/1+d2+2x2},
X

where

d+1 2d +1
x=——2>1, y= .
2 3

Since

y+1 d+2 d+1
< = < =X,
vy 2 3 2

it is enough to show that

\/2+2d2+\/1+d2+2d2/x22%[\/2+2d2+\/1+d2+2x2J.
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Since

v2+2d221v2+2d2,

b
it suffices to show that

1
V1+d2+2d2/x2> —+/1+d2+2x2.
X
By squaring, we need to show that
(d?+1)(d +1)*>+8d% > 2(3d* +2d + 3),

which is equivalent to
d*+2d®+4d*—2d —5=>0,

(d—1)(d®+3d*>+7d+5)>0.

Write the inequality E(t, t,t) > 0 in the form

1l 1 3 1 3
2V a2+3t2—a—-3t=>22\| -+ —————.
az tz a t

Since a®t > 1, it suffices to show that the following homogeneous inequality holds:

1I 1 3 1 3
2\/a2+3t2—a—3t2va3t(2 —2+§———?).
a a

Due to homogeneity, we may set a = 1. Thus, we need to show that t > 1 implies

\ 3 3
2\/1+3t2—1—3t2ﬁ(2 1+§—1—?),

that is
2Vt2+3—t—3
2/14+3t2—-3t—12> ,
Vvt
—1)2 —1)2
3(t—1) S 3(t—1)

2V1+3t2+43t+1 VT (VE+3+t+3)
VEQRVE2+3+t+3)>24/1+3t2+3t +1.

This is true if

Since

VE(t+3)—@Bt+1)=(t—1)°>0,

it is enough to show that

24/ t(t2+3) > 21+ 3¢2,
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By squaring, the inequality becomes
(t—1)*>o0.

The proof is completed. The equality occurs fora=b=c=d > 1.

)

Remark. The inequality

>

F(a,b,c,d)ZF(l,
a

Q|

1
C}

S| =

is also valid in the particular case

a,b,c,d > 1.

P 1.61. Ifa, b,c,d are positive real numbers such that
a+b+c+d=4, d = max{a, b,c,d},

then 111
—+-+-+1>a*+b*+c*+d>
a b c

(Vasile C., 2021)
Solution. Assuming thata < b <c¢ <d, we have

a+b c+d
+ =
2

a+c< 2.

Write the inequality as F(a, b,c) > 0, where

1 1 1
F(a,b,c)zE+B+E+1—(a2+b2+c2+d2), d=4—a—b—cg,

and show that
F(a,b,c) > F(t,t,t)>0,

where
_at+b+c
==
By the AM-Theorem, the left inequality is true if

t<1.

F(a,b,c) = F(x,b,x),

where
a—+c
X = .
2
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Since
F(a,b,c)—F(x,b,x) = 1+1—E—(a2+c2—2x2)
a ¢ x
_(a=c) (a—c¢) (a—c)P[2—ac(a+c)]
~ac(a+c) 2 T 2ac(a+c)
and

8—4ac(a+c)>8—(a+c)*>0,
we have F(a, b,c) > F(x, b, x).
The inequality F(t,t,t) > 0 is equivalent to

3
?+1 > 3t2+ (4—3t)?%,

1—-5t+8t*—4t>>0,
(1—t)(1—2t)*>0.
The proof is completed. The equality occurs for a = b = ¢ =d = 1, and also for

a=b=c=-—andd=-.
2 2

Remark 1. Similarly, we can prove the following nice statement:
e Ifa,b,c,d,e are positive real numbers such that
a+b+c+d+e=5, e = max{a, b,c,d, e},
then 1101 1
5(—+—+—+—)24(a2+b2+c2+d2+ez),
a b ¢ d

with equality fora=b=c=d=e=1, andalsofora=b=c=d=%ande=3.

a+d .
is

For a < b < ¢ <d < e, the inequality F(a, b,c,d) = F(x, b, c,x) with x =

true if 2ad(a +d) < 5 for 3a +2d < 5. So, it suffices to show the homogeneous
inequality
50ad(a +d) < (3a+2d)?,

which is equivalent to
27a® + 4a*d — 14ad* + 8d° > 0,

25a® +2(a—d)?*(a +4d) > 0.

The inequality F(t,t,t,t) > 0 is equivalent to

(1—t)(1—-2t)*>0.

Remark 2. The following more general statement is valid:
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e Ifa;,a,,...,a, (n>4) are positive real numbers such that
a,+a,+---+a,=n, a,=max{a;,a,,...,a,},
then
1 1 1 ) 9
nl —+—+--+—|=4(aj+a;+---+a;)+n(n—>5),
a a n—1
. . 1
with equality for a; = a, =---=a, =1, and also fora; =a, =+---=a,_; = B and
n+1
a, = .
: 2
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Chapter 2

pqr Method

2.1 Theoretical Basis

The pqr method is applicable to prove symmetric and cyclic polynomial inequalities
of the form
P(a,b,c) > 0.

If P(a, b, ¢) is a symmetric polynomial having the degree not very large (practically,
less than or equal to eight), then the inequality can be written in the polynomial
form

Pl(p,qJ T') = 0:

where
p=a+b+c, gqg=ab+bc+ca, r =abc.

In addition, the pqr method can be applied to prove inequalities where P;(p,q, 1)
is not a polynomial function.

The pqr method enables to prove an inequality P, (p, q, r) = 0 using the theorems
below.

Theorem 1 (see P 2.53 in Volume 1). If a > b > ¢ are real numbers such that
a+b+c=p, ab+bc+ca=q,

where p and q are fixed real numbers satisfying p* > 3q, then the product r = abc is
minimal only when a = b, and maximal only when b = c.

Theorem 2 (see P 2.54 in Volume 1). If a, b, ¢ are real numbers such that
a+b+c=p, abc=r,

where p and r are fixed real numbers, then the sum q = ab + bc + ca is maximal only
when two of a, b, c are equal.

Theorem 3 (see P 2.54 in Volume 1). If a > b > c are real numbers such that

ab+bc+ca=q, abc=r#0,

119
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where q and r are fixed real numbers, then the product p, = abc(a+b+-c) is maximal
only when two of a, b, ¢ are equal.

Theorem 4 (see P 3.57 in Volume 1). Ifa > b > ¢ > 0 are nonnegative real
numbers such that
a+b+c=p, ab+bc+ca=q,

where p and q are fixed nonnegative real numbers satisfying p> > 3q, then the product
r = abc is minimal only when a = b or ¢ = 0, and maximal only when b = c.

Theorem 5 (see P 3.58 in Volume 1). Ifa > b > ¢ > 0 are positive real numbers
such that
a+b+c=p, abc=r,

where p and r are fixed positive real numbers satisfying p> > 27r, then ¢ = ab+ bc +
ca is minimal only when b = ¢, and maximal only when a = b.

Theorem 6 (see Remark 2 from P 3.58 in Volume 1). Ifa > b > ¢ > 0 are positive
real numbers such that

ab+bc+ca=q, abc=r,

where q and r are fixed positive real numbers satisfying p> > 27r, then the sum
p = a+ b+ c is minimal only when a = b, and maximal only when b = c.

For cyclic polynomial inequalities, the pqr method can be applied by using the
formulae

2C> a?b+2D Y ab?=(C+D) Y abla+b)+(C—D) > abla—b)
=(C+D)(pq—3r)—(C—D)(a—b)(b—c)(c—a),

2C > a*b+2D Y ab®=(C+D) Y ab(a®+b*)+(C—D) > ab(a®—b?)
=(C+D)(p*q—2¢>*—pr)—(C—D)p(a—b)(b—c)(c—a),

I(@—b)(b—c)(c—a)l = +/(a—Db)2(b—c)2(c —a)?

_ \J 4(p2 —3q)° — (2p® —9pq + 277>
B 27

; )

and

Lemma. If a, 3, x, y are real numbers such that

then

By +avxt—y2<xya?+p?
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with equality for
Bx =y+/a%+ B2

Proof. Since
xy a2+ p2=PBy=|Blx—pLy=I[Bllyl-By =0,

we can write the desired inequality as follows:
VT < x /T By,
o?(x?* = y?) < (xy/o2 + B2 — ﬁy)z,
(la’x — y\/m)z > 0.
Using (*) and Lemma above for

a=——, x=20p>-3¢)°%% y=2p>—9pq+27r,

we get the following theorem:

Theorem 4. Let a, b, c be real numbers. For any real f3, the following inequality holds

27pr +|(a—b)b— e —a) < 9ppa—26p°+2\ o=+ (7 =30)"",

with equality for
1
2B(p* =3 =\ 55 + B (2p° —9pq +27r).

From Theorem 4, we get

Corollary 1. Let a, b, c be real numbers such that a+ b + ¢ = 1 For any real f3, the
following inequality holds:

27Br +1(a—b)(b—c)c—a)| < 9Pq—2p +2\ % (1-30P%2, ()

with equality for

1+27p2

2B(1—3q9)*? =
B( q) 7

(2_9q +27r) (7‘:7’:7‘:)
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2.2 Applications

2.1. If a, b, c and k are real numbers, then

Z(a — b)(a—c)(a—kb)(a—kc) > 0.

2.2. If a, b, ¢ are real numbers such that

a+b+c>0, ab+bc+ca>0,

then
(a) 3(@+b>+c®)>(a+b+c)(a®+ b +c?);
15
(b) a3+b3+c3+?ab620;
(©) 4(a®+ b®+c®)+15abc > 3(a + b +c)(ab + bc + ca).

2.3. If a, b, ¢ are real numbers such that
a+b+c>0, a’*+b*+c>+3(ab+bc+ca)=>0,

then
2(a®+ b> +c®)>ab(a+ b)+ be(b+c) +ca(c +a).

2.4. If a, b, ¢ are real numbers such that
a+b+c>0, 33(ab+bc+ca)>8(a®+b%+c?),

then
8(a® + b*+¢®)+39abc > 7(a+ b +c)(ab + be + ca).

2.5. If a, b, ¢ are real numbers such that
a+b+c>0, ab+bc+ca>0,

then

11
(a) a4+b4+c4+Zabc(a+b+c)20;

(b) 4(a*+ b*+c*) +abc(a+ b +c) > 5(a?b? + b%c? + c2a?).
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2.6. If a, b, ¢ are real numbers such that
a+b+c>0, ab+bc+ca>0,

then
81(a® + b® +c?)* > 25(a® + b% + ¢?)°.

2.7. If a, b, ¢ are real numbers such that
a+b+c>0, ab+bc+ca>0,

then
a*(a—2b+c)+b*(b—2c+a)+c*(c—2a+b)>0.

2.8. If a, b, ¢ are real numbers such that

a+b+c>0, ab+bc+ca=0,

then
(a) 2(a®+ b3 +c®) +7abc > (a—b)(b—c)(c—a);
(b) a®+ b3+ c3 +2abc > ab? + bc? + ca?;
(@) 9(a®+ b*+c®)+12abc > 2> a’*b + 11 ) ab?.

2.9. If a, b, ¢ are real numbers such that

a+b+c>0, ab+bc+ca=>0,

then
(a) a3+b3+c3+%abc2(a—b)(b—c)(c—a);
(b) 4(a®+b*+c?)+5abc+2>,a*b > 6. ab?;
() 36(a®+ b®+c3) +30abc + 13> a’b > 59 > ab?.

2.10. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca>0,

then .
ac+b+c— Zabc >2(a—b)(b—c)(c—a).
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2.11. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca>0,
then

(@  2(a®+b%+c3)+3(3v/3—2)abc + 643 (a®b + b%c +c%a) > 0;

(b) a®+ b3+ c®—3abc > ?(a—b)(b—c)(c—a).

2.12. If a, b, c are real numbers such that
a+b+c>0, 2(a*+b*+c*)+7(ab+bc+ca)>0,

then
a’(a—b)+ b3 (b—c)+c*(c—a)>0.

2.13. If a, b, ¢ are real numbers such that
a+b+c>0, 3(ab+bc+ca)>a®+b%+c?

then
a?(a+2b—3c)+b*(b+2c—3a)+c*(c+2a—3b)>0.

2.14. If a, b, c are real numbers, then

(a®+ b*+c?)* > 3(a®b + b3c + c2a).

2.15. If a, b, c are real numbers, then

a*(a—2b+c)+b3*(b—2c+a)+c3(c—2a+b)>0.

2.16. If a, b, c are real numbers, then

a*+b*+c*—abcla+b+c)=> V3 (a+b+c)a—b)b—c)c—a).

2.17. If a, b, c are real numbers, then

ala+b)+b3(b+c)+c3(c+a)> %(ab + bc +ca)?
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2.18. If a, b, c are real numbers such that ab + bc + ca = 3, then

a*(a—2b)+ b3*(b—2c)+c3(c—2a) +3 > 0.

2.19. If a, b, c are real numbers such that ab + bc + ca > 0, then

a*+b*+c*—abcla+b+c)> ? (a+b+c)a—Db)b—c)c—a).

2.20. If a, b, c are real numbers such that
2(ab+ bc+ca) > a®+ b2+ 2,

then

a*+b*+c*—abc(a+b+c)> ? (a+b+c)la—Db)(b—c)(c—a).

2.21. If a, b, ¢ are real numbers, then

a*+ b*+c*+2abc(a+b+c)>ab®+ b +cd’.

2.22. If a, b, c are real numbers, then

a*+b*+c*+ V2 (a®b + b3c + cBa) > 0.

2.23. If a, b, ¢ are real numbers, then

(a2 + b%+c?)?+2(a®b + b3c + c2a) > 3(ab® + bc® + ca®).

2.24. If a, b, c are real numbers, then

8
(a®+ b%+c?)* + —(a®b + b3c +c%a) > 0.
V7

2.25. If a, b, c are real numbers such that ab + bc + ca < 0, then

(a® + b2 +c2)? > (2v/7—1)(ab® + bc® + ca®).
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2.26

2.27.

2.28.

2.29.

2.30.

2.31.

then

2.32

2.33

. If a, b, ¢ are real numbers such that ab + bc + ca > 0, then

(@®+b2+c2)+(1+2vV7)a®b+b3c+cBa)>0.

If a, b, ¢ are real numbers such that ab + bc + ca < 0, then

a*+ b*+c* > (2v/3—1)(ab® + bc + ca®).

If a, b, ¢ are real numbers such that ab + bc + ca > 0, then

at+b*+c*+(1+2v3)(a®b+ b3c+c2a) > 0.

If a, b, c are real numbers such that ab + bc + ca > 0, then

a*+b*+c*+2v2 (@®b + bPc + c®a) > ab® + be® + ca®.

If a, b, ¢ are real numbers such that ab + bc + ca > 0, then

(a+b+c)a®+b3+c®)+5(a®b+b3c+c3a)>0.

If a, b, ¢ are real numbers such that
1++v214+8
k(ab+ bc +ca) = a*>+ b* +¢?, k> 2 V7 ~ 3.7468,

a®b+b3c+c2a>0.

. If a, b, c are nonnegative real numbers, then

3(a* + b*+ M +4(a®b + b3c + ca) > 7(ab® + bc® + cad).

. If a, b, c are nonnegative real numbers, then

16(a*+ b* +c*) +52(a®b + b3c + c*a) > 47(ab® + bc® + ca?).
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2.34. If a, b, c are nonnegative real numbers, then

a*+b*+c*+5(a®b + b3c + c*a) > 6(a?*b? + b?c* + c%a?).

2.35. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 4, then

3
a®b+b3c+cca+ %abc <27.

2.36. If a, b, ¢ are positive real numbers such that a + b + ¢ = 3, then

a2 2 2

——+——+E—+5mb+bc+a021&
b c a

2.37. If a, b, ¢ are positive real numbers, then

a b ¢ 5(a®+ b*+c*—ab—bc—ca)
—+-—+-—32
b ¢ a a2+ b2+c24+ab+ bc+ca

2.38. If a, b, ¢ are positive real numbers, then

a b ¢ 16(a® + b2 +c2—ab—bc—ca)
—+—+-—32> .
b ¢ a a2+ b2+ c2+6(ab+ bc +ca)

2.39. If a, b, c are real numbers such that ab + bc + ca > 0, then

(a®?+b*+c*)(a®+ b +c)+5(a*b + b*c +c*a) > 0.

2.40. If a, b, c are real numbers such that
a+b+c=3, ab+bc+ca>0,

then
a’b+ b3c+cla+18v3 > ab® + bc® + cd®.

2.41. If a, b, ¢ are real numbers such that a® + b? + ¢? = 3, then

812
a®b+b3c+cla+ 3—‘2/_ > ab® + bc® + ca®.
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2.3 Solutions

P 2.1. If a, b, c and k are real numbers, then

> (a—b)(a—c)(a—kb)(a—ke)> 0.
(Vasile C., 2005)

Solution. Let
p=a+b+uc, q=ab+ bc+ca, r =abc.

Write the inequality as
> (a®+2bc —q)[a? + k(k + 1)bc —kq] > 0,

which is equivalent to
A, —Ayq +3kg* >0,

where

Ay= Y (a®+2bo)a® +k(k+1)bc], A, =(k+1) > a*+k(k+3) ) bc.
We have
a*+b*+c* = (a*+ b* + c?)* — 2(a®b? + b%c? + c*a?)
= (p*—2q)* —2(q* — 2pr)
= p*—4p%q +2¢* + 4pr,

therefore

A=Y a*+(K*+k+2)abe Y a+2k(k+1) Y b
=p*—4p®q+2¢*> + 4pr + (k* + k + 2)pr + 2k(k + 1)(¢*> — 2pr)
=p*—4p*q +2(k* + k + 1)q*> — 3(k* + k — 2)pr,
For given p and q, the left hand side of the desired inequality A,—A,q+3kq* > Oisa
linear function of r. Therefore, this function is minimal when r is either minimal or

maximal. Thus, according to Theorem 1, it suffices to prove the original inequality
for b = c. In this case, the inequality becomes

(a—Db)*(a—kb)* > 0.

The equality holds for a = b = ¢, and also for % = b = ¢ (or any cyclic permuta-

tion). If k = 0, then the equality holds for a = b =, and also fora=0and b =c
(or any cyclic permutation).
OJ
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P 2.2. If a, b, c are real numbers such that

a+b+c>0, ab+bc+ca=>0,

then
(v 3(@®+b3+c*)>(a+b+c)(a®+ b%+c?);
(b) a3+b3+c3+1745abc20;
©) 4(a®+ b +c®)+15abc > 3(a + b +c)(ab + bc + ca).

(Vasile C., 2006)
Solution. (a) Write the inequality as
3(3r +p®—3pq) = p(p* —29),

2p® —7pq+9r >0,

where
p=a+b+c, gqg=ab+bc+ca, r =abc.

According to Theorem 1, for fixed p and g, the product r is minimal when
a=b>c.
Thus, it suffices to prove the original inequality for a = b > c. Since
a+b+c=2a+c, ab+ bc+ca=a(a+2c),
we need to show that
az=c, 2a+c>0, a+2c=>0

involve
3(2a® +¢*) > (2a + ¢)(2a® + ¢?),

which is equivalent to
(a—c)*(a+c)>0.

This inequality is true because
3(a+c)=2a+c)+(a+2c)>0.
The equality holds fora = b =c¢ > 0.

(b) Write the inequality as

3 15
3r+p —3pq+?r20,



pqr Method 131

4p® —12pq +27r > 0.

According to Theorem 1, for fixed p and g, the product r is minimal whena = b > c.
Thus, it suffices to prove the original inequality for a = b > c. Since

a+b+c=2a+c, ab+bc+ca=a(a+2c),
we need to show that
az=c, 2a+c>0, a+2c=>0
involve
35, 3,15 5
2a’+c’ + ?a c=0,
which is equivalent to
(a+2c)(8a*—ac +2c*) > 0.
The equality holds for a = b = —2c¢ > 0 (or any cyclic permutation).
(c) Write the inequality as

4(3r + p®—3pq) + 15r > 3pq,
4p*® —15pq +27r > 0.

According to Theorem 1, it suffices to prove the original inequality for a = b > c.
Since
a+b+c=2a+c, ab+ bc+ca=a(a+2c),

we need to show that
a=c, 2a+c¢c>0, a+2c=0
involve
4(2a® + ¢®) + 15a%c > 3(2a + c)(a® + 2ac),

which is equivalent to
a®—3ac®*+2c2>0,
(a+2c)(a—c)*>0.
The equality holds for a = b = ¢ > 0, and also for a = b = —2¢ > 0 (or any cyclic

permutation).

Remark. The inequality in (c) is sharper than the inequalities in (a) and (b) because
these last inequalities can be obtained by summing the inequality in (c) to the
obvious inequalities

2(a® + b3+ c>—3abc) >0

and
3(a+b+c)lab+ bc+ca) =0,

respectively. The inequality a® + b* + ¢ —3abc > 0 is equivalent to

(a+b+c)a?+b*+c?—ab—bc—ca)>0.
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P 2.3. If a, b, c are real numbers such that
a+b+c>0, a*+b*+c*+3(ab+bc+ca)>0,

then
2(a® + b3+ c®)>ab(a+b) + be(b +¢) +ca(c +a).

(Vasile C., 2006)

First Solution. Write the inequality as
2(3r +p® —3pq) = pq —3r,

2p® —7pq+9r > 0.

According to Theorem 1, it suffices to prove the original inequality fora = b > c.
Since

a+b+c=2a+c, a+b*>+c?>+3(ab+bc+ca)=(a+c)5a+c),
we need to show that
a=c, 2a+c>0, a+c=0

involve
2(2a® + ) > 2a(a® + ac + ¢?),

which is equivalent to
a®—a’c—ac’+c2>0,

(a+c)a—c)*>0.

The equality holds for a = b = ¢ > 0, and also for a = b = —c > 0 (or any cyclic
permutation).

Second Solution. Assume that a > b > ¢, and write the inequality as follows:

Z:(a3 +b*—a*b—ab?) >0,

> (a+b)a—b)*>0.
(a+b)a=b)*+(b+c)b—c)+(c+a)c—a)*=>0,
(a+b)a=b)+(b+c)b—c)P+(a+)[(a=b)+(b—c)]*=>0,
2a+b+c)a—b)Y+(a+b+2c)(b—c)*+2(a+c)a—b)b—c)>0.

Case 1: a+ b+ 2c > 0. The AM-GM inequality yields

(2a+b+c)(a—b)*+(a+b+2c)(b—c)* > 2\/(2a +b+c)la+b+2c)(a—b)(b—c).
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Thus, it suffices to show that

V@a+b+c)a+b+2c)+a+c>0,

which is true if
(2a+b+c)a+b+2c)> (a+c)

This inequality is equivalent to the hypothesis a + b? + ¢? + 3(ab + bc + ca) > 0.

Case 2: a+b+2c < 0. This case is not possible because, as shown at the preceding
case 1, the hypothesis a® + b? + c*> + 3(ab + bc + ca) > 0 involves

(a+c)?

a+b+2c>———>
2a+b+c

P 2.4. If a, b, c are real numbers such that
a+b+c>0, 33(ab+bc+ca)>8(a*+ b*+c?),

then
8(a® + b*+¢®)+39abc > 7(a+ b +c)(ab + be + ca).

(Vasile C., 2006)

First Solution. Write the inequality as
8(3r +p®—3pq) +39r > 7pq,

8p>—31pq +63r > 0.

According to Theorem 1, it suffices to prove the original inequality fora = b > c.
Since

a+b+c=2a+c, 33(ab+bc+ca)—8(a®+ b*+c?)=(17a—2c)(a+ 4c),
we only need to show that
a=c, a+4c=>0

involve
8(2a® + ¢®) +39a%c > 7(2a + c)(a® + 2ac),

which is equivalent to
a® +2a%c —7ac’* +4c® >0,
(a+4c)(a—c)*=>0.
The equality holds for a = b = ¢ > 0, and also for a = b = —4c¢ > 0 (or any cyclic

permutation).
O
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P 2.5. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca=0,
then

11
(@) a4+b4+c4+7abc(a+b+c)20;

(b) 4(a*+ b* +c*) +abc(a+ b +c) > 5(a?b? + b%c? + c2a?).
(Vasile C., 2006)

Solution. We have
a* +b*+c* =(a?+ b% 4+ c?)? —2(a®b? + b%c? + 2a?)

= (p*—2q)*—2(¢*—2pr)
= p*—4p?q +2¢* + 4pr.

(a) Write the inequality as
27
p*—4p*q +2¢* + 2P > 0.

According to Theorem 1, it suffices to prove the original inequality fora = b > c.
Clearly, the original inequality is true for a = b > ¢ > 0. Consider further that
a=>b>0>c. Since

a+b+c=2a+c, ab+ bc+ca=a(a+2c),
we need to show that
a>0>c, 2a+c>0, a+2c=0

involve 1
2a* +ct + :azc(Za +c)>0,

which is equivalent to
8a*+22a’c + 11a’c* + 4c* > 0,

(a+2c)(8a® + 6a%c —ac?+2c3) > 0.

The last inequality is true since a + 2¢ > 0 and

8a® + 6a*c —ac? + 2¢® > 8a® + 6a*c —ac? + 38¢*
= (a + 2c)(8a*—10ac + 19¢?) > 0.

The equality holds for a = b = —2¢ > 0 (or any cyclic permutation).
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(b) Write the inequality as
4(p*—4p%q +2q> +4pr) + pr > 5(q*> — 2pr),

4p* —16p%q +3q* +27pr > 0.

According to Theorem 1, it suffices to prove the original inequality fora = b > c.
Since
a+b+c=2a+c, ab+ bc+ca=a(a+2c),

we need to show that
a=c, 2a+c>0, a+2c=>0

involve
4(2a* + M + a?c(2a +¢) > 5(a* + 2a%c?),

which is equivalent to
3a*+2a%c —9a%c* + 4c¢* >0,

(a—c)*(a+2c)(3a+2c)>0.

The equality holds for a = b = ¢ > 0, and also for a = b = —2¢ > 0 (or any cyclic
permutation).

Remark. The inequality in (b) is sharper than the inequalities in (a) because this
last inequality can be obtained by summing the inequality in (b) to the obvious
inequalities

(ab+ bc +ca)* > 0.

P 2.6. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca>0,

then
81(a®+ b®+ c®)* > 25(a® + b* + ¢?)°.

(Vasile C., 2006)

Solution. Write the inequality as

81(3r +p*—3pq)* > 25(p* — 2q)?,

27
p*—4p?q+2q¢* + 2P > 0.
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According to Theorem 1, it suffices to prove the original inequality fora = b > c.
Since
a+b+c=2a+c, ab+ bc+ca=a(a+2c),

we need to show that
a=c, 2a+c¢c>0, a+2c=0

involve
81(2a® + ¢®)* > 25(2a* + ¢*)°.

Since the inequality is trivial for ¢ = 0, consider further the cases ¢ > 0 and ¢ < 0.

Case 1: ¢ > 0. Due to homogeneity, we may set ¢ = 1. So, we need to show that
a > ¢ =1 involves
81(2a° +1)* > 25(2a* + 1)°,

which is equivalent to
62a® —150a* + 162a® — 75a* + 28 > 0.
It suffices to show that
25(a® —6a* + 6a® —3a2+1) > 0,
which is equivalent to

(a—1)*(2a*+4a® +2a+1)>0.

Case 1: ¢ < 0. Due to homogeneity, we may set c = —1. So, we need to show that
a—22>0

involves
81(2a*—1)* > 25(2a* + 1),
which is equivalent to
62a® —150a* — 162a> — 75a* + 28 > 0.

Since
62a°® — 150a* — 162a® > 248a* — 150a* — 162a°

=98a* —162a® > 196a>® — 162a® = 344>,

it suffices to show that
34a®> —75a*> +28>0,.

which is equivalent to
(a—2)(34a*—7a—14) > 0.

This is true because
34a>—7a—14>7a>*—7a—14="7(a+1)(a—2) > 0.

The equality holds for a = b = —2c¢ > 0 (or any cyclic permutation).
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P 2.7. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca>0,

then
a’(a—2b+c)+b%(b—2c+a)+c*(c—2a+b)>0.

(Vasile C., 2006)

Solution. Let
p=a+b+c, q=ab+bc+ca, r =abc.

Due to homogeneity, we may set

_1, o=q<l-l
P=4 =1=3 "3
Write the inequality as follows:

2@+ b+ > Zab(a+ b)+32ab(a— b),

2(a® + b +c*)+3abc>(a+b+c)ab+bc+ca)—3(a—b)(b—c)c—a),
2(3r +p®*—3pq) +3r > pqg—3(a—b)(b—c)(c—a),
2p®—7pq+9r >—3(a—b)(b—c)(c—a),
2—7q=>—9r—3(a—b)(b—c)(c—a).
This inequality is true if

2—7q
3

> —-3r+|(a—Db)(b—c)(c—a)l.

Applying Corollary 1 for

we have 5 4
—3r+|(a=b)(b—c)c—a)| <—q+ ot 5(1 —3q)%2,
with equality for
(1—3¢)**=9q—27r —2. )

Therefore, it suffices to show that

8 s g+ 2+ -39
3 q+g+51—39)
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which is equivalent to
1-3q>(1-3¢)*?,

(1-3¢9)(1—+/1—3¢)>0,
3¢(1—39) _
1+4/1—-3¢

The last inequality is true, with equality for ¢ = 1/3 and g = 0. According to (*),
q = 1/3 involves r = 1/27, and q = 0 involves r = —1/9. Thus, the original
inequality is an equality for a = b = ¢ > 0, and also for

ab+bc+ca=0, (a+b+c)*+9abc=0, a+b+c>0, (a—b)(b—c)(c—a)<O.

The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)<O0

and are proportional to the roots of the equation

ow®—9w? +1=0.

P 2.8. If a, b, c are real numbers such that

a+b+c>0, ab+bc+ca>0,

then
(v 2(a®+ b*+c®) +7abc = (a—b)(b—c)(c—a);
(b) a®+ b3+ +2abc > ab?+ bc? +ca?;
() 9(a®+b>+c®)+12abc = 2> a*b+ 11> ab?.

(Vasile C., 2006)

Solution. Denote
p=a+b+uc, q=ab+ bc+ca, r =abc.

Due to homogeneity, we may set

p=1 0<g< P = 1
’ =1= 3 3
(a) Write the inequality as

2(3r +p*—3pq)+7r > (a—b)(b—c)(c—a),
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2p® —6pq > —13r + (a—b)(b—c)(c—a),
2—6q =>—13r+(a—Db)(b—c)(c—a).

It suffices to show that
2—6q>—13r+|(a—b)(b—c)(c—a).
. —13
Applying Corollary 1 for § = =7 we have

—13q¢ 26 28

—1Br+lla=b)b—c)c—a)l < —=+—+

with equality for

3t

13(1—3¢)%? = 7(9q — 27r — 2). )

Therefore, it suffices to show that

—13q¢ 26 28
2—6q0 > ——+ — +—(1—3q)*%,
4=~ T oyt 5173

which is equivalent to
28 —45q > 28(1 —3q)*/2.

Using the substitution
t=41-3q, 0<Zt<]1,

the inequality becomes
28 —15(1—t?) > 28¢°,

13+ 15t —28t3 > 0.

We have
13+ 15t2—28t3=(1—1t)(13+ 13t +28t2) >0,

with equality for t = 1. Notice that t = 1 involves g = 0, and (*) gives r = —1/7.

Thus, if p = 1, then the original inequality is an equality for ¢ =0, r = —1/7 and

(a—b)(b—c)(c —a)> 0. More general, the equality holds for

ab+bc+ca=0, (a+b+c)*+7abc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.

These equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

W —7w? +1=0.
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(b) Write the inequality as
2(a® + b3+ ) +4abc > Zab(a +b) —Zab(a —b),

2(a®+b% +¢®) + 4abc — ¥ ab(a +b) > (a—b)(b—c)(c —a),
2(a®>+b*+c*)+7abc—(a+b+c)(ab+ bc+ca) > (a—b)(b—c)(c—a),
2(3r+p®—3pq)+7r—pq > (a—b)(b—c)(c—a),
2p® —7pq>—13r +(a—b)(b—c)(c —a),

2—7q>=—-13r+(a—b)(b—c)(c—a).

It suffices to show that
2—7q=—-13r+|(a—Db)(b—c)(c—a).

As shown at (a), we have

—13qg 26 28

—13r +|(a—b)(b—c)(c—a)| < +=+=(1-39)%
r+l(@=b)(b—c)e—a) € o+ 2+ -(1-39)
Therefore, it suffices to show that
~13q 26 28 5
2—-7q>——+=—+=—=(1-3q)*%
9= =5ty T (1730

which is equivalent to
7—18q > 7(1 —3¢)*>.

Using the substitution
t=41-3q, 0<t<1,

the inequality becomes
7—6(1—t*) =7t

1+6t2—7t3>0.

We have
1+6t2—7t3=(1—-t)1+7t+7t>)>0,

with equality for t = 1. The original inequality is an equality for

ab+bc+ca=0, (a+b+c)*+7abc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.

These equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

W —7w? +1=0.
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(c) Write the inequality as

18(a® + b2 + ) + 24abc > 132ab(a +b) —9Zab(a —b),

18(a® + b® + ¢) + 24abc — 132 ab(a+b)=>9(a—Db)(b—c)(c—a),
18(a® + b +c*) + 63abc —13(a+ b +c)(ab + bc +ca) > 9(a— b)(b—c)(c —a),
18(3r +p*>—3pq) + 63r —13pq > 9(a — b)(b —c)(c —a),
18p®* —67pq > —117r +9(a— b)(b —c)(c —a),
18—679 > —117r +9(a— b)(b—c)(c —a).
It suffices to show that

2—6% >—13r+|(a—b)(b—c)(c—a)l.

As shown at (a), we have

—13q 26 28
—13r+|(a=b)(b—c)(c—a)| £ ——= + == + —(1—3¢)*>
rtl(a=b)b-c)lc—a)l<— 77 27( q)

Therefore, it suffices to show that

6 —13 26 28
o 974, 24 20— 3g)
9 3 27 27

which is equivalent to
1-3g>(1-39)"?

(1-3¢9)(1—+1—-3q) =0,

3q(1—3q) >0
1—4/1-3q

The last inequality is true, with equality for ¢ = 1/3 and q = 0. The original
inequality is an equality for a = b = ¢ > 0, and also for

ab+bc+ca=0, (a+b+c)*+7abc=0, a+b+c>0, (a—b)(b—c)(c—a)>0.

The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=—b)(b—c)(c—a)>0

and are proportional to the roots of the equation

Tw—71w?+1=0.
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Remark. The inequality (c) is sharper than the inequalities (b), and the inequality
(b) is sharper than the inequalities (a). Indeed, the inequalities (b) can be obtained
by summing the inequality in (c) to the obvious inequality

2(a+b+c)(ab+ bc+ca)=>0,

and the inequalities (a) can be obtained by summing the inequality in (b) to the
inequality

%(a+ b+ c)(ab+ bc+ca) > 0.

P 2.9. If a, b, c are real numbers such that

a+b+c>0, ab+bc+ca=0,

then
(@) a3+b3+c3+17r1abc2(a—b)(b—c)(c—a);
(b) 4(a®+ b*+c3)+5abc+2> a*b = 6> ab?;
(© 36(a® + b®+c®) +30abc + 13> a’b = 59 > ab?.

(Vasile C., 2006)

Solution. Consider
p> 1
=1, 0<g<—=-.
p q 3 =3
(a) Write the inequality as

11
3r+p®—3pqg+ il >(a—Db)(b—c)(c—a),

2
p®—3pqg+ Zgr > (a—Db)(b—c)(c—a),

1—3q > _TZBr+(a—b)(b—c)(c—a).

It suffices to show that

1-3q> ? +|(a=b)(b—c)(c—a)l.

—23
Applying Corollary 1 for § = T we have

—23 —23q 23 31
—r+|(a=b)(b—c)(c—a)| £ —= + = +=—(1—-3q)*?,
Erala-nb-oe—al < =+ S+ 2 (1-30)
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with equality for

b

46(1—3q)%? =31(9q —27r —2). )

Therefore, it suffices to show that
—23¢ 23 31

+= + =(1—-3¢)*?,
=, (1—39)

1—3¢>
1=75 T4

which is equivalent to
62 —117q > 62(1 —3q)*/2.

Using the substitution
t=41-3q, 0<t<1,

the inequality becomes
62—39(1—t2) > 62t3,

23 +39t2 —62t3 > 0.

We have
23 +39t2—62t> = (1—1t)(23 + 23t + 62t*) > 0,

with equality for t = 1. Notice that t = 1 involves ¢ = 0, and (*) gives r = —4/31.
Thus, if p = 1, then the original inequality is an equality for ¢ =0, r = —4/31 and
(a—b)(b—c)(c —a)> 0. More general, the equality holds for

ab+bc+ca=0, 4(a+b+c)*+3labc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.

These equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

31w —31w?+4=0.
(b) Write the inequality as
4(a® + b3+ c®) +5abc > ZZab(a +b) —42 ab(a—b),

4(a®+ b +c®) +5abc > 2 > ab(a+b)+4(a—b)(b—c)(c—a),
4(a®+ b2 +c3)+11labc>2(a+b+c)(ab+ bc+ca)+4(a—b)(b—c)(c—a),
4(3r +p*—3pq) + 11r > 2pq + 4(a— b)(b—c)(c —a),

p*—Zpa= =2r 4 (@—b)b-)c—a)
1-795 28" b)Y b—o)c—a).

2
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It suffices to show that

1_72_q > _7231”+ |(a—b)(b—c)(c—a)l.

As shown at (a), we have

—23 —23q 23 31
—r+|(a=b)(b—c)(c—a)| < —= + = + =—(1—3q)*~
raid [(@a=Db)(b—c)(c—a)l < 12 " 5a 54( q)

Therefore, it suffices to show that

7q _ —23¢ 23 31
1——q>—q+—+5—4(1—3q)3/2,

2 12 54

which is equivalent to
62 —171q > 62(1 —3q)*/2.

Using the substitution
t=41-3q, 0<t<1,

the inequality becomes
62—57(1—t2) > 62t3,

5+57t>2—62t3 > 0.

We have
54+57t2—62t2=(1—t)(5+ 5t +62t2) >0,

with equality for t = 1. The equality holds for

ab+bc+ca=0, 4(a+b+c)*+3labc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.

These equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

31w® —31w?+4=0.

(c) Write the inequality as

36(a®+ b% +¢®)+30abc > ZSZab(a +b) —362 ab(a—Db),

36(a® + b®+¢3)+30abc > 232 ab(a+ b)+36(a—b)(b—c)(c—a),
36(a® + b%+¢3)+99abc —23(a+ b +c)(ab + bc+ca) > 36(a—b)(b—c)(c—a),
36(3r + p® —3pq) +99r —23pq > 36(a — b)(b —c)(c —a),
36p® —131pq > —207r +36(a— b)(b —c)(c —a),
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36 —131q > —207r + 36(a— b)(b —c)(c —a).
It suffices to show that
36—131q _ —23r
> +

36 = a2 |(a—b)(b—c)(c—a)l.

As shown at (a), we have

—23 —23q 23 31
——r+](@a=b)(b—c)(c—a)| £ —— + = + =(1—3q)*>.
7 " la=b)b—c)c—al < ——=+ 7+ (1-3q)

Therefore, it suffices to show that

36—131q _ —23q 23 31
1> 222 L 20 L 2o (1—3q)%2,
36 12 54 54

which is equivalent to
1—3q>(1—3¢)%?,

(1-3¢9)(1—+/1—-3g) =0,

3¢(1—-3q) _ 0
1—4/1-3q

The last inequality is true, with equality for ¢ = 1/3 and q = 0. The original
inequality is an equality for a = b = ¢ > 0, and also for

ab+bc+ca=0, 4(a+b+c)*+3labc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.
The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=—b)(b—c)(c—a)>0
and are proportional to the roots of the equation
31w® —31w* +4 =0.
Remark. The inequality (c) is sharper than the inequalities (b), and the inequality

(b) is sharper than the inequalities (a). Indeed, the inequalities (b) can be obtained
by summing the inequality in (c¢) to the obvious inequality

5(a+ b+c)(ab+ bc+ca) >0,

and the inequalities (a) can be obtained by summing the inequality in (b) to the
inequality
2(a+b+c)(ab+ bc+ca)=0.
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P 2.10. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca=>0,

then .
a’+ b3+ — Zabc > 2(a—b)(b—c)(c—a).

(Vasile C., 2006)

Solution. Assume
p> 1
=1, 0<g<—=—,
p q 3 =3

and write the inequality as

3r+p*—3pq— %}r >2(a—b)(b—c)(c—a),

p®—3pq+ 17411‘ > 2(a—b)(b—c)(c—a),

1—3g> _Tllr+2(a—b)(b—c)(c—a).

It suffices to show that

1 3 —11
5512 5 Hl@=b)b—c)c—al
. —11
Applying Corollary 1 for § = 216" we have
—11 —11q¢ 11 43
—r+|(a=b)(b—c)(c—a)| < +——+ 1—3q)%?,
g " |(a—b)(b—c)(c—a)l YRR 108( q)
with equality for
22(1—3q)*/? = 43(9q — 27r —2). )
Therefore, it suffices to show that
1 3 _—11g 11 43 32
- —Zg> + —(1-3q)*?,
2297 24 Ti0s T108 T30

which is equivalent to
86 —225q > 86(1 — 3q)*/2.

Using the substitution
t=4/1-3q, 0<t<]l,

the inequality becomes
86— 75(1—t?) > 86¢3,
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11+ 75t%> —86t% > 0.

We have
11+ 75t>—86t> = (1—t)(11+ 11t +86t%) >0,

with equality for t = 1. Notice that t = 1 involves ¢ = 0, and (*) gives r = —4/43.
Thus, if p = 1, then the original inequality is an equality for ¢ = 0, r = —4/43 and
(a—b)(b—c)(c —a)> 0. More general, the equality holds for

ab+bc+ca=0, 4(a+b+c)*+43abc=0, a+b+c>0, (a—b)(b—c)(c—a)> 0.

These equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

43w° —43w> +4=0.

P 2.11. If a, b, c are real numbers such that
a+b+c>0, ab+bc+ca>0,
then
(@  2(a®+b3+c3)+3(3v3—2)abc +6+/3 (a®b + b%c +c2a) > 0;
(b) a®>+ b%+c®—3abc > ?(a—b)(b—c)(c—a).
(Vasile C., 2006)

Solution. Due to homogeneity, we may set

2
p=1, OSqu—zl.
3 3

(a) Write the inequality as

2(a® + b° +¢®) +3(3v3—2)abc +31/§Zab(a+ b)+3\/§Zab(a— b) >0,

2(a®+b% +¢®) +3(3v3—2)abc +3v3 > ab(a+b) > 3v3 (a—b)(b—c)(c—a),
2(3r +p® —3pq)—6r +3v3 pqg > 3v3 (a—b)(b—c)(c—a),
2p® —3(2—V3)pq > 3v3 (a—b)(b—c)(c—a),
2—3(2—+v3)q > 3v3(a—b)(b—c)(c—a).
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It suffices to show that
2—3(2—v3)q > 3V3|(a—b)(b—c)(c—a)l.

Applying Corollary 1 for =0, we have

@a—b)(b—c)c—a)| < %(1 — 3¢,

with equality for
27r =9q —2. (&)
Therefore, it suffices to show that
2—3(2—+v3)q > 2(1—3¢)%2.

Using the substitution
t=+41-—3q, 0<t<L1,

the inequality becomes
2—(2—V3)(1—1t3)> 2t

V3+(2—-v3)t?—2t3>0,
(1-6)(V3+V3t+2t2)>0,

with equality for t = 1. Notice that t = 1 involves ¢ = 0, and (*) gives r = —2/27.
Thus, if p = 1, then the original inequality is an equality for ¢ =0, r = —2/27 and
(a—b)(b—c)(c —a)> 0. More general, the equality holds for

ab+bct+ca=0, 2(a+b+c)*+27abc=0, a+b+c>0, (a—b)(b—c)(c—a)>0;

that is,
a= b
1+v3 1—-43

(or any cyclic permutation).

>0

(b) Write the inequality as

p—3p02 2@ b))

1-3g> %(a —b)(b—c)(c—a).

It suffices to show that

1—-3q> ?I(a— b)(b—c)(c—a).
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As shown at (a), we have

(a—b)(b—c)(c—a)| < %(1 g,

Therefore, it suffices to show that
1—3q>(1-39)*2.

which is equivalent to

(1-3¢)(1—+/1-3q) >0,

3q(1—3q) >0
1+41—-3q

The equality holds for ¢ = 1/3 and q = 0. The original inequality is an equality for
a=>b=c>0, and also for

ab+bc+ca=0, 2(a+b+c)*+27abc=0, a+b+c>0, (a—b)(b—c)(c—a)>0;

this means that
q= b . c
1+v/3 1—43

(or any cyclic permutation).

>0

Remark. The inequality (b) is sharper than the inequality (a), because the last
inequalities can be obtained by summing the inequality in (b) to the obvious in-

equality
3v3

T(a+b+c)(ab+bc+ca)20.

P 2.12. If a, b, c are real numbers such that
a+b+c>0, 2@*+b*+c*)+7(ab+bc+ca)>0,

then
a*(a—b)+b* (b—c)+c*(c—a)=>0.
(Vasile C., 2006)

Solution. Due to homogeneity, we may set p = 1. From p? > 3q and
2(a®>+ b*+c*)+7(ab+bc+ca)=2p>*+3q=2+3q >0,

we get
—2
—<gq=<

W=
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Write the inequality as
2(a®+b*+¢%) > > abla+b)+ »_ abla—b),

2(a®>+b*+c*)+3abc>(a+b+c)ab+bc+ca)—(a—b)b—c)(c—a),
2(3r +p®—3pq) +3r > pqg—(a—b)(b—c)(c—a),
2p® —7pq > —9r —(a—b)(b—c)(c —a),
2—7q9q=>—-9r—(a—b)(b—c)(c—a).
It suffices to show that
2—7q=-9r +|(a—b)(b—c)(c—a)l.

Applying Corollary 1 for = —1/3, we have

_ _ e — BV B S RIP Y.V
O9r+|(a—b)(b—c)(c—a)| < 3q+3+3ﬁ(1 3q)°'4,

with equality for
V3 (1-3¢)*?=9q—27r—2. ™

Therefore, it suffices to show that

2 4
2—7q>—3q+ = + ——(1—3¢)*?,
1="24" 373 5 1

which is equivalent to
V3(1-39) > (1-3¢9)°2,
(1-39)(vV3—+/1-3¢) >0,
A-39)2+39) _ 4
V3+41-3¢
with equality for ¢ = 1/3 and q = —2/3. According to (*), ¢ = 1/3 involves
r =1/27, and ¢ = —2/3 involves r = —17/27. Thus, the equality holds for a =
b =c> 0, and also for

17(a+b+c)*+27abc=0, 2(a+b+c)*>+3(ab+bc+ca)=0,

a+b+c>0, (a=—b)(b—c)(c—a)<O.

The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)<O
and are proportional to the roots of the equation

27w® —27w? — 18w+ 17 = 0.
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P 2.13. If a, b, c are real numbers such that
a+b+c>0, 3(ab+bc+ca)>a*+b*+c?

then
a’(a+2b—3c)+ b*(b+2c—3a)+c*(c+2a—3b)>0.

(Vasile C., 2006)

Solution. Due to homogeneity, we may set p = 1. From p? > 3q and
3(ab+bc+ca)—(a®*+b*+c*)=3q—(p*—2q)=5¢—1>0,

we get

IA
Q
IA

Ui =
W

Write the inequality as follows:
2@+ b+ > Zab(a + b)—SZab(a —b),

2(a®* +b*+c*)+3abc>(a+b+c)ab+bc+ca)+5(a—b)(b—c)c—a),
2(3r +p®>—3pq) +3r = pq+ 5(a—b)(b—c)(c —a),
2p®—7pq > —9r +5(a—b)(b—c)(c—a),
2—7q=—9r+5(a—Db)(b—c)(c—a).
It suffices to show that

2—7q
5

> —T9r + |(a—b)(b—c)(c—a)l.

Applying Corollary 1 for 3 =—1/15, we have

—9r —3q 2 4.7 5
——+|(a=b)b—c)c—a)| < — +—+—\| = (1—3¢)*?
: |(a—b)(b—c)(c—a)l < T 15\3( Q)7
with equality for
V3 (1-39)** = V7 (9¢—27r —2). )

Therefore, it suffices to show that

2—7 —3 2
—q > _q_|___'_i\liz(]__Sq)3/2J
5 5 15 15 \3

which is equivalent to

V3 (1—-3q) > V7 (1-3q)*7,
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(1-39)[vV3—+/7(1—3q) | > 0.

3>7(1-3q),

This is true if

4
which is equivalent to g > TR Indeed, we have

1 4
- > —.
S 21

q>

The equality holds fora=b=c¢ > 0.

P 2.14. If a, b, c are real numbers, then
(a®+ b2 +c?)? > 3(ab + b3c + c2a).
(Vasile C., 1992)

Solution. Write the inequality as follows:

2(a®>+ b*+c?)? > BZ:ab(a2 + b)) + BZ:ab(a2 —b?),

2 (Z az)z >3 (Z ab) (Z az) - 3ach a—3 (Z a) (a—b)(b—c)(c—a),
2(p* —2q)* —3q(p* — 2q) = —3pr —3p(a—b)(b—c)(c —a),
2p*—11p?q + 149> > —3pr —3p(a— b)(b—c)(c —a).
It suffices to show that

2p*—11p%q+14¢>>3p[—r + |(a—b)(b—c)(c—a)|].

Since the inequality remains unchanged by replacing a, b,c with —a,—b,—c, re-
spectively, we may assume that p > 0. For the nontrivial case p # 0, we may set
p =1 (due to homogeneity). Thus, we need to show that

2—11q + 14¢>
3

>—r+|(a=b)(b—c)(c—a).

Applying Corollary 1 for f = —1/27, we have

—r+|(a=b)(b—c)(c—a)| < —?q 237 + 42—‘/77 (1—3q)%/2,

with equality for

(1—3¢)%? =7 (9q—27r —2). )
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Therefore, it suffices to show that

2—11q+14q2>—_q+ 2 447

3 3 27 27

which is equivalent to
8 —45q + 63¢ > 2v/7 (1—3¢)*,

(1—3q)(8—21q) = 2v/7 (1—3¢)*/?,

(1-3q)[8-21g—2y/7(1-3q) | > 0.

Since 1 —3q > 0, this is true if
(8 —21q)* > 28(1—3q),

which is equivalent to
(79—2)*>0.

According to (*), g = 1/3 involves r = 1/27, and q = 2/7 involves r = —1/49.
Thus, the original inequality is an equality for a = b = ¢, and also for

2p>—79=0, p*+49r=0, (a+b+c)a—b)b—c)(c—a)<O.
The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=—b)(b—c)(c—a)<O0
and are proportional to the roots of the equation
49w° —49w? + 14w + 1 = 0;

this means that

(or any cyclic permutation).

P 2.15. If a, b, c are real numbers, then
a*(a—2b+c)+b*(b—2c+a)+c*(c—2a+b)>0.

(Vasile C., 1998)
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Solution. Write the inequality as follows:

2(a*+b*+cH > Z:ab(a2 + b3+ BZ:ab(a2 —b?),

ZZa“Z (Zab)(Zaz)—acha—B(Za)(a—b)(b—c)(c—a),
2(p* —4p*q +2q° +4pr) = q(p® —2q) —pr —3p(a—b)(b—c)(c —a),
2p* —9p?q +6q* > —9pr —3p(a—b)(b—c)(c —a).

Since the inequality remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume that p > 0. For the nontrivial case p > 0, it suffices to
show that

2p* —9p2q +6q* > 3p[—3r +|(a—b)(b—c)(c—a)|].
Due to homogeneity, we may set p = 1. Thus, we need to show that

2—9q + 6q°

3 > —-3r+|(a—b)(b—c)(c—a).

Applying Corollary 1 for f =—1/9, we have

2
—3r+|(a—b)(b—c)(c—a)|<—q+ ) + g @] —3q)3/2,

with equality for
(1—3q)*/*=9q—27r—2. (*)
Therefore, it suffices to show that

2—9q + 64> 2 4 3/2
ST > g+ 42 (-390
3 q+g+g1—39)

which is equivalent to
2-9q+9¢” > 2(1-3¢)*?,
(1-39)(2—39) > 2(1 - 3¢)*?,
(1—3¢)[2—3¢—24/1-3q | >0.
Since 1 —3q > 0, this is true if

(2—3¢)* > 4(1—39),

which is equivalent to g* > 0. According to (*), ¢ = 1/3 involves r = 1/27, and
q = 0 involves r = —1/9. Thus, the original inequality is an equality fora = b =,
and also for

gq=0, p*+9r=0, (a+b+c)a—b)b—c)c—a)<O.
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The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=—b)(b—c)(c—a)<O0
and are proportional to the roots of the equation
o’ —9w* +1=0;

this means that

LT .7 . 137w
asin— = bsin— =csin—
9 9 9

(or any cyclic permutation).

P 2.16. If a, b, c are real numbers, then
a*+b*+c*—abcla+b+c)=> V3 (a+b+c)a—b)b—c)c—a).
(Vasile C., 2006)

Solution. Since the inequality remains unchanged by replacing a, b, c with —a,—b, —c,
respectively, we may assume that p > 0. For the nontrivial case p > 0, it suffices to
show that

a*+b*+c*—abc(a+b+c)>V3(a+b+c)(a—b)b—c)c—a),
which is equivalent to
p*—4p%q+2¢*+3pr = V3 pl(a—b)(b—c)(c—a)|.
Due to homogeneity, we may set p = 1. Thus, we need to show that
1—4q+2¢* > V3[—v3r+]|(@—b)(b—c)c—a)l].
Applying Corollary 1 for 3 = —+/3/27, we have

—+/3 24/3 2410
v3q, 2V3 (1—3¢)*2,

—V/3r+|(a=b)b—c)c—a)| < 3 27 + 373

with equality for
2(1—3¢)%? =10 (9q —27r —2). )
Therefore, it suffices to show that

2 2410
1—4q+2¢°>>—q+ A (1—3q)*2,
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which is equivalent to
7—27q +18q* > 2#/10 (1—3q)*?,

(1—3q)(7—6q) > 210 (1 —3q)*/?,

(1-3q)[7—69—2+/10(1-3q) | > 0.

Since 1 —3q > 0, this is true if
(7—6q)* = 40(1 —3q),

which is equivalent to
(2 +1)*>0.

According to (*), ¢ = 1/3 involves r = 1/27, and q = —1/2 involves r = —1/3.
Thus, the original inequality is an equality for a = b = ¢, and also for

(a+b+c)*+2(ab+bc+ca) =0, (a+b+c)*+3abc=0, (a+b+c)(a—b)(b—c)(c—a)=>0.

The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

6w® —6w? —3w+2=0.

P 2.17. If a, b, c are real numbers, then
2
a*(a+b)+b3(b+c)+c3(c+a)> §(ab + bc +ca)?

(Vasile C., 2006)

Solution. Write the inequality as follows:
4
2(a*+ b*+cH) + b(a®+ b?) + b(a®—b2)> =(ab + bc +ca)?,
(a c?) Za (a ) Za (a ) 3(a c+ca)
2(a4+b4+c4)+Zab(a2+bz)—(a+b+c)(a—b)(b—c)(c—a) > g(ab+bc+ca)2,
4
2(p* —4p*q+2q" +4pr) +q(p° —2q) —pr —pla—b)(b—c)c —a) = 7¢",

2
2p*—7p%q + ng + 7pr > p(a—b)(b—c)(c—a).
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Since the statement remains unchanged by replacing a, b, c with —a,—b,—c, re-
spectively, we may assume p > 0. For the nontrivial case p > 0, it suffices to show
that

2
2p*—7p*q + ng +7pr = pl(a—b)(b—c)(c—a)l.

Due to homogeneity, we may set p = 1. From p? > 3q, we get

q=<

oolr—l

Thus, we need to show that

2
2—7q+ §q2 > —7r+|(a—b)(b—c)(c—a)l.

Applying Corollary 1 for § = ;—77, we have

— —b)(b-— —a)l < —=4+ = 1—3¢)%?,
7r +|(a )Jb—c)c—a)| < 3 +27+ 7 ( q)

with equality for
7(1—3¢)*? = V/19(9¢ —27r - 2). )
Therefore, it suffices to show that

2, —7q¢ 14 4419
27+ 2>/ M V19 g gy
3 3 27 27

which is equivalent to
20—63q +9¢% > 24/19(1 —3q)*/?,

(1—-3¢)(20—3q) = 2v/19(1 —3¢)*"%,
(1-3q)[20—3¢—2+/19(1-3¢) | > 0.
Since 1 —3q > 0, this is true if
(20—3q)* = 76(1 —3q),

which is equivalent to
(q+6)*>0,

According to (*), ¢ = 1/3 involves r = 1/27, and q = —6 involves r = —7. Thus,
the original inequality is an equality for a = b = ¢, and also for

ab+bc+ca+6(a+b+c)* =0, abc+7(a+b+c)*=0, (a+b+c)(a—b)(b—c)(c—a)=>D0.
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The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a—b)(b—c)(c—a)=0
and are proportional to the roots of the equation

w?—w?—6w+7=0.

P 2.18. If a, b, c are real numbers such that ab + bc + ca = 3, then
a’(a—2b)+ b3(b—2c)+c3(c—2a)+3>0.
(Vasile C., 2006)

Solution. Write the inequality in the homogeneous form
1
bt 4t — b(a®+ b?)— b(a?—b?)+ =(ab+ bc+ca)*=>0,
a c Za (a ) Za (a ) 3(a c+ca)
which is equivalent to

1
a*+b*+c* = ab(a® + b?) + 5ab+betca)y'> > ab(a®—b?),

1
(p*—4p*q+2¢* +4pr)—q(p*—2q) +pr+ ng >—p(a—Db)(b—c)(c—a),

13
p*—5p?q+ ?qz +5pr > —p(a—Db)(b—c)(c—a).

Since the inequality remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For the nontrivial case p > 0, it suffices to show
that

13
p*—5p*q+ ng +5pr = pl(a—b)(b—c)(c—a)l.

Due to homogeneity, we may leave out the hypothesis ab + bc + ca = 3 for p = 1.
From p? > 3q, we get

Wl

q=<

Thus, we need to show that

1—5q+ ?qz >—5r+|(a—b)(b—c)(c—a)|.

Applying Corollary 1 for = 57 we have

—5¢ 10 4413
—5r+|(a=b)(b—c)c—a)| < — +—=+— (1—3¢)*"?
rHl@—bb e -l €+ o+ T (1-30)
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with equality for
5(1—3¢)%? = v/13(9q — 27r —2). )
Therefore, it suffices to show that

13 ,_ —5¢ 10 4413
1-5¢+—¢*=> =4, 10, 413 (1—3q)*>,
3 3 27 27

which is equivalent to
17 —90q + 117¢° > 4V13(1 —3q)*/?,

(1—39)(17—39q) > 4v13(1 —3q)*/?,

(1-3¢)[17—39¢—44/13(1—3q) | > 0.
Since 1 —3q > 0, this is true if
(17 —39q)* > 208(1 —3q),

which is equivalent to
(13g—3)*>0,

According to (*), g = 1/3 involves r = 1/27, and q = 3/13 involves r = —1/169.
Thus, the homogeneous inequality is an equality for a = b = ¢, and also for

13(ab+bc+ca)=3(a+b+c)*=0, 169abc+(a+b+c)>=0,
(a+b+c)a—b)(b—c)(c—a)<O.

Since ab + bc + ca = 3, the original inequality is an equality for

—1
a+b+c=+v13, abc—‘/—l_g, (a—b)(b—c)(c—a)<O.

The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)<O0

and are the roots of the equation

1
w—V13 W +3w+ —=0
V13

Remark 1. The inequalitiesin P 2.14, ... , P2.18 are particular cases of the following
generalization:

e Let A B, C,D be real numbers such that

1+A+B+C+D=0, 3(1+A)>C>*+CD+D%
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Then, for any real a, b, c, the following inequality holds:
Z:a“+AZ:a2b2 +Bacha + CZa?’b +DZ:ab3 > 0.

To prove this inequality, we write it in the form
Za4+A(Za2b2—acha)—(l+C+D)acha+CZa3b+DZab3 > 0.
Since >, a*b*—abc > a > 0, it suffices to consider the case

3(1+A)=C?*+CD+ D%
Proceeding as in the preceding problems (with p = 1), we need to show that

74+2A+C+D—-3(2+A—C—D)q>

>24/(1—A)2—(1—A)(C+D)+C2—CD+D2 - /1—3q.

Since ) ) )
C“+CD
1+A= + +D2(C+D),
3 4
we have
C +D)?
2+A—C—D=(1+A)+1—C—D2g+1—C—D
_ 2
_c+b=2r .,
4
hence

7+2A+C+D—-32+A—C—D)q=7+2A+C+D—(2+A—C—D)
=(1+A)+4+2(C+D)

2

S (C+D)

+4+2(C+D)

(C+D+4)>

0.

Thus, we only need to show that
[7+2A+C+D—-3(2+A—C—D)q*>

4[(1—-Ay—(1—A)C+D)+C*—CD+D*](1—-3q),

which is equivalent to

[(2+A—C—D)’q—4—5A+(1+A)(C+D)+C2+D*]* > 0.
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Remark 2. Replacing A, B, C, D with A/A,, B/A,, C /Ay, D/A,, respectively, the state-
ment from Remark 1 becomes as follows:

o Let Ay, A B, C,D be real numbers such that
Ay>0, Ay+A+B+C+D=0, 3A)(A,+A)>C>+CD+D>

Then, for any real a, b, c, the following inequality holds:

A()Z:a4'+AZ:a2b2+Bach:a+CZ:a3b+DZ:ab3 > 0.

P 2.19. If a, b, c are real numbers such that ab + bc 4+ ca = 0, then

a*+b*+c*—abcla+b+c)> ? (a+b+c)la—b)(b—c)(c—a).

(Vasile C., 2006)

First Solution. Since the statement remains unchanged by replacing a, b,c with
—a,—b,—c, respectively, we may assume that p > 0. For the nontrivial case p > 0,
it suffices to show that

v15
a*+b*+c*—abc(a+b+c)> - (a+b+c)|(a—Db)b—c)c—a)l,
which is equivalent to
v 15
p*—4p*q+2q* +3pr > - pl(a—b)(b—c)(c—a)l.

Due to homogeneity, we may set p = 1. From p? > 3q, we get

0< <1
_q_3.
We need to show that
V15[ —6r
1—4qg+2 22—[—+ a—b)(b—c)(c—a ]
a+292 7| —+la=b)b-)e—a)
Applying Corollary 1 for f3 N we have
pplying ry Wirs
—6r —2q 4 14

e tla—bhb—a-als =+ Tt

(1—39)*?,
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with equality for
4(1—3q)*/* = 7(9q —27r — 2). )

Therefore, it suffices to show that

V15[ —2q 4 14
1—4q+2¢*>> [ - + (1-3 )3/2],
1T 2 V15 9v/15 9415 1

which is equivalent to
7—27q +18q% > 7(1 —3q)*/?,

(1—3q)(7—6q) > 7(1—3q)*?,

(1—3¢q)(7—6q—7+/1—3q ) >0.

Since 1 —3q > 0, this is true if
(7—6q)* = 49(1—3q),

which is equivalent to
q(4g+7) =0,

According to (¥), ¢ = 1/3 involves r = 1/27, and q = 0 involves r = —2/21. Thus,
the original inequality is an equality for a = b = ¢, and also for

ab+bc+ca=0, 2labc+2(a+b+c)®>=0, (a+b+c)la—b)b—c)(c—a)=>0.
The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

21w® —21w* +2=0.
Second Solution. We will find a stronger inequality

f(a,b,c) =0,
where
f(a,b,c)=a*+b*+c*—abc(a+b+c)+ ?(Za?’b—Zab?’)
—k(ab+bc+ca)a®+b*+c*—ab—bc—ca), k>0,

satisfies f(1,1,1) = 0. Since

(ab+bc+ca)(a*+b*+c*—ab—bc—ca) = —Z azbz—acha+Z a3b+z ab?,
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the inequality can be written as
Z:a‘*+AZ:a2b2+Bach:a+CZ:a3b+DZ:ab3 >0,

V15 V15
A=k, B=k-1, C=—-k+—, D=—k——.
2 2
We see that 1 + A+ B + C + D = 0. According to the statement in Remark 1 from P

2.18, if

where

3(1+A)=C?+CD+D?,

then the inequality holds for all real a, b,c. It is easy to show that this condition
is satisfied for k = 1/2. Since the inequality f (a, b,c) = 0 for k = 1/2 is stronger
than the original inequality, the proof is completed.

O

P 2.20. If a, b, c are real numbers such that
2(ab+ bc+ca) > a®+ b2+ 2,

then
a*+b*+c*—abcla+b+c)> ? (a+b+c)a—>b)(b—c)(c—a).

(Vasile C., 2006)

Solution. Since the statement remains unchanged by replacing a, b, c with —a,—b, —c,
respectively, we may assume that p > 0. For the nontrivial case p > 0, it suffices to
show that

v3
a*+b*+c*—abc(a+b+c)> 79 (a+b+c)|(a—Db)b—c)(c—a)l,
which is equivalent to
V39
p*—4p*q +2q* +3pr > — pl(a—b)(b—c)(c—a)|.
Due to homogeneity, we may set p = 1. From p? > 3q and 2(ab + bc + ca) >

a’?+ b? + c?, we get

<qg<

e
Wl

We need to show that

1—4q+2¢°> ?[;—2_;+I(a—b)(b—c)(c—a)l].
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—2

Applying Corollary 1 for f = ——, we have
pplying ry B 9730

—or 2 4 22

+|(a—=b)(b—c)(c—a)| < + + 1—3q)°72,

yag T b= alemal = Tas 5t ovmg (1 730

with equality for
4(1— 3q)3/2 =11(9q —27r —2). (*)

Therefore, it suffices to show that

/3_9[—2q+ 4 22
2 [+/39 9439 9439

1—4q+2q¢*> (1—3q)3/2],

which is equivalent to
7—27q+18¢* > 11(1—3q)*?,
(1—3q)(7—6q) = 11(1 —3q)*?,

(1—-3q)(7—6q—114/1—3q ) > 0.

Since 1 —3q > 0, this is true if
(7—6q)* = 121(1—3q),

which is equivalent to
(4¢—1)(q+8)=0,

According to (*), ¢ = 1/3 involves r = 1/27, and ¢ = 1/4 involves r = 1/132.
Thus, the original inequality is an equality for a = b = ¢, and also for

4(ab+bc+ca) = (ab+c)?, 132abc+(a+b+c)®> =0, (a+b+c)(a—b)(b—c)(c—a)> 0.
The last equality conditions are equivalent to the condition that a, b, ¢ satisfy
(a=b)(b—c)(c—a)=0
and are proportional to the roots of the equation
132w® —132w?* +33w—1=0.
Second Solution. We will find a stronger inequality
f(a,b,c)=0,

where
V15
A A A 37 _ 3
fla,b,c)=a"+b*"+c*—abcla+b+c)+ 2 (E a’b E ab)

—k(2>]ab=>a*) (D a?= D ab), k>0,
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satisfies f(1,1,1) = 0. Since

~(225ab-2,0%) (207~ 2 ab) =

=(Xat) ~3(Xar) (Xa?) +2(Xan)
=Za4+42a2b2+acha—BZa3b—SZab3,

the inequality f (a, b,c) = 0 can be written as

AOZa4+AZa2b2+Bacha+CZa3b+DZab3 >0,

where

Ay=k+1, A=4k, B=k—1, C:—3k+@, D:—3k—g.

We see that Ay +A+ B+ C + D = 0. According to the statement in Remark 2 from
P 2.18, if A, > 0 and
3A,(A, +A) = C*>+CD + D?,

then the inequality holds for all real a, b, c. It is easy to show that this condition
is satisfied for k = 3/4. Since the inequality f (a, b,c) = 0 for k = 3/4 is stronger
than the original inequality, the proof is completed.

O

P 2.21. If a, b, c are real numbers, then
a*+ b*+c*+2abc(a+b+c)>ab®+ b +cdd.
(Vasile C., 2009)
First Solution. Write the inequality as follows:
2(a* +b*+cM +4abc(a+b+c)> Z ab(a®+ b*)— Z:ab(a2 —b?) >0,
2(p* —4p*q +2q°* +4pr) +4pr = q(p*—2¢) —pr +pla—b)(b—c)(c—a) = O,

2p*—9p2q+6q* > —13pr +p(a—Db)(b—c)(c—a) >0,

Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is clearly true. For
p > 0, it suffices to show that

2p*—9p2?q +6q% > —13pr + pl(a—b)(b—c)(c—a)| > 0.
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Due to homogeneity, we may set p = 1. From p? > 3q, we get

q<

Wl

Thus, we need to show that

2—9q+6q*)>—13r +|(a—b)(b—c)(c—a)| >0,
. —13
Applying Corollary 1 for § = 57 we have

—13q 26 28
—13r +|(a—b)(b—c)(c—a)| < —— + =+ =— (1—3q)*?,
r+la=b)b—c)lc—al<— 57 T 57 (1730

with equality for
13(1—3¢)%? = 7(9q — 2 —27r). )
Therefore, it suffices to show that

—13 26 28
A+ 2= (1-39),

2—9qg +6g% >
2q+6q 3 97797

which is equivalent to
14—63q +81g° > 14(1 —3q)*/.

Using the substitution
t=4+/1—3q, t=>0,

the inequality becomes
9t*—14t> +3t>+2 >0,

which is equivalent to
(t—1)°(9t> + 4t +2) > 0.

The last inequality is true, with equality for t = 1, that is for ¢ = 0. From (*), we
get r =—1/7. Thus, the original inequality is an equality when a, b, ¢ satisfy

(a=—b)(b—c)(c—a)=0
and are proportional to the roots of the equation
7w’ —7w*+1=0.
The equality conditions are equivalent to

a b C

s 2T s 4n . 871
SII‘17 sin 7 SII‘I7
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(or any cyclic permutation).

Second Solution. We will find a stronger inequality
f(a,b,c) =0,
where

2
f(a,b,c)= a4+b4+c4+2abc(a+b+c)—(ab3+bc3+ca3)—2—7[p2+m(p2—3q)]2, meR,

satisfies f(1,1,1) = 0. The inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,

where 1+A+ B+ C+ D = 0. According to the statement in Remark 1 from P 2.18,
if
3(1+A)=C?+CD+D?,

then the inequality f(a, b,c) = 0 holds for all real a, b,c. It is easy to show that
this condition is satisfied for m = —1, when

f(a,b,c)=a*+b*+c*+2abc(a+b+c)—(ab®+ bc® +ca®)— %(ab + bc + ca)?.

]

P 2.22. If a, b, c are real numbers, then
at+ b*+ct+ V2 (a®b + b3c +c2a) > 0.
(Vasile C., 2009)

Solution. We will prove a stronger inequality
fla,b,c) =0,

where

1+

k
(a+b+c), k=+2,
27

fla,b,c)=a*+b*+c*+k(a®b+b3c+ca)—

satisfies f(1,1,1) = 0. Since

(a+b+c)4=Za4+62a2b2+12acha+4Za3b+4Zab3,

the inequality can be written as

A()Z:a4'+AZ:a2b2+Bach:a+CZ:a3b+DZ:ab3 >0,
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where
Ay=26—k, A=—-6(1+k), B=-12(1+k), C=23k—4, D=—4(1+k).

We see that Ay + A+ B+ C + D = 0. According to the statement in Remark 2 from
P 2.18,if A, > 0 and
3A,(Ay +A) > C*+CD + D?,

then the inequality holds for all real a, b, c. We have
3A,(A, +A) — (C? + CD + D?) = 54(28 — 7k — 8k?) = 54(12 — 7+/2) > 0.

Thus, the proof is completed. The equality holds fora=b =c=0.

Remark. From the proof above, it follows that the inequality
a*+b*+c*+k(a®b+b3c+c*a)>0
holds for all real a, b, c and

3v/105—7

—-1<k<
16

~ 1.4838,

3v/105—-7

where k = is a root of the equation 28 — 7k — 8k? = 0. Actually, the

inequality holds for
—1 <k <k,

where k, &~ 1.4894 is a root of the equation

7k> + 17k* + 16k> + 16k* — 64k — 128 = 0.

P 2.23. If a, b, c are real numbers, then
(a®+ b2+ c?)?+2(a®b + b3c + c3a) > 3(ab® + bc® + ca®).
(Vasile C., 2009)
First Solution. Write the inequality as follows:
2(a* + b*+c*)?* > Z ab(a®*+ b*)— SZ ab(a*—b*)>0,

2(p*—2q)* = q(p* —2q) —pr +5p(a—b)(b—c)(c —a),
2p*—9p%q +10g> > —pr +5p(a—b)(b—c)(c—a) >0,
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Since the statement remains unchanged by replacing a, b, c with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is clearly true. For
p > 0, it suffices to show that

2p*—9p%q+10q> _ 1
p 9p5q qZ—gpr+p|(a—b)(b—c)(c—a)|20-

Due to homogeneity, we may set p = 1. From p? > 3q, we get

Wl

q=<
Thus, we need to show that

2— 10¢> _ 1
IR > Lt @B — @) 20.

-1
Applying Corollary 1 for 8 = 135’ we have

! —5q 10 52
——pr+|(a—b)(b— —a)| < —+ =+ (1-3¢)%?,
cPr l(a—Db)(b—c)(c—a)l ot e ( 0
with equality for
(1_3q)3/2 =13 (9q—2—27r). (*)

Therefore, it suffices to show that

2—9g+10g> — 2 52
#Z—q+—+—(1—3q)3/2,
5 15 135 135

which is equivalent to
26 —117q + 135¢% > 26(1 —3q)*/%.

Using the substitution
t=+1-—3q, t>0,
the inequality becomes

15(t2—1)* > 13(2t* -3t +1) >0,

which is equivalent to
(t—1)*(15t> + 4t +2)> 0.

The last inequality is true, with equality for t = 1, that is ¢ = 0. From (*), we get
r =—1/13. Thus, the original inequality is an equality when a, b, ¢ satisfy

(a—b)(b—c)(c—a)=0
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and are proportional to the roots of the equation

13w® —13w? +1=0.

Second Solution. We will find a stronger inequality
f(a,b,c) =0,
where

f(a,b,c) = (az—l—b2+c2)2+2(a3b+b?’c+c3a)—3(ab3+bc3+ca3)—237[p2+m(p2—3q)]2

satisfies f(1,1,1) = 0. The inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,

where 1+A+ B+ C+ D = 0. According to the statement in Remark 1 from P 2.18,
the inequality holds for all real a, b, c if

3(1+A)=C?+CD+D?.

It is easy to show that this condition is satisfied for m = —1, when
2
f(a,b,c)= (a2+b2+c2)2+2(a3b+b3c+c3a)—3(ab3+bc3+ca3)—§(ab+bc+ca)2.

]

P 2.24. If a, b, c are real numbers, then

8
a?+b%+c?)?+ —(a®b+b3c+c2a)>0.
( ) ﬁ( )

Solution. Write the inequality as follows:

V7
4
g(p2 —2q)* +q(p*—2q)—pr—pla—b)(b—c)(c—a) > 0.

Since the statement remains unchanged by replacing a, b, c with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is clearly true. For
p > 0, it suffices to show that

(a®+ b? + ¢?)? %—Z:ab(a2 + b2+ Z:ab(a2 —b?)>0,

g(p2 —2q)*+q(p*—2q) = pr + pl(a—b)(b—c)(c —a)| > 0.
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Due to homogeneity, we may set p = 1. From p? > 3q, we get
<1
1=3
Thus, we need to show that
7
%(1 —29)+q(1—29)>r+|(a—b)(b—c)(c—a)l.
. 1
Applying Corollary 1 for § = 27 we have
2 447
+|(@a=b)b—c)(c— _———+— 1—3q)%?,
r+l@—b)b—c)c—a)l < 3 -+ 5 (1-30)
with equality for
(1-39)°** = V7(2—9q +27r). )
Therefore, it suffices to show that
V7 2 2 47
—(1-2¢)*+q(1—2 _———+— 1—3q)%2.
7 (17200 +q(1—2q) 57 27( q)
Using the substitution
t=4/1—3q, t>0,
(*) turns into
t2=+/7(3t2—1+27r), (%)

and the desired inequality becomes
12(V7 =2)t* —16V7 t3 + 12(V7+ 2)t2 +34/7+8 >0,

which is equivalent to

2
(t—3+2‘/7) [6(vV7—2)t*+2(3—+v7)t+1]>0

3+
The last inequality is true, with equality for t = Tﬁ, hence for

1—t>  2+47

From (**), we get
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Thus, the original inequality is an equality when a, b, ¢ satisfy
(a=—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

3
4w® —4w? — 224+ V7 W+ 1+ —==0.
V7

P 2.25. If a, b, c are real numbers such that ab + bc + ca < 0, then
(a® + b2 +c2)? > (2v/7 —1)(ab® + bc® + ca®).
(Vasile C., 2009)

First Solution. Write the inequality as follows:

4f+2

(a 2+b2—|—c2)2>Z:ab(a + b?)— Zab(a —b?),

47 +2
27
Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is trivial. For p > 0, it
suffices to show that

(p*—2q)* = q(p* —2q) —pr + p(a—b)(b—c)(c —a).

47 +2
77 (p*—29)° —q(p® —2q) = —pr +pl(a—b)(b—c)(c —a)l.
Due to homogeneity, we may set p = 1. Thus, we need to show that
447 +2
27 (1-29)* —q(1—2q) = —r +|(a—b)(b—c)(c—a)l.

—1
Applying Corollary 1 for 8 = 77 we have

—q 2 4 3/2
—r+](@=b)b—c)c—a)| < — + —+—- (1—-3
rla=b)b-e—als 2+~ + 2 -39)
with equality for
(1—3q)** =7 (9q—2—27r). (*)

Therefore, it suffices to show that

447 + 2
27

—q 2 4v7
1-29)2—q(1—29)> — + — + — (1—3q)*?,
( q)*—q( q) 3 7T 57 ( q)
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which can be written as

47

2 9 2
27 ——[(1—2¢9)*—(1—3¢)*¥ ]—2—7q(13—31q)20,

Since q < 0, this inequality is true if
447
27

which is equivalent to

2 [(1- 207~ (1-307"] - 54(13-319) 20,

q[—13+4v7+(31—=10+/7)q] >0,
(—q)[13—4+v7+ (31 —10V7)(—q)] = 0.

The last inequality is true, with equality for ¢ = 0. From (*), we get
r= m (2 + L)
27 V7
Thus, the original inequality is an equality when a, b, ¢ satisfy

(a—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

1
27w —27w? + 2+ — = 0.
V7

Second Solution. We will find a stronger inequality of the form
(a® + b2+ c2)? 4+ q[kp? + m(p?> —3¢)] > (2v/7 — 1)(ab® + bc® + ca®),

where k > 0, m > 0. Since

q[kp* + m(p*—3q)] = (k + m) (Z ab) (Z az) + (2k —m) (Z ab)2
= (2k—m)Z:a2b2 + (Sk—m)acha +(k+m) (Zagb +Zab3),

he inequality can be written as
Za4+AZa2b2+Bacha+CZa3b+DZab320,
where
A=2k—m+2, B=5k—m, C=k+m, D=k+m+1—27.

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0
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and
3(14+A)=C?*+CD+ D%
2 —2 -5
These condition are satisfied for k = #, and m = 7‘/2 . Thus, the proof

is completed.
O

P 2.26. If a, b, c are real numbers such that ab + bc + ca = 0, then
(a®+ b2+ 2P+ (1+2v7)(a®b+ b3c+c2a) > 0.
(Vasile C., 2009)

First Solution. Write the inequality as follows:

4\/_ 2( +b2+cz)2+Zab(a +b2)+Zab(a —-b¥) >0,

447 -2
27
Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is clearly true. For
p > 0, it suffices to show that

447 -2
27

(p*>—2q)* +q(p* —2q) —pr —p(a—b)(b—c)(c—a) > 0.

(p* —29)* +q(p* —2q) > pr +pl(a—Db)(b—c)(c —a)| > 0.
Due to homogeneity, we may set p = 1. From p? > 3q, we get

0<qg<

oo||—-

Thus, we need to show that

47 —
27

2(1 —29)*+q(1—29)>r+|(a—b)(b—c)(c—a)l.

1
Applying Corollary 1 for § = 27’ we have

P+ la=ho-oe-ols -2+ 8 ﬂ (1-3¢)*2,

with equality for

(1—3¢)%% = v/7(2—9q +27r). Q)
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Therefore, it suffices to show that

47 —2

2 447 39)2
2 bl

1—2g)*+q(1—2 =+ —(1—
(1—29)" +q( q)_3 7 27(

which can be written as

4‘/_ [(1 2¢)* —(1—3¢)**]+ 237 [1-(1—29)*]+ %q(l —3¢q)>0.

This is true if
(1—2¢9)*—(1—3q9)**>0.

Using the substitution
=4/1-3q, 0<t<l,

the inequality becomes
(1+2t%)*>09t3,

which is equivalent to
(1—6)(1+t+5t2—4t3)>0.
Since
1+t+52—43>1+t+2t2—43=(1—t)(1 + 2t +4t) >0,
the inequality is true, with equality for t = 1, hence for ¢ = 0. From (*), we get
1 1
-2 (55-2)
Thus, the original inequality is an equality when a, b, ¢ satisfy
(a=b)(b—c)(c—a)=0

and are proportional to the roots of the equation

1
27w —27w? + 2 — — =0.
N

Second Solution. We will find a stronger inequality of the form
(@ + b2+ 2?4+ (14+2v7)(ab + b3c + c2a) > q[kp? + m(p* —3q)],

where k > 0, m > 0. Since

q[kp? + m(p?*—3q)] = (k + m) (Z ab) (Z az) + (2k—m) (Z ab)2
= (2k—m)Z:a2b2 + (Sk—m)acha +(k+m) (Zagb +Zab3),
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the inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,
where
A=—-2k+m+2, B=-5k+m, C=—-k—m, D=—k—m+1+2V7.

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0

and
3(1+A)=C?*+CD + D%

These conditions are satisfied for k = —2(2+ v7) and m = >t 7ﬁ. Thus, the
proof is completed.
Remark. Because ab + bc + ca > 0 involves
(a+b+c)=>a*+b*+c?
the inequality is sharper than the inequality
(a+b+)*+(1+2v7)a®b+b°c+c%a) > 0. (A)

On the other hand, the inequality is weaker than the inequality
(a®>+b%+c2—ab—bc—ca)®*+ (1 +2v7 )(a®b + b3c +c%a) > 0. (B)

Also, the following inequality holds for ab + bc + ca > 0:
(a®2+b2+c?2—ab—bc—ca)E+(1+2V7)(a®b+b3c+c%a) >0, (@)

where
E=a?+b?>+c*— V7 (ab+ bc +ca).

We can prove the inequalities (B) and (C) in a similar way. The original inequality
and the inequalities (A), (B) and (C) are equalities in the same conditions.
O

P 2.27. If a, b, c are real numbers such that ab + bc + ca < 0, then
a*+b*+c* > (2v3—1)(ab® + bc® + cad).

(Vasile C., 2009)
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First Solution. Let

C24/3-1 11
Write the inequality as follows:

1 14243

2k(a*+b*+c") > > ab(a®+b%) — > ab(a®— b?),

2k(p*—4p*q +2¢* + 4pr) = q(p*>—2q) —pr + p(a—b)(b —c)(c —a).

Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is true. For p > 0, it
suffices to show that

2k(p* —4p*q +2¢* + 4pr) = q(p* —2q) — pr + pl(a— b)(b—c)(c —a)l.
Due to homogeneity, we may set p = 1. Thus, we need to show that
2k(1—4q+2¢*+4r)=q(1—2q)—r +|(a—b)(b—c)(c—a)l,
which is equivalent to
2k(1—4q +2¢*)—q(1—2q) = —(1+8k)r + [(a— b)(b—c)(c — a)|.

—(1+8k
Applying Corollary 1 for § = %, we have

—(1+8k)r+|(a=b)(b—c)(c—a)| <

- —(1+8k)g N 2(1 + 8k) N 4(4+19+/3)

= 1—3 3/2
3 27 T A
—(1+8k 2(1 k 2(19k—1
_ = )qJr (1+8k) , 2(19 )(1_3q)3/2’
3 27 27
with equality for
2(1+8k)(1— 3Q)3/2 = (19k—1)(9g —2—27r). )

Therefore, it suffices to show that

—(1+8k)g , 2(1+8Kk)  2(19k—1)

1—3q)*?,
3 27 27 ( 9

2k(1—4q +2¢*)—q(1—2q) >
which is equivalent to
k(19 —72q + 54¢%) + 27q*> — 99 — 1 > (19k — 1)(1 — 3q)*/2.

Using the substitution

t=+41-3q, t>1,
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the inequality becomes
k(6t*+12t2 +1)+3t*—3t2—1> (19k—1)¢3,
k(6t*—19t3 +12t2 + 1) +3t*+ 2 —3t2—1>0,
k(t—1)(6t2—13t2—t—1)+(t —1)(3t3+4t>+t+1)>0.
This is true if E > 0, where
E=k(6t3—13t>—t—1)+(3t> +4t>+t +1).
We have
E>k(6t3—13t2—t—1)+k(3t3+4t>+t+1)=9kt*(t—1) > 0.
The equality E = 0 occurs for t = 1, that means ¢ = 0. From (*), we get
o -2k _ —(24/3+1) _—(10+ \/§)_
19k —1 194/3 +4 97
Thus, the original inequality is an equality when a, b, ¢ satisfy

(a=—b)(b—c)(c—a)=0
and are proportional to the roots of the equation

9O7w® — 97w +10+ V3 =0.

Second Solution. We will find a stronger inequality of the form
a*+ b* +c* +q[kp? + m(p? —3q)]1 = (2v/3 —1)(ab® + bc® + ca®),

where k > 0, m > 0. Since

qlkp® + m(p? —3q)] = Gk +m) (D ab) (> a2) + 2k —m) (D ab)
= (2k—m)Z:a2b2 + (Sk—m)acha +(k+m) (Zagb +Zab3),

the inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,

A=2k—m, B=5k—m, C=k+m, D=k+m+1—2+3.

where

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0

and
3(1+A)=C?*+CD+ D>,

2(+/3-1) .
9

These conditions are satisfied for k = nd m

= @ Thus, the

proof is completed.
OJ
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P 2.28. If a, b, c are real numbers such that ab + bc + ca = 0, then
a*+b*+c*+(1+2v3)(a®b+ b3c+c2a) > 0.
(Vasile C., 2009)

Solution. Denoting
2v/3—1

k= ,
11

we may write the inequality as follows:
2k(a*+ b*+c*) + Z ab(a®+ b?) + Z:ab(a2 —b*) >0,

2k(p* —4p3q +2¢* + 4pr) +q(p>*—2q) —pr —p(a—b)(b—c)(c—a) > 0.

Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is true. For p > 0, it
suffices to show that

2k(p*—4p*q +2q* + 4pr) + q(p* —2q) —pr —pl(a—b)(b—c)(c —a)| = 0.

Due to homogeneity, we may set

p=1, 0<Z¢gc<

W=

Thus, we need to show that

2k(1—4q+2¢*)+q(1—2q) > (1 —8k)r + |(a—b)(b—c)(c—a)|.
. 1—8k
Applying Corollary 1 for § = 5 we have

(1-=8Kk)r+|(a—b)(b—c)(c—a)| <

_ (1—8k)g _ 2(1—8Kk) N 4(19v/3—4)

1—3¢)%?
- 3 27 11-27 ( 9
1—8k —
_(1-8k)q 2(1-8Kk)  2(19k+1) (1— 372
3 27 27
with equality for
(16v3—19)(1—3¢)%? = (19v3—4)(9q —2 —27r). *)

Therefore, it suffices to show that

(1-8Kk)g _2(1—8k) , 2(19k+1)

1—3q)%/?
3 27 7 (=307,

2k(1—4q +2¢*)+q(1—2q) >
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which can be written as
kA+B >0,

where
A=19[1—(1-3q)**]—18q(4—3q),

B=1—-(1-3¢)*?+9q(1—3q).

Since B > 0, it suffices to show that A > 0. This is true if
18[1—(1—3¢)**]—18q(4—3q) >0,
which is equivalent to
3[1-(1-39)**]—3q(4—3q) > 0.

Using the substitution
t=41-3q, 0<t<l,

the inequality becomes
3(1—t3)—(1-t>)(3+t?) >0,

which is equivalent to
t2(1—t)(2—t)>0.

This inequality is true, with equality for t = 1, hence for ¢ = 0. From (*), we get

o —(10—+/3)
B 97

Thus, the original inequality is an equality when a, b, ¢ satisfy
(a=—b)(b—c)(c—a)=0
and are proportional to the roots of the equation
97w® —97w* + 10— v/3 =0.
Second Solution. We will find a stronger inequality of the form
a*+b*+c*+ (14 2v3)(a®b + b3c + c2a) > q[kp? + m(p? —3q)],

where k > 0, m > 0. Since

q[kp*+m(p*—3q)] = (k +m) (Z ab) (Z az) +(2k—m) (Z ab)2
= (2k—m)Z:a2b2 + (Sk—m)acha +(k+m) (Zagb +Zab3),
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the inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,
where
A=—-2k+m, B=-5k+m, C=—k—m, D=—k—m+1+2V3.

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0

and
3(1+A)=C?*+CD + D%

2(1+v3) . _ 7(1+ +/3)
9

These conditions are satisfied for k = nd m

. Thus, the

proof is completed.
O

P 2.29. If a, b, c are real numbers such that ab + bc + ca = 0, then
a*+b*+c*+2v2 (@®b + b3c + c2a) > ab® + be® + ca’.
(Vasile C., 2009)
Solution. For m = 24/2, we write the inequality as follows:

2(a*+b*+c)+(m—1) > ab(a® + b} + (m+1) Y ab(a®—b*) >0,

2(p*—4p*q+2q° +4pr)+(m—1)[q(p*—2q)—pr] = (m+1)p(a—b)(b—c)(c—a).
Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, the inequality is true. For p > 0, it
suffices to show that

2p* —4p*q +2¢°)+(m—1)q(p* —29) = (m—9)r + (m+ pl(a—b)(b—c)c—a)l.

Due to homogeneity, we may set

p=1, 0<gq<

W

Thus, we need to show that

2(1—4q+2¢*)+(m—1)q(1—29) > (m—9r+(m+1)|(a—b)(b—c)(c—a)l,
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which is equivalent to

2(1—4q+24¢*) +(m—1)q(1—2q) > M0 a=b)(b—)c—a),

m+1 m+1
Applying Corollary 1 for f3 —_m=9 we have
pplying ry T m+ 1)
m—9

1r+ [(a—Db)(b—c)(c—a)|l <

< (m—9)q 2(m—9) 2(18+m)
“3(m+1) 27(m+1) 27(m+1)
with equality for

(1—3¢)*3,

2(m—9)(1—3¢)%? = (18 + m)(2—9q + 27r). *)

Therefore, it suffices to show that

— 2(m— 2(18 +
2(1—4q+2¢%)+(m—1)q(1—2q) > =9 _2m=9) 208+m) | 5 v
27 27
which can be written as
mA+ 2B >0,
where 24(1 ) 2
_4«qll—q 3/2
A=——"+—[1—(1-3 ,
3 27 11— (1 =30"]

B=-3q(1—¢q)+ % [1-(1—39)*?].

Since A > 0, it suffices to show that B > 0. Using the substitution

t=+1-—3q, 0<t<,
we have ) ) ) )
—(1—t*)(2+¢t 2 t“(1—t
B= ( X )+—(1—t3)=¥20.
3 3 3
The inequality mA+ 2B > 0 is an equality for ¢ = 0. From (*), we get
_V2-9
7

Thus, the original inequality is an equality when a, b, ¢ satisfy
(a=—b)(b—c)(c—a)=0
and are proportional to the roots of the equation

Tw? —7w? +9—+/2=0.
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Second Solution. We will find a stronger inequality of the form
a*+b*+c*+2v2 (@®b + b3c + c2a) = ab® + be® + ca® + q[kp? + m(p? —3q)],

where k > 0, m > 0. Since

q[kp* + m(p*—3q)] = (k + m) (Z ab) (Z az) + (2k —m) (Z ab)2
= (2k—m)Z:a2b2 +(5k—m)acha+(k+ m)(ZaBb +Zab3),

the inequality can be written as
D> a*+A> a?b*+Babc » a+C Y a’b+D > ab®>0,
where
A=—-2k+m, B=-5k+m, C=—-k—m+2v2, D=—k—m—1.

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0

and
3(1+A)=C?*+CD + D%
2 72
These conditions are satisfied for k = —‘/_ and m = 5 Thus, the proof is
completed.

]

P 2.30. If a, b, c are real numbers such that ab + bc + ca = 0, then
(a+b+c)a®+b3+c®)+5(a®b+b3c+c3a)>0.
(Vasile C., 2008)

First Solution. Since the statement remains unchanged by replacing a, b,c with
—a,—b,—c, respectively, we may assume p > 0. Since p = 0 and q > 0 involve
a = b =c¢ =0, consider next p > 0. Due to homogeneity, we may set

=1 0<¢g< p_2 = 1
p - — q — 3 - 3
The desired inequality becomes as follows:

2(a+b+c)a®+b>+c)+ SZ:ab(a2 + b?) +SZab(a2— b*) >0,

2p(3r + p® —3pq) + 5q(p* —2q) — 5pr = 5p(a— b)(b —c)(c —a),
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2(8r+1—3q)+5q(1—2q)—5r = 5(a—b)(b—c)(c—a),
2—q—10¢*>—r +5(a—Db)(b—c)(c—a).
Thus, we need to show that

2—q—10g% -1
%z?rﬂ(a—b)(b—c)(c—an.

-1
Applying Corollary 1 for § = 135 we have

—9q 2
+
135 135

-1 52
_ - _ _ _ < 1 _ 3/2
ot l(a=b)(b—c)(c—a)l < NETT (1-39)"%,

with equality for

3t

(1—3q)*?=13(9q —2—27r). )

Therefore, it suffices to show that

2—q—10q2>—9q+ 2
5 ~ 135 135

52
+ 1—3q)*2,
138 ( q)
which can be rewritten as
26 —9q —135¢% > 26(1 — 3q)*/2.

Using the substitution
t=+41-3q 0<t<l,
the inequality becomes

26 —3(1—t2)—15(1 —t%)* > 26¢>,

8 +33t2 —26t3—15t* >0,
(1—1t)(8+8t+41t*+15t%) > 0.

The last inequality is true, with equality for t = 1. Notice that t = 1 involves g =0,
and (*) gives r = —1/13. Thus, the original inequality is an equality when a, b, c
satisfy

(a=—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

13w’ —13w*+1=0.
Second Solution. We will find a stronger inequality of the form

(a+b+c)a®+b>+c)+5(a®b + b3+ ca) > q[kp® + m(p* —3q)],
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where k > 0, m > 0. Since

q[kp*+m(p?—3q)] = (k +m) (Z ab) (Z az) +(2k—m) (Z ab)2
= (2k—m)Z:a2b2 + (Sk—m)acha + (k+m) (ZaBb +Zab3),

the inequality can be written as

Za4+AZa2b2+Bacha+CZa3b+DZab320,
where
A=-2k+m, B=-5k+m, C=—-k—m+6, D=—-k—m+1.

According to the statement in Remark 1 from P 2.18, the inequality holds for all
real a, b, c if
1+A+B+C+D=0

and
3(1+A)=C?*+CD+ D%

8 28
These conditions are satisfied for k = ) and m = R Thus, the proof is completed.
U

P 2.31. If a, b, c are real numbers such that

1+v21+8
k(ab+bc+ca)=a’>+b*+c% k> 3 ﬁ~3.7468,

then
a®b+b3c+c2a>0.

(Vasile C., 2012)

Solution. Write the inequality as follows:
Z ab(a*+ b*) + Z:ab(a2 —b*) >0,

q(p*—2q)—pr—p(a—b)(b—c)(c—a) = 0.

Since the statement remains unchanged by replacing a, b, c with —a,—b,—c, re-
spectively, we may assume p > 0. For p = 0, we have

2(a® + b*+¢*) = 2k(ab + bc + ca) = —k(a® + b + ¢?),
which implies a® + b?> +c?> =0, a = b = ¢ = 0. For p > 0, it suffices to show that

q(p*>—2q) = pr +pl(a—b)(b—c)(c—a)l.
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Due to homogeneity, we may set p = 1, which implies

Thus, we need to show that

q(1—2q)=r+|(a—Db)(b—c)(c—a)l.
Applying Corollary 1 for § = 21—7, we have

a0l s -2+ 27 qsgpn

with equality for
(1—3¢)%% =v7(2—9q +27r). *)

Therefore, it suffices to show that

2 447
1—-2 _———+— 1—3q)%2,
a(l-29)= 21— =+ 727 (1-39)
which can be rewritten as
14+9q—27¢%>2v/7 (1—3¢)%2. (**)

Using the substitution

k—1
=41-3¢=\——=
k+2’

1+3(1—t3)—3(1—1t>)?>2v7 ¢,

the inequality becomes

1+3t2—2/7t3—-3t* >0,
[1+t+@+VDE][1—t+(@2—V7)t*] =0
We only need to show that
1—t+Q2—vV7)t2>0,

which is equivalent to

k—1
k+2

B—VDk+ V7> /(k—1)(k +2).

1—(V7— 2)
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By squaring, the inequality becomes
(2vV7—5)k*—(2¢/7—5)k—3 <0,

k*—k—24/7—5<0.

1+v21+8v7
The last inequality is true for k > 2 [, with equality for
L 1+ V21+8V7
= 5 )

From (*) and (**), we get the equality condition
1+9q—27q* = 14(2—9q + 27r),
which is equivalent to

5 1 5+k—k

14r=—1+4+59—q¢*=—1+ — = )
: =4 k+2 (k+2)2  (k+2)p

The original inequality is an equality when a = b = ¢ = 0. For

1+421+8V7

2

k=

(which satisfies k> — k — 24/7 — 5 = 0), the equality condition above becomes

. 5+k—k* -1
14(k+2)2  /7(k+2)?

Thus, the equality holds also when a, b, ¢ satisfy
(a=b)(b—c)(c—a)>0

and are proportional to the roots of the equation

1 1
w+ =0
k+2  V7(k+2)?

w3—w2+

P 2.32. If a, b, c are nonnegative real numbers, then
3(a*+b*+cM +4(a®b + b3c + ca) > 7(ab® + bc® + cad).

(Vasile C., 2009)
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Solution. It suffices to show that there exist a, 3,y € R such that the sharper in-
equality f(a, b,c) = 0 holds for any real a, b,c and f(1,1,1) = 0, where

f(a, b,c)=32a4+42a3b—72ab3—2 bc(aa+ Bb +vc)?,
f(1,1,1)==3(a+p +7)"
Since
Z bc(aa + Bb + yc)? =2/5}fz b*c* +ala+2B + 2}/)acha
+ﬂ22a3b+y22ab3,
we have

f(a,b,c)=AOZa4+AZa2b2+Bacha+CZa3b+DZab3,
where
Ay=3, A=-2By, B=—a(a+2B+2y), C=4—f2% D=-7—7y

Choosing
Y= _13

we have
Ay=3, A=2B, B=—a(a+28-2), C=4-p%> D=-8.

For a+ f3 +y =0, we have A, + A+ B+ C + D = 0. According to the statement in
Remark 2 from P 2.18, if A; > 0,A,+A+B+C+D =0 and

3A,(A, +A) > C*+CD + D?,
then the inequality f (a, b,c) = 0 holds for all real a, b, c. Since
3A0(Ay+A)—(C*+CD+D*)=f(B), f(B)=18p—21—p%

and 3 Is
—]l=—>0
£(3)=1e>0

we choose

g3

2
and 1
a=—/3—y=?.

As a consequence, the inequality

BZa4+4Za3b > 7Zab3+i2bc(—a+3b—2c)2

holds for any real a, b,c. Thus, the proof is completed. The original inequality is
an equality fora = b =c.
OJ
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P 2.33. If a, b, c are nonnegative real numbers, then
16(a*+ b* +c*) +52(a®b + b3c + c®a) > 47(ab® + bc® + ca?).
(Vasile C., 2009)

Solution. It suffices to show that there exist a, 3,y € R such that the sharper in-
equality f (a, b,c) = 0 holds for any real a, b,c and f(1,1,1) =0, where

f(a,b,c)= 162 a*+ SZZaBb —472 ab® —Z bc(aa+ Bb +vc)?,
f(1,1,1)=63—3(a+ B +7)%
Since
Z bc(aa + Bb + yc)? =2/5}fZ b*c*+ala+2B + 2y)ach a
+ /SZZaBb + yzzabB,

we have

f(a,b,c) =AOZa4+AZa2b2+Bacha+CZa3b+DZab3,
where
Ay=16, A=-2By, B=—ala+2B+2y), C=52—f% D=—-47—y>
The original inequality is an equality for a =0, b =1 and ¢ = 2. Since

£(0,1,2) = =2(B +2y)?,

we choose
B==2y.
We have

Ay=16, A=4y*, B=—ala—2y), C=52—4y* D=-47—y2

According to the statement in Remark 2 from P 2.18, if A, > 0, A;+A+B+C+D =0
and
3A,(Ay +A) = C*+CD + D?,

then the inequality f (a, b,c) = 0 holds for all real a, b, c. Since
3A,(A, +A)—(C*+ CD +D*) = —21(y —3)*(y + 3)?%,

we choose
y=3
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and
p=-—2y=—6.

In addition, for

a=v2I—f—y=+v21+3
we have 3(A,+A+B+C+D)=f(1,1,1) = 0. As a consequence, the inequality

16 Y a*+52> a®b>47 > ab®+ » bc[(V21+3)a—6b +3c]’

holds for any real a, b, c. The original inequality is an equality fora =0and b = ¢/2
(or any cyclic permutation).
O

P 2.34. If a, b, c are nonnegative real numbers, then
a* +b*+c*+5(a®b + b3c + c2a) > 6(a?b? + b?c? + c%a?).
(Vasile C., 2009)

Solution. It suffices to show that there exist a, 3,y € R such that the sharper in-
equality f (a, b,c) = 0 holds for any real a, b,c and f(1,1,1) =0, where

f(a, b,c)=Za4+52a3b—62a2b2—2bc(aa+[3b+}/c)2,

f(1,1,1)==3(a+ B +7)>

Since
Z bc(aa+ Bb +yc)? =2ﬁy2 b+ a(a+2B + 2}/)acha
+ﬂ22a3b+y22ab3,
we have
f(a,b,c)=Za4+AZa2b2+Bacha+CZa3b+DZab3,
where
A=—-6—-2By, B=—a(a+2f+2y), C=5-f> D=—y%
Choosing
__3
Y= 2:
we have

A=—6+3p, B=—a(a+2B-3), C=5-p% DT%'
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According to the statement in Remark 1 from P 2.18,if 1+A+B+ C+ D =0 and
3(1+A)>C*+CD +D?

then the inequality f (a, b,c) = 0 holds for all real a, b, c. Since

30+4)—(C*+CD+D) = f(B), 4 () =36p— o —9p*—4(5— Y,

and 9 11
—|=—>0,
(3=
we choose
p?
Y
In addition, for
a=—f—y= -3

we have 3(1+A+B+C+D)=f(1,1,1) = 0. As a consequence, the inequality

Za4+52a3b 26Z:a2b2+%Z:bc(—a+3b—2c)2

holds for any real a, b, c. Thus, the proof is completed. The original inequality is
an equality fora=b =c.
O

P 2.35. If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then
3
a’b+b3c+cca+ 46L4abc <27.

(Vasile C., 2009)
Solution. Write the inequality in the homogeneous form g(a, b, c) > 0, where
g(a,b,c)=27(a+b+c)*—256(a®b + b3c +c*a) —473abc(a+ b +¢).

It suffices to show that there exist a, 3,7 € R such that the sharper inequality
f(a, b,c) = 0 holds for any real a, b, c, where

f(a,b,c)=g(a,b,c) —Z bc(aa+ Bb +vc)?,

f(1,1,1)==3(a+ B +7)>

Since

(a+b+c)4=Za4+62a2b2+12acha+4Za3b+4Zab3
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and
Z bc(aa + Bb + yc)? =2/3}fZ b*’c*+ala+2B + Zy)abcz a

+/J’22a3b +y22ab3,

we have

f(a, b,c)=AOZa4+AZa2b2+Bacha+CZa3b+DZab3,
where
Ay=27, A=162—2By, B=—149—a(a+2p +2y),

C=-148—pB% D=108—y>

Since
g(1,1,1)=g(0,3,1) =0,

we need to have also
f(1,1,1)=f(0,3,1) = 0.

From
f(ls 1: 1) = _3(a + /5 + Y)Z
and
£(0,3,1)=—=3(38 +7)>,
we get
Y:_Bﬂi a:—ﬂ_Yzzﬂ:
therefore

A, =27, A=162+6p3% B=-149+4p% C=-148—p%* D =108—9pB%

We see that Ay + A+ B+ C + D = 0. According to the statement in Remark 2 from
P 2.18,if A, > 0 and
3A,(Ay, +A) = C*+CD + D?,

then the inequality f (a, b, c) = 0 holds for all real a, b, c. Since
34,(A, +A)—(C*+CD + D*) = —91(B*—5)?,

we choose

B=+v5 a=2=2vV5 y=—a—p=-3V5.
As a consequence, the inequality
27(a+b+c)*—256(a’b + b + c*a) —473abc(a+b+¢) = 5 > be(2a+b—3c)?

holds for any real a, b, c. The original inequality is an equality fora = b = ¢ =4/3,
and also for a =0, b =3 and ¢ = 1 (or any cyclic permutation).
O
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P 2.36. If a, b, c are positive real numbers such that a + b + c = 3, then

a2 2 2

—+—+c—+5(ab+bc+ca)218.
b c a

(Michael Rozenberg and Vasile C., 2009)

Solution. Write the inequality in the homogeneous forms:

2 p? 15(ab + b
a—+—+c—+ (ab+ CJrca)26(a+b+c),
b a a+b+c
2
Z(a ) (__b_) 30(ab+bc+ca)212(a+b+c)’
a+b+c

(p*—2q)g—pr  pla—b)(b—c)c—a) , 30q
r r D

(P —20)q > (13p - 3%) r—pla—b)(b—c)(c —a).

It suffices to show that

>12p,

(P~ 20)q > (Bp - 3’%) r 4 plla—b)b—c)c—a)l

Due to homogeneity, we may set p = 1. From p? > 3q, we get

1
0<qg<~-
1=73
Thus, we need to show that
(1—2q)q = (13—30g)r +[(a—b)(b—c)(c—a)l. )
1 1 13—30
Case 1: 5 <g< 3 Applying Corollary 1 for § = —q’ we have

(13—30q)g  2(13—30q) ,
3 27

(13—30q)r +|(a—b)(b—c)(c—a)| < (1 3¢)*?,

where

A= +/27+(13—30q)>.
Therefore, it suffices to show that

(13—309)g _2(13—-30q)
3 27

(1—2q)q > (1 3¢)*?,

which is equivalent to

(1—3q)(13—369—A4/1—3q) >0
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This is true if
(13 —36q)* > A*(1 —3q),

which can be written as
27(100¢® — 72¢* +16g—1) > 0,
3(10q —3)*(9g —1) + 3q(3—8q) > 0.

Clearly, the last inequality is true.

1
Case2: 0<q< 9 Since

(= b)(b—c)(c—a)l = v/=27r2 = 2(2p® = 9pq)r + p?q> —4¢?
= 4/ —27r2—2(2—9q)r +q> —4¢?,

the inequality (*) becomes

(1—2q)q— (13 —30q)r > 1/—27r2 —2(2—9q)r + g2 — 4q3.

From the known inequality g> > 3pr, we get r < q>/3, therefore
(1—29)g—(13—30q)r > (1—29)q — %(13 —30q)q”
- %q(l —3¢)(3—10q) > 0.

Thus, we only need to show that

[(1—29)q—(13—30q)r]* > —27r*—2(2—9¢)r + ¢* — 44>,
which is equivalent to

[27 4+ (13—30q)*]r* + 2[2—9q — q(1 — 2¢)(13 —30q)]r +4q* > 0.
It suffices to show that
2—9q > q(1—2q)(13—30q).
We can get this inequality by multiplying the inequalities
10(2—9q) > 13—30q

and
1> 10q(1—2q).

The last inequality is true because

1—10q(1—2q)>1—10q +9¢*=(1—q)(1—9q) > 0.
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The original inequality is an equality fora=b=c=1.

Remark. The following generalization holds:

e Let a,b,c be positive real numbers such that a+ b +c = 3. If k < k,, where
ky, ~ 6.1708 is the largest positive root of the equation

x*—11x3 4+ 72x% —304x + 269 = 0,

then
a? b> c?
3.|__+—-+-(k—1)(ab+bc+ca)23k.
c a

P 2.37. If a, b, c are positive real numbers, then

a b ¢ 5(a®+ b%+c?—ab—bc—ca)
— 42 4--3>
b ¢ a az+b%2+c2+ab+bc+ca

(Vasile C., 2009)

Solution. Write the inequality as follows:
a b a b 10(a® + b% + c>—ab—bc —ca)
— 4= |+ ——=]-62 :
Z(b a) Z(b a) ~  a?24+b%2+c24+ab+bc+ca

pq=sr . (a—b)(b—c)(c—a) 10(p* —3q)

b

r r - p%2—q
19p2—3
pq+(a—Db)(b—c)(c—a)> MT‘.
P —q
It suffices to show that
19p* —39
pg= 2T (@ —b)(b—c)c—a)l.

p2_

Due to homogeneity, we may set p = 1. From p? > 3q, we get

0<g<

Wl

Thus, we need to show that

19—39
quqqr+|(a—b)(b—c)(c—a)|. )
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Case 1: 1s <q< 3 Applying Corollary 1 for § = 27(0—q) _qq),

we have

19—39q (19-399)g 2(19-39) 24 .,
?rﬂ(a—b)(b—c)(c—a)ls 30—q  27(1—q 27— (1-3¢)*,
where

A=+/27(1—q)? + (19 —39¢)>.
Therefore, it suffices to show that

19— 2(19-3 2A
o (19—39q9)q _ 2(19 9Q)+_(1_3q)3/2’
3(1—q) 27(1—q) 27

which is equivalent to
(1—3q)(19—54q —Ay/1—3q) > 0.

This is true if
(19—54q)* > A*(1—3q),

which can be written as
172q®> —120g* +24qg—1 >0,
(3¢—1)*(15g —1) +q(37¢>*—21q +3) > 0.

The last inequality is true because

21> 3
37q2—21q+3=37(q—ﬁ) +—>0.

1
Case 2: 0 < q < —. Since
15

|(@—b)(b—c)(c—a)l = v/—27r2 — 2(2p® — 9pq)r + pq* — 4¢°
= 4/—27r2—2(2—9q)r +q —4¢?,

the inequality (*) becomes

_ 19—39q

- r>4/—27r2—2(2—9q)r + q2 — 4¢3
—q

From the known inequality g> > 3pr, we get r < q*/3, therefore

19 —39q (19 —39q)q?

q——F———r=2q——(———————
1—gq 3(1—q)

_ 9(1—39)(3—13q)

3(1—q) > 0.
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Thus, we only need to show that
19-3 2
(q — Qr) >—27r*—2(2—9q)r + ¢* — 44>,
—q
which is equivalent to the obvious inequality
Ar’ +4Br+4q¢° >0,
where )
19—-3
A=27+ (M) >0,
1—¢q
1—-15 24q>
g Q+249"
1—q
The original inequality is an equality for a = b = c.
O
P 2.38. If a, b, c are positive real numbers, then
a b ¢ 16(a%? + b2 +c?2—ab—bc—ca)
—+-+--32 .
b ¢ a a2+ b2+ c2+6(ab+ bc+ca)

Solution. Write the inequality as follows:

a b a b 32(a?+ b%+c2—ab—bc—ca)
Silz+=)+>(z-=)-62 .
b a b a a2+ b2+ c2+6(ab+ bc+ca)

L@=b)b—c)c=a) 32(p*—3q)

—3
pq—3r

r r - p?+4q
41p*—60q
I SE—

pqg+(a—Db)(b—c)(c—a)> 021 4q

It suffices to show that
41p% —60q
pq= T A
p*+4q

Due to homogeneity, we may set p = 1. From p? > 3q, we get

0<qg<
<qg< -,
Thus, we need to show that

41—-60
Q= —
1+4q

r+|(a—Db)(b—c)(c—a).

4 4 l(a=Db)b=c)c—a)l.

(Vasile C., 2012)

)
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1 1 41—-60
Case 1: 28 = <q< 3 Applying Corollary 1 for f = m, we have
41—60q (41—60q)g 2(41—60q) 2A 3
r+|(a—b)(b—c)(c—a)| < — + 1-3¢)*?,
1+4q (a=b)(b=e)e—a)l < 3(1+4q) 27(1+4q) 27(1+4q)( 9
where
A= 4/27(1 +4q)? + (41— 60q)?,

with equality for

2(41—60q)(1 —3q)*? = A(2—9q + 27r). &)

Therefore, it suffices to show that

S (41 —60q)q B 2(41—60q) N 2A

1—3 3/2’
3(1+4q)  27(1+4q) 27(1+4q)( 9)

which is equivalent to

(1—3q)(41—108¢—Ay/1—3q) >0

This is true if
(41—108q)* > A% (1—3q),

which can be written as
448q° —240q* + 369 — 1> 0,
(49 —1)*(28¢q—1) > 0.
The last inequality is true, with equality for ¢ = 1/4. From (**), we get r = 1/56.

1
Case 2: 0 < q < —. Since
28

(= b)(b—c)(c—a)l = v/=27r2 = 2(2p® = 9pq)r + p?q> —4¢?
= 4/ —27r2—2(2—9q)r +q> —4¢?,

the inequality (*) becomes

41 —60q
— > 4/=27r2—2(2—9q)r + g2 — 4q53.
q 174 r>/—27r ( qQr +q2—4q

From the known inequality g> > 3pr, we get r < q*/3, therefore

41—60q (41 — 60q)q>
1+4q 3(1+4q)
_ 9(1—39)(3—20q)

> 0.
3(1+4q)
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Thus, we only need to show that

( 41 —60q
1+4q

which is equivalent to the obvious inequality
Ar’ +4Br+4q¢° >0,
where )
1—
ﬂ) >0,
+q

B (1—21q) + 12¢>
B 1+4q

A=27+(

> 0.

2
r) > —27r*—2(2—9q)r + q* — 44>,

The original inequality is an equality for a = b = ¢, and also when a, b, c satisfy

(a=b)(b—c)(c—a)<O0
and are proportional to the roots of the equation
56w® —56w* + 14w —1=0.
The last equality conditions are equivalent to

a b c

m 2
ﬁ—tan; ﬁ—tan% ﬁ—tan%

(or any cyclic permutation).

Remark. This inequality is stronger than the inequality

g+é+£+2>14(a2+b2+cz)
b ¢ a ~ (a+b+c)? ’

which is stronger than the inequality

a b ¢ 7(ab+bc+ca)_ 1
—+—+—+ >,
c a a2+ b2+ c2 2
because
16(a?+ b?+c?>—ab—bc—ca) - 14(a*+b*+c%)
a2+ b2+c2+6(ab+bc+ca) = (a+b+c)?
and

14(a2+b2+c2)_2> 17 7(ab+ bc +ca)

(a+b+c)?

2 a2+ b2 + 2

(A)

(B)
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respectively. Notice that the last inequalities are equivalent to
(a®? + b%2+c?—2ab—2bc—2ca)* > 0.
The inequalities (A) and (B) are equalities for

a b c

T 2
ﬁ—tan; 1/7—tan77t ﬁ—tan47n

(or any cyclic permutation).

P 2.39. If a, b, c are real numbers such that ab + bc + ca = 0, then
(a®+ b2+ c?)(a®+ b3+ ) +5(a*b+ b*c+c*a) > 0.
(Vasile C., 2008)

Solution. Since the statement remains unchanged by replacing a, b, c with —a, —b, —c,
respectively, we may assume p > 0. Since p =0and g > 0 involvea =b =c =0,
consider next p > 0. Due to homogeneity, we may set

=1 0<¢g< p_2 = 1
The desired inequality becomes as follows:

2 (Z az) (Z a3) + SZ:ab(a3 +b3) + SZ:ab(a3 —b3) >0,
2 (Z az) (Za3) +5 (Zab) (Z a3) —5acha + SZ:ab(a3 — b3 >0,
(22a2+52ab) (Zag)—Sachaz+SZab(a3—b3)2 0,
(2p* +q)(3r +p* —3pq) — 5(p*> —2¢)r — 5(p>* —q)(a—b)(b—c)(c —a) > 0,
(2+q)(Br+1—-3q)—5(12—2q)r—5(1—q)(a—b)(b—c)(c—a) = 0,
2—5¢—3¢*>—(1+13¢)r +5(1 —q)(a—b)(b—c)(c —a).
Thus, we need to show that

2-5q=3¢" L ZAH13Ar - e—a)).

51-q) — 5(1—-q)
—(1+13
Applying Corollary 1 for § = 1?()%_3)), we have
—(1+13gq)r

5(1—q) +|(a=b)(b—c)(c—a)|l <
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< —9(1+13q)g 2(1+13q) 2A

_ 3/2
135(1—q)  135(1—¢q)  135(1—q) (1—3g)*7,

where

A=+/675(1—q)2+(1+13q)2,
with equality for
—2(14+13¢)(1 —3¢)*? =A(2—9q +27r). )
Therefore, it suffices to show that

2 —5q —3q> - —9(1+13q)g 2(1+13q) 2A

— /
5(1—q) ~— 135(1—q) 135(1—q)  135(1—q) (1 BQ)Bz,

which can be rewritten as
26 —75q + 18q% > A(1 —3q)*/%.

Since

A= 4/262—4q(331—211q) < 26
and
J1=3q<1,
it suffices to show that

26— 75q + 18q* > 26(1—3q),

which is equivalent to
3q(1+6q)=>0.

For ¢ = 0, (*) gives r = —1/13. Thus, the original inequality is an equality when
a, b, ¢ satisfy
(a=—b)(b—c)(c—a)=0

and are proportional to the roots of the equation

13w® —13w? +1=0.

P 2.40. If a, b, c are real numbers such that
a+b+c=3, ab+bc+ca=>0,

then
a®b+b3c+ca+18v3 > ab® + bc® + cd®.

(Vasile C., 2008)
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Solution. From 0 < 3q < p?, we get
0<qg<s.
Write the inequality as
18v3>(a+b+c)(a—b)(b—c)(c—a),
6v3 > (a—b)(b—c)(c—a).

It suffices to show that
6v3>|(a—b)(b—c)(c—a)l.

Since

@=b)(b—c)c—a)| = \] Hp? — 3q)° —(221373 —9pq +27r)?

<2\ T2 o5 g)v3,

with equality for 27r = 9pq — 2p3, i.e. for

r=q-—2,
we only need to show that

6v3>2(3—q)v/3—q.

Since 0 < 3 —q < 3, the inequality is clearly true, with equality for ¢ = 0. From
r = q—2 =—2, it follows that the original inequality is an equality when a, b, ¢ are
the roots of the equation

wP—3uw?+2=0

and (a—b)(b—c)(c—a) = 0. Equivalently, the original inequality is an equality for
a=-1, b=2-+2, c=2+v2

(or any cyclic permutation)

P 2.41. If a, b, c are real numbers such that a> + b? + c? = 3, then

812

ab+b3c+cla+ ETH > ab® + bc + cdl.

(Vasile C., 2008)
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Solution. Write the inequality in the homogeneous form:

%(a2+b2+c2)22 (a+b+c)a—b)(b—c)(c—a). )

Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may assume p > 0. Thus, it suffices to show that

9v2

3—2(a2 + b2+ >(a+b+0)|(a=b)b—c)c—a)l,

which can be written as

9v2

E(p2 —2q)* = pl(a—b)(b—c)(c—a)l,

Since

4(p?2—3q)® —(2p® —9pq + 27r)?
27

|(a—b)(b—c)(c—a)|l= \l

2 3
<92 (p2—3q) ’
\J 27

with equality for 27r = 9pq — 2p3, we only need to show that

9‘/5 2 2 (p2—3q)3
—(p°—2g) =2 -
32 (p*—29)*=2p)\ 7

This inequality is equivalent to

37(p* —29)* 2 2"'p*(p* — 3¢)°,
4 3
3764 a(2P"—6
4 = 3 ‘

2p2—6
x:%) xZO’

2 4+3x\*
(p 2 x) > p?x>.

This is the AM-GM inequality applied to four nonnegative numbers, with equality
for p? = x. Thus, the homogeneous inequality (*) is an equality for

Using the substitution

the inequality becomes

(a+b+c)a—b)(b—c)(c—a) =0,

7
6q=—p?,  27r =9pq—2p°= —§p3.
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Since p%2 —2q = 3, we get the equality conditions

33
p_25 q_81 _16:
and
337
P=7%> 977> T 16

In the first case, a, b, ¢ are the roots of the equation
16w? —24w* —6w +7 =0,

which is equivalent to
(2w —1)(8w* —8w—7) = 0.

In the second case, a, b, c are the roots of the equation
16w? +24w? —6w—7=0,

which is equivalent to
2w+ 1)(8w? + 8w —7) = 0.

Thus,the original inequality is an equality for

1 _2+3v2 2—3v2

a=—=, b
2 4 4

(or any cyclic permutation), and for

—1
a=—_—, b )
2 4

(or any cyclic permutation)

_2-3v2 24342



Chapter 3

Highest Coefficient Cancellation
Method for Symmetric Homogeneous
Inequalities in Real Variables

3.1 Theoretical Basis

The Highest Coefficient Cancellation Method (HCC-Method) is especially appli-
cable to symmetric homogeneous polynomial inequalities of six and eight degree.
The main results in this section are based on the following Lemma (see P 2.53 in
Volume 1):

Lemma. If x, y,z are real numbers such that
xX+y+z=p, xy+yz+zx=gq,

where p and q are given real numbers satisfying p?> > 3q, then the product r = xyz
is minimal and maximal when two of x,y,z are equal.

3.1.1. Inequalities of degree six

A symmetric and homogeneous polynomial of degree six can be written in the
form

felbe, 7, =AY x4 A, D xy(xf +y )+ A D Y (P ) A D XY
+A5xyzZ:x3 +A6xyszy(x +¥) + 3A,x%y?2?,
where A;,--- ,A, are real coefficients. In terms of
p=x+y+z, q=xy+yz+zx, r=XxYy3,
it can be rewritten as

f6(X,y;Z) :Arz + gl(p: Q)r + g2(p: q))

205
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where A is the highest coefficient of f¢(x,y,2), and g,(p,q) and g,(p, q) are polyno-
mial functions of the form

£1(p,q) =Bp’® +Cpq, g (p,q) =Dp°+Ep*q+Fp’q” +Gq’,

where B, C, D, E, F, G are real coefficients.
The highest coefficients of the polynomials

Dot D xyxt+yh), D a0 +yY, Y X%y
xyszs, xyszy(x+y)

are, respectively,
3, =3, =3, 3, 3, —3.

Therefore, the highest coefficient of f¢(x,y,2) is
A=3(A;—A,—As+A, +As—Ag +A).
The polynomial
Pi(x,y,2) = Z(A1X2 +A2yz)(B1x2 +Bzyz)(C1X2 +Cyy2)
has the highest coefficient
A=3(A,+A,)B;+B,)(C,; +C,)=P(1,1,1). (3.1)
Indeed, since
P,(x,y,2z) =A,B,C, Z x®+A,B,C, Z x*y?

+(B;1C1A; + C1A By + A B, Cy)xyz ) x°
+ 3(A,B,C, + B,C,A, + C,A,B,)x*y?z?,

we have

+ 3(A1B2C2 + B,CA, + C1A2B2)
:3(A1 +A2)(B1 +Bz)(C1 + Cz)-

Similarly, we can show that the polynomial
Py(x,y,2) = Z(Aﬂfz +A,y2)(B1y* + Byzx)(Ci2% + Coxy)
has the highest coefficient

A=3(A; +A,)(B; + By)(C; + Cy) = Py(1,1,1), (3.2)



Highest Coefficient Cancellation Method for Real Variables 207

and the polynomial
Py(x,y,2) = (A;x* + A, ¥2)(A Y2 + Azx)(A 22 + Ayxy)
has the highest coefficient
A= (A, +A,)®=Py(1,1,1). (3.3)
With regard to

P,(x,y,2) = (x = y)*(y —2)*(z — x)?,
from

Py(x,y,2) = (p* —2q —2* — 2xy)(p* — 29 — x* — 2yz)(p* — 29 — y* — 22x),
it follows that P, has the same highest coefficient as
Py(x,y,2) = (2" —2xy)(—x* — 2yz)(—y* — 22x),
that is, according to (3.3),

A=P;(1,1,1)=(—1-2)>=—-27.
%k sk ok

Based on Lemma above, Theorem 1 bellow gives for A < 0 the necessary and
sufficient conditions to have f(x, y,z) = 0 for all real numbers x, y, z which satisfy

kip® +kyq =0, (3.4)

where k; and k, are given real numbers (see Remark 3 from P 2.75, Volume 1).
Theorem 1 (Vasile Cirtoaje, 2008). Let f¢(x,y,2) be a symmetric homogeneous
polynomial of degree six which has the highest coefficient A < 0. The inequality
fo(x,y,2) = 0 holds for all real numbers x, y, z satisfying (3.4) if and only if
fo(x,1,1) =0
for all real x satisfying k;(x +2)* + k,(2x +1) > 0.
For k; = k, = 0, we get

Corollary 1. Let fy(x,y,2) be a symmetric homogeneous polynomial of degree six
which has the highest coefficient A < 0. The inequality f¢(x,y,z) = 0 holds for all
real numbers x,y,z if and only if

fo(x,1,1) =0
for all real x.
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%k sk

Further, consider the inequality

f6(xjyzz) Z 0:

where x, y,z are real numbers and fy(x,y,z) is a symmetric homogeneous poly-
nomial of degree six with the highest coefficient A > 0. The highest coefficient
cancellation method for proving such an inequality uses the above Theorem 1 and
the following three ideas:

1) finding a nonnegative symmetric homogeneous function f,(x, y,z) of the form

2 2
fo(x,y,2) = (r +A.pq +A2p3+A3q;) , (3.5)

where A;,A,,A; are real numbers chosen such that

fo(x,y,2) = Afs(x,y,2) = 0

for all real numbers x, y,z;

2) seeing that the difference fi(x,y,z) —Afs(x, y,2) has the highest coefficient
equal to zero, therefore the inequality

f6(X,J’,Z) 2Af6(X,J’,Z)

holds if and only if it holds for y =z =1 (Theorem 1);
3) choosing a suitable real number

£ €(—00,0)U(3,00)
and treating successively the cases p? < £q and p? > &q.

e In this chapter, we consider that the function f,(x, y,z) depends on only two
parameters o and f3. Let us define the following nonnegative functions:

4(x —1)*(x —a)*(x — B)?

fap(x)= 4 —a—p 2087+ 27 (3.6)

ga,[j(x) = (X - a)zga,ﬁ(X) (37)
o ofex’tala+6)x—8  Bx+2)2ax+x+a—4)7T
=(x—a) [ @12y + PR ] ’

hap(x) = [x + alx +2)(2x + 1) + B(x +2)°], (3.8)
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where a and f are real numbers. Note that the parameters a and f3 of the function
fop may be also conjugate complex numbers.

e The function f, z(x) has been derived by setting y = z = 1 in the associated
function

- b, 2 5, ¢ ¢ 2
fe(x,y,2)=(r——pq+—p°+—-— (3.9
a aq a p

with
a,=3@4—a—p—-2apB), b;=10+a+p, cg=202+a)2+p),
which satisfies
fo(1,1L,1)=0, fo(a,1,1)=0, fo(B,1,1)=0;

therefore,

oz B b, 2 ¢ (2x+127
Fap() = fo(x,1,1) = [x — a_l(x +2)(2x + 1)+ a_l(x +2)% + - ﬁ] .

Setting
/5:_2: /3:_1: ﬂ:O: /5:1: /3_)00

in (3.6), we get in succession:

4(x — 1D*(x — a)?

fa,—Z(x) = 81(2 + a)z )
(x) = 4(x +1)*(x — D*(x — a)?
fa(x)= 9(5+a)(x+2)2 ’
4 (x—1)*x—a)?
faolx) = 9(4—a)2(x+2)2 ’
A —1)8(x —a)?
Jar )= G T+ 2
A =1 (x—a)?
Jao(x) = 9(1+2a)2(x +2)2
In particular,
_ 4(x—1)
foo,—z(x) = T 5
Al —1Mx +1)°
f—l,oo(x) - 9(X + 2)2 5
2. 1V4
Fool) = XL

9(x+2) ’
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_ 4(x—1)°
fl,oo(x)_ 81(X+2)2 )

(=1
foo,oo(x)_m-

Notice that the relative degree of the rational functions f,, 5(x), fy 00 (x) and foo oo (x)
are six, four and two, respectively.

e The function g, 5(x) is derived by setting y = z = 1 in the associated function

a+(a+2)2a+1)B 3]2

folx,y,2) = [r+/5pq— (@t 2

which satisfies
f6(a, 1, 1) == 0.
Therefore,

a+(a+2)2a+1)B
(a+2)3

8ap(x) = fo(x,1,1) = [x+ﬁ(x+2)(2x+1)— (x+2)3] )

Setting

in (3.7), we get:
2
2o = (R0 -0-1)

g 1p(x) =[x +5x+8+P(x+2)(x+5)],

_ 1 x+8 2
B0 =5 -1 224 B+ 2) |
: (x)= [ax?+ a(a +6)x —8]?
ga,o - (a + 2)6 D
In particular,
go,o(x) =1,

g 10(x)=(x*+5x +8)?,

(x —1)*(x + 8)?
729 '

§1,o(x) =

e The function h, (x) is derived by setting y =z = 1 in the associated function

2

fo(x,,2)=(r + apq + Bp?)



Highest Coefficient Cancellation Method for Real Variables 211

Therefore,
My 5(x) = fi(x,1,1) = [x + a(x +2)(2x + 1)+ B(x +2)*]".

o et
£ e(—00,0)U(3,00).

For y = 2 =1, the condition
p*<&q

xel, I=(§—2—+vE—-3F,&-2+E-3%), (3.10)

while the condition

involves

p*=&q
involves
x R\
Using the substitution
- (2+n)
142n’
we have 4 .
_n —_—
I= 5 5 € _005_2 Ul —, 1 )
(”1+2n) nel )(2 )

4—n —1
I= el—2,— |U(1,00).
(1+2n’7’)’ n ( , 2) (1,00)

Thus, we can check that

n—o-—00 = E-o-—00, I=(—00,—1/2),
n=-5 = &=-1, I=(-5,—-1),
n=—4 = t=-4/7, 1=(—4,-8/7),
n=—-3 = ¢=-1/5, 1=(-3,-7/5),
n=-2 = £&£=0, I=(—2,—2) =40,

and
n=1 = £&£=3, I=(1,1)=40,
n=2 = £=16/5 1=(2/5,2),
n=3 = §&=25/7, 1=(1/7,3),
n=4 = =4, I1=(0,4),
n—o-o00 = - 00, I=(—1/2,00).
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Theorem 2. Let f¢(x,y,2) be a symmetric homogeneous polynomial of degree six
with the highest coefficient A > 0. The inequality f¢(x,y,z) = 0 holds for any real
numbers x, y,z if there exist five real numbers a, 3, y, 6 and &, and

Eyp €{fups8aprhapl

F,5s €{f16, 85N 5}
such that the following two conditions are satisfied:
(@) fe(x,1,1) = AE, g(x) for x €T;
(b) fe(x,1,1) = AF, 5(x) for x eR\L

Proof. Let
2 2
Ei(x,y,2) = (r +A,pq +A,p° +A3q_)
p
and
2 2
Fi(x,y,2) = (’" +B,pq + B,p° +qu_)
p
be the functions associated to E, z(x) and F, 5(x), respectively; this means that
El(x: 15 1) = Ea,ﬁ(x):

Fi(x,1,1) = F, 5(x).
Let us denote
Ey(x,y,2) = fo(x,y,2) —AE(x, y,%)
and
Fy(x,y,2) = fe(x,y,2) —AF,(x, y,2).

Since AE,(x,y,2z) = 0 and AF,(x, y,z) = 0, the inequality f¢(x, y,z) > 0 holds for
all real x, y, z if

(a) EZ(X).)/JZ)ZO for P2<€q1
(b) F,(x,y,z)>0 for p?>£&q.

According to Theorem 1, because E,(x, y,z) and F,(x, y, %) has the highest coeffi-
cient zero, these conditions are satisfied if and only if

(a) E,(x,1,1)>0 for (x+2)*<é&(2x+1);

(b) Fy(x,1,1)>0 for (x+2)*>>&(2x+1).
Since these conditions are equivalent to

(@) fe(x,1,1)—AE,5(x) =0 for x€T;

(b) fo(x,1,1)—AF,5(x)=0 for x € R\,

the proof is completed.
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For £ =0or & =3,whenI=0, we get

Corollary 2. Let fs(x, y, 2) be a symmetric homogeneous polynomial of degree six with
the highest coefficient A> 0. The inequality f¢(x,y,2) = 0 holds for any real numbers
X, Y, if there exist two real numbers y and 6 such that fg(x,1,1) = AF, 5(x) for all
x €R.

The following Proposition 1 is useful in many applications based on Theorem 2
or Corollary 2.

Proposition 1. Let fy(x, y,2) be a symmetric homogeneous polynomial of degree six,
and let

f(x) = f6(x: 1, 1) _AEa,[j(x))
where A is the highest coefficient of fs(x,y,z) and

Ea,/j € {fa,—27 ga,ﬁ: ha,/j }

If
f6(09 11_1) = 0)

then
f(=2)=0.
Proof. Write f¢(x,y,2) in the form
fo(x,y,2) =Ar® + g1(p,)r + &(p, Q).

where
g:.(p,q) =Bp>+Cpq,

82(p,q) =Dp° +Ep*q + Fp’q® + G¢’,
For (x,y,z) =(0,1,—1), we have r =0, p = 0 and g = —1, therefore
f6(0,1,—1) = —G.
For (x,y,2) =(—2,1,1), we have r = —2, p = 0 and q = —3, therefore
fo(—2,1,1) = 4A—27G = 4A+27£,(0,1,—1).
Thus, the hypothesis f;(0,1,—1) = 0 involves
fo(—2,1,1) = 4A.

Since
fa,—z(_z) =4, 8a,p (_2) =4, ha,/B (_2) =4,

we get
f(=2) = fe(=2,1,1) —AE, s(—2) = 4A—4A = 0.
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Remark 1. The function f,(x, y,z) associated to fap(x) (given by (3.9)) is zero for

(X’y’z):(]" 1’ 1)’ (x)ylz):(a) 1’ 1)5 (X7y’z):(ﬁ)1’ 1)'

If 3 = —2, then the function associated to f, _,(x) has the expression
= a+8 2 3)2
y,2)=|r— + , 3.11
fo(x,y,2) (r 901879 " 99+ 187 (3.11)

and is zero for

(x,y,2)=01,1,1), (x,y,2)=(a,1,1), (x,y,2z)=(0,1,—1).

In addition, if a — oo, then

iy =(r— L)

is zero for
(xzysz):(l)]-: 1)’ (x:yaz):(ljoao)s (X,J’,Z):(O: 1)_1)'

If B — oo, then

pq

1 2a+4 &Y
6a+3 6a+3 p

f6(xsyaz) = (r +
is zero for
(xﬁylz):(l’ 11 1)’ (xiy’z):(a) 1’ 1)’ (X’yﬁz):(l’OJO)‘

If, in addition, a — oo, then

2
- 1 q2
f6(x1.y12): (r_g : _)

p
is zero for
(x,y,2)=(1,1,1), (x,y,2)=(1,0,0).
Remark 2. If

fe(x,1,1) =Af, »(x)
for all x € R, then there is k > 0 such that the following identity holds:

fo(x,y,2) = Afe(x, y,2) + k(x — y)’(y —2)*(z — x )%,

where, according to (3.11),

- y+8 2 3)2
s> = - + .
fe(x,y,2) (r 9Y+18pq 9Y+18p
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In addition, if the coefficient of the product
(x =)y —2)*(z —x)*

is the best possible in the inequality f4(x,y,2z) > 0, then k = 0 and the following
identity holds:

y+8 2 2
f6(x,y,2)=A(r—9Y+18pq+ 9Y+18p3) : (3.12)

Remark 3. Theorem 2 is also valid for the case where the parameters a and f3 of
the function f, 4(x) are conjugate complex numbers. For example, if k > 0 and

oa=+v—k, B=—v—k,
then, according to (3.6), we have

_ (x—D*x® + k)
fov = 9(k —2)2(x +2)?°

(3.13)

Remark 4. Consider the inequality f¢(x,y,z) > 0, where
f6(0,1,—1) =0.

o If
fo(x,1,1) = (x —a)’g(x), a#-2,

where g is a polynomial function, then the condition (a) in Theorem 2 applied for
Ea,ﬁ :ga,[ji _26]1,

is satisfied if and only if
g(x)=0, x €1,

where
g(x) = g(x) —Agqp(x),
) ax?+a(a+6)x—8 x+2)2ax+x+a—4)7
o) = | Bt 8 P 2B e BT Gas)
Denote
flx)=folx, 1, 1)_Aga,ﬁ(x)'
From

fl)=(x—a)g(x)—Ax —a)’g, 5(x) = (x —a)*g(x)
and f(—2) = 0 (see Proposition 1), it follows that

g(—2) = 0.
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To have g(x) > 0 in the vicinity of x = —2 € I, the condition g'(—2) = 0 is
necessary. This condition involves

@ (a+27g(-2)

~ 3(a+2) 124 (3.15)

B

In conclusion, in the case x = —2 €I, the condition (a) in Theorem 2 is satisfied if
and only if

g(x) =2 Ag,p(x), x€I,
with 8 given by (3.15).

Similarly, in the case —2 € R\ 1 (I = @ in Corollary 2), the condition (b) in
Theorem 2 or the condition in Corollary 2 are satisfied if and only if

g(x) 2 Ag, 5(x), xeR\L

with 6 given by
r L 0 +2°g'(-2)

T 3(r+2) 124 (3.16)
and
_ . yx?+y(y+6)x—8 S6(x+2)2yx+x+y—4) 2
8y5(x) = [ (712 G127 ] : (3.17)

e The condition (a) in Theorem 2 applied for
Ea,ﬂ :ha,ﬁ? _26]1,

has the form
f(x)=0, xelI,

where
f(x) = felx,1,1) = Ah, g (x).

According to Proposition 1, we have

f(=2)=0.

In order to have f(x) = 0 in the vicinity of x = —2 € I, the condition f'(—2)=0
is necessary. This condition involves

1 h(—
1, H(2)
3 12A

(3.18)

where
h(x) = fe(x,1,1).
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In conclusion, in the case x = —2 €I, the condition (a) in Theorem 2 is satisfied if
and only if
f6(x) 1: 1)2Aha,[5(x): XE]L

with a given by (3.18).
Similarly, in the case —2 € R\I (I = @ in Corollary 2), the condition (b) in
Theorem 2 or the condition in Corollary 2 are satisfied if and only if

fo(x,1,1) = Ah, 5(x), x€R\I,

with "
) (3.19)
3 124
and ,
h,s(0) =[x +y(x+2)2x + 1)+ 6(x +2)°]". (3.20)

Remark 5. By Theorem 1, it follows that Theorem 2 and Corollary 2 can be ex-
tended to the case where the real numbers x, y, z satisfy the condition

ki(x+y+2)P+ky(xy+yz+zx)>0,

where k; and k, are two fixed real numbers. More precisely, all conditions con-
cerning f¢(x,1,1) in Theorem 2 and Corollary 2 need to be satisfied only for

ki(x +2)*+ky(2x +1)>0.

3.1.2. Inequalities of degree eight

A symmetric and homogeneous polynomial of degree eight f;(x, y,2) can be writ-
ten in term of

p=x+y+2z, q=Xxy-+yz+zx, r=xyz,

in the form
g(r)=Alp,)r* + g5(p, r + g4(p, 9),

where A(p,q), g5(p,q) and g4(p,q) are polynomial functions. The highest polyno-
mial A(p, q) of fg(x,y,2) has the form

A(p,q) = up* + Uy, (3.21)

where u, and u, are real constants.

%k sk

The following theorem is an extension of Theorem 1 to symmetric and homoge-
neous polynomial inequalities of degree eight.
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Theorem 3. Let fg(x,y,2) be an eighth degree symmetric homogeneous polynomial
which has the highest polynomial A(p,q). The inequality fg(x,y,z)= 0 holds for all
real x, y,z satisfying A(p,q) < 0 if and only if

fs(x,1,1)>0
for all real x such that A(x +2,2x +1) <0.

Proof. For fixed p and g, the inequality fg(x,y,z) = 0 can be written as g(r) > 0,
where

g(r)=A(p,Qr* + g(p, Or + g4(p, )
is a quadratic function. Since g(r) is concave for A(p,q) < 0, it is minimal when r
is minimal or maximal, that is, when two of x, y,z are equal (see Lemma above).

Due to the homogeneity (of even degree), we may take y =z =1and y =z = 0.
As shown in Volume 1 (Remark 3 from P 2.75), the case y = z = 0 is not necessary.

Corollary 3. Let fg(x,y,2) be an eighth degree symmetric homogeneous polynomial
having the highest polynomial A(p,q). The inequality fg(x,y,2) = 0 holds for all
real x, y,z satisfying A(p,q) <0 if fg(x,1,1)>0 for all real x.

k) %k ok

The following theorem is an extension of Theorem 2 to symmetric and homoge-
neous polynomial inequalities of degree eight.

Theorem 4. Let fg(x,y,z) be a symmetric homogeneous polynomial of degree eight
having the highest coefficient A(p,q). The inequality fg(x,y,z) = 0 holds for any
real numbers x, y,z satisfying A(p,q) = 0 if there exist five real numbers a, f3, y, 6
and &, and

Eyp € {fup>8aprhapls
F se {fy,E’ g)/,S’h)/,B})
such that the following two conditions are satisfied:
(@) fg(x,1,1)=AE, 4(x) for x €l and A(x +2,2x +1) = 0;
(b) fs(x,1,1) = AF, 5(x) for x e R\T and A(x +2,2x+1)=0.

For§ =0o0r & =3,whenl=0, we get

Corollary 4. Let fg(x,y,2) be a symmetric homogeneous polynomial of degree eight
having the highest coefficient A(p,q). The inequality fs(x,y,z) = 0 holds for any
real numbers x, y,z satisfying A(p,q) = 0 if there exist two real numbers y and &
such that

fa(x,1,1) 2 A(x +2,2x + 1)E, 5(x)

for all real x satisfying A(x +2,2x + 1) > 0, where

Ey,5 € {fy,ﬁj gy,5, hy,5}'
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Remark 6. Theorem 3, Theorem 4, Corollary 3 and Corollary 4 can be extended
to the case where the real numbers x, y, z satisfy the condition

ki(x+y+2)P+ky(xy+yz+2x)>0,

where k; and k, are two fixed real numbers. More precisely, all conditions con-
cerning fg(x,1,1) need to be satisfied for

ki(x +2)*+ky(2x +1) > 0.
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3.2 Applications

3.1. If x, y,z are real numbers, then

Z(x +2y)(x +22)(2x + y)(2x +2)(x — y)(x —2) + 3(x — y)*(y —2)*(z—x)* > 0.

3.2. If x, y,z are real numbers, then

D (= 4y2)*(x — y)(x —2) + 3(x — y*(y —2)2(z—x)* > 0.

3.3. If x, y,z are real numbers, then

Z:(x2 + y2)(x +2y)(x +22)(x — y)(x —2) + 2(x — y)*(y —2)*(z — x)* > 0.

3.4. If x, y,z are real numbers, then

2x2+3yz N 2y? + 3zx N 2z% 4+ 3xy .5
4x2+y2+22  4y2422+x2 422+ x24y2 7 2
3.5. If x, y,z are real numbers, then
Ox*—4yz 9y?—4zx 922 —4xy J 15

3x24+2y2+222  3y2+4222+4+2x2  3z2+2x2+2y2 7

3.6. Let x, y, 2 be real numbers, no two of which are zero. If
x>+ y?+2%>> 2xy + yz +2x),

then ) ) )
x“—6yz —62x z2° — 6bx
Yy n Yy n Yy

= 0.
Yi+tyz+2z?2 z22+zx+x2 x2+xy+y?

3.7. If x, y,z be real numbers, no two of which are zero, then

8x%+3yz 8y? + 3zx 822+ 3xy
+ + >11.
Y2+yz+22 22+zx+x2 x2+xy+y?
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3.8. If x, y,z are real numbers, no two of which are zero, then

8x%—5yz N 8y? —5zx N 822 —5xy

=9
yi—yz+2?2 z22—zx+x? x2—xy+y?

3.9. If x, y,z are real numbers, no two of which are zero, then

5x%+2yz N 5y2 + 2zx 5z%+2xy
2y2+3yz+222 2224 3zx+2x%2 2x24+3xy+2y?

3.10. If x, y, z are real numbers, then

(X+)’)(X+Z)+(J’+2)()’+X)+(Z+X)(Z+J’)<ﬂ
7xX2+y2+22  7y24+z24+x2  7z2+x24y2 " 3

3.11. If x, y, z are real numbers, then

6x(y+2z)—yz 6y(z+x)—2zx 6z(x+y)—xy<§
12x24+y2422  12y2+224x2 12224 x2+y2 =~ 4

3.12. If x, y, z are real numbers, then

x(y+2)—yz y(z+x)—2x z(x+y)—xy<
x2+3y2+322 y2+322+3x2 22+3x2+3y2

3
-

3.13. If x, y, z are real numbers, then

> ya(@x + ya)x —Y)0r =)+ 5 (x =y~ 5= x)* 2 0.

3.14. If x, y, z are real numbers, then

D0 = yal e = Y —2) 2 S0e— y Py — i — )%

3.15. If x, y, z are real numbers, then

D (7 +8y2)(x —y)(x —2) + 15(x — y)(y —2)’(z — x)* 2 0.
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3.16. Let x, y,z be real numbers. If k € R, then

g o O P o PR AL G

3.17. If x, y, z are distinct real numbers, then

S S——— +1>0
=22 G—xP G—yP 4~

3.18. Let x, y,z be distict real numbers. If k € R, then

(x—ky)(x—kz) (y—kz)(y —kx) (z—kx)(z—ky) k’
o —z) + G—x) + x—y)2 22+2k—z.

3.19. If x, y, z are real numbers, then

>0+ 2y) (0 = ) =) + S (x =y Py~ 5= x) 2 0.

3.20. Let x, y,z be real numbers. If k € R, then

3(k +2)*(x — y) (¥ —2)*(z —x)?
4(x2+y24+22—xy—yz—2X)

D e =) —2)(x —ky)(x —kz) =

3.21. Let x, y,z be real numbers such that xy + yz +2zx > 0. If k € R, then

2

S 6y =)k —ke) = (1 k= ) ey )%

3.22. If x, y, z are real numbers, then

Z:(x2 +2y2)*(x —y)(x —2) > 0.

3.23. If x, y, z are real numbers, then

D X% + y2)(x — y)(x —2) = (x — y)A(y —2)(z — x)*
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3.24. Let x, y,z be real numbers. If 0 <k < 27, then

2

S+ ya)x—y)x—2)(x—ky)(x—kz) > (1 +k— %) (x—yP(y —2)(—x)"

3.25. If x, y, z are real numbers, then

Z:(x2 + y2)(x — y)(x —2)(x —28y)(x — 282) + 167(x — y)*(y —2)*(z — x)* > 0.

3.26. If x, y, z are real numbers, then

D0+ ya) =y =2 + 5 (e =y Py =20 — 1P 20,

—3
3.27. Let x, y, 2 be real numbers. If —2 <k < - then

2

Sy =)~k —ke) 2 (14 k= | ey =2 x

3.28. Let x, y,z be real numbers. If —5 < k < —2 and

k* —8k® — 7k?> — 20k — 20

5, =
. 4(k—1)2 ’

then

>+ y2) (o — y)(x — 5)(x — ky)(x —ka) + 5y(x — y Xy —2)*(z —x)> = 0.

3.29. If x, y, z are real numbers, then

15(x =y (y —2)*(z —x)°
32(x2 + y2+22) '

Z:(x2 +y2)(x +y)(x +2)>

3.30. If x, y, z are real numbers, then

D= =)+ Y +5) 2 20— )y — 2 —
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3.31. If x, y, z are real numbers such that xy + yz + zx = 0, then

D=+ Y+ 2 ey — 2V -

3.32. If x, y, z are real numbers, then

D 0e =) 4wy + Y x4 2) 2 20—y )y — 20—

3.33. If x, y, z are real numbers such that xy + yz + zx > 0, then

Z(X — ) (x =)+ xy + y) (2 +xz +22) > 3(x — y)A(y —2)*(z — x)%

3.34. If x, y, z are real numbers, then

(x2+ y) (2 +22)(z* + x?) = 8x2y*2* + g(x — )2y —2)%(z — x)*

3.35. If x, y, z are real numbers, then

15
(x2+2y%4+222)(y 2 +22%+2x%) (2% +2x%+2y?) > 125x2y222+?(x—y)z(y—z)z(z—x)z.

3.36. If x, y, z are real numbers, then

15
(2x%+y2+22)(2y2 +2%+x%) (222 +x%+y?) > 64x2 y?z* + :(x—y)z(y—z)z(z—x)z.

3.37. If x, y, z are real numbers, then

8(x%+xy +y)(y*+ yz +22)(2% +2x + x2) > 3(x* + y2)(y? + 22) (2% + x2).

3.38. If x, y,z are nonnegative real numbers, then

Z:(l6x2 +3y2)(x — y)(x —2)(x —4y)(x —42) + 52(x — y)*(y —2)*(z—x)* > 0.
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3.39. If x, y, z are real numbers, then

DX —y)(x —2) 2= (x = y)X(y —2)*(z — x)*.

13—-3v17

13+ 3v17
——— , then

<k<
2

3.40. Let x, y,z be real numbers. If

2

Z:(x2 +kyz)*(x —y)(x—2)+ (kZ — 1) (x—y)Y(y—2)*(z—x)*=>0.

3.41. Let x, y, 2 be real numbers. If k € (—oo,—4]U[—1,0], then

2

36 ke =) =)+ (5 = 1) (=3P~ - xP 20

3.42. Let x, y, z be real numbers. If k > 0, then

2

Z:(x2 +kyz)*(x —y)(x—2)+ (kZ — 1) (x—y)Y(y—2)*(z—x)*=>0.

3.43. If x, y,z are nonnegative real numbers, then

D X%+ 8yz)(x — y)(x —2) = (x — ¥)*(y —2)2(z — x)*.

3.44. If x, y, z are real numbers, then

Z(x —¥)(x—2)(x—2y)(x —22)(2x —y)(2x —2) +15(x — ¥)*(y —2)*(z—x)* > 0.

3.45. If x, y, z are real numbers, then

Z(x — ¥)(x —2)(x —2y)(x — 22)(x —3y)(x — 32) = 3(x — y)*(y —2)*(z — x)*.

3.46. If x, y, z are real numbers, then

Z:(x—y)(x—z)(2x+3y)(2x+32)(3x+2y)(3x+22)+15(x—y)2(y—z)2(z—x)2 > 0.
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3.47. If x, y, z are real numbers, then

D0+ )+ 20—y =2 + 0=y — 2P — 1P 20,

3.48. If x, y, z are real numbers, then

Z(x —y)(x —2)(x —4y)*(x —42)* +39(x — ¥)*(y —2)*(z — x)* > 0.

3.49. Let x, y,z be real numbers, and let
20 + 12k — 4k? — k*
4(1—k)? ’
A =13 1+k, ke[—2,1]

k € (—o0,—2]U[4,00)

5—3k, ke[1,4]
Then,

sz(x —¥)(x —2)(x —ky)(x —kz2) = a(x — y)*(y —2)*(z — x)°.

3.50. Let x, y,z be real numbers, and let

( k?
Z: kE(—OO,—Z]U[].,OO)
—k(8 + 11k + 8k?) [ -1 ]
b=\ —aacgr ke[
1’ k€|:__1’1]
\ 4 2

Then,

D yale—y)(x —2)(x —ky)(x —kz) + B (x — ¥)*(y —2)X(z — x)* 2 0.

3.51. Let x, y,z be real numbers, and let
(k+1)(5k—3)

16 , k € (—o0,—5]U[1,00)
) (k+ 1)(K3—7K2 — 16k — 32)
Yk = < 4(k— 1)2 5 ke [_57 _2]
kz
k Z, ke [—2, 1]

Then,

Z(xz —y)(* —2%)(x —ky)(x —kz) + 7, (x — y)*(y —2)*(z —x)* 2 0.
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3.52. If x, y, z are real numbers, then
Z:yz(4x2 +3y2)(x — y)(x —2)+ (x — ¥)*(y —2)*(z — x)* > 0.
3.53. If x, y, z are real numbers, then
1
Z x*(x +2y)(x + 22) + 5x?y?2? + E(x —y)(y —2)*(z—x)*>0.
3.54. If x, y, z are real numbers, no two of which are zero, then
T :
2y2—3yz+222  4(x2+y2+322)—3(xy +yz+2x)
3.55. Let x, y,z be real numbers. If k > 1, then
kx?+2yz N ky? + 2zx N kz* +2xy o k—1
kx24+y2+22  ky2+z2+x2  kz2+x24+y2 k+1
3.56. If x, y,z are real numbers such that xy + yz +2zx <0, then
1 + 1 + 1 + 1 <0
3x2+y2+22 3y2+22+x2 3z22+x2+y? xy+yz+tzx
3.57. If x, y, z are real numbers, then
2 2 2
xyz+yzx nygL
3x2+y2+22 3y2+2z2+x2 3z2+x2+y?
3.58. Let x, y,z be real numbers. If k > 1, then
1
Sz + =X + add +=>0.
kx?2+y2+22 ky?+22+x2 kz2+x2+y? 2
3.59. If x, y, z are real numbers, then
¥z 2X Xy 1

+ + +=2>0.
x2+4y2+4z2  y2+4z2+4x2  z22+4x2+4y?2 8
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3.60.

3.61.

3.62.

3.63.

3.64.

3.65.

3.66.

3.67.

If x, y,z are real numbers, then

1 7
< .
Z x2+4y2+422 — 4(x2+ y?+22)+3(xy +yz +2x)

If x, y,z are real numbers such that xy + yz + zx = 0, then

2 45
> .
Z4x2+y2+22 T 142+ y2+22)+xy +yz +2x

If x, y,z are real numbers such that xy + yz + zx = 0, then

1 45
> .
Zx2+4y2+4zz T 44(x2+ y2+22)+xy +yz +2ax

If x, y,z are real numbers, then

x(-x+4y+4z)  y(cy+4z+4x)  a(z+dx+dy) 21
y2+z2 22 4 x2 X2+y2 - 2

If x, y,z are real numbers, no two of which are zero, then

x?+3yz ¥2+3zx 22+ 3xy
2 2+ 2 2+ 2 221‘
Y-—yz+sz 2°—zX+X Xc—xy+y

If x, y,z are real numbers, then

(4x—y—2P  (4y—z—xP  (4s—x—y)
2y2—3yz+2z2 222—3zx+2x%2 2x2—-3xy+Yy?

=>12.

If x, y,z are real numbers, then

_ 2 . 2 _ 2
By +3z—4x) +(32+3x 4y) +(3x+3y 4z) S

> 12.
2y2—=3yz+2z2 222-—3zx+2x%2 2x2—3xy+y?

Let x, y,z be real numbers. If k > —2, then

4(x* +kxy +y)(y +kyz +22) (2% + kzx +x*) > (2—k)(x — y)*(y —2)*(z — x)*.
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3.68. If x, y, z are real numbers, then

(2 + y)(y?* +22) (2% + xH) + 2%y + y 2 +22x) (xy? + yz* + 2x?) > x%y 222,

3.69. Let x, y, 2 be real numbers. If k € (—oo,—2]U (0, 00), then

2
x6 4+ y® + 2% —3x2y%2% + E(x2 +kyz)(y? + kzx)(z* + kxy) > 0.

3.70. If x, y, z are real numbers, then

2(2x%+y2+22)(2y* +22 +x?) (222 +x2+ ¥*) = 89x? y?22 +9(x—y)*(y —2)*(z—x)>.

3.71.

3.72.

3.73.

3.74.

3.75.

If x, y,z are real numbers such that x + y +z = 3, then

13x—1 13y—1

x2+4+23  y2+23

If x, y,z are real numbers, then

13z—1 3
<-.
22+23 2

5(x% + y2 +22)* > 108x2y?2% + 10(x — y)*(y —2)*(z — x)*.

If x, y,z are real numbers, then

(x2+ y2+22)° +2(2x% + y2)(2y? + 2x)(22% + xy) > 27x?y*22.

If x, y,z are real numbers, no two of which are zero, then

x2+2yz

y?+2zx

22+ 2xy

yi+yz+22

22+ 2x + x2

S 3(xy+yz+zx).

x2+xy+y?  x2+y2+2z2

If x, y,z are real numbers, no two of which are zero, then

x2—2yz

y?—2zx

22 —2xy

3(xy +yz+2zx) S

Yy —yz+22

22 —gx + x2

x2—xy+y?

x2+y2+z2
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3.76. If x, y, z are real numbers, no two of which are zero, then

x? y? 22 - (x +y +2)?

+ + = .
Yi—yz+22 22—zx+x?2 x2—xy+y? x2+y2+z2

3.77. If x, y,z are real numbers such that xyz # 0, then

(y +2)? N (z + x)? N (x + y)? - 10(x +y +2)?
T 3(x2+ y2432)

3.78. If x, y, z are real numbers, no two of which are zero, then

32x* +49yz 32y’ +49zx 325 +49xy _ Bl(x+y +2)
V2 +22 72 + x? X2+y2 T 202+ y2+22)

3.79. If x, y, z are real numbers, no two of which are zero, then

x*+4yz  y*+4zx 22+4xy>15(xy+yz+zx)_
Y2422 22+4x2 x2+y2 T 2(x2+y2+22)

(a)

2x2+9yz  2y%+9zx 222+9xy>33(xy+yz+zx)

b > .
(b) y2+ 22 22 + x2 x2+y2 2(x2 4+ y2 +22)

3.80. If x, y, z are distinct real numbers, then
2 2 2

x N y Z >4(xy+yz+zx)
=22 G-—xP G—yR~ eryits

3.81. If x, y, z are distinct real numbers, then

x? y? 22 - (x +y+2)?

+ = .
=22 G—xP —yR - x2tyiez

3.82. If x, y, z are real numbers, then

2x 2yz 2 4(xy+yz+zx
Y + Y + X +1=> (ey + )
x2+y2 y2+z22 22+4x2 X2+ y?+22




232 Vasile Cirtoaje




Highest Coefficient Cancellation Method for Real Variables 233

3.3 Solutions

P 3.1. If x, y,z are real numbers, then

Z(x +2y)(x +22)(2x + y)(2x +2)(x — y)(x —2) + 3(x — y)*(y —2)*(z—x)* > 0.
(Vasile C., 2012)

Solution. Write the inequality as f¢(x,y,z) = 0, where

folx,y,2) = Z(x +2y)(x+2z)2x+y)2x+2)(x—y)(x—2)+3 l_[(y —2)2.

Since
(x +2y)(x +22) =29 +x*+2yz,

(2x +y)(2x +2) = 29 + 4x* — yz,
(x=y)x—2)=x*+2yz—q,
(y —2)*=—x*—2yz+p*—2q,
fo(x, y,2) has the same highest coefficient A as

Pl(x>ysz)+3P3(X1y:Z);

where
Py(x,¥,2) = ) (x? + 2yz)(4x* — yz)(x? + 2yz),

Py(x,y,2) =] |(—x*—2yz).
According to (3.1) and (3.3), we get

A=P;(1,1,1)+3P4(1,1,1)
=3(14+2)(4—1)(1+2)+3(—1—2)>=81—81=0.

By Corollary 1, we only need to show that fy(x,1,1) > 0 for x € R. We have
fx,1,1)=(x+2)*(2x + 1)*(x —1)*> 0.
The equality holds for x = y = 2, for —x/2 = y =z (or any cyclic permutation),

and for —2x = y =z (or any cyclic permutation).
OJ

P 3.2. If x, y,z are real numbers, then

> — 4y2)2(x —y)(x —2) + 3(x — y Ay —2)X(z —x)* > 0.

(Vasile C., 2012)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
f6(x).yzz) = f(xsyaz) + 3(x _J’)Z(J’ _Z)Z(z _X)Z,

Fl,y,2) =) (x?—4yz)(x — y)(x —3).

Since
(x—y)(x—2z)=x*+2yz—q,

f(x,y,2) has the same highest coefficient A, as
Py(x,y,2)= Z:(x2 —4yz)*(x* +2y2),
that is, according to (3.1),
A, =P,(1,1,1) = 81.

Since the product (x —y)?(y —2)?(z — x)? has the highest coefficient equal to —27,
fo(x,y,2) has the highest coefficient

A=A, +3(=27)=0.

By Corollary 1, we only need to show that fs(x,1,1) > 0 for all real x. This is true
because
f(x,1,1)=(x*—4)*(x—1)*=>0.

The equality holds for x = y =z, for x + y +2 =0, and for x/2 = y =z (or any
cyclic permutation).

Observation. The inequality is equivalent to

p(p* —7p%q + 16q> — 12pr) > 0.

P 3.3. If x, y,z are real numbers, then

Z:(x2 +y2)(x +2y)(x +22)(x — y)(x —2) + 2(x — y)*(y —2)*(z — x)* > 0.
(Vasile C., 2012)
Solution. Write the inequality as f¢(x,y,2) = 0, where
fo(x,y,2) = f(x,y,2) + 2(x — y *(y —2)*(z — x)?,

flx,y,2) = (x® + yz)(x + 2y )(x + 22)(x — y)(x —2).

Since
(x +2y)(x +22)=x*+2yz+2q,
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(x—y)x—2)=x?+2yz—q,
f(x,y,2) has the same highest coefficient A; as
Pi(x,,5) = D (x* + yz)(x® + 2y3)’,
that is, according to (3.1),
A, =P,(1,1,1) =54.

Since the product (x — y)?(y —2)*(z — x)? has the highest coefficient equal to —27,
fo(x,y,2) has the highest coefficient

A=A, +2(—27)=0.

According to Corollary 1, we only need to show that fi(x,1,1) > 0 for all real x.
Indeed,
flx,1,1)=(x*+1)(x —1)*(x +2)*> 0.

The equality holds for x = y =z and for x + y + 2 =0.

Observation. The inequality is equivalent to

(x+y +2P2 [+ —y)P? + (> +22)(y —2)* + (& + x*)(z —x)*] > 0.

P 3.4. If x, y,z are real numbers, then

2x%+3yz N 2y + 3zx N 2z% 4+ 3xy .5
4x2+y24+22  4y2+22+x2  4z2+4+x2+y2 7 2

(Vasile C., 2012)

Solution. Write the inequality as f¢(x,y,z) = 0, where

fo(x,y,2)=5 l_[(4x2 +y*+2%)— 22(2)(2 +3yz)(4y* + 2%+ x*)(4z* + x> + y?).

Since
4x% + y* + 2% =3x*+ p*—2gq,

fo(x,y,2) has the same highest coefficient A as f (x, y,z), where
Fly,2)=5] [3x?)—2) (2x* +3y2)(3y*)(322)
= 135x%y?z* — 108x%y2z* — 542 vz

= 27x%y%z* — 542 y323,



236 Vasile Cirtoaje

that is
A=27—162=-135.

According to Corollary 1, we only need to prove the original inequality for
y=z=1.

Thus, we need to show that

2x2+3  2(3x+2) .5
2(2x2+1) x2+5 ~ 2

which is equivalent to
(x —1)*(2x—1)2>0.

The equality holds for x = y = z and for 2x = y = z (or any cyclic permutation).

]

P 3.5. If x, y,z are real numbers, then

9x*—4 9y*—4 92*—4 15
X Yz 4 y 2X n Z Xy >

3x24+2y2+222  3y2+4222+2x2  3z2+2x2+2y2 7

(Vasile C., 2012)
Solution. Write the inequality as f¢(x,y,z) = 0, where
fe(x,y,2) 272(9x2 —4y2)(3y? + 22% + 2x?)(32% + 2x* + 2y?)
—15(3x%+2y% +22?)(3y? + 222 + 2x*)(32% + 2x? + 2y?).

Since
3x%+2y? +22% = x* + 2(p* — 2q),

fo(x,y,2) has the same highest coefficient A as f (x, y,z), where

Fl,y,2) =7 (9x* —4y2)(y)(=*) — 15| [(?)
=174x%y*2? —28 » " y2,
that is
A=174—84=90.
Since A> 0 and
fo(x,1,1) =7(9x% — 4)(2x% + 5)* + 14(9 — 4x)(2x? + 5)(3x* + 4)
—15(2x? +5)*(3x2% + 4)
=4(2x2+5)(x —1)*(3x —4)?,
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we apply Corollary 2 for

(x —1)*(3x —4)?

Fy5(x) = fajz—o(x) =

81-25
We have ) Y3 o7
Afygaa) = X
132 Y
Foloe, 1, 1) = Ay () = 2 EEZATEO
where

Ff(x)=90(2x*+5)—(x—1)*>(2x*+5)— (x —1)*=(x +1)*+ 3> 0.

3
The equality holds for x = y = z, and also for Tx = y = z (or any cyclic

permutation).

Observation. Similarly, we can prove the following generalization:

e Let x,Y,z be real numbers. If k >0, k # 1, then

S +2ys _ 3(k+1)(k—2)

Z kx2+y2+22 = (k—1)(k+2)°

kx
with equality for x = y = g, and for 5 = y = 2 (or any cyclic permutation).
For

fo(x,y,2)=m l_[(kx2 +y?+2°) —Z:(nx2 +2yz)(ky? +2° + x?)(kz* + x* + y?),

where
_ 3(k+1)(k—2) _ k(k—3)
T ) M
we have
A 9(k+1)(k—1)(2—k)
B k+2
and 5
_ 2 132 _ 9)2
f6(x,1,1)—k+2(x +k+1)(x—1)(kx—2).

For k € (0,1)U[2, 00), we have A < 0. According to Corollary 1, we only need
to prove that fs(x,1,1) > 0 for x € R, which is clearly true.

For k € (1,2), we have A > 0. According to Corollary 2, it suffices to prove that

f6(x’ 1, 1) = Af2/k,—2(x)
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for x € R. We have
(x — D*(kx —2)?

fZ/k,—z(x) =

81(k+1)2 °
(k=12 —Kk)(x — 1)*(kx — 2)*
Afaji(x) = ok + 1)(k +2) ’
(e =1)P(kx —2)°f (x)
fé(xa 1, 1)_Af2/k,—2(x)_ 9(k+1)(k+2) P
where
F(x)=18(k+1)(x*+k+1)—(k—1)(2—k)(x —1)%
Since
202 +k+1D)—(x—1)2=(x+1)?+2k>0,
we have

F()>9k+1D(x—1—(k—1)(2—k)(x —1)* = (k*+ 6k +11)(x —1)* > 0.

]

P 3.6. Let x, y,z be real numbers, no two of which are zero. If
x2+y*+2%2>2(xy + yz +2x),

then

x?—6yz N y%—6zx N z2—6xy >0
Y24+yz+22  224+zx+x2 x24+xy+y?
(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) = Z:(x2 —6yz)(x* +xy +y*)(x*+xz+2%) > 0.
Since
x*+xy+y*=p*—2q—2*+xy, x*+xz+z>=p*—2q—y*+xz,
fo(x, y,2) has the same highest coefficient A as
Py(x,y,2) = D (x* = 6yz)(—2* + xy)(—y* +2x),

that is, according to (3.2),
A=P,(1,1,1)=0.

According to Theorem 1, we only need to show that fs(x,1,1) > 0 for x* + 2 >
2(2x + 1), that is for
x € (—o00,0]U[4, 00).
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We have

fo(x,1,1) = (x*—6)(x*+ x + 1) + 6(1 — 6x)(x* + x + 1)
=(x%24+ x4+ Dx(x® +x2—5x —42).

Case 1: x < 0. We need to show that x° + x2 —5x — 42 < 0. Indeed,
P+ x2—5x—42=x(x+1)*—(x+3)>*—-33<0.

Case 2: x > 4. We need to show that x> + x? —5x — 42 > 0. We have
x?+x?—5x—42>5x*—5x —42 > 15x —42 > 0.

The equality holds for x =0 and y =z (or any cyclic permutation).

P 3.7. If x, y, 2 be real numbers, no two of which are zero, then

8x2+3yz 8y2 + 3zx 822+ 3xy
+ + >11.
Y2+yz+z2 224+zx+x?2 x2+xy+y?

(Vasile C., 2012)

Solution. Write the inequality as f¢(x,y,z) > 0, where

felx,y,2) = Z(sz +3y2)(x*+ xy + ¥y (x* + xz +2%)—11 l_[(y2 + yz +2%).

Since
¥y +yz+2*>=yz—x*+p>—2q,

fo(x,y,2) has the same highest coefficient A as
PZ(ny:Z)_ 11P3(X,J’:Z),

where
Py(x,y,2) = ) (8x?+3yz)(xy —2))(xz—y?),  Py(x,y,2)=] [rz—x?).

Therefore,
A=P,(1,1,1)—11P,(1,1,1) = 0.
According to Corollary 1, we only need to prove the original inequality for y =z =
1. Thus, we need to show that
8x*+3 2(8+3
X N (8+3x) > 11
3 x2+x+1

b
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which is equivalent to
4x* +4x% —11x>—6x+9>0,

(x —1)*(2x +3)? > 0.

—2
The equality holds for x = y = 2, and also for Tx = y = gz (or any cyclic

permutation).
[

P 3.8. If x, y,z are real numbers, no two of which are zero, then

8x2—5yz 8y?—5zx 822 —5xy
+ + > 9.
yi—yz+2?2 z22—zx+x? x2—xy+y?

(Vasile C., 2012)

Solution. Write the inequality as f¢(x,y,z) > 0, where

fo(x,y,2) = Z(sz —5yz)(x?—xy + y*)(x*—xz+2*)—9 l_[(y2 —yz+2%).

From
folx,y,2) = Y (8x% = 5y2)(p® — 29 — 22 — xy)(p? —2q — y* — x2)
—9] [*—2q—x*—y2),
it follows that f¢(x, y,z) has the same highest coefficient A as
Py(x,y,2) + 9Ps(x, y,2),

where

Py(x,y,2)= ) (8x2—5y2)(&* +xy)(y* +xz),  Py(x,y,2)=] |(x*+y2),
that is, according to (3.2) and (3.3),

A=P,(1,1,1)+9P4(1,1,1)=3-3-2-2+9-8 = 108.

Since

fo(x,1,1) = (8x*—5)(x* —x +1)* +2(8 = 5x)(x* —x + 1) — 9(x* — x + 1)?
=2(x?—x+1D(x—1)*2x +1)?,

we apply Corollary 2 for

4(x —1)*(2x + 1)?

Fs(x) = fyp ()= 729
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We need to show that fg(x,1,1) = Af_;,, _,(x) for x € R. Indeed,

2(x —1)%(2x +1)?(19x2 —11x + 19) -0

f6(X31)1)_Af—1/2,—2(X) = 57

The equality holds for x = y = 2, and for —2x = y = z (or any cyclic permuta-
tion).
Observation. Similarly, we can prove the following generalization:

e Let x,y,2 be real numbers, no two of which are zero. If —2 < k < 1, then

8x2+k(4—k)yz N 8y? + k(4 —k)zx N 822+ k(4—k)xy - 3(8 + 4k — k?)
yi+kyz+z2 22 + kzx + x2 x2+kxy+y2 ~ k+2

J

X
=y=gz(oran clic permutation).
b (or any cyclic p )

with equality for x =y = 2, and for

P 3.9. If x, y,z are real numbers, no two of which are zero, then

5x%+2yz 5y? + 2zx N 52%+2xy
2y2+3yz+222 2224 3zx+2x2 2x24+3xy+2y? "

(Vasile C., 2012)
Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) = Z(5x2+2yz)(2x2+3xy+2y2)(2x2+3xz+222)—3 l_[(2y2+3yz+222).
From

felx,y,2) = Z(sz +2y2)(3xy — 22% + 2p* — 4q)(3xz — 2y + 2p* — 4q)
—3] |Byz—2x*+2p*—49),

it follows that f,(x, y,2) has the same highest coefficient A as
Py(x,y,2) —3Ps(x,y,2),
where
Py(x,y,2) = Z(sz+2yz)(3xy—222)(3xz—2y2), Py(x,y,2) = l_[(Syz—sz),

that is,
A=P,(1,1,1)—3P;(1,1,1) =21 -3 =18.
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Since

fé(xs 1; 1)

=2 0 = (5x24+2)(2x? +3x+2)+14(5+2x)—21(2x%+3x + 2
x4 3x 12 ( )( ) ( ) ( )

= 10x* + 15x> — 28x% — 29x + 32
= (x —1)?(10x2 + 35x + 32).
we apply Corollary 2 for

4(x —=1)*(x—7)?
81(2 + v)>2

F)/,5(x) = fy,—z(x) =

We need to show that
fo(x,1,1) 2 Af, »(x), x€R,
which is equivalent to f(x) > 0, where

8(x —1)*(x —v)?
9(2 + v)?

F(x)=(2x*+3x +2)(x —1)*(10x* + 35x + 32) —

Since the original inequality is an equality for (x, y,z) = (0,1,—1), that is

f6(07 1,-1)=0,

we have f(—2) = 0 for all real v (see Proposition 1). To have f(x) = 0 in the
vicinity of x = —2, the condition f’(—2)=0 is necessary. This condition involves
y =—50/37 and

£(x)=(x +2)*(11591x* + 17474x + 9743) > 0.

The equality holds for x = y = z, and for x = 0 and y + 2 = 0 (or any cyclic
permutation).

Observation. Similarly, we can prove the following generalization:

3
e Let x,y,2 be real numbers, no two of which are zero. If 2 <k <2, then

Z 2(4—k)x?+(2—k)(1 +2k)yz

y2+kyz + 22 = 3(5=2k),

with equality for x = y = 2, and also for x = 0 and y + 2z = 0 (or any cyclic
permutation).
OJ
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P 3.10. If x, y,z are real numbers, then

(x+y)x+z) +2)+x) GE+x)E+y) 4
7x24+y2+22  Ty2+3z2+4x2  7z24+x2+y2 " 3

(Vasile C., 2009)

Solution. Write the inequality as fg(x,y,z) = 0, where

folx,y,2) = 41_[(7x2 +y%+2*)-3 Z(x +y)(x+2) 7y +22 +x?) (722 + x>+ y?).

Since
7x2+y*+z2=6x>+p*—2q, (x+y)x+z)=x*+gq,

fo(x, y,2) has the same highest coefficient A as

4] Je6x)—3> x*(6*)(62),

that is
A=4-6%—9.6% = 540.

Since

fG(x: 13 1)

. =4(7x%+2)(x*> +8)—3(x + D[ (x + 1)(x*+8) + 4(7x? + 2)]
x2+8

= 25x*—90x3 + 121x2 —72x + 16 = (x — 1)*(5x —4)?,
we apply Corollary 2 for

(x—1)*(5x —4)*
81-49

F}f,5(x) = f4/5,—2(x) =

We need to show that
fe(x,1,1) = Af4/5,_2(x)

for x € R. Since
20(x — 1)*(5x —4)?

147 ’

Af4/5,—z(x) =
we get
(x —1)*(5x —4)*f (x)

f6(x5 19 1)_Af4/5,—2(x) = 147

where
f(x)=147(x*+8)—20(x —1)* > 40(x*+8)—20(x—1)* = 20[(x +1)*+ 14] >

Thus the proof is completed. The equality holds for x = y = 2, and also for
Z = }El =< (or any cyclic permutation). .
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P 3.11. If x, y,z are real numbers, then

6x(y +2)—yz N 6y(z+x)—2zx N 6z(x+y)—xy < 33
12x24+y2422  12y2+224x2 1222+ x2+y2 = 14
(Vasile C., 2009)

Solution. Write the inequality as f¢(x, y,2) = 0, where f¢(x,y,2) is
33 1_1(12x2 +y2+2%)— 142(6xy +6xz —y2)(12y? + 22 + x?)(122% + x> + y?).
Since
12x%*+ y? +2°=11x*+p*—2q, 6xy+6xz—yz=69—"7yz,
fo(x, y,2) has the same highest coefficient A as f (x, y,z), where
flx,y,2)=33] [A1x) =14 (=7y2)(11y*)(112%)
=33-11°%x%y%? + 98112 > | y°2,

that is
A=33-11°+3-98-11*=33%.73.
Since
x,1,1
f—6(2 " 13) = 33(12x” +2)(x* + 13) — 14[(12x — 1)(x* + 13) + 2(5x + 6)(12x* + 2)]
X

= 44(9x* —42x3 + 73x2% — 56x + 16) = 44(x — 1)*(3x — 4)?,
we apply Corollary 2 for

(x —1)*(3x —4)?
2025 '

Fy,é(x) = f4/3,—2(x) =

We need to show that
fé(xs 1, 1) 2 Af4/3,—2(x)

for x € R. Since
8833(x — 1)*(3x —4)?

225

Af4/3,_2(x) =

b

we get
11(x —1)3(3x — 4)*f (x)
225 ’

fe(x,1,1) —Af4/3,—z(x) =
where

f(x)=900(x?+13)—803(x — 1)?
> 900(x% 4+ 13)—810(x —1)>* = 90[(x + 9)*> +40] > 0.

Thus, the proof is completed. The equality holds for x = y = z, and also for
% = }é = % (or any cyclic permutation). .
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P 3.12. If x, y,z are real numbers, then

x(y+2)—yz N y(z+x)—2x N 2(x+y)—xy <§
x2+3y24+322  y2+3z2+3x2  22+3x24+3y2° 7

(Vasile C., 2009)
Solution. Write the inequality as f¢(x,y,z) = 0, where f¢(x,y,2) is
3 l_[(x2 +3y%+32%)— 7Z(xy +xz —y2z)(y?* + 32% + 3x%)(2% + 3x% + 3y2).
Since
x?+3y?+322=—2x>+3(p*—2q), xy+xz—yz=q—2yz,

fo(x,y,2) has the same highest coefficient A as f (x, y,z), where

fle,y,2)=3] J(-2x?) =7 (—2y2)(—2y*)(—22%)

= —24x%y%2? + 56 » _ y°2°
that is
A=—24+168 = 144.
Since
J 1) 1
fg—(xz +—4) =3(x? +6)(3x? +4) — 7[(2x — 1)(3x +4) + 2(x* + 6)]
X

=9x*—42x3 + 73x*> —56x + 16 = (x — 1)*(3x — 4)?,
we apply Corollary 2 for

(x —1D*(3x —4)?
2025

Fy,&(x) = f4/3,—2(x) =

We need to show that
felx,1,1) = Af4/3,_2(x)

for x € R. Since
16(x — 1)*(3x — 4)?

225

(x —1)*(3x —4)*f (x)
225 ’

Af4/3,_2(x) =

5

we get

fo(x,1,1) —Af4/3’_2(x) =

where
f(x)=225(3x2+4)—16(x—1)* > 16(3x23+4)—16(x—1)* = 16[x*+2+(x+1)*] > 0.

Thus the proof is completed. The equality holds for x = y = 2, and also for
Z = }é =3 (or any cyclic permutation). .
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P 3.13. If x, y,z are real numbers, then

D ya@x + ya)x =)0 —2) + 5 (x =¥y~ (5= x)* 2 0.
(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,z) = 0, where
f6(x>y7z) :f(X,y,Z) + (X _y)z(y_Z)z(Z_X)z,

FO6,y,2) =2 ya(2x® + yz)(x — y)(x — ).

Since (x —y)(x —2) = x>+ 2yz —q, f(x,y,2) has the same highest coefficient A,
as

Pi(x,y,2)= ZZyz(sz + y2)(x* + 2y2),
that is, according to (3.1),
A, =P,(1,1,1) =54.
Therefore, fq(x, y,z) has the highest coefficient
A=A, +(=27)=27.

Since
fo(x,1,1) = f(x,1,1) = 2(2x* + 1)(x — 1)?,
we apply Corollary 2 for
4(x—1)*
Fy,é(x) = foo,—2(x) = %

We need to show that
f6(x: 13 1) = Afoo,—Z(x)
for x € R. Indeed, we get

2(x — 1)23(2x +1)>? >

Thus, the proof is completed. The equality holds for x = y = 2, and also for
y =2z =0 (or any cyclic permutation).

f6(x1 1: 1)_Afoo,—2(x): 0.

]

P 3.14. If x, y,z are real numbers, then

0= ya Pl = )x—2) 2 2(x = yFy 2P — x>

(Vasile C., 2012)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
3
f6(XaJ’,Z) :f(x:}’,z)_Z(X_y)z(y—Z)z(z—x)Z,

£, y,2) = D (= yz)P(x — y)(x —3).
Since
(x—y)x—2)=x*+2yz—q,
f(x, y,2) has the same highest coefficient A; as

Py(x,y,2) = Y (x> — yz)X(x* + 2yz),
that is, according to (3.1),
A, =P/(1,1,1)=0.
Therefore, fq(x, y,z) has the highest coefficient

3 81

Since
f6(x5 17 1) = (XZ - 1)2(X - 1)21
we apply Corollary 2 for

4(x —1D)*(x +1)?

F,s(x)=f1(x)= a1

We need to show that
fe(x,1,1) > Af—l,—z(x)

for x € R, which is an identity. Thus, the proof is completed. The equality holds
for
Oxyz+2(x+y+2)P =7(x+y +2)(xy + yz +2x).

Observation. The coefficient of the product (x — y)?(y — 2)*(z — x)? is the best
possible. Setting x =0, y =1 and z = —1 in the inequality

> — 2 x —y)(x—2) = k(x — y ) (y —2)*(z —x)%

we get k < % According to (3.12) from Remark 2, the identity holds:
1 312
fe(x,y,2) = Z(9r —7pq +2p°)°.

Therefore, the original inequality is equivalent to

(9r —7pq + 2p®)* > 0.
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P 3.15. If x, y,z are real numbers, then

D (2 +8y2)P(x — y)(x —2) + 15(x — y)*(y — ) (5 — x> 2 0.
(Vasile C., 2012)

Solution. Write the inequality as f¢(x,y,2) = 0, where
folx,¥,2) = f(x,y,2) + 15(x — y (¥ —2)*(z — x)?,
FO,y,2) = > (x* +8yz)(x — y)(x —2).

Since
(x—y)(x—2)=x*+2yz—q,

f(x,y,2) has the same highest coefficient A; as
Pi(x,y,2)= z:(x2 +8yz)*(x* +2y2),
that is, according to (3.1),
A, =P,(1,1,1) = 729.
Therefore, f¢(x, y,z) has the highest coefficient
A=A, +15(—27) = 324.

Since

f6(x7 1: 1) = (XZ + 8)2(X - 1)22
we apply Corollary 2 for

4(x—1)*

Fy,ﬁ(x) = foo,—z(x) = T

We need to show that
f6(x7 15 1) = Afoo,—Z(x)
for x € R. Indeed,
fo(x,1,1) = Af o 5(x) = (x — 1)*g(x),

where
g(x)=(x*+8)*—16(x —1)* = (x +2)*(x*—4x +12) > 0.

Thus, the proof is completed. The equality holds for x = y =z, and also for x =0
and y +z=0.

Observation. The coefficient of the product (x — y)?(y — 2)*(z — x)? is the best
possible. Setting x =0, y =1 and z = —1 in the inequality

D (% +8yz)(x — y)(x —2) + k(x — y ) (y —2)(z — x)* 2 0,
we get k > 15.
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P 3.16. Let x, y,z be real numbers. If k € R, then

() ey Yoe—e) ek ket T ey P (2 s 2 0.

(Vasile C., 2010)
Solution. Write the inequality as fg(x,y,z) = 0, where

2_ f—
f6(x,y,z):f(x,y,z)+7k iik 2O(X—y)2(y—2)2(z—x)2,

£l y,2) = D (% + yz)(x — y)(x —2)(x —ky)(x —kz).

Since
(x—y)(x—2z)=x*+2yz—q,

(x —ky)(x —kz)=x*+(k+k*)yz—kq,
f(x,y,2) has the same highest coefficient A; as
P(x,y,2)= z:(x2 + y2)(x* + 2y2)[x* + (k + k) yz];
that is, according to (3.1),
A, =P(1,1,1) = 18(1 + k + k?).
Therefore, fq(x, y,z) has the highest coefficient

k*> — 20k — 20 1 2)?
A:A1+7 (_27):M'
24 8

On the other hand
fo(x,1,1) = (x® + 1)(x — 1)*(x — k).
For k = —2, we have A = 0. Since f¢(x,1,1) > 0 for any real x, the conclusion
follows by Corollary 1.
For k # —2, we apply Corollary 2 for

4(x —1)*(x —k)?
81(2+k)2

F s(x) = fio(x) =

We have

(= 1)*(x —k)?
f6(x’ 1:1)_Afk,—2(x) = 2 > 0.
Thus, the proof is completed. The equality holds forx = y =z,andforx/k =y =2
(or any cyclic permutation) if k # 0. If k = 0, then the equality holds also for x =0
and y =z (or any cyclic permutation).

OJ
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P 3.17. If x, y,z are distinct real numbers, then

A S +1>0
=22 G—xP G—yP 4°

Solution. Write the inequality as fg(x,y,z) = 0, where
1 2 2 2
fs(x’yjz):f(xay,z)"‘Z(X_J’) (J’_Z) (Z—X) 5

fG,y,2) =) yalx—y2(x —2).
Since
(x—y)(x—2)=x*+2yz—q,

f(x,y,2) has the same highest coefficient A; as

Py(x,y,2) = Y yz(x® +2y5)%
that is, according to (3.1),
A, =P,(1,1,1)=27.
Therefore, f(x, y,z) has the highest coefficient

27 81

Since
f6(x’ 1) 1) = (x - 1)45
we apply Corollary 2 for

4(x —1)*

Fy,é(x):foo,—z(x): 81

We have
f6(x1 1: 1) _Afoo’_z(X) =0.
Thus, the proof is completed. The inequality is an equality for all distinct real x, y,z

which satisfy
Ixyz=(x+y+2)xy+yz+zx).

Observation. The coefficient of the product (x — y)*(y —2)*(z — x)? in the in-
equality fe¢(x,y,2) = 0 is the best possible. Thus, setting x =0, y =1 and z = —1
in the inequality

>y — y)x —2) + k(x — y Py —2)2(z —x)* > 0,
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1
we get k > 7 According to (3.12) from Remark 2, the identity holds:

1
fo(x,y,2) = Z(9r —pq)*.
Therefore, for distinct x, y, z, the original inequality is equivalent to

(9r —pq)* > 0.

P 3.18. Let x, y,z be distinct real numbers. If k € R, then

(x—ky)(x—kz) (y—ke)(y —kx)  (z—kx)(z—ky) k?
T e Ly S R L s

(Vasile C., 2010)

Solution. Write the inequality as fg(x,y,z) = 0, where

2

fo(x, 7,2 =f(x,y,z)—(z+2k— kz)(x—y)z(y—zﬂz—x)z,

FO,y,2) = D (= yPP(x —2)%(x —ky)(x —kz).

Since
(x—y)x—2)=x*+2yz—q, (x—ky)(x—kz)=x*+(k+k*)yz—kq
f(x,y,2) has the same highest coefficient A, as
Pi(x,y,2) = Z:(x2 +2y2)*[x* + (k + k*)yz];
that is, according to (3.1),
A, =P(1,1,1) =27(1 + k + k?).
Therefore, f(x, y,z) has the highest coefficient

k> 1(k + 2)?
A:Al—(—27)(2+2k—Z) = %.

In addition,
fo(x,1,1) = (x —1)*(x —k)* > 0.

For k = —2, we have A = 0. Since f¢(x,1,1) = 0 for any real x, the conclusion
follows (by Corollary 1).
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For k # —2, we apply Corollary 2 for

4(x —1)*(x —k)?
81(2 + k)2

F,5(x) = fi—o(x) =

Since
f6(X: 13 1) _Afk,—Z(X) = 07

the proof is completed. The equality occurs for all distinct real x, y,z which satisfy

(9k +18)xyz +2(x +y +2)° = (k+8)(x +y +2)(xy + yz +2x).

Observation 1. For distinct x, y, z, the original inequality is equivalent to
[(9k +18)r — (k+ 8)pq + 2p3’:|2 > 0.

Observation 2. For k — oo, we get the inequality in P 3.17. For k =0, k =1 and
k = —1, we get respectively the inequalities:

xZ y2 2,2

G2 GxP  Goyp

_ 2

(x—y)(x—Z)+(y—Z)(y—X)+(%—»c)(z—y)2 1

(y —2)? (z—x)? (x—y)2 ~ 4’
(x+y)x+2) (y+2)(y+x) (E+x)E+y) 1
O—22 ' G-x2 | Gyr a0

P 3.19. If x, y,z are real numbers, then

>0+ 2y)( = ) =) + S (x =y Py~ 5= x) 2 0.

(Vasile C., 2012)

Solution. Let
£, y,2) = D (x4 2yz)(x2 — y)(x2 — %)
and 1
f6(x’.yzz) :f(xsyaz) + E(x _J’)z(.}’ _Z)Z(Z_X)Z.

Since
(x=)x—2)=x*+2yz—q, (x+y)x+z)=x’+q,

f(x, y,2) has the same highest coefficient A; as

Pi(x,y,2) = D (x* +2y2)*x%,
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that is, according to (3.1),
A, =P;(1,1,1) =3(1+2)*=27.
Therefore fi(x, y,z) has the highest coefficient
27 _27

A:Al .
2 2

Since
fo(x,1,1) = (x® + 2)(x* = 1)?,

we apply Corollary 2 for

—_ 1) 9
o) = f o) = TR

Since (e — 1) 2
x“—=1)*(x+2
f6(x) 15 1)_Af—1,—2(x) = 3 = 0)
the proof is completed. The equality holds for x = y =z, for —x = y = 2 (or any
cyclic permutation), and also for x =0 and y + 2z = 0 (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:

e Let x,Y,2 be real numbers. If k € R, then
Z:(x2 +2yz)(x —y)(x —2)(x —ky)(x —kz) >
> (1 +k— k;) (x—¥)(y —2)*(z—x)*>0,
with equality for x =y = g, for x/k = y = z (or any cyclic permutation) if k # 0,

and for x = 0 and y +z = 0 (or any cyclic permutation). If k = 0, then the equality
holds also for x =0 and y = z (or any cyclic permutation).

We have
fo(x,1,1) = (x* + 2)(x — 1)*(x —k)?,
o 270+ 2)?
—
Fe L 1) —Afy_y(x) = FT D27

3

P 3.20. Let x, y,z be real numbers. If k € R, then
3(k +2)*(x — y)*(y —2)*(z — x)?
4(x2+y2+22—xy —yz—2X)
(Vasile C., 2012)

> = )0 —2)(x —ky)(x —kz)



254 Vasile Cirtoaje

Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2) =4(x? + y? +22 —xy —yz —2x) ) (x — y)(x —2)(x —ky)(x —kz)
—3(k +2)*(x — y)*(y —2)*(z — x)*.
Since
x4+ y*+22—xy—yz—zx =p*—3q,
fo(x,y,2) has the highest coefficient
A=81(k+2)%
On the other hand,
fo(x,1,1) = 4(x — 1)*(x — k)*.

For k = —2, we have A = 0. Since f¢(x,1,1) = 0 for any real x, the conclusion
follows by Corollary 1.
For k # —2, we apply Corollary 2 for

4(x —1)*(x —k)?
81(k + 2)2

F,s(x) = fio(x) =
We need to show that
f6(x: 1) 1) 2quk,—Z(x)J X ERJ

which is an identity.
The equality holds for all real x, y,z which satisfy

9k +2)xyz+2(x+y+2)P°=(k+8)(x+y+2)(xy+yz+2zx)

and are not all equal.

Observation 1. The coefficient of the product (x — y)*(y —2)*(z — x)? is the best
possible. Setting x =0, y =1 and 2 = —1 in the inequality

(x=y)P(y —2)*(z—x)°
X2+ y2+22—xy—yz—zx’

D =) =2)(x —ky)(x —kz) =

3(k +2)?

we get a;, < — According to (3.12) from Remark 2, the identity holds:
2
folx,¥,2) =[9(k +2)r — (k +8)pg + 2p° ] .

Therefore, if x, y,z are not all equal, then the original inequality is equivalent to

[9(k +2)r — (k +8)pq +2p°]" = 0.
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Observation 2. For k = —2, the original inequality has the form
Z(x —y)x—2)(x+2y)(x+22)=>0,
which is equivalent to
(x+y+2)*(x*+y*+2°—xy —yz—2x) > 0.
The equality holds for x = y =z, and also for x + y +2 =0.

Observation 3. Since
1 > 2
x2+y24+z22—xy—yz—zx  3(x2+y2+322)

with equality for x + y + 2z = 0, the following weaker inequality holds

(k+2)°(x — ¥)*(y —2)*(z —x)?
2(x2+y2+22)

5

D =) —2)(x —ky)(x —kz) =

with equality for x = y = 2, for x/k = y = 2 (or any cyclic permutation) if k # 0,
and for x =0 and y +2z = 0 (or any cyclic permutation). If k = 0, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

Observation 4. Adding the inequality from Observation 3 written in the form

(k +2)?

=y Py =)

D+ ¥+ (x — y)(x —2)(x —ky)(x —kz) —
and the identity

D (2yz—y* =z (x = y)x —2)(x —ky)(x —ka)+

+(K* +k+1D(x—y)*(y —2)*(z—x)*=0,

we get the inequality in Observation from the preceding P 3.19.
Observation 5. Substituting k — 1 for k in P 3.20, and using then the identity
> =) e—2)x—(k—1)y x—(k—1)z] = > (x—y)(x—2)(x—ky+2)(x—kz+¥),
we get the following statement:

o Let x,y,z be real numbers. If k € R, then

3(k+1)*(x—y)’(y —2)’(z —x)’
4(x2+y2+2z2—xy —yz—2x)

Z(x —y)x—2)x—ky+2)(x—kz+y)=>
with equality for all real x,y,z which satisfy
9(k+Dxyz+2(x+y+2)P°=(k+7)(x+y+2)(xy+yz+2zx)

and are not all equal.
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P 3.21. Let x, y,z be real numbers such that xy + yz +zx = 0. If k € R, then

2

Sy =)k —ke) = (14 k= ) ey —)*

(Vasile C., 2012)

Solution. Let

£, y,2) =D (x*+ y2)(x — y)(x —2)(x — ky)(x — kz)

and
2

e, 3,8) = F e, 9) = (1 k= 5 ) e =y Py =2
Since
(x—y)x—2)=x*+2yz—q, (x—ky)(x—kz)=x*+k(1+k)yz—kq

f(x, y,2) has the same highest coefficient A; as

P(x,y,2)= Z:(x2 + y2)(x* +2y2)[x* + k(1 + k)yz],
that is, according to (3.1),
A =P(1,1,1)=31+1D)(1+2)1+k+k*)=18(1+k+k?).
Therefore, f(x, y,z) has the highest coefficient

2 2
A:18(1+k+k2)—(—27)(1+k—kz):w.

For k = —2, we only need to show that fy(x,1,1) > 0 for 2x+1 > 0 (see Theorem
1). Indeed,
fo(x,1,1) =(x* + 1)(x —1)*(x +2)* > 0.

Consider next k # —2. Since A> 0 and
folx,1,1) = (x* + 1)(x — 1)*(x — k)2,
we will apply Corollary 2 for

4(x —1)*(x —k)?
81(2+k)2

F)f,é(x) = fk,—2(x) =
Thus, according to Remark 5, we need to show that

f6(xz 1) 1) _Afk,—Z(x) >0
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for 2x + 1 > 0. Indeed, we have

fe(x,1,1) —Afy _o(x) = (x* + 1)(x — 1)*(x —k)* — i 1);(x 0

_ 2(x — 1) (x —k)*(x +2)(2x + 1) S
5 >

0.

The equality holds for x = y =z, and for x/k = y = 2z (or any cyclic permuta-
tion) if k # 0 and 2k + 1 > 0. If k = 0, then the equality holds also for x = 0 and
y =z (or any cyclic permutation).

O

P 3.22. If x, y,z are real numbers, then

Z:(x2 +2y2)*(x —y)(x —2) > 0.
(Vasile C., 2012)

Solution. Let

Folx,y,2) = D (x4 2y2)*(x — y)(x —2).

Since (x — y)(x —z) = x*> + 2yz —q, f¢(x, y,2) has the same highest coefficient as

Pi(x,y,2) = D (x*+2yz)’,

that is, according to (3.1),
A=P,/(1,1,1)=81.

Since
fo(x,1,1) = (x* + 2)*(x — 1),

we apply Corollary 2. There are two methods to do this.
First method. By selecting

4(x —1)*(x—7)?
81(y+2)2 °

F,s(x)=f, 5(x)=
we need to show that there exists a real y such that

fo(x,1,1) 2 Af, _5(x)
for all real x. We have

4(x —1)*(x —v)?
(r +2)2

(x— 1)2g1(x)g2(x)
(y +2)?

Afy (%) =

>

fe(x,1,1) =Af, o(x) =

3
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where

g1(x)=(r+2)(x*+2)—2(x —1)(x—7)
= (x+2)(yx +2),

&)= +2)(*+2)+2(x—1)(x—7)
=(y+4)x*>—=2(y + Dx +4(y + 1).

Choosing y =1, we get
g1(x)=(x+ 2)* >0,

2(x)=5x*—4x+8=(2x—1)*+x*+7>0.

The equality holds for x = y = z, and for x = 0 and y + 2 = 0 (or any cyclic
permutation).

Second method. Since
fo(x,1,1) = (x* +2)*(x — 1)
and
f6(0,5,2)=4y°8 + (y —2)(y° —2°),  fs(0,1,—1)=—4+4=0,

we select
Fos=8s
with 6 given by (3.16). We have

fo(x,1,1)=(x—1)%g(x), g(x)=(x*+2),

g'(x)=4x(x*+2), g'(—2)=-48,

__ v +2Pg(2)_ -1
3(y +2) 124 3"

According to Remark 4, we need to show that

g(x) ZAgl,é(x):

where
x+8

2
+5(x + 2)] = i(x —D*

8_1,5(3(): é(x_l)z[ 799

We have
_ 4
g(x)—Ag, 5(x) = (x*+2)*— §(x - 1)

1
= 6(x +2)*(5x*—4x +8) > 0.
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P 3.23. If x, y,z are real numbers, then
D a3 + y2)(x — y)(x —2) = (x — y) Ay —2)*(z — x)*.

(Vasile C., 2012)

Solution. Let
F,y,2) =D x*(x? + yz)(x — y)(x —2)
and
fe(x,y,2) = f(x,y,2) = (x —y)’(y —2)*(z —x)*.

Since
(x—y)(x—2)=x*+2yz—q,

f(x,y,2) has the same highest coefficient A, as
Py(x,y,2)= Z x%(x? + yz)(x? + 2yz),
that is, according to (3.1),
A, =P(1,1,1)=3(1+1)(1+2) =18.
Therefore, fq(x, y,z) has the highest coefficient
A=18—(—27) =45.

Since
f6(x1 1’ 1) = x2(x2 + 1)()( - 1)25

2(y 1)
foralr) = =
o, L 1)~ Ay o) = e+ ) — 12 - 2O L)

_ 2x2(x —1)*(x +2)(2x + 1)
9 ,

we will apply Theorem 2 for

5 — 00, Ea,/& = fO,—2’ Fy,5 = fy,—Z'

Notice that £ — oo involves

]Iz(_?l,oo), R\]I:(—oo,_?l].

The condition (a), namely f¢(x,1,1) > Af, _,(x) for x €1, is satisfied.
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To prove the condition (b), we see that —2 € R\ I and

fG(O:y’z) = (}’_2)2(}’4+}’32 +y23 +Z4): f6(0: 15_1) =0.

According to Proposition 1, the difference f¢(x, 1,1) —Af, _,(x) is zero for x = —2.
Therefore, we will use the Cauchy-Schwarz inequality

[(—2)?+1](x?*+1) > (—2x + 1)

which is equivalent to (x +2)? > 0, to get

fe(x,1,1) = F(x),
where the polynomial F(x) is a perfect square:

F(x)= éx2(2x —1)*(x — 1)
Thus, the condition (b) in Theorem 2 is satisfied if
F(x) 2 Af, 5(x)

for x < —1/2. We have

4(x —1)*(x —y)?
81(2+7y)2

fr—2(x) =

_20(x — D*(x —y)?
9(2+7)?

F(O) —Af, () = 2x(2x = 1(x — 1"

. (x —1)2g;(x)ga(x)
 45(2+47y)2

where
g1(x)=32+y)x2x—1)—10(x —1)(x —7) = (x + 2)[y(6x —5) + 2x],

2(x)=32+y)x(2x—1)+ 10(x —1)(x — 7).

Choosing
_
Y - 17 s
g,(x) is a perfect square,
10(x + 2)?
- > 0’
g:1(x) 17 >

and

1 2—-22x — 10(—8x — —40(2 1
0(35x x 4)> 0(—8x 4): 40(2x + )20

8:(x) = 17 17 17
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The equality holds for x = y = g, for x = 0 and y = 2z (or any cyclic permutation),
and for x = 0 and y +z = 0 (or any cyclic permutation).

Observation 1. Similarly, applying Theorem 2 for

13k—4
 k+17°

g — 00, Ea,ﬂ = fk,—2) Fy,5 = fy,—Z: Y
we can prove the following generalization:
-7
e Let x,Y,2 be real numbers. If 7 <k <1, then

2

Z:(x2 +yz)(x—y)(x—2)(x—ky)(x—kz) > (1 +k— kz) (x—=y)Y(y—2)*(z—x)?,

with equality for x = y = g, for x/k = y = 2 (or any cyclic permutation) if k # 0,
and for x =0 and y + 2z = 0 (or any cyclic permutation). If k = O, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

We have
Folx,y,2) = D (x* + yz)(x — y)(x —2)(x —ky)(x —kz)
(1485 ) ey~

_ 45(k +2)?
==

—1 -1
HZ(TOO), R\]Iz(—oo,?],
f(x,1,1) = (x2+ 1)(x —1)*(x —k)?,
4(x —1)*(x —k)? _ 5(x—1)*(x —k)?
81(2+k)2 Afi(x) = 9
20x — 1) (x —k)>(x +2)(2x + 1)
5 ,

F(x) = S@x =1V 0e— (e — kP,

A

J

fk,—z(x) =

f6(x, 15 1) _Afk,—Z(x) =

4(x — D[ (k+17)x — 13k + 4]?

fr2(x) = 81-225(k + 2)2 ’
Af, o(x)= (x —D)*[(k +i£x — 13k + 4]2’
PO —Af, () = E 880

g1(x)=(1—-k)(x+2)*=0,
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2,(x) = (k +35)x*—2(16k + 11)x + 2(11k — 2),

—1)_ 9(17k +7) >0

82(x) = g, (7 4

Observation 2. By leaving out the inequality
2 1 2
x +12§(2x—1) ,
we can prove the inequality from Observation 1 for the extended range
—8
1o k< 9v/5—17 ~ 3.1246.

We have
(x— 1)231(X)

f6(xs 1, 1)_Af}f,—2(x) = 405

g1(x) = 405(x® + 1)(x? — 2kx + k*) — (x — 1)*[(k + 17)x — 13k + 4]?
= (x +2)%g,(x),

g,(x) = (116 — 34k — k*)x* — 2(11 + 86k — 16k?)x + 59k* + 26k — 4,
116 —34k —k* >0,

—1\_ 9k +2)(19k+8) _

g2(x) = 82(7) 4

Observation 3. Actually, the inequality from Observation 1 holds for k € [—2, 28].
O

P 3.24. Let x, y, 2 be real numbers. If 0 < k < 27, then

2

Z:(x2 +yz)(x—y)(x—2)(x—ky)(x—kz) > (1 +k— %) (x—y)2(y —2)*(z—x)>.

(Vasile C., 2014)

Solution. Write the inequality as f¢(x, y,2z) = 0. As shown in the proof of P 3.21,
fo(x, ¥,z has the highest coefficient

_ 45(k +2)?
==

A

Since
f(x,1,1) = (c®+ 1)(x —1)*(x — k)?,
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4(x — 1D)*(x —k)?
812+ k)2

fk,—z(x) =
and

5(x —1)*(x —k)?
9

fo(x,1,1) = Afie 5(x) = (x* + 1)(x — 1)*(x —k)* —

_ 20x — 1) (x —k)>(x+2)(2x +1)
9 ,

we will apply Theorem 2 for

5 — 090, Ea,ﬂ = fk,—2> Fy,é = hy,é"

Notice that & — oo involves

(3e) wue(=2)

The condition (a) in Theorem 2, namely f¢(x,1,1)—Af; _,(x) = 0 for x > —1/2,
is satisfied.

To prove the condition (b), namely f¢(x,1,1) = Ah, 5(x) for x < —1/2, we see

that —2 € (—oo, ?] and

£4(0,3,2) = Ky *5 4+ (y—2) [y — %) — kys(y® —z3)]—(1 - %) Y5 (y—2),

£4(0,1,—1) = —k* +2(2 4 2k) — (4 + 4k —k?) = 0.

Therefore, according to Remark 4, we select y given by (3.19),

1, M)
3 12A
where
h(x) = fo(x,1,1) = (x* + 1)(x — 1)*(x — k).
We have

h'(x) =2x(x —1)*(x —k)* + 2(x* + 1)(x — 1)(x —k)* + 2(x* + 1)(x — 1)*(x — k),

h'(—2) = —6(k + 2)(11k + 37),
1, W(=2) _ —7k—44

3 124 45(k+2)

_ 7k+44
45(k +2)

2
h, 5(x) = [x (x +2)(2x + 1)+5(x+2)3] )
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Write the inequality f¢(x,1,1) = Ah, 5(x) in the form

f(x)=0,
where )
£ =0+ 00— 17—k = PEE
We choose
5o 2
9(k +2)
to have f(—1/2) = 0. Next, we get
7k + 44 2 2
hm(x):[x—m(x+2)(2x+1)+9(k+2)(x )3]

_ 4[5x% —(7k + 14)x> + 5(k — 1)x — 7k — 47

B 2025(k + 2)2
and
45f(x) = 45(x* + 1)(x — 1)*(x —k)* = [5x% — (7k + 14)x* + 5(k — 1)x — 7k — 4]

= (2x + 1)(x + 2)*f1(x),

where

f1(x) = 10x3 —10(k + 2)x? — 2(k* — 6k — 1)x — k* — 14k — 4.
We need to show that f;(x) < 0 for x <—1/2. Since 10x® < —5x2, we have

fi(x) < —5x*—10(k + 2)x* —2(k* —6k — 1)x —k* — 14k — 4
= —5(2k + 5)x* — 2(k* — 6k — 1)x — k* — 14k — 4.

So, we need to show that f,(x) > 0, where
fox) = 5(2k + 5)x? + 2(k* — 6k — 1)x + k* + 14k + 4.
We have

B k2—6k—1\"  fa(k)
fZ(x)_5(2k+5)(x+ 10k + 25 ) * 5k+5)

where

f3(k) =99 + 378k + 131k? + 22k> — k*
> 108k + 131k* + 22k> —k*
= k(27 —k)(4 + 5k + k*) > 0.
Thus, the proof is completed.

The equality holds for x = y =z, for x/k = y = 2 (or any cyclic permutation) if

k # 0, and for x = 0 and y + 2z = 0 (or any cyclic permutation). If k = 0, then the
equality holds also for x = 0 and y = z (or any cyclic permutation).

OJ
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P 3.25. If x, y,z are real numbers, then

Z:(x2 + y2)(x — y)(x —2)(x —28y)(x —282) + 167(x — y)*(y —2)*(z — x)* > 0.
(Vasile C., 2014)

Solution. This is the inequality of the preceding P 3.24 for k = 28. Having in
view the proof of P 3.24, we only need to show that there exists a real 6 such that
f(x) =0 for x <—1/2, where

k 2
£ = (24 10— 12 =k = 22 o),
= (x* 4+ 1)(x —1)*(x —28)* —10125h 5(x),
_ —7k—44 -8
"= 45(k+2) 45

h, 5(x) = [x +yr(x+2)2x+1)+6(x+ 2)3]2

_ |:x—4% (x +2)(2x + 1) + 5(x +2)3]2.

Actually, there is a unique 6 such that f(x) > 0 for all x < —1/2, namely

17
5=—.
2250

For this value of 6, we have

_ (x+2)"(211x2 — 6956x —3056)
- 500 ’

f(x)

where
211x2% — 6956x — 3056 > —6956x — 3056 > 0.

The equality holds for x = y = 2, for x/28 = y = z (or any cyclic permutation),
and for x =0 and y +z = 0 (or any cyclic permutation).

Observation 1. Similarly, using

_ —7k—44
"= 45(k+2)
and
5 17 ’
75(k +2)
therefore

k+ 1 2
7k + 44 (x+2)(2x+1)+—7(x+2)3],

hy () = [x T 45(k+2) 75(k + 2)
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we can prove the following statement:
e Let x,Y,z be real numbers. If —97/200 < k < 28, then
2

Z:(x2 +y2)(x—y)(x—2)(x—ky)(x—kz) > (1 +k— kz) (x—¥)*(y —2)*(z—x)?,

with equality for x = y = g, for x/k = y = 2 (or any cyclic permutation) if k # 0,
and for x = 0 and y + 2z = 0 (or any cyclic permutation). If k = 0, then the equality
holds also for x =0 and y = z (or any cyclic permutation).

O

P 3.26. If x, y,z are real numbers, then

D0+ ya)e = ) =2 + 5 (= Py — 20 — 1P 20,
(Vasile C., 2014)

Solution. Let
£, y,2) = D (x* + y2)(x? = y2)(x? —2%)
and

o0, = £ (6, .80+ 2 =y Py ==

Since
(x=)x—2)=x*+2yz—q, (x+y)x+z)=x*+q,

f(x,y,2) has the same highest coefficient A, as

P(x,y,z)= Z:(x2 + y2)(x* + 2y2)x?,
that is, according to (3.1),

A, =P(1,1,1)=3(1+1)(1+2)=18.
Therefore, f(x, y,z) has the highest coefficient

1 45
A=18+—(-27)= —.
4 4

Since
fo(x,1,1) = (x® + 1)(x* — 1),
4(x — D*(x +1)?
81 ’

f—l,—z(x) =



Highest Coefficient Cancellation Method for Real Variables 267

50 =1)*(x+1)
9

fo(x,1,1) = Af_y 5(x) = (x* + 1)(x* —1)?

_ 2(x2—1)*(x +2)(2x +1)
9 ,

we will apply Theorem 2 for

E—>00, E,p=fi1_2 F,s5=815

Notice that & — oo involves

(Fe) wue(m]

The condition (a) in Theorem 2, namely fq(x,1,1)—Af_; ,(x) = 0for x > —1/2,
is satisfied.

To prove the condition (b), namely f¢(x,1,1) > Ag_, 5(x) for x < —1/2, we see

that —2 € (—oo, ?] and

1
f6(0) Y, Z) = y323 + (3’2 _Zz)(y4 _24) + Zyzzz(}’ _Z)ZJ

£,(0,1,—1)=—1+0+1=0.

According to Proposition 1, the difference fq(x,1,1)—Ag_; 5(x) is zero for x = —2.
Therefore, we will use the inequality

x*2+1> %(2)( —1)%

which is an equality for x =—2, to get

fe(x,1,1) = F(x),
where the polynomial F(x) is a perfect square:

F(x)= %(23( —1)?*(x®—1)2

Thus, the condition (b) in Theorem 2 is satisfied if

F(x) = Ag_, 5(x)
for x < —1/2. We have

g 15(x) =(x+1)’[x*+5x +8+8(x +2)(x +5)1%,

F(x)—Ag_15(x) = (x +1)’g(x),
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where
2x —1)*(x — 1)?
g(x)= (2x )S(X ) —4745[x2+5x+8+<'5(x+2)(x+5):|2
_ g1(x)gx(x)
20 ’
g1(x)=2(2x—1)(x —1)—15[x* +5x + 8+ 6(x + 2)(x + 5)]
=—(x+2)[(156 +11)x + 756 + 59],
g,(x)=2(2x —1)(x — 1) + 15[ x>+ 5x + 8+ &(x + 2)(x + 5)].
Choosing
5.3
45
g1(x) is a perfect square,
4(x +2)?
gl(x) = (T) = O)

and
4(5x>—13x—1) -

3

The equality holds for x = y = g, for —x = y = 2z (or any cyclic permutation),
and for x =0 and y +z = 0 (or any cyclic permutation).

0.

g2(x) =

Observation 1. Similarly, applying Theorem 2 for

—7k —44
— OO, Ea = —2> F = 5 R —
3 B fk, 2 v, — 8k, 45(k +2)
we can prove the following generalization:
-5
e Let x,y,2 be real numbers. If 3 <k <1, then

2

Sy =)=k —ke) = (14 k=) o))

with equality for x = y = g, for x/k = y = z (or any cyclic permutation) if k # 0,
and for x =0 and y + 2z = 0 (or any cyclic permutation). If k = 0O, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

We have
fo(x,y,2) =Z(X2 +yz)(x —y)(x —2)(x —ky)(x —kz)

~(14k- kz) (x— y Py —2)(a — ),
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5(k + 2)?
A:4(4+ )’

=(Fhoo), mui=(-e0. 2],

f(x,1,1) = (c® 4+ 1)(x — 1)*(x — k)?,

_ 4A(x — 1) (x —k)? _ 5(x—1)*(x —k)?
fk,—z(x) = 81(2+ k)2 5 Afk,—z(x) = 9 s
2(x —1)*(x —k)*(x +2)(2x + 1)

f6(x7 171)_Afk,—2(x): 9

F() = £@x — 1V (e — 1 (e — kP,

kx®+k(k +6)x —8 N 5(x+2)(2kx+x+k—4)]2
(k+2)3 (k +2)2 ’

(x —k)*g%(x)
180(k +2)4

g 5(x) = (x— k)’ [

Agps(x) =

g(x) = 45kx? + 45k(k + 6)x — 360 — (7k + 44)(x + 2)(2kx + x + k—4)

= —2(k + 2)[(7k + 11)x* — (5k + 22)x + 7k + 2],

(x —k)*[(7k + 11)x2 — (5k + 22)x + 7k + 27>
45(k + 2)2 ’
(x— k)zgl(x)gz(x)
45(k + 2)2 ’
g1 (x)=(1—-k)(x+2)*>0,
g,(x) = (13k + 23)x? — 2(7k + 20)x + 10k + 8,
1\ _ 27(3k+5) _

w2 g(5) =25 50

Agis(x) =

F(x)—Agis(x) =

Observation 2. By leaving out the simplifying inequality
2 1 2
X +12§(2x—1) ,

we can prove the inequality from Observation 1 for the extended range

—1 13 5
17 <k< —+9‘/_ ~ 8.281.
10 4

We have
(x— k)zgl(x)

f6(x:1:1)_Agk,y(x): 45(k +2)2
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g1(x) =45(k + 2)*(x* + 1)(x — 1)* —[(7k + 11)x* — (5k + 22)x + 7k + 2]?
= (x +2)%g,(x),
2,(x) = (59 + 26k — 4k*)x? — 2(8 + k)(7 + 2k)x + 44 + 38k — k2,

59 + 26k — 4k? > 0,

1) _ 27(10k+17) _

g:(x) =g, (%) 2 >

-3
P 3.27. Let x, y,z be real numbers. If —2 <k < DX then

2

Sy =)k —ke) = (1 k=) ey -0

(Vasile C., 2014)

Solution. Let
fo(x,y,2) = Z:(x2 +y2)(x — y)(x —2)(x —ky)(x —kz)
(1= E) -y -,
As shown in the proof of P 3.21, f¢(x, y,2) has the highest coefficient

_ 45(k +2)?
==

A
In addition,
fo(x,1,1) = (x® + 1)(x — 1)*(x —k)*.
For k = —2, we have A = 0. Since f¢(x,1,1) > 0 for all real x, the conclusion
follows from Corollary 1. Consider further that

—3
—2<k<—,
2

and apply Theorem 2 for

—7k — 44

= — F =
45(k + 2)1 Y, fk,oo:

Eup=8kp> B

4(k + 2)*
4k +5

Z_Zk]u[2k+2,oo).

and n = 2k + 2 € (—2,—1], which involves & = and

H:(ﬂ 2k+2), R\]I:(—oo,

5+ 4k’ 5+ 4k
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Condition (a). We need to show that

—7k — 44

flo L) 2Agep (), B =220

for x € 1. Since
f(x,1,1)>F(x)= %(2x —1)?(x —1)*(x —k)?,

it suffices to show that
F(x) = Agy p(x).
As shown at Observation 1 of the preceding P 3.26, we have

(x —k)?g;(x)ga(x)
45(k +2)>

F(x)—Agp(x) =

g1 (x)=(1—-k)(x+2)*>0,
g,(x) = (13k + 23)x? — 2(7k + 20)x + 10k + 8.

We claim that
2,(x) > g,(2k+2) > 0.

Since

2,(x)—g,(2k +2) = (x —2k —2)g,(x),  g3(x) = (13k +23)x + 26k* + 58k + 6,
we need to show that g;(x) < 0. Since

g5(x) = 13(k+2)(2k +3) + g,(x) < g, (x),  g4(x) = (13k +23)x —3(11k + 24),

it suffices to show that g,(x) < 0. Because

— —3(11k +2
1< =X _3(11k 4 24) < ULk F 20X
2% +2 2% +2

we get

3(11k+24)x _ 13(k +2)(2k — 1)x
2k+2 2(k+1)

g24(x) < (13k+23)x — <0.

Also, we have
2,(2k +2) = 2(k + 2)(26k* + 32k + 5),

26k*+ 32k +5 = 13k(2k +3) + 7(—k) + 5 > 0,

therefore g,(2k +2) > 0.
Condition (b). We need to show that

f(x,1,1) 2 Afy 00 (x)
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for
2—2k

5+ 4k

x €R\I=[—o0, U[2k + 2, 00).
(o5t

Since 1
f(x,1,1) = F(x) = E(x —1)*(x—k)?,

it suffices to show that

F(x) Z Afj,00(x),
where
4(x — 1*(x —k)?
fioo(x) = 9(1 4 2k)2(x +2)2
We have

(x = 1)*(x —k)*g1(x)
FO) = Afieo ) = = 2R + 21)2 ’

g1(x) = (1 +2k)*(x +2)*—10(k + 2)*.

It suffices to show that g,(x) > 0, where

2,(x) = (1 +2k)*(x +2)* —16(k + 2)*.

. Since
+ 4k

Case 1: x <
5

2—2k 6(k +2)
+2=
5+ 4k 5+ 4k

the inequality g,(x) > 0 holds if

x+2<

(1+4+2k)(x+2)=>4(k+2).
Indeed,

(14 26)Cx +2) — 4(k +2) > (1 + 2k) 65(]:;2) — 4k +2)

_ 2k +2)2k+7)
N 5+ 4k

0.

Case 2: x > 2k + 2. Since
x+2>2(k+2)>0,

the inequality g,(x) = 0 holds if
—(1+2k)(x+2) = 4(k +2).
Indeed,

—(1+2k)(x+2)—4(k+2)=>—-2(1+2k)(k+2)—4(k+2)
=—2(k+2)(2k +3)>0.
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The equality holds for x = y =z, for x/k = y = 2 (or any cyclic permutation) if
k # 0, and for x =0 and y + 2 = 0 (or any cyclic permutation). If k = 0, then the
equality holds also for x = 0 and y = z (or any cyclic permutation).

Observation 1. From P 3.23-3.27 and the observations attached to them, the fol-
lowing generalization follows:

o Let x,y,2 be real numbers. If —2 < k < 28, then

2

Sy =)k —ke) = (14 k=) ey — )%

with equality for x = y = g, for x/k = y = z (or any cyclic permutation) if k # 0,
and for x =0 and y + 2z = 0 (or any cyclic permutation). If k = O, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

Note that the coefficient of the product (x—y)*(y—z)*(z—x)? is the best possible.
Setting x =k, y =1+t and z = 1 —t, the inequality

>+ y2) (o — y)(x —2)(x —ky)(x —ks) = 5,(x — y P’y —2)*(z —x)*

turns into
Ak, 5)t° +B(k,5)t* + C(k,5,)t> >0,

where
A(k,5,) =—456, +4+ 4k — k>,

From the necessary condition A(k, 6;) = 0, we get

k2
5, <1+k——.
4

Observation 2. Substituting k — 1 for k, and using then the identity
> %+ y2)(x — y)(x —2)[x — (k— Dy ]lx — (k—1)z] =

= > (P4 y2)(x—y)x —2)(x —ky +2)(x —kz +y) + 2k(x — y)X(y —2)*(z — x)?,
the statement from Observation 1 becomes as follows:

o Let x,y,2 be real numbers. If —1 < k < 29, then

1)? 2 2 2
(x=y) (y—2)"(z—x)" = 0,

Z(x2+yz)(x—y)(x—z)(x—ky+z)(x—kz+y)+ (k +

with equality for x = y = g, for x/(k — 1) = y = z (or any cyclic permutation) if
k # 1, and for x = 0 and y + 2z = 0 (or any cyclic permutation). If k = 1, then the
equality holds also for x = 0 and y = z (or any cyclic permutation).

OJ
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P 3.28. Let x, y,2 be real numbers. If =5 < k < —2 and

k* —8k® — 7k?> — 20k — 20
4(k —1)2 ’

5k:

then
D%+ y2)(x — y)(x —2)(x —ky)(x —kz) + 8i(x — y )y —2)X(z — x)* 2 0.
(Vasile C., 2013)
Solution. Denote
£, y,2) = D (% + y2)(x — y)(x —2)(x —ky)(x — kz),
and write the inequality as f¢(x, y,z) = 0, where
fo(x,y,2) = f(x,y,2) + 6, (x — y)*(y —2)*(z — x)*.

As shown at P 3.21, f(x, y,2) has the highest coefficient A; = 18(k* + k+ 1). As a
consequence, f¢(x,y,z) has the highest coefficient

9(k + 2)*(5k* — 4k + 17)

A=A, —275, =
! . 4(k —1)>

In addition,
fo(x,1,1) = (x® + 1)(x — 1)*(x — k).
For k = —2, we have A = 0. Since f¢(x,1,1) > 0 for any real x, the conclusion
follows from Corollary 1.
Consider further that —5 < k < —2. Since

4(x — 1)*(x —k)?

feaX) = =m0y

and

(x —1)2(x — k)[(k — 4)x + (2k + 1)[(2k + 1)x + k — 4]
9k —1)2 ’

fo(x,1,1) =Afy 5(x) =

(k +2)?
2k+1°

we apply Theorem 2 for 1) = k, which involves £ =

4—k 4—k
I=|k —— R\I=(—o00,k
(’2k+1)’ \ (=co, ]U[2k+1’oo)’

Ea,/B = fk,—2: Ey,ﬁ = fk,oo-

and for
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The condition (a), namely fq(x,1,1) > Af; _,(x) for x €1, is satisfied since

4—k 3(k—1)(k+5)

_ _ . — >
(k—dx+2k+1)>(k—4) 2k+1+(2k+1) T >0,
(2k+Dx+k—4>(2k+1) 47k ka0

2k +1 -

The condition (b) is satisfied if fs(x,1,1) > Af} o (x) for x € R\ I, where
4(x — 1)*(x — k)?

S = g TGt 27
We have (= 1D2(x — K (x)
X — X — X
f6(x) 1) 1)_Afk,oo(x) = (k_ 1)2(2k + 1)2(.)( + 2)2)
where

F(x)=(k—1)*(2k + 1)*(x* + 1)(x + 2)* — (k + 2)*(5k* — 4k + 17)(x — 1)*.

Thus, we need to show that f(x) > 0 for

4—k
€ (—oo,k]uU ,
x € (=00, K] [2k+1

oo), —5<k<-2.

The inequality f(x) > 0 is equivalent to

h(x)Sh( 4k )

2k +1
where ( y
x—1
h = .
)= D127
From

, —2(x—1)(x—3)(x®2+x+1)
h(x)= )
(x2+1)%(x +2)3
it follows that h is increasing on (—oo,—2) U[1,3] and decreasing on (—2,1] U
[3, 00).

Case 1: x < k. Since h is increasing on [—5,—2) and k € [—5,—2), we have
h(x) < h(k). Thus, it suffices to show that

4—k
h(k) <h| ———].
©=<h(577)
We have

4—k) (k—1)2 (k—1)*(2k +1)?

h(k)_(2k+1 -

T2+ 1)(k+2)?  (k+2)2(5k2—4k+17)
B 4(1—k)(k*+2) 0
(k2 +1)(k+2)(5k2—4k +17) ~
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Case 2: x =2 ——. Since
2k+1 Ak
—— e(=2,-1],
2k+1 ( ]
—k
h is decreasing on (T—I—l’ 1] U[3,00) and increasing on [1,3]. Therefore, we

) ifand only if h(3) < h (Lk) On the other hand, since
2k+1

have h(x) < h
ave h(x) < (2k+1

,—1 |, we have

h (%) > h(—1).

h is decreasing on
oM 2k +1

Therefore, it suffices to show that h(3) < h(—1). Since

RC-D=2  hE)=—,

the conclusion follows.
The equality holds for x = y = z, and for x /k = y = 2z (or any cyclic permutation).

Observation 1. The coefficient &, of the product (x — y)*(y —2)*(z — x)? in the
original inequality is the best possible. Setting x =k, y =14+t and 2 =1 —t, the
original inequality turns into

Ak, 5)t° +B(k,5)t* + C(k,5,)t> >0,
where
C(k,5,) = (k—1)*[4(k—1)*6, — k* + 8Kk> + 7k* + 20k + 20].
From the necessary conditions C(k, ;) = 0, we get

k* — 8k* — 7k* — 20k — 20
(k17

5, >

Observation 2. Substituting k — 1 for k and using then the identity
Z(xz +yz)(x —y)x —2)[x —(k—1)y][x —(k—1)z] =

= >+ y2)(x —y)x—2)(x —ky +2)(x —kz +y) + 2k(x — y)2(y —2)(z —x)?,

we get the following statement:

e Let x,y,2 be real numbers, and let

5 — (k+1)*(k?—6k +2)
ko 4(k —2)2 '
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If —4<k<-—1, then

Z:(x2 +y2)(x—y)(x—2)(x —ky +2)(x —kz + y) + 8 (x—y)*(y —2)*(z—x)* 2 0,

with equality for x =y = g, and for x/(k — 1) = y = z (or any cyclic permutation).
O]

P 3.29. If x, y,z are real numbers, then

5(x — y)*(y —2)*(z — x)?
32(x2+ y2 +22) ’

Z:(x2 +y2)(x +y)(x+2)> L

(Vasile C., 2013)

Solution. Write the inequality as f¢(x,y,z) = 0, where

o, 3,2 = (4 32 +20) Y (4 y2) e+ ) +2)— (e =y Py 2V s —x P

The function fy(x, y,2) has the highest coefficient

15 405
A=—22 (=27)= 2.
32 32

Since
fol(x,1,1) = (x* +2)(x + 1)*(x* +5),

we apply Corollary 2 for
F,s(x)=g_15(x)=(x+ 1)?[x%2+5x+8+6(x+2)(x+5)]°.
So, we only need to show that there exists a real number 6 such that
fol(x,1,1)—Ag_1 5(x) =0

for all real x. We have

2
e, 1, 1) Agy 5y = EE T
where
f(x)=32(x*+2)(x*+5)—405[ x>+ 5x + 8 + &6(x + 2)(x + 5)]%.
Since

f(=5)=0,
the condition f’(—5) = 0 is necessary to have f(x) > 0 in the vicinity of x = —5.

This condition involves 59

5§ =—2
81
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and 49(x)
_ 18X
where

g(x) = 648(x?* +2)(x? + 5) — 5(11x* — 4x + 29)?
= 43x* + 440x% + 1266x2 + 1160x + 2275
=(x +5)*(43x*> +10x +91) > 0.

The equality holds for —x = y = z (or any cyclic permutation).

P 3.30. If x, y,z are real numbers, then

D e =)+ Y +5) 2 20— )y — 2 —
(Vasile C., 2012)
Solution. Let
FO,y,2) =4 (x—y)(x —2)(x? + y2)(x* +22)

and
f6(X,J’;Z) =f(x,y,z)—7(x _y)Z(y _Z)Z(Z_X)Z'
Since (x —y)(x —2) = x>+ 2yz —q and

24y =p2—29—22, X +z>=p>—2q—y?
f(x,y,2) has the same highest coefficient A; as
Py(x,y,2) =4 Y (x> + 2yz)(—=*)(=y?),
that is, according to (3.2),
A, =P,(1,1,1) = 36.
Therefore, f¢(x, y,2) has the highest coefficient
A=36—7(—27) = 225.

Since
f6(x1 1: 1) = (X - 1)2(X2 + 1)2:
we will apply Corollary 2 for
40 = 1)*(x —y)?
81(2+7y)?2

F,s(x)=f,o(x)=
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Thus, we need to show that there exists a real y such that

f6(X> 1, 1) _Af}/’_z(X) >0
for x € R. We have

(x —1)°g(x)

f6(x: 1:1)_Af)/,—2(x): 9(2+Y)2

5

where
g(x)=9(r +2)*(x* +1)* —25(x — 1)*(x —y)*
=(x+2)[(By+1x+3—7][(3y +11)x*—5(y + 1)x + 8y +6].
Choosing y = 1/7, we get

_100(x + 2)*(8x* —4x +5) -
B 49 -

g(x) 0.

The equality holds for x = y = 2, and also for x =0 and y +z = 0 (or any cyclic
permutation).
O

P 3.31. If x, y,z are real numbers such that xy + yz +zx > 0, then

D= =)+ Y+ 2 L x =y Py — 2V - )
(Vasile C., 2012)

Solution. Let

FOx,y,2) =4 (x = y)(x —2)(x? + y2)(x* +22)

and
f6(xsyaz) :f(x:y’z)_ 15(X_J’)2(J’—Z)2(Z—X)2-

As shown at the preceding P 3.30, f(x,y,z) has the highest coefficient A; = 36,
therefore fy(x, y,2) has the highest coefficient

A=A, —15(—27) = 441.

Since
fol(x,1,1) = 4(x — 1)*(x* + 1),
we will apply Corollary 2 for
40— 1)*(x—y)?
81(2+1v)?

F,s(x)=f,2(x)=
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Having in view Remark 5, we need to show that there exists a real y such that

f6(x} 1: 1) _Afy’_z(X) >0
for 2x +1 > 0. We have

4(x —1)*g(x)

ol LD —Af, 500 = =g

>

where
g(x) =92+ 1) (x* +1)* —=49(x — 1)*(x —7)*.

Choosing y = 1/3, which involves g(—1/2) = 0, we get

g(x) = % [9(x? +1)% — (x — 1)*(3x — 1)?]

2_
_ 196(2x + 1)(;3x 2x +2) >0

The equality holds for x = y = z, and also when x, y,z are proportional to the
roots of the equation
7t —21t*+18 =0.

Observation. The last equality condition follows from the necessary condition
fo(x,y,2) =0, where, according to (3.11),

_ r+8 2 3)2 ( 25 2 3)2
,2)=|r— + =(r—=pg+— .
fe(x,y,2) (r 9Y+18pq 9Y+18P r—g3Pdt 5P

Moreover, if p = 3 and q = 0, then the condition f,(x, y,2z) = 0 involves r = —18/7.
Ll

P 3.32. If x, y,z are real numbers, then

0= =20+ xy 4y x4 2 2 2 (0 =y Fy 2P =)
(Vasile C., 2012)
Solution. Let

flx,y,2)= Z(x —y)(x —2)(x* + xy + ¥y (x* + xz +2%)

and 3
fe(x,y,2) = f(x,y,2)— Z(X —¥)(y —2)’(z—x).
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Since (x —y)(x —2) = x?+2yz —q and
x4+ xy+y*=p*—2q—2*+xy, x*+xz+z>=p*—2q—y*+xz,
f(x,y,2) has the same highest coefficient A, as

Py(x,y,2) = D (x* +2yz)(z* — xy)(y* — x2),

that is, according to (3.2),
A, =Py(1,1,1)=0.
Therefore, f(x, y,z) has the highest coefficient

3 81
A=-2(=27)==.
4 4

Since
f6(x) 1: 1) = (X - 1)2()(2 +x+ 1)2’

we will apply Corollary 2 for

4(x —1)*(x —7)?
81(2 + v)>2

Fy,é(x) = fy,—z(x) =
Thus, we need to show that there exists a real y such that

f6(xa 1) 1) _Afy’_z(X) >0
for x € R. We have

(x —1)°g(x)

f6(x, 111)_Afy,—2(x): (2+'}/)2

2

where

gL) = +2P(x*+x+1)*—(x—1(x—7y)
=(x+2)[(y+Dx+1][(y +3)x*+x + 2y +2].

Choosing y =—1/2, we get

o(x) = (x +2)2(5);r2 +2x +2) >0

The equality holds for x = y = 2, and also for x =0 and y +2z = 0 (or any cyclic
permutation).

Observation 1. Similarly, applying Corollary 2 for

Fy,é = f)/,—2> Y==">-
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we can prove the following generalization:

8
o Let x,y,z be real numbers. If k € [—2, E]’ then

2 =) —2)(x* +hxy +y?)(c +xa +2%) 2 (2 - ") (x—y)*(y =2l (z—x)",

with equality for x = y = g, and also for x = 0 and y + 2z = 0 (or any cyclic
permutation).

For
folx,y,2) IZ(X — ) —2)(x* + kxy + y*)(x? + kxz + 2%)
~(2-K) =P -2,
we have
A= z(zk —5)2,
fe(x,1,1) = (x —1)*(x* + kx + 1)?,
k —1)? 2h
e, 1,1) = A o) = EEDEZ VLD R,
where

h(x) = (16 —k)x? +2(7k —4)x + 10 — 4k
7k—4)2 9(2+k)(8—5k) _
16—k 16—k -

=(16—k)(x+ 0.

Observation 2. Actually, the inequality from Observation 1 holds for k € [—-2,5/2].
For k = 5/2 and k = 2, we get the inequalities in P 3.1 and P 3.47, respectively.
O

P 3.33. If x, y, 2 are real numbers such that xy + yz +zx = 0, then
D> =y —2)(x? + xy + y2)(a? + xz +2%) > 3(x — y)H(y —2)2(z — x)*
(Vasile C., 2012)
Solution. Let
flx,y,2)= Z(x —y)(x —2)(x* + xy + ¥y (x* + xz +2%)

and
fe(x,y,2) = f(x,y,2) = 3(x — y)’(y —2)*(z — x)*.
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As shown at the preceding P 3.32, f(x,y,2) has the highest coefficient A; = 0.
Therefore, fc(x, y,2) has the highest coefficient

A=0-—3(—27)=81.

On the other hand,
folx,1,1) = (x —1)*(x* + x + 1)~

We will apply Corollary 2 for

(x —1)*x?

Fy() = foa(x) = o

Having in view Remark 5, we need to show that

fe(x,1,1) —Afo,—z(X) >0
for 2x +1 > 0. Indeed, we have

folx,1,1) —Afg () = (x —1)*(x®* + x + 1)* — (x —1)*x?
=(x—1*2x+1)(2x*+1)>0.

The equality holds for x = y = 2, and also when x, y,z are proportional to the
roots of the equation
t*—3t*+3=0.

Observation 1. The last equality condition follows from the necessary condition
fo(x,y,2) =0, where

, y+8 2 3)2 ( 4 1 3)2
s = - + = - = + —
fe(x,y,2) (r o Tk o 5P r—gPdtgP

(_see (3.11) from Remark 1). Moreover, if p = 3 and g = 0, then the condition
fe(x,y,2) =0 involves r = —3.
Observation 2. Similarly, applying Corollary 2 for
F s :fy,—2: Y= 1;—k;
we can prove the following generalization:
o Let x,Y¥,z be real numbers such that xy + yz +2x > 0. If k € [—2,5/2], then

3—-k)(5+k
S e )ty by ) kst 2 OO ey ey,
with equality for x = y =z, and also when x, y,z are proportional to the roots of the
equation
(7—K)t>—3(7—k)t*+18 = 0.
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For
folx,y,2) = Z(x — ) —2)(x* + kxy + y*)(x? + kxz + 2?)
—k k
- B ey — e,
we have

9
A= =(k—7),
4( )
fo(x,1,1) = (x —1)*(x* + kx + 1)?,
and, for 2x +1> 0,

(26,1, 1) — Af, (%) = %(k +2)(x — 1)%(2x + 1)[6x% + 4(k — 1)x +4—k] = 0.

]

P 3.34. If x, y,z are real numbers, then
3
(< +y)(r* +22)(z° + %) 2 8x%y?2* + S0~ YAy —2)*(z — x)*.

(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,z) = 0, where

o,y 2) = [ [0 +5)—8x7y 20— S(e— y Py = (s — )"

Since
[ [o?2+2) =] J(=x*+p*—20),

the polynomial f¢(x, y, ) has the same highest coefficient as
3
—x?y?s® —8x*y?z® — g(x— ¥y —2)(z—x),

that is

A=—9+2 22

8 8
Since
folx,1,1) = 2(x*+1)*—8x% = 2(x*—1)?,
4(x —1*(x +1)?
o(x+2)2 ~°
3(x2—=1)*(x +1)(x +5)
2(x + 2)2 ’

f—l,oo(x) =

fe(6, 1, 1) =Af_; oo(x) =



Highest Coefficient Cancellation Method for Real Variables 285

we apply Theorem 2 for
n=-5  ¢=-1
I=(-5,-1), R\I=(—00,-5]U[—1, c0),
and for
Ea,/i = f—1,—2: Fy,s = f—1,oo-

The condition (b), namely fq(x,1,1) —Af_; (x) = 0 for x € (—o0,—5]U
[—1, 00), is satisfied.
The condition (a) is satisfied if f¢(x,1,1) —Af_; _,(x) =0 for x € (—5,—1). We

have
4(x — D*(x +1)?

81 ’
(x?2—=1)*(x +5)(7—x) o
18 -

The equality holds for x = y = 2, and for —x = y = 2 (or any cyclic permuta-
tion).

f—1,—z(x) =

fe(e, 1L, 1) =Af_y 5(x) = 0.

]

P 3.35. If x, y,z are real numbers, then
15
(x2+2y%4+222)(y2+22%+2x%) (2% +2x%+2y?) > 125x2y222+?(x—y)z(y—z)z(z—x)z.

(Vasile C., 2011)

Solution. Write the inequality as fg(x, y,2) = 0, where

15
febeyiz) =] [ +2y° +22%) — 12507y %% = (e =y Py —2) (5 —x)°.

Since
l_[(x2 +2y%+22%) = l_[(—x2 +2p% —4q),

the polynomial f¢(x, y, ) has the same highest coefficient as
15
—x?y?z* —125x%y%z* — — (x— ¥y —2)(z —x),

that is
15-27 153

A=-126+ .
2

Since
fo(x,1,1) = (x> +4)(2x%* +3)* —125x2 = 4(x* — 1)*(x* +9),
4(x —1D)*(x +1)?
81 ’

f—l,—z(x) =
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2(x2 —1)2(x +5)(x +29)
9 ,

f6(x7 1: 1) _Af—l,—Z(x) =
we apply Theorem 2 for
T’ = _5) g = _]-J
]I:(_57_1): R\]I:(—OO,—S]U[—]., OO),
and for
Ea,/j = f—1,—2’ Fy,5 = f—1,—1-

The condition (a), namely fq(x,1,1) —Af_; _,(x) = 0 for x € (—5,—1), is satis-

fied.

The condition (b) is satisfied if fs(x,1,1)—Af; _;(x) =0 for x € (—o0,—5]U
[—1,00). We have
(x—1D*x+1)*

36(x +2)2

(x*—1)*g(x)
8(x+2)2 °

f -1,-1 (x)=

fo(x,1,1) _Af—l,—l(x) =
where

g(x) =32(x*+9)(x +2)*—17(x*—1)?
= 15x* + 128x3 + 450x2 + 1152x + 1135
=(x+5)g,(x), g.(x)=15x>+53x%+185x + 227.

We need to show that g;(x) < 0 for x < —5, and g,(x) > 0 for x > —1. Indeed, if
x < —5, then

g1(x) <5(3x + 11x2 +37x + 54) = 5(x + 2)(3x* + 5x +27) < 0,
and if x > —1, then
g,(x) > 15x%*(x +1)+185(x +1) > 0.
The equality holds for x = y = 2, and for —x = y = g (or any cyclic permuta-

tion).
O

P 3.36. If x, y,z are real numbers, then
15
(2x*+y*+22)(2y* +22+xH) (223 +x*+y?) > 64x2y222+?(x—y)z(y—z)z(z—x)z.

(Vasile C., 2011)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

o2 = [ J2x+ 32 +2) —64x7y %2 = Z(x =3y — )

Since
l_[(2x2 +y*+2%) = l_[(x2 +p*—2q),

the polynomial f¢(x, y, ) has the same highest coefficient as
15
X'yt —64x"y’s* — - (x = yP(y —2) (s = x)’,

that is
15-27 153

A=—-63+ .
4

Since
fo(x,1,1) = 2(x* + 1)(x* + 3)* — 64x* = 2(x* — 1)*(x* + 9),
4(x — D*(x +1)?
81 ’
(x%—1)*(x +5)(x +29)
9 >

f—l,—z(x) =

fe(x, 1, 1) =Af 4 o(x) =
we apply Theorem 2 for
n=-5 &=-1,
I=(-5,-1), R\I=(—00,—5]U[—1, c0),
and for
Ea,/j = f—1,—z; Fy,5 = f—1,—1-

The condition (a), namely fq(x,1,1) —Af_; _,(x) = 0 for x € (—5,—1), is satis-

fied.

The condition (b) is satisfied if fg(x,1,1)—Af ; _;(x) >0 for x € (—o0,—5]U
[—1, c0). We have
(x —1)*(x +1)*

f—1,—1(x) = 36(x+2)2
_ (*=1)*(x +5)g:(x)
f6(x: 1) 1) _Af—l,—l(x) - 16(x + 2)2 = 0:

where
g1(x) = 15x% 4+ 53x2 + 185x + 227.

As shown at the preceding P 3.35, we have (x + 5)g;(x) > 0.
The equality holds for x = y = g, and for —x = y = z (or any cyclic permuta-
tion).

Observation 1. The inequalities in P 3.34, P 3.35 and P 3.36 are particular cases
of the following statement:
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e Let x,y,2 be real numbers. If k > 0, then

3(k+2)(2k+1)
16

l_[(kx2 + y2+22) > (k+2)°x%y2z% + (x —¥)*(y —2)*(z — x)?,

with equality for x =y = g, and for —x =y =g (or any cyclic permutation).

We have
A= 9(2k? + 29k + 2)
- 16 ’
folx,1,1) = (x* = 1T 4+ 2(k + 1)),
Faloe 1, 1) = Af 4 a00) = 5= 1>2(3x6 +5)g(x)

g(x) = (—2k* + 7k — 2)x + 14k* + 23k + 14.

Observation 2. The coefficient of the product (x — y)*(y — 2)*(z — x)? in the
inequality from Observation 1 is the best possible. Setting x =1, y = 1+t and
z = 1—t, the inequality

l_[(kx2 +y%+2%) > (k+2)°x%y%22 + 5, (x — ¥)*(y —2)*(z — x)?

turns into
A(k,5)t® + B(k,5,)t*+4C(k,5,)t*> >0,

where
C(k,6,) =3(k+2)(2k+1)—166,.

From the necessary condition C(k, 5,) = 0, we get

3(k+2)(2k+1)

5, <
k 16

P 3.37. If x, y,z are real numbers, then
8(x*+xy +y)(y*+ yz +22)(2* +z2x + x*) = 3(x* + ¥y (y?* + 22)(z* + x2).
(Vasile C., 2013)
Solution. Write the inequality as f¢(x,y,z) = 0, where
fole,y,2) =8| [ +yz+22)-3] [(2 +27).

Since

folx,y,2) =8| [(0*—2q +yz—x*) - 3] [*— 29— ),
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fo(x, y,2) has the same highest coefficient as

fGey,2)=8] [oz—x)—3] J(=x?,

that is, according to (3.3),
A=f(1,1,1)=3.

Since
fo(x,1,1) = 24(x* + x + 1)* —6(x* + 1)* = 6(x + 1)*(3x* + 2x + 3),
we apply Corollary 2 for
F,5(x) =g 1 5(x)=(x+1)*[x*+5x + 8+ 6(x +2)(x + 5)T*.
So, we only need to show that there exists a real number § such that
fe(x,1,1) —Ag_1’5(x) >0
for all real x. We have
fo(x,1,1) —Ag_; 5(x) = 3(x + 1)*g(x),

where
g(x)=23x*+2x +3)—[x*+5x+8+56(x +2)(x +5]%

Choosing 6 = —1, we get
h(x)=2(3x*+2x +3)—4(x+1)*=2(x—1)*>0.

The equality holds for —x = y =z (or any cyclic permutation).

P 3.38. If x, y,z are nonnegative real numbers, then

Z(l6x2 +3y2)(x — y)(x —2)(x —4y)(x —42) + 52(x — y)*(y —2)*(z — x)* > 0.
(Vasile C., 2013)

Solution. Write the inequality as fg(x, y,2) = 0, where

fe(x,y,2) = Z(16x2+3y2)(x—y)(x—2)(x—4y)(x—42)+52(x—y)z(y—Z)Z(z—x)Z-

Since

(x—Y)x—2)=x*+2yz—q, (x—4y)(x—4z)=x>+20yz—4q,
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fo(x,y,2) has the same highest coefficient A as
Z:(l6x2 +3y2)(x? + 2yz)(x* + 20yz) + 52(x — y)*(y —2)*(z — x)?,
that is, according to (3.1),
A=3(16+3)(1+2)(1+20)—27-52=3-729.
On the other hand,
fo(x,1,1) = (16x* + 3)(x — 1)*(x — 4)%,

_ 4x = 1) (x —4)*(x—p)?

B 729B2(x + 2)2

(x —1)’(x —4)*f (x)
B2(x+2)> 7

F(x)=B2(16x%+3)(x +2)* —12(x —1)*(x — B)%
Since f(0) =0, we chose § =—2/3 to have f'(0) =0 and
4x2%(100 + 82x — 11x2) - 4x2%(48 +82x —11x?) _ 4x%(8 —x)(6+11x)
9 N 9 9 '
Thus, we apply Theorem 2 for n = 8, which involves £ = 100/17,

]I:(I—j,S), R\H:(—oo,z—j]u[&oo),

fap

b

fG(X, 1: 1)_Af4,ﬂ(x) =

flx)=

and for
Ea,/j = f4,—2/3> F)/,5 = fz,—2~
The condition (a), namely f¢(x, 1,1) > Af, _5/5(x) for x € (—4/17,8), is satisfied
because f(x) > 0.
The condition (b), namely fs(x,1,1) > Af, ,(x) for x € (—00,—4/17]U[8, 00),

where
(x —1)*(x—2)

324

f2,—2(x) = >
is equivalent to (x — 1)?f(x) > 0, where
2
f(x)=(16x*+3)(x —4)*— %(x —1)?(x —2)2
To show that f(x) > 0, we use the Cauchy-Schwarz inequality

(4 +3)(16x* +3) > (—8x + 3)*

Thus, it suffices to show that

(8x —3)*(x —4)*> i—g(x —1)%(x —2)>2.
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This inequality is true if
Bx—3)(x—4)=(x—1)(x—2).
Indeed,
(8x—3)(x—4)—(x—1)(x—2)=7x*>—32x + 10> 6x2—32x + 10
=2(x—5)38x—1)>0.
The equality holds for x = y = 2z, and for x/4 = y = z (or any cyclic permutation).

Observation. The coefficient of the product (x — y)*(y —2)*(z — x)? is the best
possible. Setting x =4, y =1+t and z = 1 —t, the inequality

2(16)(2 +3y2)(x — y)(x —2)(x —4y)(x —42) + a(x — y)*(y —2)*(z—x)* >0

turns into
At® +Bt*+Ct2 >0,

where C = 324(a — 52). The necessary condition C > 0 involves a > 52.

P 3.39. If x, y,z are real numbers, then
D xt = y)x—2) = (x — y) Ay —2)(z — x)*
(Vasile C., 2009)

Solution. Write the inequality as f¢(x,y,z) = 0, where
fe(x,y,2) = Z X = y)(x —2) = (x = y)*(y —2)*(z — x)*.

Since (x — y)(x —2) = x>+ 2yz —q, fs(x,y,z) has the same highest coefficient A
as

D xta? +2yz) — (x — y Py —2)*(z —x)%,
that is, according to (3.1),

A=3(1+2)+27=36.

Because
fo(x,1,1) = x*(x = 1)%,
_x*(x—1)*
fo,o(x) = m,

3x*(x—1)?(2x +1)
(x+2)2

>

fo(x,1,1) =Afoo(x) =
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we apply Theorem 2 for

Ea,ﬁ = f0,0’ Fy,é = fy,—zs

and for & — oo, which involves

(Fm). mun(n3]

The condition (a), namely fq(x,1,1) = Af; o(x) for x > —1/2, is satisfied.
The condition (b) is satisfied if there is a real number y such that
fo(x,1,1) 2 Af, _5(x)
for x < —1/2. We have
4(x —1)*(x —y)?
81(2+7y)?2

(x —1)%g;(x)ga(x)
9(2 +1v)?

fy,—Z(X) =

b

fe(x,1,1) =Af, 5(x) =

5

where

g1 (x) =32+ y)x*—4(x—1)(x—7)
= (x+2)[(3y +2)x —27],

8:(x) =3(2+71)x* +4(x —1)(x —71)
=By +10)x*—4(y + D)x + 4y.

—1
Choosing y = PR we have
1 2

1
g,(x)= 5(17x2 —4x —4)>0.

The equality holds for x = y = g, for x = 0 and y = z (or any cyclic permutation),
and for x =0 and y + 2z = 0 (or any cyclic permutation).
O

13—-3v17 <k< 13+3\/17’ then

P 3.40. Let x, y,z be real numbers. If 2 2

2

36 ke = ) =)+ (5 = 1) =3P~ - xP 20

(Vasile C., 2012)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

2

o, 3,8) = 36 + Ryl =) =) + (o = 1) (0= 3P0y~ —x )

Since (x — y)(x —2) = x>+ 2yz —q, fs(x,y,z) has the same highest coefficient A

as
2

6 +kyeP + 22+ (5 —1) =y Py 2P -0

that is, according to (3.1),

2

k
A=9(1+k)*+ (Z — 1) (—27) = z(k +4)%.
Since
f6(x1 1: 1) = (Xz + 1)2(X - 1)2:
we apply Corollary 2 for

x+8

1 2
F, 5(x) = g15(x) = 5(»«—1)4[ +6(x+z>] .

Thus, we only need to show that there exists a real number 6 such that

fe(x,1,1) 2Ag1’5(x)
for all x € R. We have
(x —1)%g;(x)ga(x)

fo(x, 1, 1)—Ag1,5(x) =

324 ’

where

g21(x)=18(x*+ k) + (k+4)(x —1)[x + 8 +35(x + 2)],

2,(x) =18(x*+k)— (k+4)(x —1)[x +8+35(x +2)].
Since

g10)=0c+2)[(k+22)x +5k—16+3(k+4)o6(x —1)],
we choose
5 — k—20
~ 3(k+4)

to get

g21(x) =0+ 2)[(k+22)x +5k— 16+ (k—20)(x —1)]
=2(k+1)(x +2)*>0,

2,() =18(x? + k) — (x — D[(k + 4)(x + 8) + (k — 20)(x + 2)]
=(17—k)x*>—4(k+ 1x +2(7k —2)

2k +2\* 18(k*—13k +4)
=(17—k)| x— — >0
(17 )(X 17—k) 17—k -
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Thus, the proof is completed.

The equality holds for x = y = z, and for x = 0 and y + 2 = 0 (or any cyclic
permutation).

Observation. We may give a similar solution by applying Corollary 2 for

F}/,é :fy,—Z'
Since . ,

A x—=1)"(x—7)

fy,—z(x) - 81(2 + )/)2 )
we have )
(x —1)*f1(x)f>(x)
folx, L,1) = Afy () = =7 m -y =,
where
[1(x) =32+ 7)(x* + k) = (k +4)(x —1)(x —7)
=(x+2)[(By+2—k)x + (k—2)y +3k],
fo(x) =32+ 7)(x* + k) + (k + 4)(x — 1)(x — ).

By choosing

5k—4

r=45_3> Kk#8&
we get
_ (k+1)(k+4)(x +2)
flx) = 83—k 5
(k+D[(17 —k)x? —4(k + 1)x + 2(7k — 2)]
folx) = 83—k >
therefore
FOOf(x) = (k+1D)(k+4)(x+2)[(17—k)x*—4(k+ 1)x + 2(7k —2)] >0,

(8—k)?
For k = 8, by choosing y — oo (see P 3.15), we have

4(x—1)*

foo,—z(x) = 81 3

fo(x,1,1) —Af oo _5(x) = (x + 2)*(x* —4x + 12) > 0.
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P 3.41. Let x,y,z be real numbers. If k € (—oo,—4]U[—1,0], then

2

S+ kysfx =y =2+ (g = 1) (= Py —2F - xR 20

(Vasile C., 2012)

Solution. Denote
m=+v—k, m=>=0.
Write the inequality as f¢(x, y,2) = 0, where

2

k
e, 3,8) = o+ kyF = e —) + (5 = 1) (e =y Py — 2P
As shown at the preceding P 3.40, f,(x, y,z) has the highest coefficient
9
A= =(k+4)%
4( )

Also,
fe(x,1,1) = (x® + k)*(x — 1)~

Case 1: k < —4. The case k = —4 is treated in P 3.2. Further, consider k < —4.

Since
A= 1) (e —m)P(x +m)*  (x®+k)*(x — 1)

fomm(X) = 9(4+2m2)2(x +2)2  9(2—k)2(x +2)2’
. 3(x2+k)*(x —1)*[(8 —k)x +4—5k][(—k)x + 4 —k]
B 4(2 — k)2(x + 2)2 ’

fé(x) 1, 1) _Af—m,m(x)
we apply Theorem 2 and Remark 3 for
Ea,y = gl,[j: Fy,5 = f—m,m;

5k — —k)?
- k4 < —2, which involves & = I(<2r8 — I)<) an

5k—4 4—k 5k—47 [4—k
(S—k’ k)’ \ (Oo’s—k] [k’oo)
The condition (b), namely fs(x,1,1) —Af_,, ,(x) = 0 for x € R\, is satisfied.
The condition (a) is satisfied if f¢(x,1,1) —Ag; g(x) = 0 for x € I. By choosing

d

and n=

k—20

ST

we have (see the preceding P 3.40)

(k+1)(x — 1)*(x +2)*g,(x)

,1,1)—A =
fo(x ) gl,[j(x) 162



296 Vasile Cirtoaje

where
go(x) = (17— k)x* —4(1 + k)x + 2(7k — 2).

Since k + 1 < 0, we must show that g,(x) < 0 for x € I. Since 17 —k > 0, this is
S5k — —k
true if gz( 3 ;) <0Oand g, (4T) < 0. We have

S5k—4\ _ 9(k+1)(k+4)
gz(s—k)‘ G—kp 0

4—k (k +4)(17k* — 59k + 68)
8o X = 2 < 0.

Case 2: k € [—1,0]. Since the case k = —1 is treated in P 3.14, and the case
k =0 in P 3.39, consider further k € (—1,0). The proof is similar to the one of the

case 1. We set
_ 5k—4 c (_1 —_1)
77— 8_k > 2 )
we involves

4—k 5k—4 4—k7 [5k—4
]I—(—k ’—8—k)’ ]R\]I_(—oo, P ]U[8_k,oo).

The condition (b) is clearly satisfied. Since k + 1 > 0, the condition (a) is satisfied

if g,(x) > 0 for
(4—k 5k—4)
xel={———].
k ~ 8—k

Since g, is decreasing, we have

— 2
58k :) _ 9(k+1)k+4) > 0.

g2(x) = 83( B—K)?

Thus, the proof is completed.

The equality holds for x = y = z, for x/v/—k = y = z (or any cyclic permutation)

if k # 0, for —x/+/—k = y = z (or any cyclic permutation) if k # 0, and for x = 0

and y +z = 0 (or any cyclic permutation). If k = 0, then the equality holds also
for x =0 and y =z (or any cyclic permutation).

O

P 3.42. Let x, y, 2 be real numbers. If k > 0, then

2

S+ kysPx =y =2+ (g = 1) (=3P —2F - xR 20

(Vasile C., 2012)



Highest Coefficient Cancellation Method for Real Variables 297

Solution. Write the inequality as fg(x,y,2) = 0, where f¢(x, y,2) has the highest
coefficient (see P 3.40)

9
A= =(k+4)>.
4( )
We have
f6(xa 1: 1) = (XZ + k)Z(x - 1)2)
and

()= (2 +k)*(x —1)?
Frv) = 5 e 1 )2

3(x2+k)*(x —1)?[(8 —k)x +4—5k][(—k)x + 4—k]
42 —k)2(x + 2)2 '

Case 1: 0 <k < 2. The cases k =2 and k = O are treated in P 3.22 and P 3.39,
respectively. Consider further 0 < k < 2. We choose

k— —1
n:ue(_,l):

f6(x: 1: 1)_Af\/—_k,—\/—_k(x) =

8—k 2

which involves

Sk—4 4—k 5k—47 [4—k
I[=|—F, — R\I=|— :
(s—k’ k ) ! (“’s—k]u[ k ’°°)
According to Theorem 2 and Remark 3, it suffices to prove that

@ fe(x,1,1)=Af % _y%x(x)=0 forx €T
(b) fe(x,1,1)—Ag; 5(x) =0 for x e R\ L

The condition (a) is satisfied. With regard to the condition (b), by choosing

k=20
- 3(k+4)

we have (see P 3.40)

fo(x,1,1) —Agy 5(x) = 2+ D0x— 1222()( + 2)282(3(),

where
2,(x) = (17— k)x* —4(1 + k)x + 2(7k — 2).
Since k + 1 > 0, we have to show that g,(x) > 0 for

5k—47 [4—k
xeR\]I—(—oo, - ]U[ . ,oo).

If
13—-3v17 <k< 13+3v17’

2 2
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then the inequality g,(x) = 0 holds for all x € R. So, we only need to show that
g,(x) =0 for

13—-3v17
<—

0<k ~ 0.315.

S5k—4
N k
5 — —
need to show that g, ( 3 k4) >0and g, (4T) > 0. Indeed, we have

4—k

Since g, is decreasing on (—oo and increasing on [ , oo), we only

S5k—4\  9(k+1)(k+4)>
&(S—k)_ G—kp 0

and

4—k (k +4)(17k?* — 59k + 68)
&2 ( 2 ) = 2 > 0.
Thus, the proof is completed.
Case 2: 2 < k < 8. The inequality is treated in P 3.40.
Case 3: k > 8. We choose
Sk—4
8—k

n= € (_003_5);

which involves
Sk—4 4—k S5k—4 4—k
I= RANE R\I=|— U :
(S—k’ k )’ \ ( “”S—k] [ k ””)
According to Theorem 2 and Remark 3, it suffices to prove that

(@ fo(x,1,1)—Ag; s(x) =0 for x €1
(b) fe(x,1,1)—Af , .(x) =0 for x e R\ L

The condition (b) is satisfied because
[((8—k)x +4—5k][(—k)x+4—k]>=0.
With regard to the condition (a), by choosing

k=20
- 3(k+4)’

we have (see P 3.40)

2(k + 1)(x — 1)*(x + 2)*g,(x)
162 ’

f6(xa 1, 1)_Ag1,5(x) =

where
g5(x) = (17 —k)x? —4(1 + k)x + 2(7k — 2).
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We have to show that g,(x) > 0 for x € I. For 8 < k < 17, g, is decreasing on I,

therefore
_ (k+ 4)(17k* — 59k + 68) -

2 0.

gz(x)Zgz(Ar;k)

5k
For k > 17, since 17 —k < 0, it suffices to show that g, (—) > 0 and

&2 (?) > 0. Indeed, we have

S5k—4Y _ 9(k+ 1)(k+4)
gz(S—k)_ G—kp 0
and

0.

(4— k) _ (k+4)(17k* — 59k + 68) -
k) k2
Thus, the proof is completed.

For k > 0, the equality holds for x = y =z, and for x =0 and y + 2 =0 (or any
cyclic permutation).

Observation. From P 3.40, P 3.41 and P 3.42, we get the following generalization:

e Let x,y,z be real numbers. If k € (—oo,—4]U[—1, 00), then

2

S+ kysfx = )=o)+ (= 1) (k=P —2F xR 20

The inequalities in P 3.2, P 3.14, P 3.22 and P 3.39 are particular cases of this
general statement.

The coefficient of the product (x —y)?(y —z)?(z—x)? is the best possible. Setting
x=1,y=1+t and 2 =1—t, the inequality

D+ kyz)(x — y)(x —2) + ey (x — )2y =22z —x)? 2 0,

turns into
At®+Bt*+Ct? >0,
2
where A = 4a, + 4 — k?. The necessary condition A > 0 involves a; > i 1.

P 3.43. If x, y,z are real numbers, then

D X + 8yz)(x — y)(x —2) = (x — y)*(y —2)2(z — x)*.

(Vasile C., 2013)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
fe(x,y,2) = Z x*(x? +8y2)(x — y)(x —2) — (x = ¥ (y —2)*(z — x)*

Since (x — y)(x —2) = x>+ 2yz —q, fs(x,y,2) has the same highest coefficient A
as

D x3(x? +8yz)(x? + 2yz) — (x — )y —2)*(z — x)?,
that is, according to (3.1),
A=3(1+8)(1+2)+27=108.

On the other hand,
fe(x,1,1) = x?(x*+ 8)(x — 1)%

Since

2 -1 4
foa(x) = %
and
e L 1)~ Ay = 2+ )~ 1 2oL

_ x?(x—1)*(x +2)(10—x)
= 3 ,
we apply Theorem 2 for

Ea,y = fO,—2’ F}/,é = hy,é:

and for n = 10, which implies & = 48/7 and

1[:(_72,10), R\]I:(—oo,%z]u[lo,oo).

Condition (a): x €I = (_72, 10). The condition f¢(x,1,1) = Af, _»(x) is satis-
fied.

Condition (b): x e R\I = (—oo, _72] U[10,00). We need to show that there
are y and 6 such that f¢(x,1,1) = Ah, 5. Since

f6(0,y,2) = (y —2)(y° —2°) — y*2*(y —2)*,

£6(0,1,—-1)=2-2—4=0,

according to (3.19), we will choose

1 h(—
_1, K
3 12A



Highest Coefficient Cancellation Method for Real Variables 301

where
h(x) = fo(x,1,1) = x*(x* + 8)(x — 1)
We get
h(=2) =2 -1
h/ —2)= _864, =—, =—,
=2) 30 773
therefore

1 2
h 55 = [x — g(x +2)2x+1)+6(x + 2)3] ,
fo(x,1,1) —Ah_y /5 5(x) = x*(x* + 8)(x — 1)* — 12[—2x* — 2x — 2+ 36 (x + 2)* ]

The inequality fq(x,1,1) —Ah_;/35(x) = 0 holds in the vicinity of —2 only for
6 = 5/54. Setting this value for §, we get

2
fe(x,1,1) —Ah_ 3 5(x) = x*(x* + 8)(x — 1)* — 12 [—2x2 —2x—2+ 15—8(x + 2)3]

1
= x?(x?*+8)(x —1)*— E(ng —6x7+ 24x +4)?
1
= 2—7(2x6 +6x° —33x* —184x3 — 312x% — 192x — 16)

1
= —(x+2)"(2x*—10x—1) > 0.
27
The equality holds for x = y = z, for x = 0 and y = z (or any cyclic permutation),
and for x = 0 and y + 2z = 0 (or any cyclic permutation).

Observation 1. From the inequalities in P 3.39 and P 3.43, we get the following
inequality:

ZXZ(XZ +kyz)(x—y)x—2)>(x—y)*(y—2)(z—x)*), 0<k<8.

Indeed, since the left hand side is linear in k, it suffices to prove this inequality only
for k =0 (see P 3.39) and k = 8 (see P 3.43).

Observation 2. Notice that the coefficient of the product (x — y)*(y —2)*(z — x)?
in the inequality from Observation 1 is the best possible. Indeed, setting x = 0,
y =14t and 2 =1—t, the inequality

>0 + kyz)(x — y)(x—2) = alx — y )2y —2)*(z — x)?

turns into
At*+ Bt +C >0,

where A=1—a. The necessary condition A > 0 involves a < 1.
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P 3.44. If x, y,z are real numbers, then

Z(x—y)(x—z)(x—2y)(x—22)(2x—y)(2x—z)+ 15(x—y)*(y —2)*(z—x)* = 0.
(Vasile C., 2012)
Solution. Let
£, y,2) = (= ¥)(x —2)(x — 2y)(x — 25)(2x — y)(2x —2)

and
fe(x,y,2) = f(x,5,2) +15(x — y)*(y —2)*(z — x)*.
Using the identities

(x = y)(x —2)=x*+2yz—q,
(x —2y)(x —22) = x*+6yz—2q,
(2x —y)(2x —2) = 4x*+3yz —2q,

it follows that f(x, y,z) has the same highest coefficient A, as
P(x,y,z)= Z:(x2 +2y2)(x?* + 6y2)(4x?* + 3yz),
that is, according to (3.1),
A, =P,(1,1,1) = 3(1 + 2)(1 + 6)(4 + 3) = 441.
Therefore, f¢(x, y,z) has the highest coefficient
A= 441+ 15(=27) = 36.

Since
fe(x,1,1) = (x —1)*(x —2)*(2x — 1)%,

4(x —1)*(x —2)?(2x —1)?

fa1x) = 9(x +2)? )
3 —1 2 -2 2 2x —1 2 5x — 2)(2 —
fo(3,1,1) = Afy () = (x—1)*(x )((xliz)z) (5x —2)( x)’

apply Theorem 2 for
Ea,y = f2,1/2’ Fy,é = f2,—2’
and for ) = 2, which implies £ = 16/5 and

H:(%,z), R\]I:(—oo,g]u[Z,oo).

2
The condition (a), namely fq(x,1,1) > Af, ;,,(x) for x € (E’ 2), is satisfied.
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2
The condition (b) is satisfied if fg(x,1,1) = Af, ,(x)forx € (—oo, g] U[2, oo).
From ( i 2
x—1)"(x—2
fZ,—Z(x) - 324 >

it follows that this inequality is equivalent to

(x —1)*(x —2)*(5x —2)(7x —4) >0,

which is true.
The equality holds for x = y = 2, for x/2 = y =z (or any cyclic permutation),
and for 2x = y =z (or any cyclic permutation).

Observation. The coefficient of the product (x — y)?(y — 2)?(z — x)? is the best
possible. Setting x =y +z in

Z(x —¥)(x —2)(x —2y)(x —22)(2x — y)(2x —2) + alx = y)*(y —2)*(z —x)* 2 O,

we get
(y —2)’[(a—15)y*z* + 4(y* +2*)(y —2)*]1 = 0,

which holds for all real numbers y and z only if a > 15.

P 3.45. If x, y,z are real numbers, then

Z(X — ¥)(x —2)(x = 2y)(x — 22)(x —3y)(x — 32) = 3(x — y)*(y —2)*(z —x)*.
(Vasile C., 2012)
Solution. Let
flx,y,2)= Z(x —¥)(x —2)(x —2y)(x — 22)(x — 3y )(x — 32),

and
f6(x).yzz) :f(xayaz)_3(x_J’)Z(J’—Z)Z(Z_X)Z-

From

(x —y)x—2)=x*+2yz—q,
(x —2y)(x —22) = x*+6yz—2q,
(x —3y)(x—32)=x*+12yz—3q,

it follows that f(x, y,z) has the same highest coefficient A, as

P,(x,y,z)= Z:(x2 + 2y2;)(x2 + 6yz)(x2 +12yz2),
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that is, according to (3.1),
A =P(1,1,1)=3(1+2)(1+6)(1+12)=819.
Thus, f(x, y,z) has the highest coefficient
A=819—3(—27) =900.

Since
fo(x,1,1) = (x — 1)*(x — 2)*(x — 3)%,

4(x —1)*(x —2)*(x —3)?

faa(x) = 1521(x +22
_3(x—1)%(x —2)*(x — 3)*(2+ 11x)(46 — 7x)
fo(x, 1,1)—Af2,3(x) = 169(x + 2)? s

apply Theorem 2 for
Ea,y = f2,33 Fy,iS = fy,—Z:
and for n = 46/7, which implies £ = 400/77 and

) —
]I:(—,4—6), R\I[:(—oo,—z]u[4—6,oo).
11" 7 11 7

—2 46
The condition (a), namely fq(x,1,1) = Af, 3(x) for x € (E’ 47), is satisfied.

The condition (b) is satisfied if there exists a real y such that f¢(x, 1,1) = Af, _,(x)

—2
for x € (—oo, —] U [4—6, oo) We have
11 7

4(x —1%(x—y)?
81(2+7)?

(x—1)*g(x)
9(2+7)?

fr—2(x)=

J

fo(x,1,1) =Af, »(x) =

where
g(x) =92+ v)*(x — 2)*(x —3)> —400(x — 1)*(x — 7)* = g1(x)g,(x),
g1(x) =3(2+7)(x —2)(x —3) —20(x — 1)(x — ),
g2(x) =32+ 7)(x —2)(x —3) +20(x — 1)(x — 7).

Since
g1(x) =(x+2)[(By—14)x + 18 — ],

we choose
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to get
40
gi1(x) = 7(x +2)*>0,
40
g,(x) = 7(8x2 —49x +50) > 0.

The equality holds for x = y = 2, for x/2 = y = 2z (or any cyclic permutation),
for x/3 =y =z (or any cyclic permutation), and for x = 0 and y +z = 0 (or any
cyclic permutation).

Observation. The coefficient of the product (x — y)?(y — 2)?(z — x)? is the best
possible. Setting x =0, y =1 and z = —1 in the inequality

Z(X = ¥)(x —2)(x —2y)(x —22)(x —3y)(x — 32) = a(x — ¥ (¥ —2)*(z — x)?

involves a < 3.
]

P 3.46. If x, y,z are real numbers, then
Z:(x—y)(x—z)(Zx+3y)(2x+32)(3x—+—2y)(3x+22)+15(x—y)2(y—z)2(z—x)2 > 0.
(Vasile C., 2012)

Solution. Let

flx,y,2)= Z(x —y)(x—2)(2x +3y)(2x +32)(3x +2y)(3x + 22)

and
fo(x,y,2) = f(x, y,2) + 15(x — y*(y —2)*(z — x)*.

From

(x —y)(x —2)=x*+2yz—q,
(2x +3y)(2x +32) = 4x* +3yz + 64,
(3x +2y)(3x +22) =9x*—2yz + 64,

it follows that f(x, y,z) has the same highest coefficient A, as
P(x,y,2)= Z:(x2 +2y2)(4x?* + 3yz)(9x* — 2y2),
that is, according to (3.1),
A =P;(1,1,1) =3(1 +2)(4+3)(9—2) = 441.
Thus, f¢(x, y,z) has the highest coefficient

A= 441+ 15(—27) = 36.
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Since
fe(x,1,1) = (x — 1)*(2x + 3)*(3x + 2)?,

4(x —1)*(2x +3)*(3x + 2)?
9-625(x + 2)2 ’

3(x —1)%(2x + 3)*(3x + 2)*(7x + 18)(29x + 46
Fo(, 1,1) = Af a5 _a5(x) = (x —1)*(2x )ézjsc(sz()zx )(29x ),

apply Theorem 2 for n = —46/29, which implies & = —16/203 and
-18 — — —
]I:(_8,i6)’ R\H:(_m,ﬁ]u[ﬁ’oo)’
7 29 7 29

Ea,}' = fa,—z’ Fy,é = f—3/2,—2/3-

f—s/z,—z/s(x) =

and for

The condition (a) is satisfied if there exists a real a such that f¢(x,1,1) > Af, _,(x)

for x € (_—18, _—46) We have
7 29
A1 x —a)?
fura) = g
(x —1)*g(x)

f6(x5 1, 1)_Afa,—2(x): 9(2+a)2 D

where
g2(x) =9(2+ a)*(2x + 3)*(3x +2)* —16(x — 1)*(x — a)*.

It is easy to check that g(—2) = 0. Choosing a = —46/29, the inequality g(x) >0
is equivalent to
(x +2)*(83x> 4+ 134x + 8) > 0,

which is true because 83x2 + 134x + 8 > 0 for x < —46/29.

—18
The condition (b), namely fq(x,1,1) = Af 3/, _5/3(x) for x € (—OO,T] U

29
The equality holds for x = y =z, for —3x/2 = y = z (or any cyclic permutation),

for —2x/3 = y =z (or any cyclic permutation), and for x =0 and y +2z = 0 (or
any cyclic permutation).

—46
[ 4 , oo), is satisfied.

Observation. The coefficient of the product (x — y)?(y — 2)?(z — x)? is the best
possible. Setting x =0, y =1and 2 =—1 in

Z:(x—y)(x—z)(ZJc+?>y)(2x+Z~’>z)(3x+2y)(?>x+22)+OL(x—y)z(y—z)z(z—x)2 >0,

yields a > 15.
O
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P 3.47. If x, y,z are real numbers, then

D0+ )+ 20—y =2 + 5 (= — 2P — 1P 20,

(Vasile C., 2012)

Solution. Let

£, y,2) =D (x +yP(x +2P(x — y)(x —2)
and .
folx, y,8) = £ (x,y,2) + 5 (x =y (y =25 —x)°.

Since
(x+y)x+2)=x*+q, (x—y)x—2)=x*+2yz—q,

f(x,y,2) has the same highest coefficient A; as

Py(x,y,2) = Y x*(x? +2yz),

that is, according to (3.1),
A =P(1,1,1)=09.

Therefore, fc(x, y,2) has the highest coefficient

1
A=9+41(—27)=2.
4 4

On the other hand, since
f6(x7 1: 1) = (X + 1)4(X - 1)23

(c+1D)*(x—1)*

famla) = 36(x + 2)>2
(e +DMx—1)*
A1) = 16(x+2)2
f(,(x, 1,1) _Af—l,—1(x) _ 3(x+ 1)4(3(1;(1)1();; 3)(5x + 7),

we will apply Theorem 2 for 1 = —3, which involves £ = —1/55,
-7 -7

I=({—-3,— ], R\I=(—o00,-3]U|f—,00,

( 5 ) M= ) [ 5 )

and for
Ea,ﬂ = fa,—Z’ Fy,5 = f—l,—l .
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—7
Condition (a): x € I = (—3, ?) We need to show that there exists a real a

such that
f6(x> 1: 1) = Afa,—2(x)'
Since " 1y ?
xX— xX—a
fa,—2(x) = 81(a + 2)2 )
_(x—D*x—a)
Afa,—Z(x) - 9(a + 2)2 )
we have ()2,(x)
_ &1\X)8r X
f6(XJ 1: 1) _Afa,—Z(x) - 9(a + 2)2 D
where

g(0)=3(a+2)(x +1)P—(x—1)(x—a)=(x +2)[(3a+5)x + a+3],

2(x)=3(a+2)(x +1)*+(x —1)(x — a).

Since —2 € I, we choose

-7
o=—
5
to get
4 2
g:(x)= g(x +2)*>0
and

2
2,(x) = g(7x2 +10x +1).
—7
For x < = we have g,(x) > 0 because

7  (5x+7)(35x +1
7x2+10x+1>7x2+10x+£=(x )2(5 X )20.

Condition (b): x e R\I=(—00,—3]U [%7, oo) As shown above, we have

3(x+1D*(x—1)*(x +3)(5x +7) -

0.
16(x + 2)2

f6(xz 1: 1) _Af—l,—l(x) =

The equality holds for x = y = 2, for —x = y = 2z (or any cyclic permutation),
and for x = 0 and y + 2z = 0 (or any cyclic permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x,y,2 be real numbers. If

1
a, = Z(kz—Zk—z)(k2+2k+2), —2<k<0,
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then
Z(X —¥)(x —2)(x —ky)*(x —kz)* + ay(x — yP*(y —2)*(z —x)* = 0,

with equality for x = y = g, for x/k = y = g (or any cyclic permutation) if k # 0,
and for x =0 and y + 2z = 0 (or any cyclic permutation). If k = 0, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

For k = 0, we get the inequality from P 3.39. Further, consider that
—2<k<0.

We have 9
A= Z(k +2)4,

f6(x: %Z) = (X - 1)2(X _k)ZJ

_ x—Dix—k?
S = 50 s 2
(x —1)*(x — k)*
4(k —1)2(x + 2)2

h(x),

f6(xn 1) 1) _Afk,k(x) =

h(x)=4(k—1)*(x +2)> — (k +2)*(x —1)?
=(—kx+2—k)[(4—k)x +2—5k].

Therefore, we apply Theorem 2 for

and for
Ea,ﬁ :fa,—27 F)/,S :fk,k'
2—k] [51{—2
U

Condition (b): x € R\ = | —o0,
have fé(x, 1, 1) _Afk,k(x) > 0.

2—k 5k—2
Condition (a): x €I = (T’ ﬁ) By choosing

_ 5k—2

Tk

. R oo) Since h(x) = 0, we

we get
(x —1)?

————g1(x)gx(x),

f6(x) 1: 1)_Afa,—2(x): 9
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g1(0)=3(a+2)(x —k)*—(k+2)*(x —1)(x —a)
=(x+2)[(3a—k®—4k +2)x + (k? — 2k —2)a + 3k?]
_A—kRE+K)

2)>>0
ik (x+2)*>0,

£a0) = 3@+ 2)(x kP + (K + 2V (e — D — @) = 2 g(x),

23(x) = (17 + 2k — k*)x* — 4(1 + 7k + k*)x — 2(2 — 4k — 7k?).

5k—2
> 0
&&)_&(4_k)>

for x € I and —2 < k < 0, the condition (a) is satisfied, too.

Since

Observation 2. Similarly, we can prove that the inequality from Observation 1 is
also valid for k € (—o0,—2) U (4, 00). To prove this, we choose

_2—k -1 _ (k+2)
=re(23) ey

H_(Sk—z 2—k) R\H—(—aDSk_Z]U[Z_kcm)
“\4—-k’ k ) - > 4—k k '

If x €I, we have

gg(x)zgg(Sk‘z)w, ke (—00,~2),

4—k

2—k
g3(x) > g5 (T) >0, ke (4,14].

In addition, we have g5(x) > 0 for k € [6, 00) because

5k—2 2—k
&(4_k)>a &(j;)>0

P 3.48. If x, y,z are real numbers, then

Z(x —y)(x —2)(x —4y)*(x —42)* + 39(x — y)*(y —2)*(z—x)* = 0.

(Vasile C., 2015)
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Solution. Let

£l y,2) = D (= y)(x —2)(x — 4y 2(x — 4z)?

and
f6(xs.yaz) :f(x,y,z)_39(X_J’)2(y—Z)Z(Z—X)z-

Since
(x—y)x—2)=x*+2yz—q, (x—4y)(x—42)=x*+20yz—4q,
f(x,y,2) has the same highest coefficient A, as
Pi(x,y,2)= Z:(x2 +2y2)(x? +20yz)?,
that is, according to (3.1),
A, =P;(1,1,1) = 3969

Therefore, fi(x, y,z) has the highest coefficient

A =3969 + 39(—27) = 2916.
On the other hand, since

folx,1,1) = (x = 1)*(x —4)",

(x —1)*(x —4)*

f14) = ooteGe v 2y
_ -1 —4)*
Afy4(x) = Gi2r
3(x —1)*(x—4)*(2x +1
fo(x,1,1) —Afy 4(x) = (x )((;_'_2))2( s ),

we will apply Theorem 2 for 1 — oo, which involves & — oo,
-1 -1
]I:(—,OO), R\H:(_OO:_];
2 2

Ea,/i = f4,4 Fy,5 = foo,—Z'

and for

-1
Condition (a): x €l = (7, oo) Because

f6(x1 1: 1) _Af4,4(x) = O:

this condition is satisfied.
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—1
Condition (b): x e R\ 1= (—oo, 7] We have

_ 4(x—1)*
foo,—z(x) = T’
Af o o(x) = 144(x —1)%,
fs(x,1,1) = Af oo _o(x) = (x — 1)*(x + 2)*(x* — 20x +29) > 0.

The equality holds for x = y = 2, for x/4 = y = z (or any cyclic permutation),
and for x =0 and y +z = 0 (or any cyclic permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x,y,2 be real numbers. If
1
o = Z(kz—Zk—z)(k2+2k+2), 1<k<4,

then
Z(X —¥)(x —2)(x —ky)*(x —kz)* + ay(x — y*(y —2)*(z —x)* = 0,

with equality for x = y = g, for x/k = y = z (or any cyclic permutation) if k # 0,
and for x =0 and y +z = 0 (or any cyclic permutation).

The cases k = 1 and k = 4 are treated in P 3.18 and P 3.48, respectively. Further,

assume that
1<k<4.

We have 9
A - Z(k + 2)4,

f6(x: }’,Z) = (.X' - 1)2(X _k)ZJ

(=1 —k)*
S = 50 s 2

(x —1)*(x —k)*
4(k —1)2(x + 2)2
Therefore, we apply Theorem 2 for

22—k (—1 1)’ g_(k+2)2

=TS ~ k(4—k)’

H_(Z—k 5k—2) R\H_(_oo 2—k]u[5k—2 OO)
\ kT 4-k ) B ok 4—k’> )

Ea,/i = fk,k: Fy,ﬁ = fy,—Z'

(—kx +2—Kk)[(4—k)x +2—5k].

f6(xa 1: 1) _Afk,k(x) =

2 2

and for
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2—k 5k—2
k ° 4—k

Condition (a): x € I = ( ) Since fg(x,1,1) —Afi x(x) = 0, this

condition is satisfied.

Condition (b): x e R\I= (—oo, 2 ; k] U [54k _kz’ oo) By choosing
k=2
C 4—k
we get
x—1)2
e, 1, D)= 00 = S5 g (g0

g.(0) = (x +2)[(Ba —k* — 4k + 2)x + (k* — 2k — 2)a + 3k?]
¢! —k)?(2+k)
 4—k

(x+2)2>0,

£a0) = 3@+ 2)(x — kP + (K + 2V (e = Dx — @) = 2 g(x),

23(x) = (17 + 2k — k*)x* — 4(1 + 7k + k*)x — 2(2 — 4k — 7k?).
We have g5(x) > 0 for x e R\I and 1 < k < 4, because

2—k - 2(1 + 7k + k?) - 5k—2
k 17 + 2k — k2 4—k

(2—k)>0 (5k—2)>0
g3 k > g3 4_k *

Observation 2. The inequality from Observation 1 is also valid for

and

ke(0,1).
The proof is similar to the one from Observation 1, but we choose

_2—k _ (k+2)
R T

H_(Sk—z 2—k) R\H_(_oo 5k—2]u[2—k OO)
“\4—-k’ k ) - > 4—k k '

We have g5(x) > 0 for x e R\I and 0 < k < 1, because

5k—2 - 2(1 + 7k + k?) - 2—k
4—k 17 + 2k — k2 k

(5k—2)>0 (2—k)>0
g3 4—k > g3 k *

and
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Observation 3. From P 3.47, P 3.48 and the observations attached to them, the
following generalization follows:

o Let x,y,2 be real numbers. If
a, = %(k2 —2k—2)(k*+2k+2), keR,

then
D= ) —2)(x —ky P(x —ka)? + ap(x — y Py —2)(z —x)* 2 0,

with equality for x = y = g, for x/k = y = g (or any cyclic permutation) if k # 0,
and for x =0 and y + 2z = 0 (or any cyclic permutation). If k = 0, then the equality
holds also for x = 0 and y = z (or any cyclic permutation).

OJ

P 3.49. Let x, y, 2 be real numbers, and let

20 + 12k — 4k? — k*
4(1 —k)? ’
A4 =13 1+k, ke[—2,1]

k € (—oo0,—2]U[4,00)

5— 3k, ke[1,4]
Then,
Z X2 = y)(x = 2)(x — ky)(x —kz) = o (x — y)*(y —2)*(z — x).
(Vasile C., 2009)
Solution. Denote
FG6,y,2) =D x(x — y)(x —2)(x —ky)(x — k),
and write the inequality as f¢(x, y,z) = 0, where
fo(x, y,2) = f(x, y,2) — e (x — ¥y —2)*(z —x)?,
Since
(x—y)x—2)=x*+2yz—q, (x—ky)(x—kz)=x>+(k+k*)yz—kq,
f(x,y,2) has the same highest coefficient A; as

Pi(x,y,2)= Z:xz(x2 +2y2)[x*+ (k + k*)yz],
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that is, according to (3.1),
A =P(1,1,1)=3(1+2)(1+k+k*)=9(k*+ k+1).

Therefore, since the product (x — y)?(y — 2)*(z — x)? has the highest coefficient
equal to —27, f(x, y,z) has the highest coefficient

9(2+ k) (4 —k)?

k € (—o0,—2]U[4,00)

4(1—k2
A=A +270 =4 9(2+k)?, ke[-2,1]
9(4—k)?, ke([1,4]

In addition, we have

fo(x,1,1) = x*(x — 1)*(x —k)?,

4x%(x — 1)*(x — k)? (x) = 4(x — 1)*(x —k)?
9(k—4)2(x +2)2 "’ fioa(x) = 81(k+2)2

We will consider the following cases:

fk,O(x) =

ke {_29 4}5 k= O,
ke(—o00,-2), ke(4,00), ke(—2,0), ke(0,1], kel1,4).

Case 1: k € {—2,4}. Since A= 0 and fz(x,1,1) > 0 for any real x, the conclusion
follows by Corollary 1.

Case 2: k = 0. This case is treated in P 3.39.
Case 3: k € (—o0,—2). Since

92+ k)*(4—k)?
40 -k)2

A

3x2(x —1)*(x — k)’ [—(2k + 1)x + 4 — k]
(1—k)2(x +2)2 ’

f6(X: 1) 1) _Afk,O(x) =

we apply Theorem 2 for

oo Ak e(—zii), e 2y

2k+1 2 2k+1"°
4—k 4—k
I= R\I=(—
(k’2k+1)’ \E=( oo’k]u[2k+1’oo)’

and for
Eyp=fi—2  Fys5=fro-
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The condition (b), namely f¢(x,1,1) > Af; o(x) for x € (—o0,k]U [ 24k_+k1 , oo),
is satisfied.

The condition (a) is satisfied if fs(x,1,1) > Af, _,(x) for x € (k, %) From
(x—1)*(x —k)*[—(2k + 1)x + 4 — k][(7 — 4k)x + k — 4]
9(1—k)? ’

fo(x,1,1) =Afy 5(x) =

4—k 4—k
it foll that 1,1)—A >0 f el— U
it follows that fg(x,1,1) —Af; ,(x) = 0 for x ( 00’2k+1] [7_4k,00),

therefore for x € (k, 4=k )
2k +1

Case 4: k € (4, 00). Since

_9(2+k)*(4—k)?
4 -k)2

3x2(x —1)*(x —k)*[4—k—(2k + 1)x]

fo(x, 131)_Afk,0(x) = (1—K)2(x +2)2 >

we apply Theorem 2 for

(k +2)?
=k =
=k S=T
4—k 4—k
= k), R\I=[—o00, — Uk
(2k+1, ) \ ( oo,2k+1] [k, 00),

and for
Ea,[o’ = fk,O’ Fy,é = fk,—z'

2k+1’

The condition (a), namely fq(x,1,1) > Af; o(x) for x € ( k), is satisfied.

—k
The condition (b) is satisfied if fg(x,1,1) = Af; _»(x) for x € (—oo, 24k n 1] U
[k, 00). From

(x —1)?*(x —k)*[(2k + D)x + k —4][(4k — 7)x + 4 — k]
9(1 — k)2 ’

fe(x, 1, 1) =Afy o(x) =

4—k k—4
it foll h 1,1)—A >0f — U
it follows that f¢(x,1,1) —Af; _,(x) = 0 for x e( oo,2k+1] [47{—7’00)’

—k
’2k+1]u[k°°)

Case 5: k € (—2,0). Since

therefore for x € (—oo

A=9(2+k)?
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3x2(x —1)%(x —k)*(—kx + 4)[(k + 8)x + 4 — 4k]
@—k)2(x 1 2)° :

f6(x7 17 1) _Afk,()(x) =
we apply Theorem 2 for

4k —4 -1 4(k + 2)?
= —2 R
K+8 e( : ) S = Kk +8)’

4 4k—4 47 [4k—4
(255 mu= (o[ Tgee):

Ea,ﬁ = fa,—Z’ Fy,5 = fk,O'

n

and for

k—
The condition (b), namely fq(x,1,1) = Af} o(x) for x € (—oo, %] U [1—4-84’ oo),
is satisfied.

4 4k—4

The condition (a), namely fg(x,1,1) > Af, ,(x)for x €I = (E’ sy

), is true
if g,(x)g,(x) = 0, where

g1(x)=32+a)x(x—k)—2(2+Kk)(x—1)(x—a),

2(x)=32+a)x(x—k)+2(2+k)(x—1)(x —a).

Since
g1(x)=(+2)(Ba+2—2k)x —(2+k)a],

we choose

_ 4k—1)

"~ k+8
to get

gt =202 Dy oy
2,(6) = 2(;:82) 200, ga(x) = (k +17)x% — 2(7k + 2)x + 4k — 4.

Since g5 is strictly decreasing on I, we have

4k—4) _36(1—k)(k +2)2

= > 0.
k+8

g3(x) = gs( (k+8)?

Case 6: k € (0,1]. Since
A=9(2+k)?

3x2(x —1)%(x —k)*(—kx + 4)[(k + 8)x + 4 — 4k]

f6(x> 1: 1)_Afk,0(x): (4_k)2(x+2)2
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we apply Theorem 2 for

4 4k +2)?
n=pclboo) =0 Tsy

4k—4 4 4k—47 [4
(8, me(o A u[t0).

Ea,ﬁ = fk,(): Fy,é = fy,—z'

and for

4k—4 4\ . -
18’ E)’ is satisfied.

The condition (a), namely fq(x,1,1) = Af} o(x) for x € (

The condition (b) is satisfied if fg(x,1,1) = Af, _,(x) for x € (—oo 4k_4]

" k+8

[%, oo) This is true if g;(x)g,(x) = 0, where

g1(x)=32+a)x(x—k)—2(2+k)(x—1)(x—a),

Z(x)=32+a)x(x—k)+2(2+k)(x—1)(x —a).

Since
g1(x)=(+2)(Ba+2—2k)x —(2+k)a],
we choose
. 4(k—1)
- k+8
to get
2(1—k)(k+2) )
= +2)*>0
gl(x) k + 8 (X ) = Y,
2(k+2
g,(x) = (k 8 )gg(x), 23(x) = (k +17)x* —2(7k + 2)x + 4k — 4.
. . . ) 4k —4 . . . 4
Since g5 is strictly decreasing on [ —oo, 18 and strictly increasing on o oo |,
we get
4k —4 36(1 —k)(k +2)?
> = >
gs(X)—gs(k_l_S) (k+8)2 >
for x < 4k_4, and
k+8
4\ 4(k®—15k* + 68)
g2 () =S
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Case 7: k €[1,4). Since
A=9(4—k)?,

3x3(x —1)*(x —k)*(4—x)
(x +2)2 ’

fe(x, 1, 1) = Afy o(x) =

we apply Theorem 2 for
n=4, §&=4,
]I:(O,4), R\]I:(—O0,0]U[4, OO),
and for
Ea,ﬁ = fk,Os Fy,ﬁ = fo,—z-
The condition (a), namely f¢(x,1,1) > Af; o(x) for x € (0,4), is satisfied.

The condition (b) is satisfied if fs(x,1,1) > Af, _,(x) for x € (—00,0]U[4, 00).
We have

(k—1D)x%(x —1)*(x —D[(7 — k)x — 2k — 4] -0

fé(x:lal)_Afo,—z(x) = 9 s

since
(x—4)[(7—k)x —2k—4]>0

for x <0, and
(7—k)x—2k—4>47—k)—2k—4=6(4—k)>0

for x > 4.

The proof is completed. The equality hold for x =y =z, forx =0and y =z
(or any cyclic permutation), for x/k = y = g (or any cyclic permutation) if k # 0,
and for x =0 and y + 2 = 0 (or any cyclic permutation) if k € [—2,1].

Observation 1. The coefficient a; of the product (x —y)*(y —2)*(z—x)? is the best
possible. Setting x =k, y =1+t and 2 =1 —t, the inequality in P 3.49 becomes

Ak, a;)t® + B(k, a )t* + C(k, a;)t*> > 0,
where

A(k, ak) - 4(1 + k — ak),
C(k, o) = (1—k)*[20 + 12k — 4k* —k* — 4(1 — k)*a; ].

From the necessary conditions A(k, a;) > 0 and C(k, a;) = 0, we get

20 + 12k — 4k? — k*
akS].'i‘k, akS 4(1—]{)2 5
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respectively. In addition, setting x = 0, the inequality in P 3.49 becomes
(y —2)[y*+2' —(k—Dyz(y*+2*)+ (1 —k—a)y*z*] > 0.
For y =z =1, from the necessary inequality
yi+zt—(k—1Dyz(y*+2)+(1—k—a)y*2*>>0,

we get
a, <5—3k.

Observation 2. There are some relevant particular cases of the inequality in P 3.49.

e For k = —2, the inequality turns into
Z X2 (e =y —2)(x +2y)(x + 22) + (x — ¥ (y —2)*(z — x)* = 0,
which is equivalent to
(x+y+2)? [x4+y4+z4+xyz(x +y +z)—Z:xy(x2 +y2)] > 0.

The equality occurs for x =y =z, for x + y +2 =0, and for x =0 and y =z (or
any cyclic permutation).

e For k =1, the inequality turns into
D x¥(x— y Pl —2)? = 2(x — y Py —2)*(z — x)?,
which is equivalent to
[x3 +y +22+ 3xyz—ny(x +y)]2 > 0.
The equality occurs for x* + y3 + 2%+ 3xyz =D xy(x + y).
e For k = 4, the inequality turns into
sz(x = ¥)(x —2)(x —4y)(x —42) + 7(x — y)(y —2)*(z —x)* 2 0,
which is equivalent to
(X +y*+22—xy —yz—z2x)(x* + y* + 2> —2xy — 2yz — 2zx)*> > 0.

The equality occurs for x = y =z, and for +/x = /¥ + +/z (or any cyclic permuta-
tion).

Observation 3. Substituting k — 1 for k and using then the identity

D x¥(x = y)(x —2)[x — (k— Dy llx — (k—1)z] =
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= sz(x —¥)(x —2)(x —ky +2)(x —kz + y) + k(x — y)*(y —2)*(z — x)?,
we get the following statement:

e Let x,y,2 be real numbers, and let

(B3—k)(1+k)?
42—k
a = 0, ke [_1:2]

k € (—o0,—1]U[5,00)

4(2—k), ke[2,5]
Then,
> — ) —2)x —ky +2)(x —kz + y) = ai(x — )y —2)"(z — x)?,

with equality for x = y = 2, for x = 0 and y = 2z (or any cyclic permutation), for
x/(k—1) =y =z (or any cyclic permutation) if k # 1, and for x =0and y +z2 =0
(or any cyclic permutation) if k € [—1,2].

O

P 3.50. Let x, y, 2 be real numbers, and let

(k2
Z; kE(—OO,—Z]U[]_,OO)
—k(8 + 11k + 8k?) [ -1 ]
b=\ — o k<[
1’ ke[__l’l]
\ 4 2

Then,
D ya(x — y)(x —2)(x —ky)(x —kz) + Be(x — ¥y —2)%(z — x)? > 0.
(Vasile C., 2009)
Solution. Denote
Fl,y,2) =D ya(x —y)(x —2)(x —ky)(x —kz),
and write the inequality as f¢(x, y,z) = 0, where
Folx,y,2) = £ (x,y,2) + B(x — y)X(y —2)*(z — x)*.

Since (x —y)(x —2) =x*>+2yz—q and (x —ky)(x —kz) = x> + (k + k*)yz — kq,
f(x,y,2) has the same highest coefficient A, as

Pi(x,y,2)= Z:yz(x2 +2y2)[x*+ (k + k*)yz],
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that is, according to (3.1),
A =P(1,1,1)=31+2) 1 +k+k*)=9(k*>+k+1).

Therefore, fq(x, y,2) has the highest coefficient

( 2
@, k€ (—o0,—2]U[1,00)
A ) 9(k+2)*(2k +1)* -1
I L B ey
9(2k+1)2’ ke[—_1’1]
\ 4 2

Also, we have
fo(x,1,1) = (x —1)*(x — k)?,
4(x —1*(x —k)? (x) = 4(x — 1)*(x —k)?
sikr2z > )T 50 et 2p

fk,—z(X) =

We will consider the following cases:

ke {—2,_—1}, k=1,
2
-1 -1
kE(—Z,E), k€(7,1), kE(—OO,—Z)U(l,OO).

—1
Casel: k € {—2, 7} Since A= 0 and f¢(x,1,1) > 0 for any real x, the conclusion

follows by Corollary 1.

4(x —1)*
Case 2: k=1. Since A=81/4, foo _» = % and

f6(x: 1) 1) _Afoo,—Z(X) = (X - 1)4 - (X - 1)4 = O;

the inequality follows from Corollary 1. Notice that this case is treated in P 3.17.
-1 )
Case 3: k € (—2, 7) Since

_ 9k +2)X(2k +1)° (k + 2)2(x — 1)*(x — k)?

A a—1p  MeW =TT

3(x —1)2(x —k)*[—(2k + D)x + 4 —k]
(k—1)2(x +2)2 ’

f6(x: 1, 1) _Afk,oo(x) =

we apply Theorem 2 for

_ (k+2)

— Kk
n=k =TT



Highest Coefficient Cancellation Method for Real Variables 323

4—k 4—k
H_(2k+1’k)’ R\H_(_oo’zkﬂ]u[k’oo)’

and for
Ea,/a’ :fk,—zs Fy,é' :fk,oo-

—k
The condition (b), namely f¢(x,1,1) —Af} o (x) = 0 for x € (—oo, 24k—+1] U

[k, 00), is satisfied.

—k
The condition (a) is satisfied if fg(x,1,1) = Afy _»(x) for x € (;(T’ k). In-

deed, we have
(2k + 1)(c — D*(x — k)?

Afk,—z(x) = 9(k—1)?
and
f6(x’ 1: 1) _Afk,—Z(x) =
~ (x— 1)%(x —k)*[4—k—(2k + 1)x][2 =5k + (2k + 1)x] >0
B 9(k —1)2 =
since

4—k—(2k+1)x >0,
2—5k+(2k+1)x >2—5k+ (2k+ 1Dk =2(k—1)*>> 0.
Case 4: k € (7,1). Since

_ 9(2k +1)° (e —1)*x—k)?
A= T: Afk,oo(x)_ (X+2)2
3(x —1)*(x —k)*(2x +1)

(x +2)2

>

fo(x,1,1) =Afy oo (x) =

3

we apply Theorem 2 for
n — 00, & — 00,

=(Zoo). mui=(-e0 2]

Ea,ﬁ = fk,oos Fy,ﬁ = foo,—z'

and for

—1
The condition (a), namely f¢(x,1,1) —Af; oo(x) = 0 for x > TR is satisfied.

—1
The condition (b) is satisfied if fs(x,1,1) = Afo, _,(x) for x < = Indeed, we

have
(2k +1)?(x —1)*

9

Afco,—2(x) =

>
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(1—k)(x—1)*(2x + D[2(k + 2)x — 5k — 1] -0
9 =0,

f6(x) 17 1)_Afoo,—2(x):
since1—k>0,2x+1<0and

2(k+2)x—5k—1<—(k+2)—5k—1=—3(2k+1)<0.

—1
Case 5: k € (—o00,—2)U (1, 00). This case reduces to the case k € (?,1) by

.. 1111 )
substituting —, —, —, — for x, y, 2, k, respectively.
x y z k

The proof is completed. The equality hold for x = y = z, for y =2z = 0 (or any
cyclic permutation), for x/k = y = z (or any cyclic permutation) if k # 0, and for
x =0and y+z = 0 (or any cyclic permutation) if k € (—oo,—2]U[1, 00). If k =0,
then the equality holds also for x =0 and y =z (or any cyclic permutation).

Observation 1. The coefficient 3, of the product (x —y)*(y —z)?(z—x)? is the best
possible. Setting x =k, y =1+t and 2 =1 —t, the inequality in P 3.50 becomes

A(k, B)t® + B(k, B)t* + C(k, B> > 0,
where
A(k, By) = 4B — kz,
C(k, B) = (1 —k)*[4(1 —k)*B, + k(8 + 11k + 8k?)].
From the necessary conditions A(k, 3,) = 0 and C(k, 8,) = 0, we get

k2 —k(8 + 11k + 8k?)

B = 2 B = 41— k)2 ,

respectively. In addition, for x — oo, the inequality in P 3.50 becomes
yz+ By —2)* = 0.

. 1
Setting y =1 and 2 = —1, we get 3, > @
Observation 2. There are some relevant particular cases of the inequality in P 3.50.

e For k = —2, the inequality turns into
D yale— y)(x —2)(x +2y)(x + 22) + (x — ¥)*(y —2)z —x)* 2 0,
which is equivalent to
(x+y+2)*[x2(y —2)*+ ¥y (z—x)* +2*(x — y)*] > 0.

The equality holds for x = y =z, for x+y +2 = 0, and for y =z = 0 (or any cyclic
permutation).
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e For k = —1/2, the inequality turns into
D3l — ) —2)(2x + y)(2x +2) + (x — Yy —2)2(z —x)* = 0,
which is equivalent to
(xy +yz+2x)*(x*+y*+2*—xy —yz—2x) > 0.
The equality holds for x = y =z, and for xy + yz +2x =0.

e For k =1, the inequality turns into

>y — =2+ 0=y — 2P —x)* 2 0,
which is equivalent to
[x(y —2)*+y(z—x)* +2(x —y)z]2 > 0.
The equality holds for x(y —2)*+ y(z —x)* + z(x — y)*=0.
Observation 3. Adding the inequality in P 3.50 multiplied by 2 and the identity
Z(J’z+ZZ_2}’Z)(X—J’)(X—Z)(x—kJ’)(X—kZ) = (K +k+1)(x—y)*(y—2)*(z—x)?,

we get the following statement:

e Let x,y,2 be real numbers, and let

(k2
S tk+1, k € (—o0,—2]U[1, 00)
4 3 2 _
a4 =] 2KHOC 1K 6k +2 ke[—z,—l]
2(k —1)2 2
k2+k+1, ke[_—l,l]
\ 2 2

Then,

Z(J’z +22)(x — ) —2)(x — ky)(x —kz) = Ag(x — y)*(y —2)*(z — x)?,
with equality for x = y = g, for y = 2 = 0 (or any cyclic permutation), for x/k =
y =z (or any cyclic permutation) if k # 0, and for x = 0 and y +2 = 0 (or any cyclic

permutation) if k € (—oo0,—2]U[1,00). If k = 0, then the equality holds also for
x =0 and y = 2z (or any cyclic permutation).

Observation 4. Adding the inequality in P 3.50 multiplied by 4 and the identity

Z(yz+Zz—2yZ)(X—y)(X—Z)(X—ky)(X—kZ) = (K +k+1)(x—y)*(y—2)*(z—x)%,
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we get the following statement:

e Let x,y,2 be real numbers, and let

((k+1, ke (—o0,—2]U[1,00)
k* + 7k +11k2 + 7k + 1 ke[—z —_1]
B, =1 (k—1)? ’ ’
k?+k, ke[_—l,l]
2

Then,
Z(y +2)(x — y)(x —2)(x —ky)(x —kz) = By(x — y)*(y —2)*(z — x)?,

with equality for x = y = g, for y = 2z = 0 (or any cyclic permutation), for x /k =
y =z (or any cyclic permutation) if k # 0, and for x = 0 and y +2 = 0 (or any cyclic
permutation) if k € (—oo,—2]U[1,00). If k = 0, then the equality holds also for
x =0 and y = z (or any cyclic permutation).

Observation 5. Substituting k — 1 for k and using then the identity
> yalx—y)(x —2)[x — (k= 1yllx — (k—1)z] =

= > yalx =y —2)x —ky +2)(x —kz +y) + k(x =Yy =2z —x)2,
we get the following statement:

e Let x,y,2 be real numbers, and let

(1 zk)zj k € (—00,—1]U[2, 00)
.| (5—4K)(1+k)? 1
ﬂk = 1 4(2 —k)2 , ke |:_1’ E]
1+ 4k 1
\ 4 ke [5’2]

Then,

ZyZ(X — ) —2)(x —ky +2)(x —kz + y) + B (x — y)*(y —2)*(z —x)* 2 O,

with equality for x = y =z, for y = z = 0 (or any cyclic permutation), for x /(k—1) =
y =z (or any cyclic permutation) if k # 1, and for x = 0 and y +z = 0 (or any cyclic
permutation) if k € (—oo,—1]U[2,00). If k = 1, then the equality holds also for
x =0 and y = z (or any cyclic permutation).

O
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P 3.51. Let x, y,z be real numbers, and let

( (k+1)1(2k—3)’ k € (—00,—5]U[1, 00)
. (k +1)(k®—7k*—16k —32) e
— 21y , ke[-5,-2]
k2
=y ke[—2,1]

Then,
Z:(X2 =y =) (x = ky)(x —kz) + 7 (x = y)*(y —2)*(z —x)* 2 0.
(Vasile C., 2009)
Solution. Denote
£l y,2) = D (% = y?)(x? —2%)(x — ky)(x — k),
and write the desired inequality as f¢(x, y,z) = 0, where
folx,y,2) = f(x,5,2) + 7i(x = y)*(y —2)*(z — %)

Since
(x+y)x+2)=x*+q, (x—y)x—2)=x*+2yz—q,

(x —ky)(x —kz)=x*+ (k+k*)yz—kq,
f(x,y,2) has the same highest coefficient A; as
Pi(x,y,2) = Z:xz(x2 +2y2)[x* + (k + k*)yz],
that is, according to (3.1),
A, =P(1,1,1)=9(k* + k + 1).

Therefore, fq(x, y,z) has the highest coefficient

2
W} kE(—OO,—S]U[1, OO)
9(k +2)*(k + 5)?
A=A, —-27y, = _
1 Yk < 4(k—1)2 ) kE[ 572]
9(k +2)?
R kel-2,1]

In addition, we have
f6(X: 1) 1) - (X2 - 1)2(X - k)zz



328 Vasile Cirtoaje

4(x —1)*(x + 1)%*(x — k)?

S = T st v 2
A —1)"(x +1)° 4 — 1) (x —k)?
fra () = o1 S = T

We will consider the following cases:
ke {-5,-2}, ke(—o0,—5)U[l,00), ke(-5-2), ke(-2,1).

Case 1: k € {—5,—2}. Since A= 0 and f(x,1,1) > 0 for any real x, the conclusion
follows by Corollary 1.

Case 2: k € (—o0,—5)U[1, 00). Since

_ 9(k +5)* (e —=1)"(x + 1)*(x —k)?
A="Tg » A= 4(x +2)2 ’

3(x2—=1)%(x —k)*(x +5)(x+1)
4(x +2)2 ’

f6(XJ 1, 1) _Af—l,k(x) =

we apply Theorem 2 for
n= _1: 5 = _1:

I=(-5,—-1), R\I=(—o00,—5]U[—1, c0),

and for
Ea,ﬁ = f—l,—2: Fy,b' = f—l,k'

The condition (b), namely fq(x,1,1)—Af_; ;(x) = 0 for x € (—00,—5]U[—1, ),
is satisfied.

The condition (a) is satisfied if fg(x,1,1) > Af_; _,(x) for x € (=5,—1). We
have
(k+5)*(x —1)*(x +1)?
36 ’
(k—1)(x+5)(x2—=1)*[7k +5—(k +11)x]

f6(X: 1:1)_Af—1,—2(x): 36 .

Thus, it suffices to show that 7k +5— (k + 11)x < 0 for k € (—o0,—5), and 7k +
5—(k+11)x >0 for k € [1, o0). Indeed, for k € (—oo0,—5), we have

Af. —1,—2(x )=

7k+5—(k+11)x =k(7—x)+5—11x < (-5)(7—x)+5—11x =—6(x+5) <0,
and for k € [1, 00), we have

7k +5—(k+11)x > 7k +5—(k+11)(—1) = 8(k + 2) > 0.
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Case 3: k € (—5,—2). Since

Okt 2Pk 5 (e 2000 - D+ 10— k)2
=T k- o o= (k— 1)2(x +2)2 ’

3(x2—1)*(x —k)’[—(2k + 1)x + 4 — k]
(k—1)2(x + 2)2 :

fo(x,1,1) _Af—l,k(x) =

we apply Theorem 2 for

44—k g—(k+2)2
= ok+1° T ok+1’
4—k 4—k
H_(k’2k+1)’ R\H_(_Oo’k]u[zkﬂ’oo)’

and for
Eup=fi—2  Frs=f 1

—k
The condition (b), namely f¢(x,1,1)—Af_; ;(x) = 0 for x € (—o0, k]U[ 24k T oo),
is satisfied.

The condition (a) is satisfied if fs(x,1,1) = Afy _»(x) for x € (k 4—k ) We

T2k +1
have (k +5Y(x — 1) (x — k)?
X — X —
Afk,—z(x) = 9(k—1)2

and

fo(x,1,1) = Afy »(x) =

A —1)(x —k)’[2k + 1+ (k—4)x][k — 4+ (2k + 1)x] -0

B 9(k —1)2 -
because

4—k _ 3(k—1)(k+5)

2k+1+(k— 2k+1+(k—4)-
+1+(k—4)x>2k+1+(k—4) T 1 Tkt 1 >0,
k—4+2k+1)x>k—4+2k+1) ﬂ—0
2k+1
Case 4: k € (—2,1). Since
9(k + 2)? (k+2)%(x — D)*(x + 1)%(x —k)?
A:— A =
4 7 S (k 4+ 5)2(x + 2)2 ’

(x —1)%(x + 1)*(x — k)*h(x)
(k +5)2(x +2)2 ’

fe(x,1,1) _Af—l,k(x) =
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where

h(x) = (k+5)*(x + 2)* — (k + 2)*(x — 1)?
=3(x+k+4)[(2k +7)x + k + 8],

we apply Theorem 2 for

—(k +2)?
:—k— =
N 4 3 2k+7

b

—k—8
2k +7

), R\I[z(—oo,—k—4]u[_k_8 oo).

I=|—-k—4, ,
( 2k+7

and for
Ea,ﬁ = fa,—2’ F)/,E = f—l,k'
The condition (b), namely fs(x,1,1) —Af_;,(x) = 0 for x € (—o0,—k —4] U

[_k _ 8, oo), is satisfied.
2k +7

The condition (a) is satisfied if there is a real a such that fg(x,1,1) > Af, ,(x)

—k—
for x € (—k—4, Sy 3) Since

_(k+2%(x — DY (x —a)?
Ao = 9(2 + a)?

the inequality is equivalent to

(x —1)%g;(x)gy(x) >0,
where

g100)=3(a+2)(x+1)(x—k)—(k+2)(x—1)(x—a)
=(x+2)[(Ba—k+4)x —(2k + 1)a— 3k],

2(x)=3(a+2)(x+1D)(x—k)+(k+2)(x—1)(x —a).

. —k—8
Since —2 € (—k —4, —), we choose
2k+7
_ —k-—8
- 2k+7
to get
2(1 —k)(k +2)(x + 2)? 2(k +2)g5(x)
= >0 _—— o9
g1(x) ok +7 2 U, g>(x okt 7 s
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where
g5(x) = (k+8)x*+5(1 —k)x —5k — 4.
Since
‘(x)=2(k +8)x +5(1—k) < 2(k +8) —k=8 +5(1—k)
510 = 2k +7

_ —3(4k*+ 19k +31) - —3(2k2 + 19k + 30)

B 2k +7 2k +7

_ —3(k + 2)(2k +15) <o,

2k+7

g5 is strictly decreasing on I, therefore

—k—8)_ 9(1 —k)(k + 2)?

= > 0.
2k +7 (2k + 7)2

g3(x)> g3 (

The proof is completed. The equality holds for x = y = 2, for x/k =y =z (or

any cyclic permutation) if k # 0, for —x = y = 2z (or any cyclic permutation), and

for x =0 and y + 2 = 0 (or any cyclic permutation) if k € [—2,1]. If k = 0, then
the equality holds also for x =0 and y = z (or any cyclic permutation).

Observation 1. The coefficient v, of the product (x — y)*(y —2)*(z — x)? is the
best possible. Setting x =k, y =1+t and 2 = 1 —t, the inequality in P 3.51 turns
into

A(k, v )t® + Bk, y)t*+ C(k, v )t> > 0,

where
A(k,vi) =4y — K,

C(k,y) = (k—1)*[4(k—1)*y, — (k + 1)(k* — 7k* — 16k — 32)].

From the necessary conditions A(k, y,) = 0 and C(k,v,) = 0, we get

k? (k + 1)(k® — 7k* — 16k — 32)

> — >
Vi = 4’ Yk = 4(k—1)2

Also, for x =—1, y =14+t and 2 = 1 —t, the inequality in P 3.51 becomes

Ak, y)t® +B(k, v )t* + C(k, v, )t* = 0,

where
Alk,y) =4y, —k*  C(k,y;) =4[16y, — (k+1)(5k —3)].

From the necessary conditions A(k, y,) = 0 and C(k, y,) = 0, we get

k? S (k+1)(5k—3).

>
Yk—4, Y = 16
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Observation 2. There are some relevant particular cases of the inequality in P 3.51.

e For k =1, the inequality turns into

0+ 3+ 2)x =3 =2V + (= y POy 2V — 2P 2 0,
which is equivalent to
[x2(2x —y —2) + y*(2y —z2—x) +2*(2z —x —y)]2 > 0.
The equality holds for x?(2x —y —2) + y?(2y —z2 —x) +2?(2z2—x —y) = 0.
e For k = —2, the inequality turns into

Z(Xz — ¥ =21 (x +2y)(x +22) + (x — y P (y —2)*(z—x)* 2 0,

which is equivalent to
(x+y+2(x*+ y* +2* —x?y? — y?22 —2°x?) > 0.

The equality holds for x = y =z, for x + y + 2 = 0, and for —x = y = z (or any
cyclic permutation).

e For k = —5, the inequality turns into
Z(Xz =¥ (x® =2*)(x +5y)(x +52) + 7(x — y ) (y —2)*(z —x)* 2 0,
which is equivalent to
(x> +y*+2*+3xy +3yz+32x)*(x* + y* + 2> —xy —yz—2x) > 0.
The equality holds for x = y = z, and for x>+ y? +2%+3xy +3yz + 3zx = 0.

Observation 3. Substituting k — 1 for k and using then the identity
D> =y —22)x — (k— Dy llx — (k—1)z] =

= Z:(x2 —y*)(x* =22 (x —ky +2)(x —kz + y) + k(x — y)*(y —2)*(z —x)?,
we get the following statement:

e Let x,y,2 be real numbers, and let

f @ k € (—00,—4]U[2, 00)
. ) k(k+1)*(k—8)
=1 > kel-4-1]
(k+1)° ke[—1,2]

\ 4
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Then,
Z(xz — ¥ =2)(x —ky +2)(x —kz + y) + 7;(x —y)*(y —2)*(z—x)* 2 0,

with equality for x = y = g, for x/(k —1) = y = z (or any cyclic permutation) if
k # 1, for —x = y = z (or any cyclic permutation), and for x =0 and y +z = 0 (or
any cyclic permutation) if k € [—1,2]. If k = 1, then the equality holds also for x =0
and y = z (or any cyclic permutation).

O]

P 3.52. If x, y,z are real numbers, then

Z:yz(4x2 +3y2)(x — y)(x —2)+ (x — y)*(y —2)*(z — x)* > 0.
(Vasile C., 2014)

Solution. We write the inequality as f,(x, y,2z) = 0, where
Fo(,y,8) = D ya(4x® +3yz)(x — y)(x —2) + (x — )y —2)*(z — x)*

Since (x — y)(x —2) = x>+ 2yz —q, fs(x,y,2) has the same highest coefficient A
as

D ya4x? +3yz)(x? + 2yz) + (x — y)X(y —2)*(z — x )2,

that is, according to (3.1),
A=63—27=36.

Since
fe(x,1,1) = (4x* +3)(x — 1),

_ A4Ax—1)*
foo,—z(x) - 8—1’

(x—1)*(10x +11)(2x + 1)

folx,1,1) = Af oo 5(x) = 9

we apply Theorem 2 for & — oo, which involves
-1 -1
H:(_JOO)’ R\H:(_OO)_]>
2 2

Ea,ﬁ = foo,—z: Ey,b' = ho,5;

and for

The condition (a), namely fq(x,1,1) —Afs _o(x) = 0 for x > —1/2, is satisfied.
The condition (b) is satisfied if fs(x,1,1) > Ahy5(x) for x <—1/2. We have

Ahg 5(x) =36[x +06(x + 2)%7%,
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f6(x) 1: 1) _Ah0,5(x) :f(x)a
F(x)=(4x*+3)(x —1)*—=36[x + 6(x +2)(2x + 1)~

Since f (—1/2) = 0, a necessary condition to have f (x) > 0 in a vicinity of x = —1/2
is f’(—1/2) = 0. This implies § = —5/36, when

36f(x) =36(4x?*+3)(x —1)*—(10x*—11x + 10)?
= 44x* — 68x> —69x> +4x + 8
= (2x +1)*(11x*—28x +8) > 0.
The equality holds for x = y =z, and for y =z = 0 (or any cyclic permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x,y,2 be real numbers. If

_ 13+34/33

~ 0.9448,
32

1

SR
then
1

2 yalbe + kya)x = y)x =) + 4 (x =)y —2)(z —x)* 20,
with equality for x = y = g, and also for y =z = 0 (or any cyclic permutation).
For
. 24k _ _ L N2y N2 w2
fole, y,8) = D L yala +kyz)x = y)oc —2) + L (x =y Py —2)z —x)’,

we have 9
A= Z(4k + 1),

fo(x,1,1) = (x> + k)(x — 1),

Condition (a). For x > —1/2, we have

(x—17[2Q2-K)x +5k—1)2x+1) _

fe(x,1,1) _Afoo,—z(x) =

9
Condition (b). For x < —1/2, choosing
18k
" 9(1 +4k)

we get

9(1 + 4k)fe(x,1,1) —[(1 —8k)x?* + (7 — 2k)x + 1 — 8k ]?
9(1 + 4k)

fe(x,1,1) —Ahg 5(x) =

_(2x+1)’g(x)
T 9(1+4k)
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where
g(x) = (24 13k — 16k*)x* — 2(5 + k — 4k*)x — 1 + 25k — 28k>
=(2+13k—16k*)(x*+2)—(5+k—4k*)(2x +1) > 0.

Observation 2. Actually, the following more general statement holds:
o Let x,y,2 be real numbers. If

_ 13+3+/33

k € [O’ kl]: kl 32

~ 0.9448,
then

a0 +kya)e = )(x—2)+ (e =y Py — 2P (5 —x)* 2 0,

with equality for x =y = g, and also for y =z = 0 (or any cyclic permutation).

Since the left hand side of the inequality is linear in k, the inequality holds for
k € [0,k,] if and only if it holds for k = 0 and k = k,. These cases are treated in P
3.50 and Observation 1, respectively.

Observation 3. Replacing x, y,z with 1/x,1/y,1/z, respectively, the statement
from Observation 2 becomes as follows:

e Let x,y,2 be real numbers. If

_ 13+3+/33

k € [O) kl]: kl 32

~ 0.9448,

then
2 1 2 2 2
2 yalke® + yz)ox = y)x =) + 4 (x =y Py —2)(z —x) 20,
with equality for x =y = g, and also for y =z = 0 (or any cyclic permutation).

]

P 3.53. If x, y,z are real numbers, then
1
Z x* (o +2y)(x +22) + 5x2y%2® + E(x — ¥y (y —2)*(z—x)*>0.
(Vasile C., 2011)
Solution. Write the inequality as f¢(x,y,z) = 0, where
4 2.,2.2 1 2 2 2
fole,y,2) = 2 Jx*(a+ 2y)0c +22) + 52y ’5% + (e = y )y — ) (s — x)°.

Since
(x +2y)(x +22)=x*+2yz+2q,
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fo(x, y,2) has the same highest coefficient as
1
Z x*(x? 4+ 2yz) + 5x%y?z% + E(x — ) (y —2)*(z — x)?,

that is, according to (3.1),
27 1
A=945——=—,
2 2

We have 1
f6(0,y,2) = y®+2°+2yz(y* +2") + gyzzz(y —z)?,

f6(0,1,-1)=2—4+2=0,

fo(x,1,1) = x*(x +2)* + 6(2x + 1) + 5x>

=x%+4x° +4x* +5x2+12x +6

= (x +1)%g(x),
where

g(x)=x*+2x>—x*>+6.
Since
f6(_15 1:1) :O, f6(0) 15_1)205

we apply Corollary 2 for F, s = g_; 5, where & is given by (3.16):

Y (y+2)%g'(=2) -1  g'(=2)
C3(r+2) 124 R 6

According to Remark 4, it suffices to show that
g§(x) = Ag_; 5(x)
for x € R, where
g 15(x) =[x*+5x+8+6(x +2)(x+5)]

We have
g(x)=4x>+6x*—2x, g'(-2)=—4, 5=-1,
g ia(x)= [x2+5x+8—(x+2)(x+5)]*=4(x+1)
g(x)—Ag 1 1 (x)=x*+2x>—3x*—4x+4=(x+2)*(x—1)*=>0.

The equality holds for —x = y = z (or any cyclic permutation), and for x = 0
and y +z = 0 (or any cyclic permutation).
O
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P 3.54. If x, y,z are real numbers, no two of which are zero, then

1 9
> .
Z 2y?2—3yz+222 " 4(x2+y2+22)—3(xy + yz +2x)
(Vasile C., 2009)

Solution. Write the inequality as f¢(x,y,z) = 0, where
fo(x,y,2) =P(x,y,2) Z(2x2—3xy+2y2)(2x2—3xz+222)—9 l_[(2y2—3yz+222),

P(x,y,2) =4(x*+ y* +2*) — 3(xy + yz + zx).

Since
2y?—3yz+22* = —2x*—3yz +2(p*—2q),

fo(x,y,2) has the same highest coefficient A as

Py(x,y,2)=—9 l_[(—2x2 —3y2),

that is
A=P,(1,1,1) =—9(—2—3)> = 1125.
Since
P(x,1,1)=4x*—6x+35,

f6(x5 17 1)

— — 2 _ 2 _ 2
o 3y = (4t —6x +5)[(2x* —3x +2) +2]—9(2x* ~3x +2)

=2(4x*—12x3 +13x% —6x + 1) = 2(x — 1)*(2x — 1),
we apply Corollary 2 for

4(x —1)*(2x —1)2
2025 ’

Fy,B(x) = f1/2,—2(x) =

We need to show that
felx,1,1) = Af1/2,—2(x)

for x € R. We have
20(x —1)*(2x —1)?

9 b
2(x —1)*(2x —1)*f (x)
9 ;

Afl/z,—z(x) =

fe(x,1,1) _Af1/2,—2(x) =

where
f(x)=9(2x*—3x+2)—10(x —1)* =8x*—7x +8 > 0.

The equality holds for x = y = 2, and for 2x = y = z (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:
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e Let x,y,2 be real numbers, no two of which are zero. If —2 < k < 2, then

1 9
>
Zy2+kyz+zz T 2(x2+y24+22)+ k(xy + yz +2x)’

with equality for x = y =z, and for —x /(k +1) = y =z (or any cyclic permutation)
if k # —1. If k = —1, then the equality holds also for x = 0 and y = z (or any cyclic
permutation).

For
fo(x,y,2) = P(x,y,z)z:(x2 +kxy + y*)(x® + kxz +2%) — 91_[(3/2 +kyz +2%),

P(X,y,Z) = 2(X2+y2+22)+k(xy+yz +ZX),

we have
A=-9(k—1),
P(x,1,1) = 2x* + 2kx + k + 4,
1,1
M =P(x,1, D[x%+kx +1+2(k+2)]—9(k + 2)(x® + kx + 1)
x2+kx+1

=2x* + 4kx> + (2k* — 4k — 4)x?* — 4k(k + 1)x + 2(k + 1)?
=2(x —1)*(x + k+1)%
Case 1: 1 < k < 2. Since A < 0, it suffices to show that f¢(x,1,1) > 0 for x € R
(see Corollary 1), which is true.
Case 2: —2 < k < 1. We apply Corollary 2 for

4(x —D*(x +k+1)2
81(1 — k)> '

Fy5(x) = fopo(x) =

We need to show that
fe(x,1,1) = Af—k—l,—z(x)
for x € R. We have
4(1—k)(x—1D*(x +k+1)?
9
2(x —1P(x —k—=1)*f(x)
9 )

J

Af. —k—1,—2(X )=

f6(x3 1) 1) _Af—k—l,—Z(x) =
where
F)=9(x*+kx +1)—2(1 —k)(x —1)?
= (2k + 7)x*+ (5k +4)x + 2k + 7

5k + 4 )2 9(k +2)(10 —k)
+ >
4k + 14 42k +7)

=(2k+7)(x+
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P 3.55. Let x, y,z be real numbers. If k > 1, then
kx?+2yz N ky? + 2zx N kz* +2xy - k—1
kx2+y2+22  ky2+z24+x2  kz2+x2+y2  k+1
(Vasile C., 2011)

Solution. We write the inequality as f4(x, y,2z) = 0, where
folx, y,2) =(k+1) > (kx? + 2yz)(ky? + 22 + x*)(kz? + x> + y?)
—(k=D)] Jtka?+ y*+22).
From
Folx, y,2) =(k +1) > [(kx® + 2y=z)[(k— 1)y* + p> — 2q][(k — 1)z* + p> — 2q]
— (k=D Jitk—1x*+p>—2q],
it follows that f,(x, y,2) has the same highest coefficient A as
FOe,y,2) =(k+ D(k—1)? > y*2(kx?+ 2yz) — (k—1)*x2y %2’
=(k+1)(k— 1) (3kr2 +2 > y%2%) — (k— 1)*r?,
that is
A=(k+1)(k—1)*Bk+6)—(k—1)*=(k—1)*(k+5)(2k +1) > 0.
We have
f6(0,y,2) =(k + D[2yz(ky* +2*)(kz* + y*) + k(y* + 22)(2ky?z* + y* + 2*]
—(k=D(y* +22)(ky* +22)(kz* + y?),
f6(0,1,-1) = (k+ 1)[—2(k + 1)* + 4k(k + 1)]—2(k — 1)(k + 1)* =0,
fo(x,1,1) =(kx*+2)(x* + k+ D[(k + 1)(x* + k+ 1) + 2(k + 1)(2x + k)
— (k=12 +k+1)]=(x+k+1)*g(x),

where
g(x) =2(kx?*+2)(x*+ k + 1).

Since
f6(_k_1: 151)203 f6(0) 1:_1):0:

we apply Corollary 2 for F, 5 = g__, 5, where & is given by (3.16):

4 (y +2)°g'(—=2)
T 3(r+2) 12A
k+1 g2'(—2)

T3k—1)  12(k+5)(2k+ 1)
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According to Remark 4, it suffices to show that

g(x) = Ag_j_y5(x)

for x € R, where

. (x):[}/x2+}/(y+6)x—8 5(x+2)(2}/x+x+}/—4)]2
e (y +2)3 (y +2)?
_ [(k+1)x2—(k+1)(k—5)x+8 B 5(x+2)(2kx+x+k+5)]
(k—1) (k—1)2 ‘

We have
g'(x)=4x(2kx*+k*+k+2), g'(—2)=-8(k*+9k+2),

5= —k*+ 10k +3
- (k—1)(k+5)(2k+1)’
4[(2k + D)x?— (k> +k—2)x +k+5]?

8t15(x) = (k—12(k+52(2k+ 12

Az ( )_4[(2k+1)x2—(k2+k—2)x+k+5]2

E161) = (k+5)(2k+1) :
2g,(x)

808110 = oy

g1(x) = (k+5)2k + 1)(kx* +2)(x* + k+ 1) —2[(2k + D)x*— (k* + k—2)x + k + 5]?
=(k—1)(k+2)(x+2)*[(2k+1)x*+k+5] > 0.

The equality holds for —x/(k + 1) = y =2z (or any cyclic permutation), and for
x =0 and y +z = 0 (or any cyclic permutation).
O

P 3.56. If x, y,z are real numbers such that xy + yz +zx <0, then

1 1 1 1
+ + + <0
3x2+y2+22 3y2+z2+x2 322+x2+y? xy+yz+2zx

(Vasile C., 2011)

Solution. Since xy + yz +zx < 0, we may write the inequality as f¢(x,y,z) =0,
where

fo(x,y,2)=(xy +yz +zx)Z:(3y2 +2°+x3) (322 + x>+ y*) + l_[(?mc2 +y?+2%).
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Since

l_[(i%x2 +y?4+2%) = l_[(sz +p%—2q),
fe(x,y,2) has the same highest coefficient as [ [(2x?), that is

A=28.
We have

f6(0,y,2) = y2[(3y* +2°)(32* + y*) + 4(y* +2°)* ]+ (y* +2*)(3y* +2°)(32% + y?),
f6(0,1,—-1) =—(16+16) + 32 =0,
fo(x,1,1) = 2x + D[(x%+4)* +2(x2 + 4)(3x2 + 2)] + (x2 + 4)*(3x> + 2)
= (x*+4)(3x* + 14x® + 21x* + 16x + 16).

Since
f6(0) 1,_1) = O:

we apply Corollary 2 for F, s = h, 5, where v is given by (3.19):

1 K(-=2)_ 1 K(-2)

y=5+ 2T ;
) 3 124 3 96
with
h(x) = (x*+4)(3x* + 14x® + 21x* + 16x + 16)
= 3x°% + 14x° + 33x* + 72x3 + 100x2 + 64x + 64.
We have
h'(x) = 2(9x° + 35x* 4+ 66x> + 108x2 4+ 100x + 32),
1 1 1
h'(—2) = 16, =—+-=-
(—2) r=3%t¢=3
1
hyjo5(x) =[x+ E(X +2)(2x + 1)+ 6(x +2)°T%
Choosing
-1
§=—,
4
we get

2
Ry jo,—1/4(x) = [x + %(x +2)(2x +1)— %(x + 2)3]

1
= E(x3 +2x%—2x +4)%,

1
fo(x,1,1) —Ahyjy 1 4(x) = 5(x +2)?(5x* + 4x> + 30x% + 8x + 28).
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For x > 0, the condition fq(x,1,1) —Ah;, _;,4(x) = 0 is clearly true. It is also true
for x < 0, since

5x% +4x3+30x% 4+ 8x +28 > 5(x* + x3 +6x%2+2x +5)

=5x2(x>+x+1)+505x*+2x+5)]>0.

The equality holds for x =0 and y +z = 0 (or any cyclic permutation).

P 3.57. If x, y,z are real numbers, then

x?—yz N y2—zx 22 —xy
3x2+y2+22 3y2+22+x%2  3z22+x2+y?

(Vasile C., 2011)

Solution. Write the inequality as f¢(x, y,2) = 0, where
fo(x,y,2) = l_[(3x2 +y*+2%)— Z:(x2 —y2)(By* + 22+ x*)(3z% + x* + y?).
From
fol,y,2) = [@x?+p?—29) = D [(x? — yz)(2y? + p* — 2q)(22° + p* — 2q),
it follows that f,(x, y,z) has the same highest coefficient as
g(x,y,2) = 8x%y%z?* — 42:;/222@2 —yz) = —4x*y*z* + 42)/323.
Therefore, fq(x, y,z) has the highest coefficient
A=—4+12=38.
We have
f6(0,y,2) = (y* +2° + y2)(ky? + 2°)(kz* + y*) — (y* +21)(y* + 2* + 6y°2?),
f6(0,1,-1)=16—16=0,
fo(x,1,1) =(Bx* +2)(x* +4)* — (x> = 1)(x* + 4)* = 2(1 — x)(3x* + 2)(x* + 4)
= (x* +4)(2x* + 6x> + 5x? + 4x + 8).

Since

f6(0: 13 _1) = 0:
we apply Corollary 2 for F, s = h, 5, where y is given by (3.19):
h'(=2) 1 h(-2)

1
3 124 3 9

2
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with
h(x) = (x> +4)(2x* +6x> +5x% +4x + 8)
= 2x° 4 6x° 4+ 13x* + 28x% + 28x2 + 16x + 32.
We have
R (x) = 2(6x> + 15x* + 26x> + 42x2 + 28x + 8),
1 5 -1
h'(—2) = —80 =--2=_—
(—2) . Y=376T 30
1
hoyjg5(x) =[x — E(X +2)(2x +1)+6(x +2)°]%.
Choosing
6=0,
we get

1 2
h_y/50(x) = [x — E(x +2)(2x + 1)}
= %r(ZX2 +3x +2)?,
fo(x,1,1) —Ah_; 5 0(x) = (x + 2)*(2x* —2x° + 5x*> — 8x + 6)

> (x +2)%(x*—2x3 +5x%2 —8x + 4)
=(x+2)*(x—1)*(x%*+4)>0.

The equality holds for x = 0 and y + 2z = 0 (or any cyclic permutation).

P 3.58. Let x, y, 2 be real numbers. If k > 1, then

vz N z2x N Xy
kx?2+y2+22 ky?+22+x2 kz2+x2+y?

1
+-=0.
2

(Vasile C., 2011)
Solution. Write the inequality as f¢(x,y,z) = 0, where
folx,y,2) = ZZyz(kyz + 2%+ x?)(kz® + x* + y*) + l_[(kx2 +y*+2%).
From
folx,y,2) =2 yal(k—1)y*+p*~2q][(k—1)z*+p*~2q]+] [(k—1)x*+p*~2q],

it follows that f,(x, y,z) has the same highest coefficient as

g(x,y,2) =2(k—1)? Y y*z® + (k—1)°x2y 2,
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that is
A=6(k—1)*+(k—1)?*=(k—1)*(k+5)>0.

We have
f6(0,y,2) = 2yz(ky? +2*)(kz* + y*) + (y* + 2°)(ky* + 2°)(kz* + y*),
f6(0,1,—1) = =2(k +1)*+2(k +1)* =0,

fo(x,1,1) = 2(x* + k+ 1)* + 4x(x® + k + 1) (kx? + 2) + (kx* + 2)(x* + k + 1)?
=(x?+k+ D[kx* +4kx®+ (k* + k + 4)x* + 8x + 4k + 4].

Since
f6(0: 13_]—) = O,

we apply Corollary 2 for F, s = h, ,, where y is given by (3.19):

N Hi=2)_1 h'(—2)
124 3 12(k—1)2(k+5)’

Wl

with
h(x) =(x? + k + D[kx* + 4kx® + (k* + k + 4)x* + 8x + 4k + 4]
=kx® + 4kx® + 2(k* + k + 2)(x* + 2x%) + (k + 1)(k* + k + 8)x>
+8(k + 1)x +4(k +1)%.

We have
h'(x) = 2[3kx® + 10kx* 4+ 2(k* + k + 2)(2x3 + 3x2) + (k + 1)(k? + k + 8)x + 4k + 4],

h'(—2) = —4(k — 1)(k* + 7k — 14),
1 KP+7k—14  3—k

T 37 3(k—D)(k+5) (k—1)(k+5)
k—3

o) = [X T k—1)(k+5)

2
(x+2)(2x + 1)] ,
Ah, o(x) = ﬁ [(6—2k)x?+ (kK* —k+10)x +6— 2k]2,
1

fo(3,1,1) = Al o(x) = - ——=(x + 2)°g(x),

where

g(x) = k(k +5)x* + 2(k® + 2k* + 9k — 8)x* — 8(k* — k + 2)x + k> + 6k* + 17k — 4.

Since
k3 +2k*+9k —8>3k*+ 9k —8 > 2(k* —k + 2)
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and
k3+6k*+17k —4>7k* + 17k — 4 > 4(k* — k + 2),

we have

g(x) > 4(k? —k +2)x*—8(k* —k + 2)x + 4(k* —k + 2)
=4k’ —k+2)(x—1)>>0.

The equality holds for x = 0 and y +z = 0 (or any cyclic permutation).

P 3.59. If x, y,z are real numbers, then

yz zX Xy 1

+ + +-2>
x2+4y2+4z2  y2+422+4x2  22+4x2+4y? 8

(Vasile C., 2011)
Solution. We will apply Corollary 2 for F, s = h, 5, where

so_ L _2
- 2(k+5) 21’

. 3—k _ —44
~ (k—1)(k+5) 63°

Y

We have
folx,y,2) = Zz:yz(ky2 + 22+ x*)(kz* + x>+ y*) + l_[(kX2 +y?+2?),

A=(k—1)*(k+5),

fo(x,1,1) =(x* + k + 1)[kx* + 4kx® + (k* + k + 4)x? + 8x + 4k + 4]
=kx® + 4kx® + 2(k? + k + 2)(x* + 2x) + (k + 1)(k% + k + 8)x?

+8(k + 1)x +4(k + 1),
. k-3 1 3T
hm(x)—[x —(k—l)(k+5)(x+2)(2x+1)+2(k+5)(x+2)} ,
fo(x,1,1) —Ah, 5(x) = 4(k1+ 5)(x +2)%(A;x* + B;x* + C;x* + D;x + E,),

where
A, =3k*+22k—1, B,=16(1—k), C,=4k(k+1)(k+3),

D, =8(k+1)(1—4k—k?), E,=4(k+1)*(k+4).
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For k = 1/4, the inequality fq¢(x,1,1) = Ah, 5(x) reduces to (x + 2)*g(x) > 0,
where
g(x) = 75x*+192x3 + 65x% — 10x + 425.

Clearly, g(x) > 0 for x > 0. Also, for x < 0, we have

g(x) > 64x* +192x> + 64x2 + 256 = 64(x +2)*(x*—x +1) > 0.

The equality holds for x = 0 and y + 2z = 0 (or any cyclic permutation).

P 3.60. If x, y,z are real numbers, then

1 7
< .
Z x2+4y2+422 7 4(x2+y?+22)+3(xy +yz +2x)
(Vasile C., 2011)

Solution. Write the inequality as fg(x, y,2) = 0, where
folx,y,2)=7 l—[(x2 +4y*+42*)—P Z:(y2 +42% + 4x%) (2% + 4x* + 4y?),

P=4(x*+y*+2*)+3(xy + yz + 2x).
The highest coefficient A of f4(x, y,z) is equal with the highest coefficient of the
product 7] J(x? + 4y? + 42?). Since
x*+4y* +4z* = —3x* + 4(p* — 2q),
we have
A=7(-3)>=-189.

By Corollary 1, we only need to prove the original inequality for y =z = 1. Thus,
we need to show that

1 2 7
+ < .
x24+9 4x2457 4x2+6x+11

which is equivalent to
(x—1)*(2x—7)*=0.

The equality holds for x = y = z, and also for 2x = 7y = 7z (or any cyclic
permutation).

Observation. For xy + yz + zx > 0, using the Cauchy-Schwartz inequality

4 N 3 S (4+3)?
x2+y2+22  xy+yz+zx  4x2+y2+22)+3(xy+yz+zx)
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we get the following inequality

7 4 3
< + ,
Zx2+4y2+422 x2+y2+22 xy+yz+zx

with equality for x =y = z.

P 3.61. If x, y,z are real numbers such that xy + yz +zx > 0, then

2 45
> .
Z 4x2+y2+22 7 14(x2+ y?+22)+xy +yz +2x
(Vasile C., 2011)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) = 2P 21(4)/2 +2% + x%)(42* + x* + y*) — 45 l_[(4x2 +y%+2%),

P=14(x*+y*+2*) +xy + yz +zx.
The highest coefficient A of fs(x, y,z) is equal with the highest coefficient of the
product —45 [ [(4x? + y* +z2). Since
4x* + y* + 2> = 3x* + 4(p* — 2q),
we have
A=—45(3)*<0.
By Theorem 1, we only need to prove the original inequality for y = 2 = 1 and
2x +1 > 0. Thus, we need to prove that
1 n 4 > 45 ’
2x24+1 x2+45  14x24+2x+29

which is equivalent to
(x—12x +1)(x+2)>0.

The equality holds for x = y = g, and also for —2x = y = z (or any cyclic
permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, Y,z be real numbers such that xy + yz +2zx > 0. If k > 1, then

3 1 N 27(2k +7)
kx2+y2+22 ~ (k+8)(4k +5)(x2+ y2+22) + 2(k — 1)2(xy + yz + 2x)’

with equality for x = y = g, and also for —2x = y = z (or any cyclic permutation).



348 Vasile Cirtoaje

For
fo(x,y,2) =P(x,y,2) Z(ky2+zz+x2)(kzz+x2+y2)—27(2k+7) l_[(kx2+y2+zz),

P(x,y,z) = (k+8)(4k +5)(x* + y* + 2*) + 2(k — 1)*(xy + yz + 2x),

we have
A=-=272k+7)(k—1)*<0,

P(x,1,1) = (k + 8)(4k + 5)x* + 4(k — 1)*x + 2(5k* + 35k + 41),

fe(x,1,1)

=P(x,1, D[x?+ k+1+2(kx?+2)]—27(2k + 7)(x? + k + 1)(kx? + 2)
x2+k+1

=2(k—1)*(x—1)*(2x + D[2(k+5)x + 5k +16]>0

for2x +1>0.

P 3.62. If x, y,z are real numbers such that xy + yz +zx > 0, then

1 45
Z X2 +4y2 + 422 = 44(x2+ y2 +22)+xy +yz +2x
(Vasile C., 2011)
Solution. Write the inequality as fg(x,y,z) = 0, where
fe(x,y,2)=P Z:(y2 +42% + 4x*) (2% + 4x* + 4y?)— 45 l_[(x2 +4y? +42%),

P=44(x*+y*+2*) +xy + yz +zx.

The highest coefficient A of f;(x, y,z) is equal with the highest coefficient of the
product —45 | [(x? +4y? + 4z2). Since

x*+4y*+4z* = —3x* + 4(p* — 2q),

we have
A=—45(—3)> = 1215.
Since
% = (44x> + 2x + 89)[4x* + 54 2(x* + 8)] — 45(4x* + 5)(x* + 8)
X

= 3(44x? + 2x + 89)(2x? + 7) — 45(4x> + 5)(x* + 8)
=3(x —1)*(2x + 1)(14x + 23),
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we apply Corollary 2 for

4(x —1)*(2x + 1)?
729 '

Fy,6(x) = f—1/2,—2(x) =
Thus, according to Remark 2, it suffices to show that

fo(x,1,1) ZAf—l/z,—z(X)
for 2x +1 > 0. We have
20(x —1)*(2x + 1)?
3 )
(x—1)*(2x + 1)f (x)
3

Af—l/Z,—Z(X) =

fe(x,1,1) _Af—l/z,—z(x) =

J

where
F(x)=9(4x*+5)(14x +23) —20(x — 1)*(2x + 1).

Since 4x2+5 > (x —1)2, we have
F(x)>9(x —1)*(14x + 23) — 20(x — 1)*(2x + 1) = (x — 1)*(86x + 187) > 0.

The equality holds for x = y = g, and also for —2x = y = z (or any cyclic
permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x, Y,z be real numbers such that xy + yz+2zx > 0. If0 < k < 1, then

3 1 N 27(2k +7)
kx2+y2+22  (k+8)(5k+5)(x2+ y2+22)+2(k—1)2(xy + yz +2x)

with equality for x = y = g, and also for —2x = y = g (or any cyclic permutation).

For
fe(x,y,2)=P Z:(ky2 + 2%+ x?)(kz* + x* + y*) —27(2k + 7) l_[(kx2 +y% +22),

P=(k+8)(5k+5)(x*+ y*+2*)+2(k—1)*(xy + yz + 2x),

we have
A=-=272k+7)(k—1)*>0,

Af 1y _q(x) = KA k);(;c C1)(2x + 1)

fe(x,1,1) = 2(k — 1)*(x* + k + 1)(x — 1)*(2x + 1)[2(k + 5)x + 5k + 16],

2(1—k)?*(x —1)*(2x + 1)f(x)
27 ’

2

fo(x,1,1) _Af—l/z,—z(x) =
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where
F(x)=27(x*+k+1)[2(k +5)x + 5k +16]—2(2k + 7)(1 — k)(x — 1)*(2x + 1).
Since
202 +k+1)—(1—=k)(x—12>2(x*+1)—(x—1)*>=(x+1)*>0,
it suffices to show that
27[2(k +5)x + 5k +16] > 4(2k + 7)(2x + 1)
for 2x + 1 > 0. This is true if
2[2(k+5)x +5k+16] = (2k + 7)(2x + 1),

which is equivalent to
6x + 8k + 25> 0.

Observation 2. Having in view Observation 1 above and Observation from the
preceding P 3.61, it follows that the concerned inequality holds for all k > 0.
For k = 0, the following inequality holds under the condition xy + yz + zx = 0O:

2 + 2 + 2 > 189
x2+y2  y2+4z2 z24x2 20(x24+y2+22)+xy+yz+3zx

P 3.63. If x, y,z are real numbers, then

x(—x+4y+42) | yy+4z+40)  s(ztaxt+dy) 21

2+ 22 22 + x2 x2+ y2 2
(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,z) = 0, where

felx,y,2) =21 l_[(y2 +22)— ZZX(—X +4y +42)(x* +22)(x* + y?).

Since
yi+zi=—x?+p*—2q, —x+4y+4z=—5x+4p,

fo(x, y,2) has the same highest coefficient A as
21(—x?)(—yA)(—=?) =2 ) x(=5x)(=y*)(—=?),

that is
A=09.
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Since

fe(x,1,1) =42(x* + 1) — 2x(—x + 8)(x* + 1)* — 8(4x + 3)(x* + 1),

f6(x: 13 1)
2(x2+1)
=x*—8x3+22x%2 —24x + 9 = (x —1)*(x — 3)?%,

=21(x%+ 1)+ x(x —8)(x*>+ 1) —4(4x + 3)

fo(x,1,1) = 2(x* + 1)(x = 1)*(x —3)*,
we apply Corollary 2 for

4(x —1)*(x —3)?
2025 '

F,5(x) = f35(x) =
Thus, we need to show that fs(x,1,1) > Af; _,(x) for x € R. We have

4(x — 1)*(x —3)?
225 ’

2(x —1)*(x —3)*f (x)
225 ’

Af. 3,—2(x )=

f6(x5 15 1) _Af3,—2(x) =

where
Ff(x)=225(x*+1)—2(x—1)*>4(x*+1)—2(x —1)*=2(x + 1)* > 0.

The equality holds for x = y = z, and also for x/3 = y = 2 (or any cyclic
permutation).
U

P 3.64. If x, y,z are real numbers, no two of which are zero, then

x*+3yz N ¥%+3zx N 22+ 3xy -1
Y2—yz+22 22—zx+x2 x2—xy+y?

(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,z) = 0, where

fe(x,y,2) = Z:(x2 +3y2)(x* —xy + y*)(x* — xz + 2%) — l_[(y2 —yz+22).

Since
y2—yz+2>=—x*—yz+p*—2q,

fo(x,y,2) has the same highest coefficient A as

pz(xa}’,z)_Ps(X:y,z),
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where

Py(x,y,5) = ) (x*+3yz)(—2* —xy)(—y*—xz),  Py(x,y,2)=] [(=x*—y2).

According to (3.2) and (3.3), fs(x, y,2) has the highest coefficient
A=P,(1,1,1)—P4(1,1,1) = 48 — (—8) = 56.

On the other hand,

fo(x,1,1) = (> +3)(x* —x+1)* +2@Bx + D)(x* —x + 1) — (x* —x + 1)?
= (x*—x + 1)(x* — x>+ 3x* + 4x + 4).

Since the original inequality is an equality for (x, y,z) = (0,1,—1), that means
f6(0) ]—, _1) = O:

we apply Corollary 2 for F, s = h, 5, where y is given by (3.19):

1 h(=2
1, HE2)
3 12A
h(x) = fo(x,1,1) = (x* —x + 1)(x* — x>+ 3x% + 4x + 4)
We have L K2) .
H(—2) = —524, e
(=2) r 3 12A 56
We need to show that there is a real 6 such that fg(x,1,1) = Ah, 5(x) for x € R.

1
Choosing 6 = 3’ we have

h}/,é(x) = [X - E—Z(X +2)2x+1)+ %(X " 2)3:|2

_ 1

= 562(7x3 —8x2415x +6)?,

fe(x,1,1) —Ah, 5(x) = %(7)55 + 6x* 4+ 156x> + 39x% — 180x + 188)
= %(x +2)*(7x* —28x> + 90x? — 92x + 47)
> %(x + 2)*(7x* —28x> + 74x% — 92x + 46)
= 51—6(x +2)2[7x%(x —2)* +46(x —1)*] > 0.

The equality holds for x = 0 and y +z = 0 (or any cyclic permutation).
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P 3.65. If x, y,z are real numbers, then

(4x—y—2P  (4y—z—xP  (4s—x—y)

+ >12.
2y2—3yz+22%2 222—3zx +2x2 2x2—3xy+y?

(Vasile C., 2011)
Solution. Write the inequality as f¢(x,y,z) = 0, where
fo = Z(4x —y—2)%(22%> —3zx + 2x%)(2x*—3xy + y*)— 12 l_[(Zy2 —3yz+222).
Since
4x—y—z=5x—p, 2y*—3yz+22*=-2x*—3yz+2(p*—2q),
fo(x, y,2) has the same highest coefficient A as
25P,(x,y,2) —12P;(x, y,2),
where
Py(x,y,z = Z x*(—2y*—3zx)(—222—3xy), Py(x,y,z)= l_[(—sz —3yz),
that is
A=25P,(1,1,1)—12P,(1,1,1) = 25 - 75 — 12(—125) = 3375.

Since

f6(-x5 1: 1)
2(2x2—3x+2)
=16x*—40x> +33x% —10x + 1 = (x — 1)*(4x — 1),

=2(2x —1)*(2x*—3x +2) + (x —3)* — 6(2x* — 3x + 2)

fo(x,1,1) = 2(2x% — 3x + 2)(x — 1)*(4x — 1)?,

we apply Corollary 2 for

4(x —1)*(4x —1)?
81-81

F)/,S(x) = f1/4,—2(x) =

Thus, we need to show that fg(x,1,1) = Af; 4 _,(x) for x € R. We have

500(x — 1)*(4x — 1)?

Af174_o(x) = 243

2(x —1)*(4x — 1)*f (x)

fG(X, 1, 1)_Af1/4,—2(x): 243



354 Vasile Cirtoaje

where
f(x)=243(2x*—3x +2)—250(x — 1)?
> 150(2x2% —3x +2)—250(x —1)> =50(x%>+ x + 1) > 0.

The equality holds for x = y = 2, and also for 4x = y = z (or any cyclic permu-
tation).

Observation. Similarly, we can prove the following generalization:

2—+v/4+2k
e Let x,y,z be real numbers. If -2 <k <1—+/5and m= +, then
Z (my + mz —x)? - 3(2m—1)?
y2+kyz+z22 —  k+2
with equality for x = y = 2, and also for x/a = y = z (or any cyclic permutation),
—k—+V2k+4
where o = —

P 3.66. If x, y,z are real numbers, then

_ 2 _ 2 _ 2
By +3z—4x) +(32+3x 4y) +(3x+3y 4z) S

> 12.
2y?2—=3yz+2z2 222-—3zx+2x%2 2x2—3xy+y?

(Vasile C., 2011)
Solution. Write the inequality as f¢(x,y,z) = 0, where
fo= Z(Sy +3z—4x)*(22%—3zx +2x%)(2x*—3xy + y*)—12 l_[(2y2—3yz +22%).
Since
3y +3z—4x=—7x+3p, 2y*—3yz+22*>=-2x>—3yz+2(p*—2q),
fo(x,y,2) has the same highest coefficient A as
49P,(x,y,2) —12P;(x, y,2),
where
Py(x,y,z = Z x3(—222 —3xy)(—2y*—32zx), Py(x,y,2)= l_[(—2x2 —3yz),
that is

A=49P,(1,1,1)—12P4(1,1,1) = 49 - 75 — 12(—125) = 5175.
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Since
f6(x7 15 1)
2(2x2—3x+2)
= 16x*—72x% + 121x% —90x + 25 = (x — 1)*(4x —5)?,

=2(2x —3)?(2x*>—3x +2) + (3x —1)* — 6(2x* —3x +2)

fe(x,1,1) = 2(2x* —3x + 2)(x — 1)*(4x — 5)?,
we apply Corollary 2 for

4(x —1)*(4x —5)?
81-169 '

Thus, we need to show that fg(x,1,1) > Af5,, _,(x) for x € R. We have

F)/,B(X) = f5/4,—z(X) =

2300(x — 1)*(4x —1)?
1521 '

(x — 1)*(4x —1)*f (x)
1521 ’

Af5/4,_2(x) =

fe(x,1,1) —Af5/4,_2(x) =
where

f(x) =3042(2x*—3x +2) — 2300(x — 1)3
> 1500(2x% — 3x 4+ 2) — 2500(x — 1)? = 500(x> + x + 1) > 0.

The equality holds for x = y = z, and also for 4% = y = gz (or any cyclic

permutation).

Observation. Similarly, we can prove the following generalization:

2+ v4+2k

e Let x,y,z be real numbers. If -2 <k <2 and m = — 2 then

Z (my + mz —x)? - 3(2m—1)?

y2+kyz+z2 — k+2

with equality for x = y = 2, and also for x/a = y = g (or any cyclic permutation),
V2k+4—k

—

where a =

P 3.67. Let x, y,z be real numbers. If k > —2, then
4(x*+kxy +y)(y* + kyz +22)(2% + kzx + x*) > (2—k)(x — y)*(y —2)*(z — x)>.

(Vasile C., 2011)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2) = 4] [+ kxy + ¥y — 2= K)(x — y)2(y —2)*(z — x)*
From
[ [e?+ixy +y5 =] [0*—2q+kxy —2),
it follows that f4(x, y,z) has the same highest coefficient as
4 Joexy =2 — @ = k)(x — y)(y —2)*(z — x)?,
that is, according to (3.3),
A=4(k—1)P°+27(2—k) = (k +2)(2k — 5)%.

For k = 5/2, we have A = 0. Then, by Corollary 1, it suffices to show that
fo(x,1,1) = 0 for any real x. Indeed,

fo(x,1,1) = 4(k + 2)(x?* + kx + 1)* > 0.

Further, consider k > —2, k # g Since f¢(x,1,1) is a polynomial function of
degree four and
f6(0,y,2) = 4y*2*(y* + kyz +2) — (2= k)y*z*(y —2)%,
f6(0,1,—-1)=4(2—k)—4(2—k) =0,
we apply Corollary 2 for F, s = h, ;, where y is given by (3.19):
1 RK(=2)

3 12A °

with
h(x) = fo(x,1,1) = 4(k +2)(x? + kx + 1)°.
We only need to show that fg(x,1,1) = Ah, ,(x) for x € R. We have

h'(x) = 8(k +2)(2x + k)(x? + kx + 1),

1 2%-8 1

~3 3(2k—5) 2k—5

4(x? +kx +1)?
(2k—5)2

h'(—2) =—8(k+2)(k—4)(2k—5), 7y

h, o(x) = [x + (x+2)(2x+ 1)]2 =

2k—5
therefore
f6(x> 15 1) :Ah}f,O(x)'

Actually, the inequality is equivalent to
(k+2)[xy(x+y)+yz(y +2)+zx(z+x)+2(k—1)xyz]* > 0.
Therefore, the equality holds for
xy(x+y)+yz(y+2z)+zx(z+x)+2(k—1)xyz =0.
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P 3.68. If x, y,z are real numbers, then

(2 + y)(y?* +22) (2% + x2) + 2%y + y 2 + 22x) (xy? + yz* + 2x?) > x%y 222,

(Vasile C., 2011)

Solution. Write the inequality as fg(x, y,2) = 0. From

felx,y,2) = l—[(p2 —2q—x?)+2(3x*y%z* + Z Py} +xyz Z x*) —x%y?z?,
it follows that f,(x, y,2) has the highest coefficient

A=-1+4+2(3+3+3)—1=16.
Since f¢(x,1,1) is a polynomial function of degree four and
f6(0,y,2) = y*2*(y* +2°) +2y°%°,  f4(0,1,-1)=2-2=0,

we apply Corollary 2 for F, s = h, ;, where y is given by (3.19):

1 h(—
1, ME2)
3 12A

7,0’

with
h(x) = fo(x,1,1) = 4x* + 4x> + 9x* + 4x + 4 = (2x* + x + 2)%.

We only need to show that fg(x,1,1) = Ah, ,(x) for x € R. We have
R(x)=2(4x+1)(2x>+x+2), h(-2)=-112,

_1 7 _-
T=37 12T 4

h,o(x)= [x — 1(x +2)(2x + 1)]2 = i(2x2 +x +2)?
PO 4 16 ’

therefore
f6(x> 15 1) = Ah}f,O(x)'

Actually, the inequality is equivalent to
[xy(x+y)+yz(y +2)+2x(z+x)—xyz]* > 0.
Thus, the equality holds for

xy(x+y)+yz(y+2z)+zx(z+x)=xyz.
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P 3.69. Let x,y,z be real numbers. If k € (—o0,—2]U (0, 00), then
2
x® 4+ y® + 2% —3x2y%2% + E(x2 +kyz)(y? + kzx)(z* + kxy) > 0.

(Vasile C., 2011)

Solution. Denote the left side of the inequality by f.(x,y,z). According to (3.3),
the polynomial f(x, y, ) has the highest coefficient

2(k+1)°

> 0.
k

2
A:3—3+E(1+k)3:

Since
£s(0,y,2) = y® +2°+2y°2%,  f,(0,1,-1)=1+1-2=0,

we apply Corollary 2 for F, s = h, 5, where v is given by (3.19):

1 h(-2)
y=5+ s
3 12A
with 5
h(x) = fo(x,1,1) = x®—3x%+ 2+ E(x2 + k) (kx + 1)
We have

h'(x) = 6x° —6x + %x(kx +1)? +4(x? + k)(kx + 1),

—4(2k® +15k? + 33k + 2)

H(=2) =

(-2) - ,
_1_2k3+15k2+33k+2_—3k(k+3)
=3 6(k +1)° T okt 1p

Thus, the condition f(x,1,1) = Ah, 5(x) is equivalent to
6 2 2 2 2
x°—3x +2+E(x +k)(kx+1) >

- 2(k+1)3 [x _ Bk(k+3)

2
> . 2k T 1) (x+2)(2x+1)+5(x+2)3] )

k(k+3)

Setting x = 1, this inequality becomes an equality for 6 = m

Choosing this

0, the inequality turns into
k(k—1)2(k+2)(x +2)*(x—1)*>0,

which is true for x € R.

The equality holds for x = 0 and y +z = 0 (or any cyclic permutation).
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Observation. For k = —2 and k = 1, the following identities hold:
x®+ y0+2°—3x2y%2? — (x?—2y2)(y* —22x) (2% —2xy) = (x3 + y> + 22 — 2xy2)?,

x+ 0+ 28 —3x2y2? + 2(x2 + y2)(y? +2x) (22 + xy) = (3 + y2 + 23 + xy2)2.
]

P 3.70. If x, y,z are real numbers, then
2(2x%+y2+22)(2y% +22+x?)(222 +x2+ y?) > 89x2 y?22 +9(x—y)*(y —2)*(z—x)>.
(Vasile C., 2011)

Solution. Write the inequality as fg(x, y,2) = 0. Since

l_[(2x2 +y*+2%) = l_[(x2 +p%—2q),
the polynomial f¢(x, y, ) has the same highest coefficient as
2x%y22% —89x%y%2® — 9(x — ¥)*(y —2)*(z — x)?,
that is
A=2-89+9-27=156.
Since
f6(0,y,2) = 2(y* +2*)(2y* +2°)(22% + y*) — 9y°2*(y —2)°,
£,(0,1,—1)=36—36=0,
we apply Corollary 2 for F, s = h, 5, where v is given by (3.19):

1 Hh(-2
1, M)
3 12A
with
h(x) = fo(x,1,1) = 4(x* + 1)(x* + 3)* — 89x*.
We have
h'(x) = 8x(x*+3)> + 16x(x? + 1)(x* + 3) — 178x,
1 43 =77
h'(—2) = —1548, ==L
(=2) ’ 3 52 156

Thus, the condition f(x,1,1) = Ah, 5(x) is equivalent to

2
4(x? +1)(x2 + 3)* — 89x2 > 156 [x _ %(x +2)(2x +1)+ 6(x + 2)3] .
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17
Setting x = 1, we can check that this inequality becomes an equality for 6 = To6"

17
Choosing 6 = 56’ the inequality becomes
(x +2)*(x —1)*(335x* — 1098x + 1323) > 0,
which is true for x € R.
The equality holds for x = 0 and y + 2z = 0 (or any cyclic permutation).

Observation. The following related statement holds, too.

o Let x, Y,z be real numbers. If k > 0, then
2(kx?+ y* +22)(ky* + 22 + x?)(kz® + x> + y?) > (k + 1)*(x — y )2 (y —2)*(z — x)?,

with equality for x = 0 and y + z = 0 (or any cyclic permutation).

P 3.71. If x, y,z are real numbers such that x + y + 2z = 3, then

13x—1 13y—1, 13z—1
x2423  y2+23 22423

3
<-.
2

(Vasile C., 2011)

Solution. Write the inequality in the homogeneous form f,(x, y,2z) > 0, where

folx, y,2) =3 [(9x? +23p?)—2p > (39x — p)(9y* + 23p*)(9z* + 23p?).
Clearly, the polynomial f,(x, y,2) has the highest coefficient

A=3-7209.

For p =0, we have f¢(x,y,z) = 3-729 x%y?z?, therefore

f6(0,—1,1) = 0.
Also, we have
fe(x,1,1) = 12(23x% +92x + 101)(x — 1)*(7x + 11)*.

4(x — D*(7x +11)?
729
Af 117 -2(x) =12(x — D*(7x +11)2,

fe(x,1,1) —Af 117 o(x) = 24(x — 1)*(7x + 11)*(x + 2)(11x + 25).

f—11/7,—2(x) =

>
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As a consequence, we will apply Theorem 2 for

___25 g___?’
=11 ~ 143’

—25 —23 —257 [—23
() =)
11° 13 11 13

Ea,ﬁ = ha,ﬁ> Ey,ﬁ = f—11/7,—2,

and for

where a is given by (3.18):
1 h'(-2)
= — 4+ 5
3 12A

with
h(x) = fe(x,1,1) = 12(23x* + 92x + 101)(x — 1)*(7x + 11)>.

The condition (b), namely fq(x,1,1) > Af_;;,, _,(x), is satisfied for x € (—oo, —

—2 —2
[—2,00), hence for x e R\ 1= (—oo, —5] U [—3 oo)

11 13°
The condition (a) is satisfied if there is a real 8 such that fg(x,1,1) = Af, s(x)
—25 =23
forx el=| —,—— |, where
11 ° 13
1 h'(-2
_1, K2
3 12A
From

h'(—2) = —729 - 64,

we get
1 —-16 —13
o= — _— =,
3 9 9
13 T
hop(x)=|x— E(x +2)2x+1)+pB(x+2)| .
We choose
o 28
9 5

to have h, 5(—11/7) = 0. Therefore,

1 2 2
hyp(x) = [x — ;(x +2)2x +1)+ ?8(x + 2)3]
= gil(h +11)%(2x% + 7x + 9)?,

Ah, 5(x) =108(7x + 11)*(2x* + 7x + 9)?,
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fo(x,1,1) —Ah, 5(x) = —12(7x + 11)*(x + 2)*(13x* + 154x + 167)

and

13x2 +154x + 167 < 14(2x2 + 11x + 12) = 14(x + 4)(2x + 3) < 0.

The original inequality is an equality for x = y = 2z = 1, and also for x = —11
and y =z =7 (or any cyclic permutation).
O

P 3.72. If x, y,z are real numbers, then
5(x% + y2 +22)* > 108x2y?2% + 10(x — y)*(y —2)*(z — x)*.
(Vo Quoc Ba Can and Vasile Cirtoaje, 2011)

Solution. Write the inequality as f¢(x,y,2) = 0, where

fo(x,y,2) =5(x* + y? +2%)® —108x?y?2* — 10(x — ¥)*(y —2)*(z — x)*.
The polynomial f¢(x, y,z) has the highest coefficient

A=-108—10(—27) = 162.

We have

f6(0,y,2) =5(y* +2°)° —=10y?2*(y —2)%,  f5(0,1,-1) =40—40=0,

h(x) = fo(x,1,1) = 5x°® + 30x* — 48x2 + 40,
1 Rh(=2)_-5

W(—2)=-1728, =+ =,
37 124 9

5 2
h_ss95(x) = [x — a(x +2)(2x +1) + B(x + 2)3] ,

Ah g0 (%) = 2[9x —5(x +2)(2x + 1) + 9B (x + 2)3]2,
fo(x,1,1) —Ah_g/9 p(x) = (x + 2)3Hﬁ(x),
where

Hp(x) = 5(x® —6x*—10x —4) + 72(5x> 4+ 8x + 5) + 162>(x + 2)°.

First Solution. We will apply Theorem 2 for £ — —o0, which involves

=(-o0. ). my1=[Zhoo).



Highest Coefficient Cancellation Method for Real Variables 363

and for
Ea,ﬁ = h—5/9,/5’ Ey,é = h—5/9,5-

The condition (a), namely fq(x,1,1) = Ah_g,q (x) for x < —1/2, can be satisfied
10
only if Hg(—2) = 0. This yields § = a1 and

5
f6(x, 1, 1) _Ah_5/9,10/81(x) = a(x + 2)4(413('2 - 88x + 38) 2 O.

The condition (b) is satisfied if there is a real 6 such that f¢(x,1,1) > Ah_s /g 5(x)
for x > —1/2, that is H5(x) > 0 for x > —1/2. Choosing 6 = 217, the condition

Hs(x) = 0 is equivalent to
13x> 4 18x* — 66x +44 > 0,
which is true because
13x> +18x* — 66x + 44 = 13(x — 1)*(x + 1) + (31x* — 53x + 31) > 0.
The equality holds for x =0 and y + 2z = 0 (or any cyclic permutation).

Second Solution. Apply Theorem 2 for

H:(%,z), R\]I:(—oo,%]u[z,oo),

and for
Ea,ﬂ = h—5/9,4/27’ Ey,é = h—5/9,10/81'

The condition (a) is satisfied if fs(x,1,1) = Ah_g/g4/5,(x) for 2/5 < x < 2. As
shown in the first proof, this inequality can be written as

(x +2)%(13x3 + 18x2 — 66x +44) > 0,
which is true since

13x% +18x2—66x +44 =13(x —1)*(x + 1) + (31x2—53x + 31) > 0.

The condition (b) is satisfied if fs(x,1,1) = Ah_5/ 1981 for x € (—00,2/5]U
[2, 00). As shown in the first proof, this inequality is equivalent to

(x +2)*(41x>—88x +38) >0,
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which is true because

41x% —88x + 38 > 36x% —88x + 32 =4(9x —4)(x —2) > 0.

Observation. The coefficient of the product (x — y)*(y —2)*(z —x)? in P 3.72 has
the best possible value. Indeed, setting x =0, y =1,z =—1in

5(x*+y* +2)° 2 ax?y’z" + Blx —y ) (y —2)(z — x)’,

we get B < 10. In addition, for § = 10, the best value of the coefficient a of the
product x%y?z? is 108. Setting x = 5¢t, y = 2t + 1, z = 2t — 1, the inequality

5+ y2 4+ 2%)® > ax?y?2® + 10(x — y)*(y —2)*(z — x)?

becomes
Ala)t® +B(a)t* + C(a)t?> > 0,

where C(a) = 108 — a. The necessary condition C(a) > 0 involves a < 108.

P 3.73. If x, y,z are real numbers, then
(x2+ y2+22)° +2(2x% + y2)(2y? + 2x)(22% + xy) > 27x2y?22.
(Vasile C., 2011)
Solution. Write the inequality as f¢(x,y,z) = 0, where
fo(x,y,2) = (x* + y* +2%)° — 27x?y?2% + 2(2x% + y2)(2y* + 2x)(22% + x ).
According to (3.3), fs(x, y,z) has the highest coefficient
A=—-27+2(2+1)P°=27.
We have
f6(0,y,2) = (y* +2")° +8y°2%,  f5(0,1,-1)=8-8=0,

h(x) = fo(x,1,1) = (x? +2)> + 2(2x% + 1)(x + 2)* — 27x>
= x5+ 10x* 4+ 16x% 4+ 3x2 + 8x + 16,
1 R(-2) -2

W(—2)=-324, -+ =—,
37 124 3

2 2
h_yysp(x) = [x — g(x +2)(2x +1) + B(x + 2)3] ,

Ah_y 5 5(x) = 2[ 9 — 5(x + 2)(2x + 1) + 9B (x +2)°]",
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fo(x,1,1) —Ah g9 5(x) = (x +2)°Hy (),

where
Hp(x) = x*—6x> —14x — 4+ 18B(4x> + 7x + 4) — 27%(x + 2)°.

We will apply Theorem 2 for £ — —o0, which involves
-1 -1
]I:(—oo,—), R\]I:[—,oo),
2 2

Eyp=h_s3p  E s=h_y5.

and for

The condition (a), namely fq(x,1,1) = Ah_, 3 5(x) for x < —1/2, can be satisfied
2
only if Hg(—2) = 0. This yields 8 = o and

1
o6, 1, 1) = Ay 727(x) = 55 (x +2)*(23x* ~88x +2) 2 0

for x < —1/2.
The condition (b) is satisfied if there is a real 6 such that fg(x,1,1) > Ah_, /5 5(x)

1
for x > —1/2, that is H5(x) = 0 for x > —1/2. Choosing 6 = 3 we get

4H, (x) = x>+ 6x* —8x +8
>2x*—8x+8=2(x—2)*>0.

The equality holds for x =0 and y + 2z = 0 (or any cyclic permutation).

P 3.74. If x, y,z are real numbers, no two of which are zero, then

x*+2yz y%+ 2zx 22 +2xy >3(xy+yz+zx)
Y2+yz+22  224zx4+x2 x2+xy+y? x2+y24z2

(Vasile C., 2014)
Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) =(x*+y*+ 2;2)21()(2 +2y2)(z* +2x + xH)(x* + xy + y?)
—3(xy +yz+2x) l_[(y2 + yz +22).

Since
Y2 +yz+z>=yz—x*+p*—2q,
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fs(x,y,2) has the same highest polynomial as
(x*+y*+ zz)z:(x2 +2y2)(zx — y*)(xy —2*) —3(xy + yz + 2x) l_[(yz —x?),
that is, according to (3.2) and (3.3),
Alp, ) =(x*+y*+2*)-0—3(xy +yz+2x)-0=0.
By Theorem 3, it suffices to show that f3(x,1,1) > 0 for all real x. We have

fe(x,1,1)

=2+ 2)[(x*+2)(x*+x+1)+6(2x +1)]—9(2x + 1)(x*+x + 1)
x2+x+1

=x+x°+5x*—2x3—13x2+x+7
=(x*=1)*(x*+x+7)=>0.

The equality holds for x = y = 2, and for —x = y = 2z (or any cyclic permuta-
tion).
O

P 3.75. If x, y,z are real numbers, no two of which are zero, then

2-2 22 22 3(xy+yz+
x vz y 2X N Z Xy N (xy+yz ZX)ZO

yi—yz+2? z22—zx+x? x2—xy+y? X2+ y2+22
(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) =(x*+y*+ zZ)Z:(x2 —2y2)(z% —zx + x*)(x*—xy + y?)
+3(xy + yz +2x) l_[(y2 —yz +2°).

Since
y2—yz+z*=—yz—x*+p*—2q,

fs(x,y,2) has the same highest polynomial as
(x*+y*+ zz)z:(x2 —2yz)(zx + ¥y (xy +2*2) —3(xy + yz +2x) l_[(yz + x?),
that is, according to (3.2) and (3.3),
Alp,q) = (x*+y*+2*)(—12)—3(xy + yz +2x) -8 =—12p* < 0.
By Theorem 3, it suffices to show that f3(x,1,1) > 0 for all real x. We have

fe(x,1,1)

=(x2+2)[(x*—2)(x*—x+1)+2(1—2x)]+32x + 1)(x*—x + 1)
x2—x+1

=x—x*+x*+2x*—=5x2—x+3
=(x*—1)*(x*—x+3)>0.

The equality holds for x = y = 2, and for —x = y = 2z (or any cyclic permuta-
tion).
OJ
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P 3.76. If x, y,z are real numbers, no two of which are zero, then

x? y? 22 - (x +y +2)?

+ + > :
yi—yz+2?2 22—zx+x2 x2—xy+y? x?2+y2+z?
(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(,3,2) =0 + 2 459 D 2@ — zx + 12 — xy +y2)
—(x+y+2) l_[(y2 —yz+32%).

Since
y2—yz+z>=—yz—x*+p*—2q,

fs(x,y,2) has the same highest polynomial as
(x*+y* +22)Zx2(zx + )y +23)+(x+y +2)° l_[(yz +x?),
that is, according to (3.2) and (3.3),
Alp,q) = (x*+y*+2%) 12+ (x +y +2)*-8 = 20p*—24q = 12p*+8(p*—3q) > 0.
We have
A(x +2,2x +1) = 20(x + 2)* —24(2x + 1) = 4(5x* + 8x + 14),

fS(X: 1: 1)

e = A —x A D+ 2] = e+ 2 —x + 1)

=x%—x°+2x*—5x% + 3x2
=x*(x—1)*(x*+x+3)>0.

Since A(p,q) = 0 for all real x,y,z, fs(1,1,1) = 0 and f3(0,1,1) = 0, we apply
Corollary 4 for

x*(x—1)*
E x) = _ =
o,—z( ) fO’_z(x) = o1
We have 2 o
Alx + x x“(x—1)"(5 1
(x +2,2x +1)fy_o(x) = 4x°( ) (816 +8x + 4)’
X — x%(x —1)%g(x)
fe(x, y,2) —A(x +2,2x + 1)fy _»(x) = o g ’
where

g(x)=81(x%—x +1)(x* +x +3) —4(x — 1)*(5x> + 8x + 14)
=61x*+8x% +231x%—82x + 187
=57x* 4+ 4x?(x + 1)+ 227x%>—82x + 187 > 0.
The equality holds for x = y = 2, and for x = 0 and y = z (or any cyclic

permutation).
O
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P 3.77. If x, y,z are real numbers such that xyz # 0, then

2 2 2 10 2
(y +2) +(z+x) +(x+y) > 94 (x+y+2) .
x? y? 22 3(x2+y2+22)

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) =3(x* + y* +2%) [Z ¥ (y +2)* — 2x2y222:| —10x%y?2*(x + y +2)%.
Since
Zyzzz(y +2)* = Zyzzz(p —x)*=p? Z:yzz2 —2pqr +3r2,
fs(x,y,2) has the highest polynomial
A(p,q) =3(x*+y*+2%)(3—2)—10(x + y +2)* = 3(p*—2q) — 10p*> = —7p* — 6q.
We have
fo(x,1,1) = 3(x?* + 2)[4 + 2x%(x + 1)* — 2x?] — 10x?(x + 2)?
= 2(3x° 4 6x° + x* —8x> — 14x% + 12)
=2(x —1)%(3x* + 12x3 + 22x% + 24x + 12)
=2(x —1)?[3(x + 1)*+ (2x +3)*] >0,
Alx+2,2x+1)=—=7(x +2)*—6(2x + 1) = —7x% — 40x — 34.

Case 1: —7p?—6q < 0. Apply Theorem 3. Since fg(x,1,1) > 0 for all real x, the
conclusion follows.

Case 2: —7p% —6q > 0. Apply Corollary 4 for
Eyp=hgyp-
Thus, we need to show that there exist two real numbers a and 8 such that
fa(x,1,1) 2 A(x +2,2x + 1)h, 5(x)
for x € R. Write the required inequality as h(x) > 0, where
h(x) = fo(x,1,1) + (7x% + 40x +34) [x + a(x + 2)(2x + 1) + f(x +2)° ],

Since
h(—2)=72-18(=2)*=0,

the condition h’(—2) = 0 is necessary to have h(x) > 0 in the vicinity of —2. This
condition involves a = —1. For this a, we can check that h”(—2) = 0. Thus, to
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have h(x) > 0 in the vicinity of —2, the condition h"”’/(—2) = 0 is necessary. This
condition involves 8 = 2/3. For these values of a and 3, we need to show that

2
fo(x,1,1) + (7x? + 40x + 34) [x —(x+2)2x+1)+ %(x + 2)3] >0

for x € R. This inequality is equivalent to
(x +2)*(14x* +52x3 + 117x% 4+ 154x + 113) > 0,
which is true because
14x*+52x3+117x%+154x+113 = (x*+1)*+13x%(x+2)*+7(9x*+22x+16) > 0.

The equality holds for x = y =z.

P 3.78. If x, y,z are real numbers, no two of which are zero, then

32x* +49yz 32y’ +49zx 325 +49xy _ Bl(x+y +2)
y2+22 22 + x? X2+y2 T 202+ y2+22)

(Vasile C., 2014)

Solution. Consider the more general inequality

2 2
Zx +kyz>(1+k)(x+y+z) k> —1

y24+22 T 2(x24+y2+22)
which can be written as fg(x, y,z) = 0, where
folx,y,2) =2(x* + y* +2%) Z:(x2 +kyz)(z% + x3)(x* + y?)
—(1+ )0 +y +2) [ [ +22).
Since y? + 22 = —x? + p% — 2q, f3(x, y,z) has the same highest polynomial as
2(p* —29) D (x? + kyz)y?s® — (1 + k)pX(—x>y?s?),
that is
A(p,q) =2(p* —2¢q)(3 +3k) + (1 + k)p* = (1 + k)(7p* — 12q).

We have
Alp,q) = (1 +k)[3p*+4(p*—3q)] = 0,

Alx+2,2x+1)=(1+k)[7(x +2)*—12(2x + 1)] = (1 + k)(7x?* + 4x + 16),
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fa(x,1,1)
x2+1
folx,1,1) = 2(x* + 1)(x — 1)*(x* + 2x> + 5x% + 4x + 4 — 2k).

=2(x*+2)[(x* + k)(x*+ 1)+ 4(kx + 1)]—2(1 + k)(x + 2)*(x* + 1),

For k = ﬁ, we get
32
81,._,
Alx+22x+1)= 3—2(7)( +4x +16),

1
folx,1,1) = g(x2 +1)(x — 1)%(2x + 1)%(4x% + 4x + 15).
Since A(p,q) = 0 for all real x, y, 2, fs(1,1,1) =0 and fg(—1/2,1,1) = 0, we apply
Corollary 4 for

Bor ) = fraja o) = o= (20 + 17

We only need to show that
fS(X) 1) 1) _A(X + 21 2x + ]-)f—l/Z,—Z(x) =0

for x € R. Indeed, we have

Alx +2,2x +1)f 15 _o(x) = z(x —D*2x +1)*(7x? + 4x + 16),

Folx, 1, 1) = A(x +2,2x + 1)f 1 j5_o(x) = %(x —1)(2x +1)°g(x),
where

g(x) =29x* + 46x% + 156x% + 64x + 119
=(23x%+32)(x +1)* + 6x* +101x%* + 87 > 0.

The equality holds for x = y = g, and also for —2x = y = z (or any cyclic
permutation).
OJ

P 3.79. If x, y,z are real numbers, no two of which are zero, then

x2+4yz  y?+4zx N 22+ 4xy - 15(xy + yz +2x)_

a > ;
(a) y2+22 22 + x? x2+y? 2(x2+y2+22)

2x2+9yz  2y?+9zx 222+9xy - 33(xy + yz +2x)
y2+ 22 22 + x2 x2+y2 T 2(xZ+y2+32)
(Vasile C., 2014)

(b)




Highest Coefficient Cancellation Method for Real Variables 371

Solution. Consider the more general inequality

Z x?+kyz - 3(1+k)(xy +yz+2x)

= ) k > _15
y2+2? 2(x2+y2+22)

which can be written as fg(x, y,z) = 0, where

fo(x,y,2) =2(x* + y* +22) Z:(x2 +kyz)(z* + x*)(x* + y?)
—3(1+k)(xy+yz+2zx) l_[(y2 +22).

Since y? + 2% = —x? + p? —2q, f3(x, y,2) has the same highest polynomial as

2(p* —29) Y (x*+ kyz)y*a? = 3(1 + k)g(—x2y*2?),
that is
A(p,q) = 2(p*—2q)(3 +3k) + 3(1 + k)q = 3(1 + k)(2p* — 3q).
We have
A(p,q) =3(1+Kk)[p*+(p*—3¢)1 =0,
Alx+2,2x +1)=3(1+k)[2(x +2)*—3(2x +1)] =31 + k)(2x*+2x +5),

fa(x,1,1)
x2+1
fo(x,1,1) = 2(x* + 1)(x — 1)*[x* + 2x> + (k + 6)x? + 4x + 5—k].

=202+ 2)[(x2+ k) (x? + D)+ 4(kx +1)]—6(1 + k)(2x + 1)(x% + 1),

Since A(p,q) = 0 for all real x, y,z, we apply Corollary 4 for

1
Eo,—z(x) = fo,—z(x) = axz(x - 1)4-
Thus, we need to show that
fe(x,1,1) —A(x +2,2x + 1)f; _,(x) =0

for x € R. Since

(1+Kk)(2x? +2x + 5)x%(x —1)*
27 ’

Alx +2,2x +1)fy _5(x) =
the inequality fg(x,1,1) —A(x +2,2x +1)f, _,(x) = 0 is true if
54(x* + D)[x*+2x3 + (k+6)x* +4x +5—k] > (1 + k)x?*(2x?* + 2x + 5)(x — 1)>.
Since 2(x2 + 1) > (x — 1)?, it suffices to show that

27[x* +2x3 + (k+ 6)x? + 4x +5—k] > (1 + k)x*(2x* + 2x + 5),
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which is equivalent to g(x) > 0, where
g(x) = (25—2k)x* + (52 — 2k)x> + (22k + 157)x> + 108x + 27(5 — k).
(a) For k = 4, we have
g(x) =17x* + 44x3 + 245x% + 108x + 27
=x*+ (4x + 1)? (xZ + Zx + 2) + (194x2 + 3%9)( +25) > 0.
The equality holds for x = y = z.
(b) For k =9/2, we have

2g(x) = 32x* +86x> +512x2 + 216x + 27
35 5 1533 49
= (4x + 1) (2x2 Xt 5) + (435x2 g Xt 7) > 0.

The equality holds for x =y = 2.

P 3.80. If x, y,z are distinct real numbers, then
x? y? 22 - 4(xy +yz+2x)

+ =
=22 G—xP —yR~ xtylts

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where

Folx,y,2) = (P2 —29) D x(x — ¥)*(x —2)* — 4q(x — y *(y —2)*(z — x)*.

Since
(x—y)(x—2z)=x*+2yz—q,

fs(x,y,2) has the same highest polynomial as
(p?—2q) D x*(x + 2yz)* — 4q(x — y *(y —2)*(z — x)*,
that is, according to (3.1),
Alp,q) = (p* —2q) - 27 — 4q(—27) = 27(p* + 2q).

We have
fo(x,1,1) = (x* + 2)x*(x —1)* > 0.

Case 1: p*+2q < 0. Since fg(x,1,1) > 0 for all real x, the conclusion follows
from Theorem 3.
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Case 2: p?>+2q > 0. Apply Corollary 4 for

4x2(x —1)*(x —y)?
9(4—y)P(x+2)2

E, 5(x) = f, o(x) =

Thus, we need to show that there exist a real number a such that
fo(x,1,1) 2 Alx + 2,2x + 1)f, o(x)
for x € R. Since
Alx +2,2x+1)=27(x*+8x +6),
12x2(x — 1)*(x? + 8x + 6)(x — y)?
(4—7)2(x +2)? ’
x2(x —1)*h(x)
(4—7)2(x +2)*
h(x)=(4—7)*(x +2)*(x*+2)—12(x*+8x + 6)(x —1)?,

we need to show that h(x) > 0 for x € R. Since h(4) = 0, the condition h’(4) =0
is necessary to have h(x) = 0 in the vicinity of 4. This implies a = —2/13 and

Alx +2,2x +1)f, o(x) =

fa(x, 1, 1) —A(x +2,2x + 1)f, o(x) =

2(37x* — 216x° + 12x2 + 800x + 960)
h(x) = 169

_ 2(x —4)*(37x* + 80x + 60) -0
B 169 -

The equality holds for x =0 and y = z (or any cyclic permutation).

P 3.81. If x, y,z are distinct real numbers, then

x? y? 22 - (x +y+2)?

+ = .
—2P G—xP (x—yP x2+yr+z

(Vasile C., 2014)

Solution. By the Cauchy-Schwarz inequality, we have
Z x? - (x +y+2)?
(y—=22 " 2r—2?"

Thus, it suffices to show that

1 1
>
Sy —2)2  x2+y2+22
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which is equivalent to
x>+ y?+2% < 2xy + yz +2x),

p2 <4q.

Consider next that
p*=4q,

and write the inequality as fg(x, y,2) = 0, where
fe(x, y,2) = (X2+y2+22)ZXz(x—y)z(x—Z)Z—(X+y+Z)2(x—y)2(y—Z)Z(Z—X)2-

Since
(x—y)(x—2)=x*+2yz—q,

fs(x,y,2) has the same highest polynomial as
(2 +y? +22) Y a3+ 2y2) — (x +y +2) (0 — y Py —2)2(s —x)?,
that is, according to (3.1),
Alp,q) = (x*+y*+2%)- 27— (x +y +2)*(—27) = 54(p* — q).

Since
Alp,q) = 18[2p* + (p* —3q)]1 2 0,
Alx +2,2x +1) = 54(x* + 2x + 3),
folx,1,1) = (x* + 2)x*(x — 1)*,
we apply Corollary 4 for p? > 4q (see Remark 6) and
E,5(0) = fo () = (e — 1),
Thus, we need to show that
fe(x,1,1) = A(x +2,2x + 1) fo _»(x)
for (x +2)? > 4(2x + 1), that is for
x € (—00,0]U[4, c0).
Since

2(x2 4 2x + 3)x%(x —1)*
3 b

Alx +2,2x +1)f, _,(x) =

we have
20 114 .
x“(x 1)3x(x 4) S

fe(x,1,1) —A(x +2,2x + 1)f _o(x) = 0.

The equality holds for x =0 and y =z (or any cyclic permutation).
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P 3.82. If x, y,z are real numbers, then

2xy N 2yz N 22X +124(xy+yz+zx)'
x2+y2 y2+z2 z2+4+x2 X2+ y?2+ 22

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,2) = 0, where

folx,y,2) = 2(p*—2) > | yz(x®+y?)(x*+2%)+(p?—6q)(x*+y*)(y? +2°) (2% +x?).

Since
y*+2>=—x*+p*—-2q,

the polynomial of degree eight f;(x, y,2) has the same highest polynomial A(p, q)
as

2(p* —29) Y ya(=22)(—y?) + (p? — 6q)(—=2)(—x*)(—y?),
that is
A(p,q) = 6(p* —2q) — (p* — 6q) = 5p* — 69 = 2(p* — 3q) + 3p* > 0,
A(x+2,2x +1)=5x*+8x + 14> 0.

Since

fo(x, 1,1) =2(x? +2) [ (x® + 1)* + 4x(x® + 1) | + 2(x* — 8x — 2)(x? + 1)?
= 4x?3(x® + 1)(x — 1),

_ 4x*(x—1) _ 4x*(x —1)*(5x* +8x + 14)
fo,co(x) = o122 Alx +2,2x +1)fy 0o(x) = 9(x 1 272 ,
4x*(x —1)*f (x)
fe(x,1,1) —A(x +2,2x + 1) f oo (x) = Xt
where
F(x)=9(x*+1)(x +2)* — (x —1)*(5x% + 8x + 14)
=(2x +1)(x® +9x% + 6x + 11),
and
Frora() = 2D a0 a4 1) y(a) = HEZD O FEx I
’ 81 ’ 81
Foloe, 1, 1) —A(x +2,2x + 1)fog _y(x) = 4(x+1)2g(x),
where

g(x) =81x*(x? + 1) — (x — 1)*(5x> + 8x + 14)
= (2x + 1)(19x> —9x? + 24x — 7),
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we apply Theorem 4 for

and for
Ea,ﬁ = fO,oo: Fy,é = foo,—z-

—1
The condition (a), namely fg(x,1,1) —A(x + 2,2x + 1) f, oo (x) = 0 for x > -
is satisfied because

f(x)=(2x+1)[x*(x +9)+ (6x +11)]> 0.

—1
The condition (b), namely fg(x,1,1) > A(x +2,2x + 1)fs o(x) for x < - is

satisfied because
g(x) = (2x + 1)[19x3 + (—9x?) + 24x — 7] > 0.

The equality holds for x = y = 2, and also for x = 0 and y = z (or any cyclic
permutation).
O]



Chapter 4

Highest Coefficient Cancellation
Method for Symmetric Homogeneous
Inequalities in Nonnegative Variables

4.1 Theoretical Basis

The Highest Coefficient Cancellation Method (HCC-Method) is especially appli-
cable to symmetric homogeneous polynomial inequalities of six and eight degree.
The main results in this section are based on the following Lemma (see P 3.57 in
Volume 1):

Lemma. If x < y < z are nonnegative real numbers such that

x+y+z=p, xy+yz+zx=gq,
where p and q are given nonnegative real numbers satisfying p? > 3q, then the product
r = xyz is maximal when x = y, and is minimal when y = z (for p> <4q) or x =0
(for p? = 4q).

4.1.1. Inequalities of degree six

A symmetric and homogeneous polynomial of degree six can be written in the
form

fe(x,y,2) :A12X6+A22XJ’(X4+}’4)+A32X2)’2(X2+}’2)+A4ZX3)’3
+A5xyzZ:x3 +A6xyszy(x +¥) + 3A,x%y?2?,
where A,,--- ,A, are real coefficients. In terms of
p=x+y+z, q=xy+yz+zx, r=xyz,
it can be rewritten as

f6(X,y;Z) :Arz + gl(p: Q)r + g2(p: q))

377
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where A is the highest coefficient of fs(x,y,2) (see section Theoretical Basis from
Chapter 3), and g,(p,q) and g,(p, q) are polynomial functions of the form

g1(p,q) =Bp®>+Cpq, g,(p,q) =Dp°®+Ep*q+Fp°q* +Gg’,

where B,C, D, E, F, G are real coefficients.

The highest coefficients of the polynomials

Dot D oxy(xt+yh), D xiA 4y, Y%y
xyszS, xyszy(x+y)

are, respectively,
3, =3, =3, 3, 3, =3.

As shown in Chapter 3, the polynomials
Pi(x,y,2) = Y (A;x?+A,y2)(Byx? + B,yz)(Cyx? + Cyy2),

Py(x,y,2)= Z(A1x2 +A,yz)(Byy? + Byzx)(Cy2° + Cyxy),
Py(x,y,2) = (A1x2 +A2yz)(A1y2 +Azzx)(A122 +Ayxy)

and
Py(x,y,2) = (x —y)*(y —2)*(z —x)*

has the highest coefficients P,(1,1,1), P,(1,1,1), P;(1,1,1) and —27, respectively.

Based on Lemma above, Theorem 1 bellow gives for A < 0 the necessary and
sufficient conditions to have f¢(x, y,z) = 0 for all nonnegative real numbers x, y, 2.

Theorem 1. Let fy(x,y,z) be a sixth degree symmetric homogeneous polynomial
having the highest coefficient A < 0. The inequality f¢(x,y,z) = 0 holds for all
nonnegative real numbers x,y,z if and only if fs(x,1,1) >0 and f,(0,y,2z) >0
for all nonnegative real numbers x,Y,z.

Theorem 1 can be extended in the following form (see P 3.76 in Volume 1, page
173):

Theorem 1’. Let f,(x,y,2) be a sixth degree symmetric homogeneous polynomial
having the highest coefficient A < 0.

(a) The inequality fq(x,y,z) = 0 holds for all nonnegative real numbers x,y,2
satisfying p? <4q ifand only if fq(x,1,1)>0 for x €[0,4];

(b) The inequality f¢(x,y,2) =0 holds for all nonnegative real numbers x,y,2
satisfying p? > 4q ifand only if f¢(x,1,1)>0 for x >4, and f,(0,y,z) >0 for
Y,2=0.
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* % %
Further, consider the inequality

fe(X,y,Z) 2 0:

where x, y,z are nonnegative real numbers and f,(x, y,z) is a symmetric homo-
geneous polynomial of degree six with the highest coefficient A > 0. The highest
coefficient cancellation method for proving such an inequality uses Theorem 1 and
the following three ideas:

1) finding a nonnegative symmetric homogeneous function f,(x, y,z) of the
form

2 2
fo(x,y,2) = (r +A;pq +A2p3+A3q;) , “4.1)

where A;,A,,A; are real numbers chosen such that
f6(xay7z) ZA]E6(X;}’;Z) = 0

for all nonnegative real numbers x, y,z;

2) seeing that the the difference fy(x, y,2z) —Afs(x, y,2) has the highest coef-
ficient equal to zero, therefore the inequality

f6(x7y7z) ZAJE6(X:J’;Z)

holds for all nonnegative real numbers x, y,z if and only if it holds for y =2 =1
and for x = 0 (see Theorem 1);

3) treating successively the cases p? < 4q and p? > 4q.
* % %

Let us define the following nonnegative functions:

4(x — 1)*(x —a)*(x — B)?

Jar () = 5 =~ p —2apy(e + 27 (4.2
gaup(x)= [x+a(x+2)(2x+ 1)+[o’%]2, 4.4)
209 =7 f:)z [aly +2)+Byz], (4.5)
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hap(x) = [x + alx +2)(2x + 1) + B(x +2)°], (4.6)

ho (%) = (v +2)*[ayz + By +2)2]. 4.7)

The functions f, g(x) and fa,ﬁ (y,2) have been derived by setting respectively
y =gz =1 and x = 0 in the associated function

- b, 2 5, ¢ ¢ 2
felx,y,2)=|r——pq+—p°+—-— (4.8)
a a; a p
with
a,=34—a—p—2aB), b;=10+a+p, c¢=22+a)2+p),
which satisfies fs(1,1,1) =0, fs(a,1,1) =0, fs(B,1,1) =0:

2
fap() = fo(x,1,1) = [x—%(x +2)(2x +1) + a%(x +2)°+ 2_11 . (2)’;:;)2] ’

; z b 2 c 252 \2
fap(y,2) = f6(0,y,2) = |:——1yz(y +2)+—(y+2)°+ L. y_) )
a aq a, y+Z

The functions g, 5(x) and &, z(y,2) have been derived by setting respectively
y =2z =1 and x = 0 in the associated function

2
folx,y,2) = (r + apq +/5q£) .

The functions h, g(x) and flaﬁ (y,2) have been derived by setting respectively
y =2z =1 and x = 0 in the associated function

fo(x,y,2) =(r + apq +/3p3)2.

Xk 3k

With regard to the functions f, 4(x) and fa,ﬂ (x), we get the following expressions
forp=—-2,=-1,=0,=1and  — oo:

4(x —1)*(x — a)?
furalo) = LI
4(x +1)*(x—D*x —a)?
9(5 + a)?(x + 2)? ’
4x%(x — 1D*(x — a)?
9(4—a)2(x+2) "’

fa,—l(x) =

fa,O(x) =
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4(x —1)%(x — a)?
81(1—a)?(x +2)?’

4(x — 1)*(x — a)?

fa,l(x) =

faoo ) = S 0t 27
and
P (g) = (y +2)’[2(y +2)*— (8 + a)yz]?
Jaaly2) = 81(2 + a)? ’

F (a) = 2y +2)*—(9+ a)yz(y +2)* +2(2 + a)y?2*]?
fa(3,2) = 905 + a2y +2)? ’
F (a) = (y —2)'[2(y +2)* — (2 + a)yz]?

Jado?) = T G e
A 2+ =1+ a)yz(y +2)* +6(2+ a)y?2*]?
fa,l(yaz)_ 81(1—(1)2(y+2)2 )
F o (y2)= y222[(y +2)*—2(2+ a))’z]z.

9(1 +2a)%(y + 2)?

In particular,

frora)= = LRV
fon() = 4(x ;(ch):(azc; 1)? C Fae(ne) = yzzz(fvy:;z)z’
foo(x) = %;2;)4 o2 = %j‘
B I I
s = o ) = 52

With regard to the functions g, s(x) and g, (x), we get the following particular
expressions:

gao(X) =[x +alx+2)2x + 1P,  8.0(y,2) = &’y*2*(y +2)°,

(2x +1)? Brytzt

go,ﬁ(X)Z[)H‘ﬁﬁ] , Q’o,ﬁ()’:z):w_—z)y

goo(X) =x%, &oo(y,2) =0.
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With regard to the functions h, g(x) and I/:la’ﬁ (x), we have
hao(x) =[x +alx +2)2x + VP, hoo(y,2) = a’y*2°(y +2)’,

hop() =[x+ B +2°T,  hop(y,2) = By +2)°,
hoo(x)=x2,  Tgo(y,2)=0.

Notice that the relative degree of the rational functions f, 5(x), f,.o(x) and
foo,00(x) are six, four and two, respectively. Also, g, s(x) and g, ,(x) have the rel-
ative degree equal to four and two, respectively, while h,, 5(x), h, o(x) and hq o(x)
have the relative degree equal to six, four and two, respectively.

k) %k %k

The following theorem is useful to prove symmetric homogeneous polynomial
inequalities of sixth degree in nonnegative real variables x, y,z and having the
highest coefficient A > 0.

Theorem 2. Let f,(x,y,z) be a symmetric homogeneous polynomial of degree six
having the highest coefficient A > 0. The inequality f¢(x,y,2) = 0 holds for all
x,y,% = 0 fif there exist four real numbers a, 3, y and 6, and

Ea,ﬂ € {fa,[a’: ga,ﬁ’ ha,[o’ }7

FY:‘S € {f)/,ﬁﬂ g)/,é: hy,5 };
such that the following three conditions are satisfied:

(@) folx,1,1) 2 AE, 4(x) for 0<x <4;
(b) fe(x,1,1) = AF, 5(x) for x =4 ;

(C) f6(0)y12) ZAﬁy,é(.)’,Z) fOT' Y,z = 0.
Proof. Let
2 2
Ei(x,y,2)= (r +A,pq +A,p° +A3q_)
P

and

2 2
Fi(x,y,z)= (’” + B1pq + B,p® +ng_)
p

be the functions associated to E, z(x) and F, 5(x), respectively; this means that
EI(X) 1: 1) = Ea,ﬂ(x),

Fl(XJ 1) 1) = Fy,é(x)'
Let us denote
EZ(X:y’Z) :f6(x)ysz) _AEl(x,y>Z)
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and
Fo(x,y,2) = fe(x,y,2) —AF,(x,y,2).

Since AE;(x,y,z) = 0 and AF,(x,y,z) = 0, the inequality f¢(x,y,2) = 0 holds for
all nonnegative real x, y, z if

(a) Ey(x,y,z)>0 for p%<4q;
(b) F,(x,y,z)>0 for p>>4q.

According to Theorem 1/, since E,(x, y,2) and F,(x, y, z) has the highest coefficient
zero, these conditions are satisfied if and only if

(a) E,(x,1,1) >0 for (x +2)* < 4(2x + 1);

(b) Fy(x,1,1) > 0 for (x+2)* > 4(2x+1), and F,(0,y,z) >0 for (y+2)* > 4yz.
Since these conditions are equivalent to the condition (a), (b) and (c) in Theorem
2, the proof is completed.

For F, s = g0, when 13"%5 =0, we get

Corollary 1. Let fs(x,y,z) be a symmetric homogeneous polynomial of degree six
having the highest coefficient A > 0. The inequality f¢(x,y,2) = 0 holds for all
x,y,% = 0 if there exist two real numbers a and f3, and

Ea,ﬁ € {fa,[i’ ga,/j? ha,[j }:

such that the following three conditions are satisfied:

(@) fe(x,1,1) = AE, 4(x) for 0<x<4;
(b) fo(x,1,1) = Ax? forx = 4;
(c) f¢(0,y,2)=0 for y,z=>0.

Remark 1. The function f,(x, y,z) associated to fap(x) (given by (4.8)) is zero for

(x,y,2)=(L1L1), (xy2)=(a,1,1), (xy2)=(8,1,1),

and also for x = 0 and

Y 2 _ a+pB+2++/(a+p+1012—16(a+2)(f +2)

z y 4
If f = —2, then the function associated to f, _,(x) has the expression
filx z)—(r— A8 g+ —2 3)2 (4.9)
B =" 9a v 1871 9a+ 18" ) '

and is zero for
(X,y)z):(]-z 1) 1)’ (x’yiz):(a) 13 1)'
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In addition, if a — oco, then

fo(x,y,2) = (r - épq)2

is zero for
(x,y,2)=(1,1,1), (x,y,2)=(1,0,0).

If B — oo, then

pq

1 2a+4 @Y
6a+3 6a+3 p

fé(xiyzz) = (T‘ +
is zero for
(x7y7z):(171J 1)) (XJy’z):(aJ ]‘71)’ (x7yJZ):(1JOJO)'

If, in addition, a — oo, then

2\ 2
JE6(X:.)’>Z): (r_lq_)
3 p

is zero for
(x)yzz):(ly]-z]-)) (X,}’JZ):(LO:O)-

Remark 2. If
fe(x,1,1) =Af, »(x)
for all x € R, then there is k > 0 such that the following identity holds:
fé(xs.yaz) :Af()(x,}’,z) + k(x _}’)2(}’ _Z)Z(Z _X)Z’

where, according to (4.9),

n r+8 2 3)2
,Y,2) = — + .
fe(x,y,2) (r 9Y+18pq 9Y+18p

In addition, if the coefficient of the product
(x =)’y —2)*(z —x)*

in the inequality f¢(x,y,z) > 0 is the best possible, then

k=0,
and the following identity holds:
y+38 2 3)2
,Y,2)=Alr— + . 4.10
fo(x,y,2) (r oy +18°9 " 9y 118" (4.10)
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Remark 3. Theorem 2 is also valid for the case where the parameters a and f3 of
the function f, 4(x) are conjugate complex numbers. For example, if k > 0 and

a:\’_k) ﬁ:_v_k)
then, according to (4.2), we have

~ (x—DMx®+ k)
fv = 9(k —2)2(x +2)?°

(4.11)

%k 3k

The following theorem is also useful to prove some inequalities fy(x,y,2) >0,
where f4(x, y,z) is a symmetric homogeneous polynomial of degree six having the
highest coefficient A > 0 and satisfying f;(1,1,1) =0 and/or f4(0,1,1) = 0.

Theorem 3. Let fi(x,y,z) be a symmetric homogeneous polynomial of degree six
having the highest coefficient A > 0. The inequality fs(x,y,2z) = 0 holds for all
x,y,2=>20 if

(@) fo(x,1,1)=0 for 0<x<1;

133
() folx,1,1) > %

(¢) f6(0,y,2)=0 for y,2=0.

forx=>1;

Proof. From
—27r2 +2(9pq —2p*)r + p*q®> —4q®> = (a—b)*(b—c)*(c—a)* >0,

we get

- 9pq—2p° —2(p* —39)v/p* 3¢
> 77 .
Define the nonnegative function

9pq —2p* —2(p*—3q)+/p2— Bq]

E = —
(x,y,2)=r [r 7

which has the highest coefficient equal to 1. We have
E(0,y,2) =0,
0, 0<x<1
E(x,1,1)= 4x(x —1)?
27

Let us denote
El(xay,z) :fs(x;yaz) _AE(X,}’:Z)-



386 Vasile Cirtoaje

Since AE(x, y,z) = 0, the inequality fs(x,y,2) = 0 holds for all nonnegative real
x,y,2if E;(x,y,z) = 0 for x, y,z = 0. According to Theorem 1, because E;(x, y,z)
has the highest coefficient zero, the inequality E;(x, y,2z) = 0 holds forall x, y,z > 0
if and only if E;(x,1,1) > 0 and E,(0, y,2) = O for all nonnegative numbers x, y, 2.
These conditions are equivalent to the condition (a), (b) and (c) in Theorem 3.
Thus, the proof is completed.

Remark 4. Theorem 2 and Corollary 1 are also valid by replacing the condition (a)
with the following two conditions:

(a) fe(x,1,1)>0 for 0<x<1;

(@) fx,1,1)> %7‘”3 forl<x<a

4.1.2. Inequalities of degree seven and eight

A symmetric and homogeneous polynomial of degree seven has the highest poly-
nomial of the form

Alp,q) =up, WM ER,

while a symmetric and homogeneous polynomial of degree eight has the highest
polynomial of the form

A(p,q) = inp* +Usq, Wi,y €R.
Theorems 1, 1/, 2 and 3 can be extended to these polynomials as follows:

Theorem 4. Let f(x,y,z) be a symmetric homogeneous polynomial of degree seven
or eight which has the highest polynomial A(p,q). The inequality f(x,y,z) > 0
holds for all nonnegative real numbers x,y,z satisfying A(p,q) < 0 if and only if
f(x,1,1) =0 and f(0,y,z) =0 for all nonnegative real numbers x,y,z such that
Alx+2,2x+1)<0and A(y +z,yz) <O0.

Corollary 2. Let f(x,y,z) be a symmetric homogeneous polynomial of degree seven
or eight having the highest polynomial A(p,q). The inequality f(x,y,z) =0 holds
for all nonnegative real numbers x,y,z satisfying A(p,q) <0if f(x,1,1)=>0 and
f(0,y,2) =0 for all nonnegative real numbers x,y,z.

Theorem 5. Let f(x,y,z) be a symmetric homogeneous polynomial of degree seven
or eight having the highest polynomial A(p,q). The inequality fs(x,y,z) =0 holds
for all nonnegative x,y,z satisfying A(p,q) = 0 if there exist four real numbers a,
B, vy and 6, and

Ea,ﬁ € {fa,ﬁa ga,ﬁ: ha,[j }’
Fy,ﬁ = {fy,E’ gy,B: hy,g},
such that the following three conditions are satisfied:

(@ f(x,1,1) 2 A(x+2,2x+1)E, g(x) for 0<x <4 and A(x+2,2x+1)=0;
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(b) f(x,1,1) = A(x +2,2x + 1)F, 5(x) for x =4 and A(x+2,2x+1)=0;
(©) £(0,y,2) = A(y +2,y2)F, 5(y,2) for y,2>0 and A(y +2,yz)>0.

For F, 5 = g0, we get the following corollaries:

Corollary 3. Let f(x,y,z) beasymmetric homogeneous polynomial of degree degree
seven or eight having the highest polynomial A(p,q) . The inequality fs(x,y,2)=>0
holds for all nonnegative x,y,z satisfying A(p,q) = 0 if there exist two real numbers
a and f3, and

E.p€ {fa,[jiga,ﬁ)ha,ﬁ}a
such that the following three conditions are satisfied:
(@) f(x,1,1) 2 A(x+2,2x+1)E, g(x) for 0<x <4 and A(x+2,2x+1)=0;
(b) f(x,1,1)>A(x+2,2x +1)x? forx >4 and A(x+2,2x +1)>0;
(c) f(0,y,2)=0 for y,2=>0 and A(y +2,yz)=>0.

Theorem 6. Let f(x,y,z) be a symmetric homogeneous polynomial of degree seven
or eight having the highest polynomial A(p,q). The inequality fs(x,y,z) =0 holds
for all nonnegative x,y,z satisfying A(p,q) =0 if

(@) f(x,1,1)=0 for 0<x<1 and A(x+2,2x+1)>0;

) fx,1,1)> HAXT2 2x2+7 1) (x — 1)°
(c) f(0,y,2)=0 for y,2>0 and A(y +2,y2)=>0.

for x >1 and A(x+2,2x+1)>0;
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4.2 Applications

4.1. If x, y, z are nonnegative real numbers, then

D x(y +2)(x — y)(x —2)(x — 3y)(x —32) > 0.

4.2. If x, y,z are nonnegative real numbers, then

Z x(2x+y+2)(x—y)(x—2)(2x—11y)(2x—112)+102(x—y)*(y—2)*(z—x)* = 0.

4.3. If x, y,z are nonnegative real numbers, then

Zx(Zx +y+2)(x—y)x—2)(x—3y)(x—32)+8(x —y)*(y —2)*(z—x)*=>0.

4.4. If x, y,z are nonnegative real numbers, no two of which are zero, then

1 1 1 9
+ + > :
4x2+yz  4y?+zx  4z2+xy "~ (x2+4yz)+(y2+4zx)+ (22 +4xy)

4.5. If x, y,z are nonnegative real numbers, then

2x%—yz 2y%—zx 2z —xy 1
4x2+y2+22 4y2422+x2 422+ x24y2 7 2
4.6. If x, y,z are real numbers, then
21x%+4 21y% +4 21z% + 4
X yZ y X Z Xy o 15,

xX2+2y2+222  y2+222+42x2  22+4+2x%2+2y%

4.7. If x, y,z are real numbers, then

Xy —yz+szx Yz—2zx+Xxy Z2X—Xy +Yz <3
x2+3y2+322  y2+4322+3x2  224+3x2+43y2° 7

4.8. If x, y,z are nonnegative real numbers, then

Zx3(2x +y+2)(x—y)x—2)>13(x — y)*(y —2)*(z — x)*.
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11
4.9. Let x, y,z be nonnegative real numbers. If k < BE then

Z x(2x+y+2)(x—y)(x—2)(x—ky)(x—kz)+(7k—13)(x—y)*(y—2)*(z—x)* > 0.

4.10. If x, y,z are nonnegative real numbers, then

12(x — y)*(y —2)*(z —x)?

DX =) —2)= P

4.11. Let x, y,z be nonnegative real numbers. If k is a real number, then

ZX(}/ +2)(x — y)(x —2)(x —ky)(x —kz) + (k—3)(x — y)*(y —2)*(z —x)* = 0.

4.12. Let x,y,z be nonnegative real numbers. If k < 4, then

Z x2(x —y)(x —2)(x —ky)(x —kz)+ (3k—5)(x — y)*(y —2)*(z—x)* > 0.

4.13. Let x, y,z be nonnegative real numbers. If k is a real numbers, then

Zyz(x —y)(x—2)(x—ky)(x—kz)=>0.

4.14. If x, y,z are nonnegative real numbers, then

ZXZ(x_y)(x_z) > B(X_y)Z(y_z)Z(z_x)Z.
Xy +yz+zx

4.15. If x, y,z are nonnegative real numbers, then

Ix —y)(y —2)(z—x)
Xy +yz+zx '

Z(x —y)x—2)(x +2y)(x +22) >

4.16. If x, y,z are nonnegative real numbers, then

6(x —y)*(y —2)*(z — x)?
Xy +yz+zx '

D= y)(x —2)(x —3y)(x —32) =
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4.17. Let x, y,z be nonnegative real numbers, and let
3(1—k), k<0
ak == .
3+k, k>0
Then,

o (x — y)(y —2)*(z —x)? .

2= N =) —ky)x —ka) = = S

4.18. If x, y,z are nonnegative real numbers, then

STy + ) — ) —z) 2 FXZI O o)
xX+y+z

4.19. Let x, y,z be nonnegative real numbers. If k is a real numbers, then

(2 + [kD?(x = y)*(y —2)*(z—x)*
Xx+y+z '

D +2)(x = y)(x —2)(x —ky)(x —kz) =

4.20. If x, y,z are nonnegative real numbers, then

2 22 2 12(x —y)*(y —2)*(z—x)?
Zx(x y)(x*—2%) > S .

4.21. Let x, y,z be nonnegative real numbers, and let

%= (k+2)?

, k=6

Then,

a(x =y 'y =2z —x)" _
xX+y+z B

D x(x— y)(x —2)(x —ky)(x —kz) + 0.

4.22. If x, y,z are nonnegative real numbers, then

5(x —y)*(y —2)*(z —x)?

Z(x2+yz)(x—y)(x—2)2 Xy +yz+zx
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4.23. If x, y,z are nonnegative real numbers, then
16(x — y)*(y —2)*(z — x)?
xXy+yz+zx
4.24. Let x,y,z be nonnegative real numbers. If k > 0, then
34+2vk )(x — y)*(y —2)*(z — x)?
Xy +yz+zx
4.25. If x, y,z are nonnegative real numbers, then
Z(xz —y2)(x = y)(x —2) = 4(V2+ 1(x — y ) (y —2)*(z — x)*.
4.26. If x, y,z are nonnegative real numbers, then
Z 1 > 9
4x2+y2 422 4(x2+y2+22)+2(xy +yz+2x)
4.27. If x, y,z are nonnegative real numbers, no two of which are zero, then
2 2 2 45
+ + = .
x2+y? yr+z2 22+4+x2 7 4x2+y?+22)+xy+yz+ax
4.28. If x, y,z are nonnegative real numbers, no two of which are zero, then
Z 1 S 18
2y24+yz+222  5(x24+y2+224+xy +yz+2zx)
4.29. If x, y, 2z are nonnegative real numbers, no two of which are zero, then
Zx—(2+ V2)(y +2) N 9(3+2+2) >0
(y +2)2 4x+y+z)
4.30. If x, y, 2z are nonnegative real numbers, no two of which are zero, then

bx—y—2 6y—z—Xx 6z—x—y> 18
Y2422 22 + x2 x2+y2 T x+y+z
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4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

If x, y,z are nonnegative real numbers, no two of which are zero, then

2x—3y—3z 6
E + >0
Y2+4yz+22 x+y+z

If x, y,z are nonnegative real numbers, no two of which are zero, then

Z7x+4y+4z> 27
4x2+yz = x+y+z

If x, y,z are nonnegative real numbers, then

Z9x—2y—22< 3
7x2+8yz ~ x+y+z

If x, y,z are nonnegative real numbers, then

Z y+z 2
7x24+y2+22  x+y+3z

If x, y,z are nonnegative real numbers, then

Z 7x —2y —2z > 3
X2+4y24+422 " x+y+z

If x, y,z are nonnegative real numbers, no two of which are zero, then

y24+z2 T2 2(x2+ y2)(y2+22)(22 +x2)

Z 2x% + yz S 9 N 31(x — ) (y —2)*(z — x)?

If x, y,z are nonnegative real numbers, no two of which are zero, then

Z 2x*—yz - I(x —y )Py —2)*(z —x)’
y2—yz+z2 = (2—xy+y)(y2—yz+22)(22 —2zx +x2)

If x, y,z are nonnegative real numbers, no two of which are zero, then

5(x—y)P(y —2)(z—x)?
2(x2 + y2)(y2 + 22)(22 + x2)

ny—yz+zx > 3
y2+z2 2
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4.39. If x, y, 2z are nonnegative real numbers, no two of which are zero, then

ny—2y2+zx - 3(x —¥)*(y —2)*(z — x)?
y2—yz+z2 — (2—xy+y)(y2—yz+22)(22—zx +x2)

4.40. If x, y, z are nonnegative real numbers, no two of which are zero, then

Z x+3y+3z S 7(x+y+2)
(y +22)(2y +2) — 3(xy+yz+zx)

4.41. If x, y, 2z are nonnegative real numbers, no two of which are zero, then

0.

Z 9x —5y —5z N 3(x+y+2) S
2y2—=3yz+222 xy+yz+zx

4.42. 1f x, y,z are nonnegative real numbers, no two of which are zero, then

ZSx—y—z S 3(x+y+z2)
y2+22  2(xy+yz+zx)

4.43. Let x, y,z be nonnegative real numbers, no two of which are zero. If

1— /17 14417
2

k €[a,b], a= — ~ —1.56155, b ~ 2.56155 ,

then
Z(S—k)x+(k—1)(y+z) S 3(k+1). x+y+z

¥2+kyz + 22 T k+2 xy+yz+zx

4.44. 1f x, y,z are nonnegative real numbers, no two of which are zero, then

Zx+13y+132 S 27(x +y +2)
Y24+4yz+22  2(xy +yz+zx)

4.45. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z—x+y+z> X+y+z
2x2+yz Xy +yz-+zx
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4.46. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z 11x—3y —3z < 3(x+y+2)
2x2+3yz  ~ xy+yz+zx

4.47. If x, y,z are nonnegative real numbers, no two of which are zero, then
1 1 1 1 2
+ + > + :
2x24+yz  2y?24zx  2224+xy xy+yz+zx x24+y243z2

4.48. If x, y,z are nonnegative real numbers, no two of which are zero, then
x(y+z) yl+x) z(x+y) < x4+ y? + 22
x2+5yz  y2+5zx 22+5xy ~ xy+yz+zx

4.49. If x, y,z are nonnegative real numbers, no two of which are zero, then

x(y +2) N y(z+x) +z(x +y) 42> 15(xy + yz +2x)
x2+yz y +zx  22+xy T (x+y+=)2

4.50. If x, y,z are nonnegative real numbers, no two of which are zero, then
x(y+z)  y(E+x) Z(X+y)>1+xy+yz+zx
x24+2yz  y24+2zx 22+2xy x2+y2+22°

4.51. If x, y,z are nonnegative real numbers such that xy + yz +zx = 3, then

1 1 1
18 + + +5(x%+ y? +2%) > 42.
(x2+y2 y2+22 22+x2) ( Y )
4.52. If x, y,z are nonnegative real numbers, then
2xy 2yz 22X 30(xy + yz +2x)
+ + >
x2+y2 y?+22 z22+4+x2 (x+y+2)?

4.53. If x, y,z are nonnegative real numbers, then
2x 2 2 24 y2 422
y 4 vz 4 2X 4 X“+y‘+z
(x+y)2 (y+2)2 (E+x)? xy+yz+zx

5
> .
2

4.54. If x, y, 2z are nonnegative real numbers, no two of which are zero, then
2 2 2 8 1
+ - > - :
x2+y2 y2+22 224x2 x?2+y2+22 xy+yz+zx

4.55. If x, y,z are nonnegative real numbers, then
2x 2y% 2zXx A(xy +yz+2zx
J + Y + +1> ( Yy )
x2+y?2 y?+z2 z22+x2 x2+y2+22
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4.3 Solutions

P 4.1. If x, y,z are nonnegative real numbers, then

Z x(y+2)(x—y)(x—2)(x—3y)(x—3z)=0.
(Vasile C., 2008)

Solution. Write the inequality as fg(x, y,z) = 0, where

folx,y,2) = D x(x +y)(x — y)(x —2)(x —3y)(x — 32).

Since
x(y +2)=x(p—x),
(x—y)x—2)=x*+2yz—q,
(x—3y)(x—32)=x*+12yz—3q,

fo(x, y,2) has the same highest coefficient A as

Pi(x,y,2) =y —x*(x? +2yz)(x? + 12y2),

that is
A=P(1,1,1)=-3(1+2)(1+12)<0.

By Theorem 1, we only need to show that fy(x,1,1) > 0 and f,(0,y,z) = 0 for
x,y,z = 0. We have

fs(x,1,1) = 2x(x —1)*(x—3)*>0,

f6(0,y,2) = yz(y —2)* = 0.

The equality holds for x = y =z, for x/3 = y = z (or any cyclic permutation),
for x =0 and y = z (or any cyclic permutation), and for y = z = 0 (or any cyclic
permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers. If
k € (—o0,—2—2v3]U[—2+2+3,00),
then
Z x(y +2)(x = y)(x —2)(x —ky)(x —kz) + (k= 3)(x — y)*(y —2)*(z —x)* 2 0,

with equality for x = y = z, for x/k = y = z (or any cyclic permutation) if k >
—2+424/3, for x = 0 and y = 2z (or any cyclic permutation), and for y =z = 0 (or
any cyclic permutation).



398 Vasile Cirtoaje

We have
A=-31+2)(1+k+k*)+(k—3)(—27)=9(8—4k—k?) <0,

fo(x,1,1) = 2x(x —1)*(x —k)* > 0,
f6(0,y,2) = yz(y —2)* > 0.

P 4.2. If x, y,z are nonnegative real numbers, then
Zx(2x+y+z)(x—y)(x—z)(2x—1 1y)(2x—112)+102(x—y)*(y—2)*(z—x)* > 0.

(Vasile C., 2011)

Solution. Write the inequality as f¢(x, y,2) = 0, where
fo(x,¥,2) = f(x) +102(x — yP*(y —2)*(z — x)?,

flx)= Zx(Zx +y+2)(x—y)x—2z)2x—11y)(2x —112).

Since
x(2x+y+2)=x(x+p),

(x—y)x—2z)=x*+2yz—q,
(2x —11y)(2x —112) = 4x* + 143yz — 22q,

f(x,y,2) has the same highest coefficient A, as

Pi(x,y,2)= Z:ch(x2 + 2yz)(4x2 +143yz),

that is
A, =P(1,1,1) = 3(1 + 2)(147) = 1323.

Therefore, f(x, y,z) has the highest coefficient
A=1323+ 102(—27) = —1431.

By Theorem 1, we only need to show that fs(x,1,1) > 0 and f,(0, y,z) = 0 for
x,y,% = 0. We have

fo(x,1,1) = 2x(x + 1)(x —1)*(2x —11)* >0,

f6(0,y,2) = (y —2)[8(y° —2°) —40yz(y> —2°) — 22y*2*(y —2)] + 102y *z*(y — =)
=8(y—=z)°>0.
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The equality holds for x = y = 2, for 2x = 11y = 11z (or any cyclic permuta-
tion), and for x =0 and y =z (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers. If

4k%> + 12k +17 11
ak: 8 ) kZ?J

then
ZX(ZX +y +2)(x — y)x —2)(x —ky)(x —kz) + o (x — y )*(y —2)*(z—x)* = 0,

with equality for x = y =z, for x/k = y = z (or any cyclic permutation), for x =0
2k—3
and y = gz (or any cyclic permutation), and for x = 0 and Y + Z = 2 (or any
z Y

cyclic permutation).
Denoting the left side of the inequality by f¢(x, y,z), we have

k?+ 12k +1
A=3(1+2)(1+k+k2)+4 3 7(—27)

= %9(4k2 + 28k +387) <0,
fo(x,1,1) =2x(x +1)(x —1)*(x —k)* >0,

f6(0,y,2) = %(y —2)?[4y? + 422 — (2k—3)yz]* > 0.

P 4.3. If x, y,z are nonnegative real numbers, then

Z x(2x +y +2)(x —y)(x —2)(x —3y)(x —32) + 8(x — y)*(y —2)*(z — x)* > 0.
(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,2) = 0, where
fo(x,¥,2) = f(x) +8(x — y)*(y —2)*(z — x)?,

flx)= Z x(2x+y+2)(x—y)x—2)(x—3y)(x—32).

Since
x(2x +y +2)=x(x+p),

(x = y)(x —2)=x*+2yz—q,
(x —3y)(x —32)=x*+12yz—3q,
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f(x,y,2) has the same highest coefficient A, as

Pi(x,y,2)= Z:xz(x2 + 2yz)(x2 +12yz),

that is
A =P(1,1,1)=3(1+2)(1+12)=117.

Therefore, fq(x, y,z) has the highest coefficient
A=117 + 8(—27) = —99.

By Theorem 1, we only need to show that fg(x,1,1) > 0 and f(0,y,2) = 0 for
x,y,% = 0. We have

fo(x,1,1) = 2x(x + 1)(x — 1)*(x —3)* > 0,

f6(0,y,2) = (y —2)[2(y° —2°) — 5yz(y° —2%) — 3y *2*(y —2)] + 8y*2*(y —2)°
=(y —2)*(2y*+2y*+yz) = 0.

The equality holds for x = y =z, for x/3 = y = z (or any cyclic permutation),
and for x =0 and y = z (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers. If

11
10—2V/15<k < >

then
Z x(2x+y+2)(x—y)(x—2)(x—ky)(x—kz)+(7k—13)(x—y)*(y—2)*(z—x)* > 0,

with equality for x = y = g, for x/k = y = z (or any cyclic permutation), and for
x =0 and y =g (or any cyclic permutation).

We have
A=3(1+2)1+k+k>)+(7k—13)(—27) = 9(k* — 20k + 40) < 0,

fo(x,1,1) = 2x(x + 1)(x — 1)*(x —k)* > 0,
£5(0,y,2) = (y —2)*[2y* + 22> + (7 —2k)yz] > 0.

P 4.4. If x, y,z are nonnegative real numbers, no two of which are zero, then
1 1 1 9
+ + > .
4x2+yz  4y?+zx  4z2+xy "~ (x2+4yz)+(y2+4zx)+ (22 +4xy)
(Vasile C., 2008)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

fo(x,y,2) = [xX*+y*+2*+4(xy +yz+zx)] Z(4y2+zx)(4zz+xy)—9 l_[(4x2+yz).

The highest coefficient A of f;(x, y,2) is equal to the highest coefficient of the prod-
uct

Py(x,y,2)=—9| [(4x*+ yz),
that is
A=Py(1,1,1) =—-1125.
By Theorem 1, we only need to prove the original inequality for y = 2 = 1, and for
x = 0. Thus, we need to show that
1 N 2 > 9
4x2+1 x+4 x2+8x+6

and
1 1 1 9
>

—t—t—>—
yz  4y? 422 y2+22+4yz
These inequalities are respectively equivalent to

x(x—1)*(8x+45)>0

and
(y —2)*(y*+2%+10yz) > 0.

The equality holds for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers, no two of which are zero. If
1<k<3++5,

then

3 1 9(k +2)
kx2+yz ~ (—k2+6k—2)(x2+y2+22)+ (2k2 =3k + 4)(xy + yz +2x)’

with equality for x = y =2, and for x = 0 and y = z (or any cyclic permutation).
O

P 4.5. If x, y,z are nonnegative real numbers, then

2x%—yz 2y%—zx 222 —xy
4x2+ y2+22  4y2+z2+x2 4z2+x2+y2

1
<_-.
2

(Vasile C., 2008)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

X,Y,2) = x>+ y*+2%)— x%—y2)(4y? + 2% + x?)(42% + x* + y?).
o( ) (4x* +y* +2°)—2 > (2x° J(4y? +22 + x)(42” + x* + y?)
Since

4x* + y* + 2% =3x*+ p*—2gq,

the highest coefficient A of f¢(x, y,z) is equal to the highest coefficient of

[ [Gx)—2p,(x,y,2),
where
Py(x,y,2= Y (2x* — yz)(3y*)(32?),

that is
A=27-2P,(1,1,1) =27 —54 = —27.

By Theorem 1, we only need to prove the original inequality for y =z = 1, and for
x = 0. Thus, we need to show that

2x2—1 2(2—x) <

2(2x2+1) x2+5 —

1
2

and

—yz 2y? N 22> 1
Y2422 4y2422 4z24y2 7 2

These inequalities are respectively equivalent to
(x—1)*(4x+1)=>0

and
—yz (¥ +22)* + 6y2z> 1

Y2422 T 4(y2+22)249y252 " 2
For yz = 0, the last inequality is an equality. For yz # 0, using the substitution

2 2
+2z

t=y 5 t>2,
¥z

the inequality becomes
-1 2(t? +6) < 1
t  4t2+9 T2
8t>—15t+18 >0,

t(8t—15)+ 18> 0.
The equality holds for x = y =z, and for y = 2z = 0 (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:
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e Let x, y,z be nonnegative real numbers. If k > 2, then

2 _ —
Z 3kx*—2(k—1)yz <3,
kx2+y? +22

with equality for x =y =z, and for y = z = 0 (or any cyclic permutation). If k = 2,
then the equality holds also for x = 0 and y = z (or any cyclic permutation).
O

P 4.6. If x, y, 2z are real numbers, then

21x% +4yz 21y% + 4zx 212% + 4xy
X2+2y2+222  y2+222+2x2  22+2x2+2y?

(Vasile C., 2012)
Solution. Write the inequality as f¢(x, y,2) = 0, where
fo(x,y,2) = Z:(le2 +4y2)(y? + 222 + 2x?) (2% + 2x% + 2y?)
—15(x% + 2y% + 22)(y? + 22% + 2x?) (2% + 2x% + 2y2).

Since
x?+2y%+22* = —x*+ 2(p* —2q),

fo(x, y,2) has the same highest coefficient A as

pZ(XJ y,Z) —15 l_[(_XZ)’

where
Py(x,y,2) = Y (21x? + 4yz)(—y*)(—z2),
that is
A=P,y(1,1,1)+ 15 =75+ 15 = 90.
Since

fo(x,1,1) =(21x% + 4)(2x* + 3)* + 2(4x + 21)(2x* + 3)(x* + 4)
—15(2x% + 3)*(x* + 4)
=4x(2x%+3)(x —1)*(3x +8),

we apply Theorem 3. The condition (a) in Theorem 3 is clearly satisfied.

4Ax(x —1)3
2

The condition (b) in Theorem 3 is satisfied if f¢(x,1,1) > forx > 1.

We have
4Ax(x—1)°  40x(x—1)

27 3

>
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4Ax(x —1)° _ 4x(x —1)*f (x)

,1,1)—
folx ) o7 3

where
f(x)=3(2x*+3)(3x+8)—10(x—1) > 15(3x +8)—10(x —1) = 5(7x + 26) > 0.

The condition (c) in Theorem 3 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that

2yz (CARED N AL
2+ 22 2(y2 +22)2 + y222 )
Using the substitution
24,2
+
=2 1% t>2,
Yz

we may write the inequality as follows:

2 2
2, 20D
t  2t2+1
12t3 4+ 4t>—57t +2>0,
(t—2)(12t* +28t—1) > 0.

The equality holds for x = y = 2, and for x = 0 and y = 2z (or any cyclic
permutation).

Observation. Similarly, we can prove the following generalization:
e Let x, Y,z be nonnegative real numbers. If 0 < k <2, k # 1, then
SR 2y 3(3—K)

kx?2+y2+22 =~ 1—k

2

with equality for x = y = g, and for x = 0 and y = z (or any cyclic permutation). If
k = 2, then the equality holds also for y =z = 0 (or any cyclic permutation).
O

P 4.7. If x,y,z are real numbers, then

Xy—yz+zx = yz—2zx+Xxy 2Xx—Xxy+yz
x2+3y2+322 y2+322+3x2 22+3x2+3y2

3
<c.
7

(Vasile C., 2012)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
fo(x,y,2) =3(x*+ 3y + 32%)(y? + 322 + 3x2)(z% + 3x* + 3y?)
— 7Z(xy —yz +2x)(y?* +32% + 3x%)(2% + 3x* + 3y?).
Since
x?+3y*+322 ==2x*+3(p*—2q), xy—yz+zx=—-2yz+(

fo(x,y,2) has the same highest coefficient A as

3(—2x?)(—2y*)(—22%) = 7 ) (—2yz)(—2y*)(—22%),
that is

A=—24+168 = 144.
Since
fo(x,1,1) =3(x* + 6)(3x2 + 4)* — 7(2x — 1)(3x> + 4)*> — 14(x* + 6)(3x% + 4)

= (3x% +4)(9x* — 42x> + 73x* —56x + 16)

= (3x?+4)(x —1)*(3x —4)%,
we apply Corollary 1 for
(x —1)*(B8x —4)?

8125

Ea,[j (x)= f4/3,—2(x) =

The condition (a) of Corollary 1 is satisfied if fg(x,1,1) = Afy/3_,(x) for x €
[0,4]. We have
16(x —1)*(3x —4)?
225
(x =1’ (Bx —4)*f (x)
225 ’

Af4/3,—z(x) =

>

fe(x,1,1) —Af4/3,_2(x) =
where

f(x)=225(3x?+4)—16(x—1)* > 16(3x*+4)—16(x—1)* = 16(2x*+2x+3) > 0.

The condition (b) of Corollary 1 is satisfied if fs(x,1,1) > Ax? for x > 4. We
have
fo(x,1,1) —Ax? = (3x* + 4)(x — 1)*(3x — 4)* — 144x?
> 3x2[(x — 1)*(3x —4)*— 48] > 3x*(9- 64— 48) > 0.

The condition (c) of Corollary 1 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that

- 3
Y2,y o, yx 3
3(y2+22) y2+322 22+3y2" 7
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which can be rewritten as

—yz 4yz(y* +2%)
3(y2+22)  3(y?+22)>+4y2z?

3
<z,
7

For the nontrivial case yz # 0, using the substitution

24 2
r=2 1% t>2,
Yz
we may write the inequality as follows:
1, 4 3
3t 3t2+4 7
9t*—4 3
_ S —.
3t(3t2+4 " 7
It suffices to show that
9t?

_ ot 3
3t(3t2+4) ~ 8
which reduces to
(t—2)(3t—2)>0.

3
The equality holds for x = y = g, and for Zx = y = gz (or any cyclic permuta-
tion).

Observation. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers, and let

_ 3k(k—1) ﬁ_3k2—6k+1
- 3k2—1"  3k2—1

1
where k>0, k# ﬁ Then,

Zax(y+z)—[5yz <3(2a—/5)
3k2x2+y2+322 = 3k2+42°

with equality for x = y = 2, and for x /y = y = 2z (or any cyclic permutation), where

2
k=1,
r 3k
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P 4.8. If x, y,z are nonnegative real numbers, then

Zx3(2x +y+2)(x—y)x—2)>13(x—y)*(y —2)*(z — x)*.
(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,z) = 0, where
folx,y,2) = F () = 13(x — y Y (y —2)*(z — x)?,

flx)= ZXB(ZX +y+2)(x—y)(x—2).

Since
2x+y+z)=x+p, (x—y)x—2)=x>+2yz—q,

f(x,y,2) has the same highest coefficient A; as

Pl('x’ .Y:Z) = ZX4(X2 + 2)’2),

that is
A, =Py(1,1,1)=3(1+2)=0.

Therefore, f(x, y,z) has the highest coefficient
A=9—13(—27) = 360.

Since
folx,1,1) = 2x°(x + 1)(x — 1),
we apply Corollary 1 for
x*(x—1)*

E,p5(x) = foolx) = 36(x 12

The condition (a) of Corollary 1 is satisfied if f¢(x,1,1) > Af, o(x) for x € [0, 4].
We have

10 4 -1 4
fo(x,1,1) —Afgo(x) = 2x>(x + 1)(x — 1)* — —zcx(j.cz)Z )
_ 2x3(x —1)?(4—x)(4x%2+x+1) >0

(x +2)2

The condition (b) of Corollary 1 is satisfied if fs(x,1,1) > Ax? for x > 4. We
have

fe(x,1,1)—Ax? = 2x*[x(x + 1)(x — 1)>*—180]
> 2x?[4-5-9—180]=0.
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The condition (c) of Corollary 1 is satisfied if f,(0, y,z) = 0 for y,z > 0. We have

f6(0,y,2) = (y —2)[2(y° —2°) + yz(y® —2°)] - 13y*2*(y —2)*
= (y —2)’[2(y* +2°)* + 3yz(y* +2%) — 14y°2*]
=(y—2)*2y*+22°+7yz) > 0.

The equality holds for x = y = 2, and for x = 0 and y = 2z (or any cyclic
permutation).

]

11
P 4.9. Let x,y,z be nonnegative real numbers. If k < DX then

> x(2x+y+2)(x—y)(x—2)(x—ky)(x—kz)+(7k—13)(x—y 2(y—2)*(z—x)* > 0.
(Vasile C., 2011)
Solution. Write the inequality as fg(x, y,2) = 0, where
fe(x, y,2) = f () + (7Tk = 13)(x — ¥ )*(y —2)*(z — x)?,
FO) =D x(@x+y +2)(x — y)(x —2)(x —ky)(x — kz).
Since 2x +y +2z=x+p,
(x—y)x—2z)=x2+2yz—q, (x—ky)(x —kz)=x*+ (k+k%)yz —kq,

f(x,y,2) has the same highest coefficient A; as

Pi(x,y,2)= Z:xz(x2 +2y2)[x*+ (k + k*)yz],

that is
A, =P(1,1,1)=9(k* + k+1).

Therefore, f.(x, y,2) has the highest coefficient
A=9(k®+k+1)+ (7k —13)(—27) = 9(k? — 20k + 40).

We have
fo(x,1,1) = 2x(x + 1)(x —1)*(x —k)* > 0,

f6(0,y,2) =(y —2)[2(y° —2°) — (2k — 1) yz(y* —2°) —ky?z*(y —2)]
+ (7k — 13)y?*2*(y —2)*
=(y —2)*[2y* + 2y* + (7 — 2k) y =]
=(y —2)*[2(y —2)* + (11 —2k)y2z] = 0
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Case 1: k € [10 —24/15,11/2]. Since A < 0, we only need to show that
fe(x,1,1) > 0 and f,(0, y,2) = 0 for x, y,z = 0 (Theorem 1). Both conditions are
satisfied.

Case 2: k < 10—24/15. We apply Corollary 1 for

4x?(x — 1D)*(x — k)?
9(4—k)>(x+2)2 °

Eqp(x) = fro(x) =

The condition (a) in Corollary 1 is satisfied if fg(x,1,1) = Af; o(x) for x € [0,4].

We have
4(k? — 20k + 40)x2(x — 1)*(x — k)?

(4— k)2(x + 2)? ’
2x(x —1)*(x — k)’ (x)
(4—kp(x+2)

Afk,o(x) =

f6(x) 15 1) _Afk,O(x) =

where
2(x) = (4—Kk)*(x + 1)(x + 2)* — 2(k* — 20k + 40)x(x — 1)>.
Since
(x +1)(x+2)2—=5x(x—1)*=(4—x)(1+x +4x>) >0,
we get

g(x) > 5(4—k)*x(x —1)* — 2(k* — 20k + 40)x(x — 1)* = 3k*x(x —1)* > 0.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
fo(x,1,1) —Ax? = xg(x),

where
g(x) =2(x + 1)(x — 1)*(x — k)* — 9(k*> — 20k + 40)x.
Since
4(x—1P —-9x=(x—4)(4x—1)>0,
we get

2g(x) > 9x(x + 1)(x — k)* — 18(k* — 20k + 40)x
= 9x[(x + 1)(x —k)*> — 2(k> — 20k + 40)]
> 9x[5(4 —k)* — 2(k* — 20k + 40)] = 18k*x > 0.

The condition (c) in Corollary 1 is satisfied because f4(0, y,z) > 0 for y,z > 0.
The equality holds for x = y =z, and for x/k = y = 2z (or any cyclic permuta-
tion) if k # 0. If k = 0, then the equality holds also for x =0 and y = 2.

Observation 1. Having in view the inequality in Observation from P 4.2 and the
inequality in P 4.9, we can formulate the following statement:
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e Let x, y,z be nonnegative real numbers. If

7k — 13, k<—

%Y ak412k+17 1

8 2

then

Zx(Zx +y+2)(x—y)(x —2)(x —ky)(x —kz) + o (x — y)*(y —2)*(z—x)* > 0.

Observation 2. The coefficient a, in the inequality from Observation 1 is the best
possible.

Setting x = 0, the inequality becomes
(r =2)[20y° —2°) — 2k — Dyz(y® —2°) —ky?2*(y —2)] + o,y *2°(y —2)%,
(ry—2)*f(y,2) 2 0,
where
f(y,2)=2(y*+2*)*—(2k —3)yz(y* + 2%) + (o, — 3k — 1)y 22>

From the necessary condition f(1,1) > 0, we get a;, > 7k —13.

Assume now that k > 11/2. Since (2k —3)/4 > 2, there exist y > 0 and z > 0

such that
,  2k—3

4

¥ +z yz.

For this case, we have

fly,2) 1 1

4k2 + 12k + 17
3 )

ay

4k%> + 12k +17
3 )

From the necessary condition f(y,z) > 0, we get a; >

P 4.10. If x, y,z are nonnegative real numbers, then

12(x — y)*(y —2)*(z —x)?
(x +y +2)? '

D= )x—2) =

(Vasile C., 2010)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

fe(x,y,2)=(x+y +Z)ZZX2(X —¥)(x —2) = 12(x — y Y (y —2)*(z — x)?
has the highest coefficient
A=—-12(—27) = 324.

Since
fG(XJ 1: 1) = XZ(X + Z)Z(X - 1)27

we apply Corollary 1 for

x*(x—1)*

Eap(6) = foax) = =2

Since
Afo_o(x) = 4x*(x —1)%,
fo(x,1,1) = Afy (%) =3x°(x = 1)*(4—x) 2 0,

the condition (a) from Corollary 1 is satisfied.

The condition (b) from Corollary 1 is satisfied if f¢(x,1,1) > Ax? for x > 4. This
is true since

fo(x,1,1) —Ax? = x? [ (x +2)%(x — 1)*—324] > x*(36 - 9—324) = 0.

The condition (c) from Corollary 1 is also satisfied because

f6(0,y,2) = (y +2)*(y —2)*(y* +2° + yz) — 12y%z*(y —2)°
=(y—2)*(y*+2*+5yz) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
O]

P 4.11. Let x, y,z be nonnegative real numbers. If k is a real number, then

ZX(}/ +2)(x — y)(x —2)(x —ky)(x —kz) + (k= 3)(x — y)*(y —2)*(z —x)* 2 0.

(Vasile C., 2011)
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Solution. Write the inequality as fg(x, y,2z) = 0, where
fo,y,2) = £(x) + (k= 3)(x — y)X(y —2)(z — x)?,
FO) = x(y +2)(x — y)(x —2)(x —ky)(x — k).
Since y +z=—x+p,
(x—y)x—2)=x*+2yz—q, (x —ky)(x —kz) = x>+ (k+ k*)yz —kq,

f(x,y,2) has the same highest coefficient A; as

Pi(x,y,2)= —Z:ch(x2 +2y2)[x* + (k + k*)yz],

that is
A, =P(1,1,1)=—9(k*+ k +1).

Therefore, f(x, y,z) has the highest coefficient
A=—-9(k*+k+1)+(k—3)(—27) = 9(8 — 4k — k?).
We have
fG(XJ 1, 1) = ZX(X - 1)2(X - k)Z >0,

f6(0,y,2) =ya(y —2)[y® —2° —kyz(y —2)]+ (k—3)y*z*(y —2)*]
=yz(y —2)*>0

Case 1: k € (—00,—2—24/3]U[—2 + 24/3,00). Since A < 0, we only need
to show that fg(x,1,1) > 0 and f4(0,y,z) = 0 for x,y,z > 0 (Theorem 1). Both
conditions are satisfied.

Case 2: k € (—2—24+/3,—2 + 24/3). We apply Corollary 1 for

4x%(x —1)*(x — k)?
9(4—k)2(x+2)2 °

Eop(x) = frolx) =

The condition (a) of Corollary 1 is satisfied if f¢(x,1,1) > Af; o(x) for x € [0, 4].

We have
4(8 — 4k — k*)x%(x — 1)*(x — k)?

(4 —k)2(x + 2)2 ’
2x(x —1)*(x —k)*g(x)
G-k +27

Afk,o(x) =

fe(x,1,1) _Afk,o(x) =

where
g(x) = (4—k)*(x +2)*—2(8 — 4k — k*)x(x — 1)2.

Since
(x+2P—x(x—1P=@—-x)1+x+x?)>0,
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we get
g(x) > (4—k)*x(x —1)*—2(8 — 4k — k*)x(x —1)* = 3k*x(x —1)* > 0.

The condition (b) of Corollary 1 is satisfied if fs(x,1,1) > Ax? for x > 4. We
have

f6(x: 1) 1)—AX2) = Xg(X),

where
g(x) =2(x — 1)*(x —k)* —9(8 — 4k — k?)x.
Since
4(x—1P —9x=(x—4)(4x—1)>0,
we get

2g(x) > 9x(x —k)*—18(8 — 4k — k*)x
= 9x[(x —k)*—2(8 — 4k — k)]
> 9x[(4—k)*—2(8 — 4k —k*)] = 27k*x > 0.

The condition (c) of Corollary 1 is satisfied since f;(0, y,2) > 0.

The equality holds for x = y = 2, and for x/k = y = 2 (or any cyclic permuta-
tion) if k # 0, for x = 0 and y = 2 (or any cyclic permutation, and for y = z (or
any cyclic permutation.

Observation. The coefficient of the product (x — y)*(y —2)*(z — x)? is the best
possible.

Setting x = 0, the inequality

Z x(y +2)(x —y)(x —2)(x —ky)(x —kz) + ap(x — y)*(y —2)*(z —x)* = 0

becomes
ya(y —2)[y® —2° —kyz(y —2)1+ o y*2*(y —2)*1= 0,
yz(y —2) [y*+2*2+(1—k+a,)yz] > 0.

The necessary condition
y2+22+(1—k+a)yz>0

leadsto a, >k—3 fory =2z=1.

P 4.12. Let x, y,z be nonnegative real numbers. If k < 4, then

Z x2(x —y)(x —2)(x —ky)(x —kz)+ (3k—5)(x — y)*(y —2)*(z—x)* > 0.

(Vasile C., 2011)
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Solution. Denote
FG6,y,2) =D x(x — y)(x —2)(x —ky)(x — k),

and write the desired inequality as fi(x, y,z) = 0, where
fo(x, y,2) = f(x, y,2) + Bk —5)(x — y )*(y —2)*(z —x)*.
From
(x—y)x—2)=x*+2yz—q, (x—ky)(x—kz)=x*>+(k+k*)yz—kq,

it follows that f (x, y,z) has the same highest coefficient A; as

Py(x,y,2) =y x2(x?+2y2)[x? + (k + k?)yz],
that is,
A, =P(1,1,1) =9(k* + k + 1).
Since the highest coefficient of the product (x —y)?(y —z)?*(z—x)? is equal to —27,
fo(x,y,2) has the highest coefficient
A=A, +(3k—5)(—27) =9(4—k)>.

On the other hand, we have

fo(x,1,1) = x*(x — 1)*(x —k)?,

f6(0,y,2) = (y —2)y* —2° —kyz(y* —2")] + (3k — 5)y*z*(y —2)°
= (y —2)’[(y* +2%)* — (k= Dyz(y* +2°) + 2(k — 3)y*z*]
=y —2)'[y* +2* = (k—3)yz]
=(y —2)[(y —2)*+(5—K)yz] = 0.
For k = 4, we have A= 0. According to Theorem 1, the desired inequality is true
since fg(x,1,1) >0 and f,(0, y,2) > 0 for all x,y,z > 0.

For k < 4, we have A > 0. To prove the desired inequality, we will apply Corollary
1 for
4x2%(x — 1)*(x — k)?
9(4—k)2(x+2)2

The condition (a) in Corollary 1 is satisfied if f¢(x,1,1) > Af o(x) for x € [0, 4].
We have

Eyp(x) = fiolx) =

4x%(x —1)*(x —k)?
(x +2)2 ’
3x3(x —1)*(x —k)?*(4 —x) -
(x +2)2 -

Afk,o(x) =

fo(x,1,1) =Afy o(x) = 0.
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The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(x5 17 1) _sz = ng(X),

where
g(x) = (x —1)*(x —k)*—9(4 — k).
Since
(x—1)*>>09,
we get

g(x)>9[(x—k)*—(4—k)*1=>9[(4—k)>*—(4—k)*]=0.

The condition (c) in Corollary 1 is satisfied because f4(0, y,z) > 0 for y,z > 0.

The equality occurs for x = y = g, for x = 0 and y = z (or any cyclic permutation),
and for x/k = y =z (or any cyclic permutation) if k # O.

Observation 1. The coefficient of the product (x — y)?(y —2)?(z — x)? is the best
possible.

Setting x = 0, the inequality
D x%(x = y)(x —2)(x — ky)(x —k2) + o (x — y)2(y —2)*(z — x)* 2 0
becomes as follows:
(r =2)y° —2° —kyz(y’ —2°) ]+ ary?2*(y —2)* 2 0,

(y —2)*f(y,2) >0,

where
f(,2)=y*+2*—(k—Dyz(y*+22) + (a, —k +1)y*z* > 0.
For y =z = 1, the necessary condition f(1,1) > 0 involves a; > 3k —5.
Observation 2. For k = 4, the inequality turns into
D732 — ) —2)(x —4y)(x —42) + 7(x — y)(y — 2z — x> 2 0,
which is equivalent to
(X2 +y*+22—xy —yz—z2x)(x* + y* + 2> —2xy — 2yz — 2zx)*> > 0.

The equality occurs when x = y = z, and when /x = /¥y + /2 (or any cyclic
permutation).

Observation 3. The inequality can be extended for k > 4, as follows:

20 + 12k — 4k — k*
4(k—1)?

Zxz(x—y)(x—Z)(x—ky)(x—kZ) 2 (x—y)*(y—2)*(z—x)*.
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Actually, this inequality is valid for all real x, y,z (see P 3.49 from chapter 3).

Observation 4. Substituting k — 1 for k in P 4.12, and using then the identity
> 1 x2x—y)x —2)[x — (k— 1y ](x — (k—1)z] =
= sz(x —¥)(x = 2)(x —ky +2)(x —kz + y) + k(x — y)*(y —2)*(z — x)?,

we get the following equivalent statement:

o Let x, Y,z be nonnegative real numbers. If k < 5, then

Z xX*(x —y)x —2)(x —ky +2)(x —kz + y) 2 42— k)(x — y)*(y —2)*(z —x)%,

with equality for x = y = 2, for x = 0 and y = z (or any cyclic permutation), and for
x/(k—1) =y =z (or any cyclic permutation) if k # 1.
O

P 4.13. Let x, y,z be nonnegative real numbers. If k is a real numbers, then

Zyz(x —y)x—2)(x—ky)(x—kz)>0.
(Vasile C., 2010)

Solution. If one of x, y,z is zero, the inequality is trivial. On the other hand, the
inequality remains unchanged by replacing x,y,z and k with 1/x,1/y,1/z and
1/k, respectively. Therefore, it suffices to consider that

k € (—oo,—1]U[0,1].
Write the inequality as f(x, y,2) > 0, where
fol,y,2) = > ya(x — y)(x —2)(x —ky)(x —kz).
Since
(x—y)x—2)=x*+2yz—q, (x—ky)(x—kz)=x*+(k*+k)yz—kq,
fo(x,y,2) has the same highest coefficient as
P(x,y,2) = Z:yz(x2 +2y2)[x* + (K* + k)yz],

that is,
A=P;(1,1,1)=9(k*+k+1).

On the other hand,
f6(xa 1) 1) == (x - 1)2(X - k)zz
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f6(01 _)’,Z) = k2y323'

Thus, we apply Theorem 2 for

4(x —1)*(x — k)?
9(2k +1)2(x +2)2

Ea,ﬁ(x) :fk,oo(x) =

Since

(x —1)2*(x —k)*[(2k + 1)?(x +2)* —4(k* + k + 1)(x — 1)?]
(2k + 1)2(x + 2)2 ’

f6(xt, 1, 1)=Afy oo (x) =

the condition (a) of Theorem 2 is satisfied if
(2k + 1)*(x +2)* > 4(k* + k + 1)(x — 1)?
for 0 < x < 4. This is true because

k+172>k*+k+1, (x+2)*>4(x—1)>

In order to prove the conditions (b) and (c) of Theorem 2, consider two cases:
0<k<1landk<-1.

Case 1: 0 < k < 1. Apply Theorem 2 for

(2x +1)? 2
Fy,é(x) = go,&(X) = [X + 5x—+2] )
We have
. 52y 44
g0,5(.y)z) — (y +Z)2’
; (k2 + k +1)5%y%2" _ 9(k? + k +1)52y %
A = <
805(Y,2) G +2p < : ’
2 1 2
£4(0,9,2) — Aoy (1,2) = FIOY*S,  flk) =k — 2T T )5*
Choosing
_ 2k
C3(k+1)
we have

Kk +k+1)5% K -0
(k +1)2 C(k+1)2 77

therefore the condition (¢) of Theorem 2 is satisfied.

£(k)=K*—




418 Vasile Cirtoaje

The condition (b) of Theorem 2 is satisfied if fg(x,1,1) > Ag, s(x) for x > 4. We
have

5 (2x +1)? ]2
x+2

2k(2x + 1)2 ]Z

3(k+1)(x+2)
2

_ [B(k +1)x+ —Zk(i’:;l) ]
_ [(3—5k)x? + (6 — 2k)x — 2k]?
B (x+2)2
< [(3—5k)x? + (6 —2k)x — 2k]?
< 36 ,

g1(x)g,(x)
36 ’

Ago 5(x) < 9(k +1)? [x N

=9(k +1)? [x—

fo(x,1,1) —Agg 5(x) =

where

g.(x) =6(x —1)(x —k) — (3 —5k)x*— (6 — 2k)x + 2k
= (3 +5k)x?— (12 + 4k)x + 8k
> 4(3 +5k)x — (12 + 4k)x + 8k
=11kx +8k >0,

2,(x) = 6(x —1)(x —k) + (3 —5k)x? + (6 — 2k)x — 2k
= (9 —5k)x? — 8kx + 4k
> 4(9 — 5k)x — 8kx + 4k
— (36— 28Kk)x + 4k > 0.

Case 2: k < —1. We apply Theorem 2 for
(x—1)*
9(x +2)2°

The condition (b) of Theorem 2 is satisfied if fg(x,1,1) = Afo, oo(x) for x > 4.
We have

F}/,S(x) :foo,oo(x) =

(K +k+ D(x—1) _K(x—1)°
(x +2)2 T o (x+2)2°

Af oo 00(X) =
therefore

(e —1D?[(x +2)*(x —k)*> —k?*(x — 1)?]
(x+2)2

f6(x: 1: ]-) _Afoo,oo(x) =

It suffices to show that

(x+2)(x—k)=(—k)(x—1).
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This is true because

x+2>x—1>0, x—k>—k>0.

The condition (c) of Theorem 2 is satisfied if f¢(0, y,z) > AfAOO’OO( v,z) for y,z >
0. Since

4.4 3.3
F Y=z ¥’z
foo,00(¥,2) = St ar S 36
we have
; K+k+1
f(07yaz)_AfooOo(y’Z)Z kZ_M y32320-
i ’ 36

The equality occurs for x = y = z, for y =z = 0 (or any cyclic permutation), and
for x/k = y = z (or any cyclic permutation) if k # 0. If k = 0, then the equality
holds also for x =0 and y = 2.

Observation 1. The coefficient (zero) of the product (x — y)*(y —2)?*(z —x)? is the
best possible.

Setting x = 0, the inequality

Z y2(x — y)(x —2)(x —ky)(x —kz) + a(x — y)*(y —=2)* (2 —x)* 2 0
becomes as follows:
k*y3z® + a, y*2*(y —2)* > 0.
Setting y = 1 and z = 0 in the necessary condition
kK*yz+ o (y —2)* >0,
we get a; = 0.

Observation 2. Substituting k — 1 for k in P 4.13, and using then the identity
D yalx—y)(x —2)[x — (k= 1)yl(x — (k—1)z] =
= > yalx = —2)x —ky +2)(x —kz +y) + k(x =Yy =)z —x)2,

we get the following equivalent statement:

e Let x,y,z be nonnegative real numbers. If k is a real number, then

ZyZ(x —¥)x —2)(x —ky +2)(x —kz + y) + k(x — y)*(y —2)*(z —x)* 2 0,

with equality for x = y = 2, for y = 2 = 0 (or any cyclic permutation), and for
x/(k—1) = y =z (or any cyclic permutation) if k # 1.
O
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P 4.14. If x, y,z are nonnegative real numbers, then

3(x =y )Py —2)*(z — x)?
Xy +yz+zx '

> Ix(x—y)x—2)>
Solution. Write the inequality as fg(x, y,z) = 0, where

fo(x,y,8) = (xy +yz+2x) ) x*(x —y)(x —2) = 3(x — y)*(y —2)*(z — x)*

We have
A=-3(—27) =81.

Since
f6(x; ]-s 1) = (ZX + 1)X2(X - 1)27

we apply Corollary 1 for

x*(x—1)*

Eup(x) = fo o) ="

Condition (a). We need to show that fs(x,1,1) > Af, ,(x) for x € [0,4]. We
have
Afo_o(x) = x*(x —1)%,

folx,1,1) —Afg 5(x) = 2x + Dx*(x —1)* = x*(x —1)* = x*(x — 1)*(4—x) = 0.
Condition (b). This condition is satisfied if fs(x,1,1) > Ax? for x > 4. We have
Ax? = 81x?,
fo(x,1,1)—Ax* = x*[(2x + 1)(x —1)*—81] > x*(81—81) = 0.
Condition (c). This condition is satisfied if f;(0, y,z) = 0 for y,z > 0. We have

f6(0,y,2) = yz(y —2)(y° —2*) —3y*2*(y —2)* = yz(y —=2)* > 0.

The equality occurs for x = y = 2, and for x = 0 and y = 2z (or any cyclic

permutation).
O

P 4.15. If x, y,z are nonnegative real numbers, then

9(x — y)*(y —2)*(z —x)?

Z(x—y)(x—z)(x+2y)(x +2z) > S
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Solution. Write the inequality as f¢(x,y,2) = 0, where

fo(x,y,2) = (xy+yz+zx) Z(X—y)(X—Z)(X+2y)(X+22)—9(x—y)Z(y—Z)Z(Z—X)Z-

We have
A=—9(—27) = 243.

Since
fo(x,1,1) = (2x + 1)(x — 1)*(x + 2)?,

£6(0,y,2) = yz[4y*2® + (y —2)(y° —2°) + 2y2(y —2)* | — 9y 22> (y —2)
= yz[4y’2* + (y —2)* —8yz(y —z2)*]
= yz[(y —2) —2yz] = yz(y* +2% —4yz)’,
yZZZ(yz 4 22 _ 4yz)2
81(y +2)2

Froo(y,2) =
we apply Theorem 2 for

(x —1)*(x—2)°
324 ’

Eqp(x) = foo(x) =

4(x—1)°

F s(x)=f1o0(x)= 8l(x 120

Condition (a). We need to show that fs(x,1,1) > Af, ,(x) for x € [0,4]. We

have
3(x —1)*(x —2)?

4 b

Af, 2,—2(X )=

12
file, 1, 1=, () = S DD

Since (x +2)? > (x —2)? and 2x + 1 > (x — 1), we have f(x) > 0.

F(x) =42x+1)(x+2)*=3(x—1)*(x—2)>.

Condition (b). This condition is satisfied if fs(x,1,1) > Af; ,(x) for x > 4. We

have
12(x—1)°

(x+2)2"°

(x—1)*f(x)
(x+2)2 °

Afl,oo(x) =

f6(X: 11 1)_Af1,oo(x) =

where
f(x)=(2x+1)(x+2)"—12(x — 1"

The necessary inequality f(x) = 0 can be obtained by multiplying the inequalities

(x +2)*> (x—1)2
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2x+1>2(x—1),
(x +2)?>6(x—1).
Condition (c). We need to show that f,(0, y,z) > AfALoo( y,%). We have

3y22%(y? + 22 — 4yz)?
(y +2)?

Afl,oo(yaz) =

>

AL ]20.

f6(01y’z)_Afl,oo(y’Z) :yz(y2+z2—4yz)2[1— (y+z)2

The equality occurs for x = y = z, and for x = 0 and y/x + x/y = 4 (or any

cyclic permutation).
O

P 4.16. If x, y,z are nonnegative real numbers, then

6(x — y)*(y —2)*(z —x)?
Xy +yz+zx '

D (= y)(x —2)(x —3y)(x —32) >
Solution. Write the inequality as f¢(x,y,2) = 0, where

fo(x,y,2) = (xy+yz+zx) Z(x—y)(x—Z)(x—3y)(x—SZ)—6(x—y)Z(y—Z)Z(Z—X)Z-

We have
A=—6(—27)=162.

Since
fe(x,1,1) = (2x + 1)(x — 1)*(x — 3)?,

£6(0,y,2) = yz[ 9y + (y —2)(y° —2°) — 3yz(y —2)* | — 6y 2% (y —2)?
= yz[9y%? + (y —2)* — 6yz(y —2)*]
= yz[(y —2) —3yz] = yz(y* +2* —5yz)’,

yZZZ(y2 + ZZ _ 5y2)2
144(y +2)>?

fS/Z,oo(y:Z) =

we apply Theorem 2 for

4(x —1)*(x —3)?
2025

Eop(x) = f35(x) =

3

(x —1D*(2x —3)?
144(x 1 2)2

Fy,é(x) :f3/2,oo(x) =
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Condition (a). We need to show that fs(x,1,1) > Af;_,(x) for x € [0,4]. We
have ( ¥ e

8(x—1)"(x—3
A = )
f 3,—2(X ) 55
(x —1)*(x =3)*f (x)
£i(e, 1, 1) = Afy_y(x) = =),
with
f(x)=2502x+1)—8(x—1)>>8[2x +1—(x—1)*]>0.
Condition (b). This condition is satisfied if f¢(x,1,1) = Af3/5 o (x) for x > 4. We

have
9(x —1)*(2x —3)?

Af3/2,oo(x) = 8(x +2)° 5
_1)2
e 11 = Ay () = T,

where
F(x)=8(2x + 1)(x —3)*(x +2)* —9(x — 1)*(2x — 3)*.
Since 8(2x + 1) > 72 > 64, we have f(x) > 0 if
8(x —3)(x +2)>3(x—1)(2x —3).
Indeed,

8(x—3)(x +2)—3(x—1)(2x —3) =2x%*+7x —57 > 32+28—57 > 0.

Condition (c). We need to show that f4(0, y,z) > Ang /2,00(Y¥,2). We have

9y%2%(y? + 22 —5yz)?
8(y +2)>2

AfB/Z,m(y:Z) =

A 9yz
0320 Ay en(,5) = yaly* 22 =5y2 | 1= 722 [ >0,

The equality occurs for x = y = 2, for x/3 = y =z (or any cyclic permutation),

and for x =0 and y/x + x/y =5 (or any cyclic permutation).

P 4.17. Let x, y,z be nonnegative real numbers, and let
3(1—k), k<0
a, = .
3+k, k>0
Then,

O =YY (y —2)*(z —x)?
Xy +yz+zx '

D=y =) x —ky)x —kz) = =

]

(Vasile C., 2010)



424 Vasile Cirtoaje

Solution. Write the inequality as f¢(x,y,2) = 0, where

fo(x,y,2) = (xy+y2+ZX)Z(X—y)(X—Z)(x—ky)(x—kz)—ak(x—y)z(y—Z)Z(Z—X)z-

We have
A= 27ak > O,

fo(x,1,1) = (2x + 1)(x — 1)*(x — k)?,

£6(0,5,2) = yz[K2y?2* + (y —2)(y° —2°) —kyz(y —2)* ] — iy 2% (y —2)?
= yz[K2y22? + (y —2)* —2lklyz(y —2)*] = yz [(y —2)* — |klyz]
= yz[(y +2)*— (4 +|kDyz]",

2,2

G T ey +oys]

gy,é(ya Z) =
We will apply Theorem 2 for

4(x = ) (x — [k])*
81(2 + |k[)2

Eop(x) = figg,—2(x) =

Condition (a). Since

fo(x, 1, 1) =Afjy2(x)  3(2+ [k])*(2x + 1)(x —k)* — 4a; (x — 1)*(x — |k])?
(x—1)2 B 3(2 + |kl)2 ’

the condition (a) of Theorem 2 is satisfied if
3(2+ [kD*(2x + 1)(x — k)* > 4a, (x — 1)*(x — |k|)?

for 0 < x < 4. Since (x —k)? > (x —1k|)? and 2x + 1 > (x —1)?, it suffices to show
that
3(2+ |k|)? = 4a,.

If k <0, then
3(2+|k])* —4a, =3k*>0.
Also, if k > 0, then
3(2 + |k|)* —4a, = k(3k +8) > 0.

Conditions (b) and (c). To prove the conditions (b) and (c) of Theorem 2, we
consider four cases:

k<o, k>2, 0<k<1, 1Sk35—§.
In the first three cases, we choose
(2x +1)27
F,s(x)=g,s(x)= [x +r(x+2)2x+1)+ 5x—+2 .



Highest Coefficient Cancellation Method for Nonnegative Variables 425

Having in view the expression of f,(0, y,2), we need to choose
6 =—(4+ [kl)r,

to have
2.,,2.2

Yz
Yy +2)?

8,5(y,2) = [(y +2)*—(4+ kDyzT.

In addition,

4+ |kDy(2x + 1)2]2

g, 5(x)= [x+y(x+2)(2x+1)— s

Case 1: k < 0. Choosing

2
Y e
—2(4—k)
§=—(4—ky=—-""2
4=k 27J1—k

we have
A=27a, =81(1—k),

fo(x,1,1) —Ag, 5(x) = (2x + 1)(x —1)*(x —k)?

et 2 24—k (x+177
81(1 k)[x+27m(x+2)(2x+1) Tk x+2 ],

I fe(x,1,1)—Ag, 5(x)]=9(2x + 1)(x — 1)*(x —k)?
(2x + 1)2}2
x+2 ’

The condition (b) is satisfied if fg(x,1,1) = Ag, 5(x) for x = 4. Since x > 4
involves

—[27\/1—kx+2(x+2)(2x+1)—2(4—k)

9(2x +1) > 81,

this condition is true if

>0

_ >

(2x + 1)2]2

81(x—1)2(x—k)2—[27\/1—kx+2(x+2)(2x+1)—2(4—k) 1

which can be written as
fl(x)fz(x) =0,

where

fO) =90 —D(x—k)—27vV1—k x —2(x +2)(2x + 1) + 2(4—I:C)Er2;c +1)?

2(4—k)(2x + 1)?
xX+2

=5x>—(9k +27V1—k+19)x + 9k —4 +

2
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fo(x) =9(x —1)(x —k) +27v/1—k x +2(x +2)(2x + 1) — 2(4—k)(2x + 1)2'

x+2
Since ’
V1i-k<1l—-—,
2
k ok
9k +27V1—k+19 <9k +27 1—5 +19=46—?,
we have

2(4—k)(2x +1)?
x+2

k
fl(x)Zsz—(46—9?)x+9k—4+
_ x—4
C2(x+2)

[2x(5x +16) + (—k)(7x +8)] > 0.

To show that f,(x) > 0 for x > 4, it suffices to prove that

24— K)(2x +1)°
x+2 '

9(x—1)(x—k)>

Since x —k > 4 —k, we only need to show that

2(2x +1)?

9(x—1)=
(x ) x+2

We have

2(2x +1)? _ (x—4)(x+5) >0

9(x—1)—
(x ) xX+2 x+2

The condition (c) of Theorem 2 is satisfied if f4(0, y,2) = Ag, 5(¥,2) for y,z = 0.
We have

Y2y222 ) )
g, 5(y,2)= (y+z)2[(y +2)"—(4+[k|)yz]
4y222

= 72001 — k)(y +2)?

[(y +2)° —(4—K)y=]%,

4y222
9v1—k(y+2)

f6(0,y,2) —Ag, 5(y,2) =2 (1 —

_YE 2 (4 2
9\/m[(yﬂ) (4—k)yz]°,

)yZ[(y +2)*—(4—k)yz]*>0.

Ag,5(y,2) = ; [(y+2)*—(4—k)yz]* <

1
9v1—k

Case 2: k = 2. From the condition g, 5(k) = 0, where

(4 +K)y(2x + 1) ]2
x+2 ’

g, s(x)= [x +r(x+2)2x+1)—
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we get
B k+2
"= 2k+ D)k +5)
_ _ —(k+2)(k+4)
0=~ + 1l = Dk +5)
therefore
() = [ L (k42 +2)(2x+1)  (4+K)(k+2)(2x + 1)2]2
Ers X=X 2k + )(k+5) 2k + D(k+5)(x +2)
B g7 (x)
2k + 1)2(k + 5)2(x +2)2°
where

g1(x) = (2k + 1)(k +5)x(x +2) + (k + 2)(x + 2)*(2x + 1) — (k + 2)(k + 4)(2x + 1)?
= (x —k)[2(k + 2)x*— (5k + 9)x + k + 4].

Since
A=27a, =27(k+3),

the condition (b), namely fq(x,1,1) = Ag, 5(x) for x = 4, is true if
(2k+1)%(k+5)2(2x +1)(x—1)*(x+2)*> > 27(k+3)[2(k+2)x2—(5k+9)x + k+47>.
Since 2x + 1 > 9, it suffices to show that
9(2k + 1)*(k + 5)%*(x — 1)*(x + 2)* > 27(k + 3)[2(k + 2)x? — (5k + 9)x + k + 4]%.
In addition, because of
2(k+2)x2—(5k+9)x+k+4>8(k+2)x—(5k+9x+k+4=(3k+7)x+k+4>0,
the inequality is true if
(2k + 1)(k +5)(x — 1)(x +2) = /3(k + 3) [2(k + 2)x>— (5k + 9)x + k + 4].

Having in view that

(2k + 1)(k +5) > (2k +4)(k +2) > (2k +4)/3(k +3),
it suffices to show that

2k +4)(x —1)(x +2) > 2(k + 2)x*— (5k + 9)x + k + 4,

which is equivalent to
7(k+7)x —5k—12> 0.
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The condition (c) of Theorem 2 is satisfied if f4(0, y,2) = Ag, 5(¥,2) for y,z = 0.
We have

2,,2,2
ry'z 2 2

+2)*—(4+]k

Sl =t lky]
_ (k +2)%y?z?
2k +1)2(k +5)2(y +2)?

gy,é(ya Z) =

[(y +2)° —(4+K)y=],

27(k + 3)(k + 2)*y?z>

A e retor s Taree sl LA CRIDM &

27(k +3)(k +2)%yz
S kT DAk s oy L TR -+ kyal,

_ 27(k+3)(k + 2)?
4(2k + 1)%(k + 5)2

£4(0,y,2) AL, 5(y,5) > [1 ]yz[(y L2P—(4+R)yal.

It suffices to show that

7(k + 3)(k + 2)? <

(2k +1)2(k+5)2 ~
This is true because
(k +2)?
(2k+1)(k+5)
and
7(k + 3)
2k +1)(k+5) =

Case 3: 0 <k <1. Since

f6(0,y,2) = yz[(y +2)* — (4 + k)yzT?,

2.,2.2
Broln) = 2l +20 =4+ RysT,
2 k 3 2.,2.2
A8, 20,5 = Ty 2P~ @t Ry
= 7 +43)Y2yz [(y+2)—(4+K)yz]
k 2
£o(0,7,2)— A, 5(1,2) > [1 - M] yal(y +2 — (44 K)yzT2
we choose
_ 2
W)

to have f¢(0, y,2)—Ag, 5(y,2) = 0 for y,z > 0. Thus, the condition (c) of Theorem
2 is satisfied.
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The condition (b) of Theorem 2 is satisfied if fg(x,1,1) = Ag, 5(x) for x > 4.
We have

4+)y2x +1)2 T
gyé(X):[x+y(x+2)(2x+1)_( )y(2x ) ] ’
’ xX+2
2
(4+k)y(2x + 1)
Ag, 5(x)=27(k+3) [x +yr(x+2)2x+1)— xY+ : _ g2(x).
where
2(4+ k)(2x +1)?
g(x)=34/3(k+3)x+2(x+2)2x +1)— (4+k)(2x ).
x+2
For k €[0,1], we get
10(2 1)?
g(x)>9x +2(x+2)(2x +1)— 10(2x +1)°
xX+2
_ 4x®—13x%+2x —2
B x+2
20 _ 2 _
_ 4 (x—4)+3x%+2x 2_,
x+2

According to the AM-GM inequality
3+ (k+3)=24/3(k+3),
it follows that g(x) < g,(x), where

3(k +6)x +2(x+2)(2x+1)—2(4+k)(2x+1)2.
2 x+2

g1(x) =

Thus it suffices to show that fs(x,1,1) > g?(x), which is equivalent to g,(k, x) > 0,

where
gZ(ka) = f6(x) 15 1)_g1(X)

2 2 1)?
S P C Wor e SR TORE) e RS i S G
2 X+ 2
For k = 0, we have
2 1)?
gz(oax):X(X—l)V2x+1—9x—2(x+2)(2x+1)+%
2_
= x(x—1)Vax ¥1 _ x(4x 5x+10).
x+2
The inequality g,(0, x) = 0 is equivalent to
e 2—5x+10
(X_].) 2X+12u (»;:)

x+2
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It is true if
(x —1)*(2x + 1)(x + 2)* > (4x> —5x + 10)?,

which is equivalent to (x —4)g5(x) = 0, where
25(x) = x3(2x —3) + x(24x —20) + 24 > 0.
Having in view (*), to show that g,(k, x) > 0, it suffices to prove that

(x —k)(4x*>—5x+10) 3(k+6)x 20x +2)(2x + 1)+ 2(4+k)(2x +1)? > 0.

x+2 2 x+2

This inequality reduces to

k(5x%+20x —16) > 0,
which is true.
Case 4: 1 < k < 3. We choose

4(x —1)*(x —7)?
(1 +2y)2(x +2)2°

F}f,ﬁ(x) :fy,oo(x) =

Having in view the expression of f,(0, y,z), we will choose

_k
=3
to have
For(2) = y*2?[(y +2)* — (4+K)yz]
k/2.00L)> 91+ k)2(y +2)2
A (y.2) = 3(k+3)y%%[(y +2)* — (4 + k)yz]?
k/2,00l)> 5= (1+ 1)y +2)2 ’
therefore,
3(k+3)yz

£6(0,¥,2) = Afyp.00(¥,2) = [1 ]yz [y +2° = (4+K)yz] >0.

(L4 k)2(y +2)?

Thus, the condition (c¢) of Theorem 2 is satisfied. With regard to the condition (b),

we have
(x —1)*(2x —k)?

(1 + k)2(x +2)2°
3(k+3)(x —1)*(2x — k)?

fk/Z,oo(x) =

Afk/z,oo(x) = (1 +k)2(x +2)2 )
(=1 (x)
f6(x:1;1)_Afk/2,oo(x)_ (1+k)2(x +2)2°

F(x)=(1+k)?*2x +1)(x +2)*(x —k)* —3(k + 3)(x — 1)*(2x —k)*.
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Since
2x+1D(x+2)—12(x +1)*>6(2x +1)(x +2)—12(x + 1)* = 6x > 0,
we get
F(x)>12(1+ k)*(x + 1)*(x — k)* —3(k + 3)(x — 1)*(2x — k).
Therefore, it suffices to show that
21+ K)(x + 1)(x —k) = Vk +3 (x —1)(2x — k).

In addition, since

44 (k+3)=4Vk+3,

it suffices to show that
8(1+k)(x+1)(x—k)=(k+7)(x—1)2x—k).
This inequality can be written as
6(k —1)x? + (22 + 9k — 7k*)x — 7 — 9k — 8k* > 0.

Since
6(k —1)x? > 24(k — 1)x,

it suffices to show that

24(k —1)x + (22 + 9k — 7k*)x —7—9k —8k> > 0,

which is
(—2+ 33k —7k*)x —7—9k —8k? > 0.
Since
—2+ 33k —7k*> -9+ 30k —9k* =3(3—k)(3k—1) >0,
we have

(—2 + 33k — 7k*)x — 7 — 9k — 8k* > 4(—2 + 33k — 7k?*) — 7 — 9k — 8k*
= —15+4 123k —36k? > —27 + 117k —36k?> = 9(3 — k)(4k —1) > 0.

The equality holds for x = y = 2, for x =0 and y/z+z/y = 2+ |k| (or any cyclic
permutation), and for x /k = y = z (or any cyclic permutation) if k > 0

Observation. The coefficient a; of the product (x — y)?(y —z)*(z — x)? is the best
possible. Setting x = 0, the inequality turns into

(V> +22) —(1+k+a)yz(y* +22) + (k* + 2k — 2+ 20 ) y*2* > 0.



432 Vasile Cirtoaje

For k > 0, choosing y and z such that y?+ 2% = (2 + k)yz, we get
k(o —k—3)y?z*> <0,

which involves a; < k + 3.
For k < 0, choosing y* + 2% = (2—k)yz, we get

(=k)(ay + 3k —3)y%z% <0,

which provides a; < 3(1—k).
For k = 0, we get

(y —2P’[(y —2)* + (3—ao)yz] 2 0,

which yields a, < 3.

P 4.18. If x, y,z are nonnegative real numbers, then

STy + 2 — ) —s) 2 HEZN O m E o)
X+y+z

(Vasile C., 2010)

Solution. Write the inequality as fg(x,y,z) = 0, where

fo(x,y,2) =(x+y +Z)Zx2(y +2)(x — y)(x —2) —4(x — y)*(y —2)*(z —x)*

We have
A=—4(—27)=108.

Since
folx,1,1) = 2x?(x + 2)(x — 1),
we apply Corollary 1 for
x2(x—1)*
Ea,ﬁ(x) = fo,—z(x) = %

Since

2 _ 2 _
e, 1, 1) = Afy o) = DI 5

for 0 < x < 4, the condition (a) in Corollary 1 is satisfied.

The condition (b) in Corollary 1 is satisfied if f(x,1,1) > Ax? for x > 4. This is
true since

fo(x,1,1) —Ax? = x?[2(x +2)(x —1)*—108] > x*(2- 6 - 9— 108) = 0.
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The condition (c) in Corollary 1 is also satisfied because
f6(0,y,2) = y2(y +2)(y —2)(y* —2") —4y*s*(y —2)* = yz(y —2)* 2 0.
The equality occurs for x = y = g, for x = 0 and y = 2z (or any cyclic permutation),

and for y =z = 0 (or any cyclic permutation).
O

P 4.19. Let x, y,z be nonnegative real numbers. If k is a real numbers, then

(2+ [kD?(x = y)*(y —2)*(z—x)?
X+y+z '

D +2)x = y)(x —2)(x —ky)(x —kz) =

(Vasile C., 2010)

Solution. Write the inequality as f¢(x,y,2) = 0, where

folx, ,2) =(x +y +2) D (¥ +2)(x — y)(x —2)(x —ky)(x —kz)
— 2+ kDX (x — y)(y —2)*(z — %),
We have
A=27(2+1k])*>0,
folx,1,1) = 2(x +2)(x — 1)*(x — k)%,

£6(0,5,2) = (y +2) [ K2y (y +2) + y2(y —2)(y* — 2D ] — (2 + [k])*y*2*(y —2)?
=k2y%2(y +2)* + y2(y —2)*[(y +2)* — (2 + |k])®yz]
= k2?24 (y + 2 + yz[(y +2)* —4yz][(y +2)* — (2 + [k)*y=]
=yz(y +2)" =42+ [k y?zs*(y +2)* + 42 + |k])*y°2°
=yz[(y +2* =22+ [kDy=]",

2,2

(y +2)?

A 2
&5(y,2) = [y(y +2)2+5yz].

We will apply Theorem 2 for

4x —1)*(x — |k[)
812+ k)2

Eop(x) = fir—2(x) =

Condition (a). Since
4(x —1)*(x — |k])?
3 ,
fs06, 1, 1) = Afjg 2(x)  3(x +2)(x —k)? —2(x — 1)%(x — |k[)?
(x—1)2 N 3 ’

Afjp—2(x) =
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the condition (a) of Theorem 2, namely fq(x,1,1) —Afjy _»(x) = 0 for 0 < x < 4,
is satisfied if
3(x +2)(x —k)? > 2(x — 1)*(x — |k])%
This is true since 3(x +2) > 2(x —1)? and (x — k)? > (x — |k|)*. Indeed,
3(x+2)—2(x—1 =@4—-x)(1+2x)>0,
(x —k)?—(x —|k|])?> = 2(Jk| — k)x > 0.

Conditions (b) and (c). To prove the conditions (b) and (c) of Theorem 2, we
consider two cases:
k| >1, k| < 1.

Case 1: |k| = 1. We choose

4(x —1)*(x —7)?
(1 +2y)2(x +2)2°

F}f,5(x) :f}f,oo(x) =

Having in view the expression of f4(0, y,z), we will choose

Y = |k|
to have
2 _ Y2 +2)* —2(2+ [k)yz]?
flkl,oo(yaz) - 5 9
9(1 +2|k|)*(y +2)
A 32+ |kD?y222[(y +2)>—2(2+ |k|)yz]?
Afjig,00(¥,2) = A 5 5 A2
(1+2[k])*(y +2)
therefore,

32+ ks
(1+ 2IkD2(y +2)?

£6(0,5,2) —Af .00 (7,2) = [1 ]yz [ +22— 2+ k=]

Thus, the condition (c) of Theorem 2 is satisfied if
(1+2[kD)*(y +2)* = 3(2+|k])*y=.
Since (y + 2)* = 4yz, it suffices to show that
2(1+2[k[) = v/3(2 + |k]).
Indeed,
21+ 2k = V32 + k) =4 —V3)|k|+2(1—+v3) > (4—V3)+2(1—V3) > 0.
With regard to the condition (b), we have

4(x —1)*(x —|k|)?
9(1+2|kP2(x +2)?’

flkl,oo(x) =
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12(2 + |k])*(x — 1)*(x — |k|)?
(1+2|k|)2(x + 2)2 ’
(x—1)*f(x)
(1 +2]k])2(x +2)?’
)= (1 +2[k)?(x +2)°(x —k)* —6(2 + [k[)*(x — 1)*(x — |k[).

Since (x —k)? > (x — |k|)?, it suffices to show that

Af .00 (X) =

f6(x1 1; 1) _Af|k|,oo(x) =

(14 2]k)*(x +2)% = 6(2 + |[k])*(x — 1)
Since x + 2 > 6, this is true if
(1+2[k)?(x +2)* = (2+ |k[)*(x — 1)%,
which is equivalent to
(1 +2[k)(x+2) =2+ |k)(x—1).

This is true for x > 4 and |k| > 1 because 1+ 2|k| > 2+ |k| and x +2 > x — 1.

Case 2: |k| < 1. We choose

(2x+1)2]2.

F,s(x)=g,s(x)= [x +y(x+2)2x+1)+6 "

Having in view the expression of f,(0, y, ), we need to set

0 =—2(2+|k[)y,
to have
o Yzyzzz 2 2
8r009) = Ll 27 =202+ Ky=T
In addition, by choosing
1
TR
we have
yzzz 2 2
5 (y,2)= +2)2—2(2+]k ,
8,5(y,2) 9(2+|k|)2(y+z)2[(y 2)°—2(2+ |k|)yz]
A 3y 2 2
A8, 5(y,2) = (y+z)2[(y+2) —2(2+|kDyz]%,
R 3yz 2
0.5,2)= Al o) = | 1= s | 2y 427 =202+ Iy 2

Thus, the condition (c) of Theorem 2 is satisfied.
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With regard to the condition (b), we have

(x+2)(2x+1)  2(2x +1)? ]Z
3(2+k|) 3(x+2)
_ [(x +2)(2x+1) 5x2+2x+2]2
3(2+ |k]) 3(x+2) ’
@+4mx5ﬁ+ax+zq2
x+2 ’
fo(x,1,1) = 2(x +2)(x — 1)*(x — k)* > 12(x — 1)*(x — |k|)?,
fo(x,1,1) = Ag, 5(x) = 12(x — 1)*(x — |k|)* —Ag, 5(x) = 3g1(x)gx(x),

where

gy 5(x) = [X +

Ag,s(x)=3 [(x +2)2x+1)—

(2+|kD(5x?+2x +2)
x+2

gi(x)=2(x—1)(x—1k)—(x+2)2x+1)+

2 2 _
_ 3[(1 + |k|)x* —4x + 2|k|] > 3(x*—4x) >0
x+2 x+2

() =2(x—1)(x—k)+(x+2)2x +1)— 2+ [kD(5x* +2x +2)

x+2
3(5x2+2x +2
> 2(x— 1)(x—1) + (x +2)(2x + 1) — SOX_+2x+2)
xX+2
5x%+2x +2
22(x—1)2+(x+2)(2x+1)—%
5x2+2x+2 3(x%2+2
—ax? 4 x+4-2% 2x = (x2 ).

The equality occurs for x = y = g, for x/k = y = z (or any cyclic permutation)
if k # 0, for y =z = 0 (or any cyclic permutation), and for x =0and y/z+2/y =
2 + 2|k| (or any cyclic permutation).

Observation. The coefficient of the product (x — y)*(y —2)*(z — x)? is the best
possible. Setting x = 0, the inequality

o (x —y)(y —2)*(z — x)?
xX+y+z

D +2)x = y)x —2)(x —ky)(x —kz) >
becomes
yz[ (2 +22)? — ( — kKA)yz(y? +2%) + 2(ay + k* —2)y*z% | > 0.
For y? + 22 = 2(1 + |k|)yz, this inequality leads to
|kl[ar — (2 + [k[)*1y*2* <0,

which implies the necessary condition a; < (2 + |k|)?.
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P 4.20. If x, y,z are nonnegative real numbers, then

Satet gy L e
xX+y+z

(Vasile C., 2010)

Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2)=(x+y +Z)Zx(x2 —yD(x* —=2%) = 12(x =y P (y —2)*(z — x)°
has the highest coefficient
A=—12(—27) = 324.

Since
fo(x,1,1) = x(x + 2)(x* — 1),

we apply Corollary 1 for

4x%(x —1*(x +1)?

Ea,ﬁ (x)= fo,—1(x) =

225(x + 2)?
e (e —1)%(x + 12F ()
X\ X — X X
f6(xz 1, 1)_Af0,—1(x): 225(x+2)2 5
where

F(x)=225(x +2)*> —1296x(x — 1)* > 216[(x + 2)% — 6x(x —1)?],

the condition (a) in Corollary 1 is satisfied if (x +2)*> > 6x(x —1)* for 0 < x < 4.
This is true since

2(x+2)>3x, (x+2)*>4(x—1)>~

The condition (b) in Corollary 1 is satisfied if f¢(x,1,1) > Ax? for x > 4. This is
true if
(x +2)(x*—1)* > 324x.

It suffices to show that
2(x 4+ 2)(x%2—1)* > 675x,

which follows by multiplying the inequalities
2(x+2)(x—1)=>9x, (x—1)(x+1)*>>75.
Indeed, we have

2(x+2)(x—1)—9x = (x—4)(2x+1)>0, (x—1)(x+1)*—75>3-25—75=0.
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The condition (c) in Corollary 1 is also satisfied because
f6(0,y,2) = (y +2)(y*—2)(y° —2°)—12y?2*(y —2)* = (y —2)*(y*+2°+5y2) > 0.

The equality occurs for x = y = z, for —x = y = gz (or any cyclic permutation),
and for x =0 and y =z (or any cyclic permutation).
O

P 4.21. Let x, y,z be nonnegative real numbers, and let
4(k—2), k<6

%= (k+2)?

k>6

Then,

a(x =y 'y =2z —x)" _
X+y+z o

0.

D x(x = y)(x —2)(x —ky)(x —kz) +

(Vasile C., 2010)

Solution. Write the inequality as f¢(x,y,2) = 0, where
fe(x,y,2) = (X+y+2)ZX(x—y)(x—Z)(x—ky)(x—k2)+ak(x—y)2(y—2)2(Z—X)Z.

Since the product (x —y)*(y —2)*(z — x)? has the highest coefficient equal to —27,
fo(x,y,2) has the highest coefficient

A= _27ak

Also, we have
fo(x,1,1) = x(x + 2)(x — 1)*(x — k)2,
f6(0,y,2) = (y —2)’[(y +2)* — (k +2)yz(y +2)* + a,y*2°].
There are three cases to consider.
Case 1: k > 6. Since

o, = (k+2)%
—27(k + 2)?
A:—27ak:¥<0,

the desired inequality is true if fg(x,1,1) > 0 and f¢(0,y,2) = O for x,y,z > 0
(Theorem 1). The first condition is clearly true and

(k + 2)2}/2 )

f6(0,y,2) = (y —2)’[(y +2)* — (k+2)yz(y +2)* + 2%]

— (-2 |42 - "”yz]z >0,
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Case 2: 2 <k < 6. Since
a, = 4(k - 2),

A=—27a, =—108(k—2) <0,
the desired inequality is true if fy(x,1,1) = 0 and f,(0,y,2z) = 0 for x,y,z = 0
(Theorem 1). The first condition is true and
f6(0,y,2) = (y —2P’[(y +2)* = (k +2)yz(y +2)* + 4(k — 2)y*2*]
=(y—2)'[(y +2)*—(k—2)yz]= (y —2)° = 0.
Case 3: k < 2. We have
ak == 4(k - 2),
A=—-27a, =108(2—k) > 0.
We will apply Corollary 1 for
4x%(x —1)*(x — k)?
9(4—k)>(x +2)2 °

Eop(x) = fio(x) =

The condition (a) in Corollary 1 is satisfied if f¢(x,1,1) > Af; o(x) for x € [0, 4].
We have 48(2— )% 1y 02
—k)x*(x— x—
Afk,O(x) - (4_ k)z(x + 2)2 )
x(x =12 —k)*[(4—Kk)*(x +2)° —48(2 — k)x(x —1)?]

fo6,1,1) = Afi o () = i .

The condition (a) is true if
(4—k)*(x +2)% > 48(2 — k)x(x — 1)?
for 0 < x < 4. This inequality follows by multiplying the inequalities
(4—k)*=8(2—k)

and
(x +2)° > 6x(x—1)%
which are equivalent to k? > 0 and (4 — x)(2 + 2x + 5x2) > 0, respectively.

The condition (b) in Corollary 1 is satisfied if fg(x,1,1) > Ax? for x > 4. It
suffices to show that

(x +2)(x —1)*(x —k)* > 108(2 — k)x.

This inequality follows from
4(x —1)>>9x

and
(x +2)(x —k)* > 48(2—k).
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Indeed, we have
4(x—1) —9x=(x—4)(4x—1)>0,

(x +2)(x —k)*—48(2—k) > 6(4—k)*—48(2—k) = 6k*> > 0.

The condition (c) in Corollary 1 is satisfied if f;(0, y,2z) = 0 for y,z > 0. Indeed,
f6(0,7,2) = (y —2)*[(y +2)*+ (2—k)yz] 2 0.

The equality occurs for x = y = z, for x = 0 and y = z (or any cyclic permutation),
and for x/k = y = 2z (or any cyclic permutation) if k # 0, and for x = 0 and
v/z+2/y =(k—2)/2 (or any cyclic permutation) if k > 6

Observation. The coefficient a; of the product (x — y)*(y —2)?*(z — x)? is the best
possible. Setting x = 0, the inequality becomes

(r —2[(y* +2%)° — (k= 2)yz(y* +2°) + (o — 2k)y*2*] 2 0.
For y = z = 1, the necessary condition
(y*+ 222 —(k—2)yz(y*+2*) + (a, — 2k)y*2* > 0

involves a > 4(k —2).
Also, for

yi+z%= 2 vz, k=6,
the necessary condition
(y*>+22)?—(k—2)yz(y* +2*) + (o, — 2k)y?22 > 0

becomes
[4a;, — (k+2)*]y*2* >0,

which involves a; > (k + 2)?/4.

P 4.22. If x, y,z are nonnegative real numbers, then

— 2 . 2 . 9
Z(x2+}’z)(X—y)(x—z)2 S5(x—y)(y —2)(z—x) .
Xy +yz+zx

(Vasile C., 2010)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

fe(x,y,2)=(xy +yz +ZX)Z(X2 +y2)(x—y)(x —2)—5(x — y)*(y —2)*(z —x).
We have
A= —5(—27) =135,
fo(x,1,1) = (2x + D)(x?* + 1)(x — 1),

f6(05 Y Z)
yz

=y’ +(y —2)*(y* +2° + y2) = 5yz(y —2)*
= y22® + (y* + 2% —2y2) [yz +2%— 4yz]
=(y*+22)*—6(y*+2?*)yz + 9y?z>
=(y*+2*—3yz),
yZZZ(yZ + 2:2 _ 3yz)2

36(y +2)2

fl/z,w(yzz) =

Thus, we apply Theorem 2 for

Ea,/j(x) = Fy,& = fl/Z,oo(x)-

The conditions (a) and (b) in Theorem 2 are satisfied if f(x,1,1) = Af}/5 00 (x)

for x > 0. Since
15(x —1)*(2x —1)

4(x +2)2 ’

(x—1)*f(x)
4(x + 2)2

Afl/Z,oo(x) =

fo(x,1,1) _Afl/z,oo(x) =

2

where
F(x)=4(x +2)*(2x + 1)(x*+ 1) —15(x — 1)*(2x — 1)?,

we need to show that f(x) > 0 for x > 0. This is true if
(x +2)*(2x + 1)(x*+ 1) > 4(x — 1)*(2x — 1)~
Since x*+ 1 > (x — 1)?, we only need to prove that
(x +2)*(2x +1) > 4(2x — 1)%,

that is
x(2x*—7x +28) > 0.

The condition (c¢) in Theorem 2 is also satisfied because

15y22%(y? + 2% —3yz)?
4(y +2)?

Afl/Z,oo(y:z) =

3
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15yz ]

A _ 2 2 2
f6(05y’z)_Af1/2,oo(y’Z)_yz(y +z —3_)/2) [1_4(y+z)2

15
> yz(y?+2%—3yz)? (1 - E) > 0.

The equality occurs for x = y = 2, and for x = 0 and y/z +2/y = 3 (or any
cyclic permutation).
O

P 4.23. If x, y,z are nonnegative real numbers, then

16(x — y)*(y —2)*(z —x)?
Xy +yz+zx '

2(4){2 +y2)(x —y)(x—2)>

(Vasile C., 2010)

Solution. Write the inequality as fg(x,y,z) = 0, where

fo(x,y,2) = (xy +yZ+ZX)Z(4x2+yZ)(x—y)(x—Z)—16(x—y)z(y—Z)z(Z—X)z-

We have
A=—-16(—27) =432,

fo(x,1,1) = (2x + 1)(4x* + 1)(x — 1)?,

f6(0:y7z)
Yz

=y’2* +4(y —2)*(y* + 2" + yz) — 16y2(y —2)*

= y%? +4(y* +22 —2y2) [ y* + 2> —3yz]
= 4(y?* +2%)* —20(y* + 2%)yz + 252>
= (2y* +22*—5yz)%.
Apply Theorem 2 for
4(x —1)*(2x —1)?
2025

b

Eup (x)= f1/2,—2(x) =

Condition (a). Since
64(x —1)*(2x — 1)?
75

(x —1)°f(x)
75 ’

Afl/z,—z(x) =

2

f6(x5 ]-J 1) _Afl/Z,—Z(x) =

where
F(x)=75(2x +1)(4x*+ 1) — 64(x —1)*(2x — 1),
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the condition (a) of Theorem 2 is satisfied if f(x) > 0 for 0 < x < 4. It suffices to
show that
(2x +1)(4x%>+1) > (x —1)*(2x — 1)

This is true because
2x + 12> (x—1)3
4x2+1>(2x —1)%
Indeed,
2x +1—(x—1)*=x(4—x) >0,
4x24+1—(2x—1) =4x>0.

Conditions (b) and (c). Having in view the expression of f;(0, y,z), we will apply

Theorem 2 for 9
Y
F s(x)=g,s(x), 6= 5

which leads to

2.,2.,2
R Y'Yz 2 2 2
,2) = —2——(2y* + 222 — 5yz)%.
Since 5 5
R 108y-y“z
Ag, s(y,2) = w—z)z(z}’z + 22> —5yz)?,
f6(0,y,2) = A&, 5(v,2) = yz(2y* + 22> = 5y2)*g(y, 2),
where )
108y“yz 5
,2)=1——"—>1-27y%,
g(y,2) O +27 Y
we choose .
"33

to have g(y,z) > 0. Thus, the condition (c) in Theorem 2 is satisfied.
The condition (b) is satisfied if f(x,1,1) > Ag, 5(x) for x > 4, where

gy s(x) = [x +y(x+2)2x+1)— 92((2;—:21))2]2 .
Since
Ag, 5(x) = 4 [6¢§x 1 6V3y(x +2)(2x +1)— 27‘/51(3 +1° ]2 = 472(x),
9(2x +1y*

f(x)=6V3x+2(x+2)(2x+1)—

5

x+2
we need to show that

(2x + 1)(4x* + 1)(x —1)* > 41 3(x)
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for x > 4. Since

9(2x +1)?

fx)>9x+2(x+2)(2x+1)— 2

x*(4x —9)+6x—1
= >

0,
x+2

it suffices to show that

2x+1D)(4x*+1)(x—1)*> 4f12(x),

where )
2x +1
Fi(x) = 11x +2(x + 2)(2x + 1)—% > £ ().
Since
2x +1D)(4x%2+1)(x—1)? > (2x + 1)(4x?)(x —1)?
and s , (4 )
4x° —7x“+10x—1 x(4x“—7x+10
filx) = < ,
x+2 x+2

it suffices to show that
(2x + 1)(x —1)*(x + 2)* > (4x* — 7x + 10)?,
which can be rewritten as
(2x + 1)*(x — 1)*(x + 2)* > (2x + 1)(4x* — 7x + 10)*.

Since

52
2x+1s(xJ; y

it suffices to show that
9(2x + 1)%(x —1)*(x + 2)*> > (x + 5)*(4x? — 7x + 10)?,
which is equivalent to
3(2x + 1)(x — 1)(x +2) > (x + 5)(4x* — 7x + 10),

x*—2x*+8x—28>0,
(x —4)(x*+2x+16)+36 > 0.
The equality occurs for x = y = 2, and for x =0 and y/z +2z/y = 5/2 (or any

cyclic permutation).
O
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P 4.24. Let x, y, 2z be nonnegative real numbers. If k > 0, then

(3+2vEk)(x —y)P(y —2)*(z —x)?
Xy +yz+zx '

Z:(x2 +kyz)(x—y)(x—z)>

(Vasile C., 2010)

Solution. Write the inequality as f¢(x, y,2) = 0, where

Folx,y,2) = q D (x? + kyz)(x — y)(x —2) — (3 + 2V k) (x — y*(y —2)*(z — x)*.

We have
A=27(3+2Vk),
fo(x,1,1) = (2x + 1)(x* + k)(x — 1)?,

f6(0’y:Z)
Yz

=ky*z*+(y —2)*(y*+2*+yz)— (3 + 2\/Z)yz(y —z)?

=ky?2* + (y* +2*>—2y2) [yz +22—2(1+ \/E)yz]
= (2 +2)2 =22+ V(2 +22)yz + (2 + Vk)2y 2>
= [y2+zz—(2+ \/E)yz]z,

We will apply Theorem 2 for

4(x—1)4(x— ﬁ)z

E, =fr . (x)= 5
0= S () 81(2+ vk )

Condition (a). Since

4(3+2vE)(x—1)* (x— V& )’
3(2+ vk )

Afﬁ,_z(x) =

fo(x,1,1) —Af g () = (x = 1)*f (x),

where

4(3+2vk)
3(2+ vk )

the condition (a) of Theorem 2 is satisfied if f(x) = 0 for 0 < x < 4. This is true
because

(x—l)z(x—\/E)Z,

f(x)=(2x+1)(x*>+k)—

. 4(3+2vk)
T 3(2+vk )
2x + 12> (x—1)3
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2
x2+k2(x—ﬁ) .
Indeed,
2x+1—(x—1)*>=x(4—x)>0,

x2+k—(x—\/E)2:2\/Ex20.

With regard to the conditions (b) and (c), we consider two cases: 0 < k < 1 and
k>1.

Case 1: k > 1. Having in view the expression of f;(0, y,z), we will apply Theorem
2 for )

(x —1*(2x — vk )
9(1+ vk ) (x+2)2

F)/,(S(X) :f«/F/Z,oo(X) =

2yt +22—(2+ \/E)yz]z
o1+ vk 2(y +2)2

The condition (c) is satisfied because

f\/ﬁ/z,oo(ynz) =

£0,7,2) = Af i eo(1,2) = yz [ y2 22— 2+ VRyz] £(3,2),
where

_ . 3(+2vk)yz

fa)=1 (14 vk 2(y +2)2
1_3(3+2\/E):4k+2«/ﬁ—5>0

4 +Vk)?2 41+ Vk)?

The condition (b) is satisfied if fq(x,1,1) = Af g5 00(x) for x = 4. Since

3(3+2vk )(x — 1)* (2x — vk )
(14 vk ) (x +2) ’

Afﬁ/Z,oo(x) =

we need to show that

x> 33 +2vk )(x—1)*(2x — vk ) |

(1+ V& ) (x +2)2
Since
3(3+2vk)
—2 <
(1+vk)
and

(2x—ﬁ)234x2+k,
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it suffices to show that

4(x —1)*(4x* + k)
(x+2)2

x+1D)(c2+k)>

Since ) ) )
x“+k x*+1 3(k—1)x >0

4x2+k  4x2+1  (4x2+k)(4x2+1) "
we only need to prove that

4(x —1)%(4x%+1)

2
Cx+1D)(x*+1)> 1272

This is true because x? + 1 > (x —1)? and
(2x + 1)(x + 2)* > 4(4x* + 1).
The last inequality is equivalent to

x(2x*—7x+12) > 0.

Case 2: 0 < k < 1. Having in view the expression of f,(0, y,z), we will apply
Theorem 2 for

FY,(S(X) = g)/,5(x)5 5 = —(4 —+ \/% )')/’
which leads to

2,,2,2

A _ry=z 2, .2 2
s =y [y +22— 2+ Vk)yz] .
Since ST 1222
. _ 27(3+2vk )r'y’z s o 2
Ags(n8) = == [y2+22— @+ Vk)yz],
2
£6(0,7,2)— Ak, 5(v.2) = yz y* + 2 — 2+ Vk )yz] g(3.2),
where S SR
g(y,z)=1—27(3+2 k)y?yz S 1_27(3+2 k)y ’
(y +2)2 4
we choose
_ 2
3133 +2vk)

to have g(y,z) > 0. Thus, the condition (c) in Theorem 2 is satisfied.
The condition (b) is satisfied if fs(x,1,1) = Ag, 5(x) for x = 4, where

(2x + 1)2]2‘

gy 5(x) = [x +y(x+2)2x+1)—(4+ Vk )y o
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Since 4
Agy,ﬁ(x) = _zgy,é(x) = fZ(X);

(2x + 1)2

f(x)——+2(x+2)(2x+1) 24+ Vi) >

we need to show that
(2x + 1)(x® +k)(x —1)* > £2(x).
Since 2/y >9 and 4+ vk <5, we have

10(2x +1)?
x+2
2 — —
_x (4x —13)+2(x—1) =0
x+2

On the other hand, by the AM-GM inequality,

%z 3v/3(3+2Vk) < %[3+(3+2\/E)] =3(3 + Vk).

flx)=29x+2(x+2)2x+1)—

Therefore,
£(x) £33+ VI)x +20x +2)(2x + 1) —2(4 + \/_)(2“;)2
_ x(4x* = 5x +10) — Vk(5x* + 2x +2)
- x+2
_ x(4x*—5x +10)

x+2

In addition,
Cx+ D2+ k) (x—1)*> (2x + Dx?(x —1)2

Thus, it suffices to prove that
(2x + 1)(x —1)?(x +2)? > (4x% — 5x + 10)?,
which may be rewritten as
(2x + 1)*(x — 1)*(x +2)* > (2x + 1)(4x* —5x + 10)*.
According to

x +5)?
2x+1S( ),

it suffices to show that

Cx+Dx—1D(x+2)> %(x + 5)(4x% —5x + 10).
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This is equivalent to the obvious inequality
(x—4)(x*+x+7)>0.

The equality occurs for x = y = z, and for x = 0 and y/z +z/y = 2+ vk (or
any cyclic permutation).
Observation. The coefficient of the product (x — y)*(y —2)*(z — x)? is the best
possible. Setting x = 0, the inequality

a(x —y)(y —2)*(z — x)*
Xy +yz+zx

Z:(x2 +kyz)(x—y)(x—2)=>
reduces to
yz [yz +22—(2+ \/E)yz]z +(3+2vVk—a)y*(y —2)? > 0.

In addition, for
y2+22=(2+Vk)yz,
we get the necessary condition

(3 +2vk— ak)yzzz(y —2)*>0,

which involves a; < 3+ 2vk.

P 4.25. If x, y,z are nonnegative real numbers, then

Z(xz —y2)*(x — y)(x —2) = 4(V2 + D)(x — y)*(y —2)*(z — x)*.
(Vasile C., 2014)

Solution. Denote
C=4(v2+1)

and write the inequality as f¢(x,y,2) = 0, where
fe(x,y,2) = Z(Xz —y2)*(x = y)(x —2) = Clx — y)*(y —2)*(z — x)*.

Since (x — y)(x —2) = x* + 2yz —q, the sum ».(x* — yz)*(x — y)(x —2) has the
same highest coefficient A, as

Py(x,y,2) = ) (x*— yz)*(x*+ 2y2)?,
thatis A; = P;(1,1,1) = 0. Therefore, fs(x, y,2) has the highest coefficient

A=A,—C(—27)=108(V2+1).
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We have
fo(x,1,1) = (x +1)*(x — 1)*,

f6(0,y,2) =¥’z + (y —2)(y° —2°) — Cy*s*(y —2)°
=y’ + (y —2)? |:y4 +2t+ yz(y? +22)+ (1 — C)yzzz]
= y%2% + (y? +zz—2_yz)|:(y2 +22)? +(y*+23)yz—(1+ C)yzzz]
=(y?+22)° - (y* +22)°yz— (3+ C)(y* +2))y?*z> + (3 + 2C)y32®
=2 +2)° = (¥ +22)yz—(4V2+ (¥  +22)y%? + (8V2+ 11)y%%°
=[y?+22+ (V2 + Dyz][y* +2*— (V2 + 1)yz]2.

In addition, for

_V2-1

=,

Y

we have

y22 [y +22—(V2+ 1)yz]?

froo2) = o

We apply Theorem 2 for

Ea,ﬁ(x) :fz/g,—2> Fy,g(x) :fy,oo(x)-

Condition (a). We need to show that fs(x,1,1) > Af,/3 _,(x) for 0 < x < 4. We

have
(x —1D*(3x —2)?

f2/3,oo(x) =

1296 ’
_ 4 _ 2
Ay o) = (V24 1)(x 121) (3x —2) ’
_ 4
fo(x,1,1) _Afz/s,—z(x) = w,
f(x)=12(x +1)* = (V2 + 1)(3x — 2).
Since 3
VIrl<c41=2,
2 2
we have
Flo)>12(x +1)2 — %XT_Z)Z
> 10(x +1)*— S(P’XT_Z)Z
— w >0

2
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Condition (b). We need to show that fq(x,1,1) = Af, o (x) for y = and

x = 4. Since

2

4 —1)*(x—7)*  (x—1)*(2x—v2+1)?

Jreo ) = oy e F 2 18(x + 2)? ’
6 _1)4 _ 2
Af, oo (x) = (V2 + 1)(x(X1+)2()22x Vv2+1) ,
(x—1)*f (x)

o6, L) = Af () = 5

where

fO)=(x+1)(x +2)*—6(vV2+1)(2x — V2 +1)?,
we need to show that f(x) > 0 for x > 4. Since
6(V/2+1) < 15,
it suffices to show that
(x+1)(x+2)=> vV15(2x —v2+ 1),
which is equivalent to g(x) = 0, where
g(x) =x%>—(2v15—3)x + 2+ /30— V15.

We will show that
g(x)=g(4)>0.
We have

g(x)—g(4)=(x—4)(x +7—2v15) > (x —4)(11—2v15) > 0,
g(4) = V15(V/60 + vV2—9) > 0.

Condition (c). We need to show that f,(0, y,z) > Afmo(y,z) for y,z > 0. This
condition is satisfied because

A 6(vV2+1)y22?[y? + 22— (V2 + 1) yz]?
Afy,oo(y’z): (y+Z)2 ’

£600,5,2) = Af, 00 (3,2) = [y? +22 = (V2+ D)yz] foly,2),

where
foly,2)=y*+22+(2V2+1)yz — 6(‘/5/112))32/222
>2yz+(2V2+ 1)yz — 3(‘5; Dyz _ («/EJ;B)yz -

The equality occurs for x = y =z, and for x =0 and y/z +z/y = v/2+1 (or
any cyclic permutation).
O
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P 4.26. If x, y,z are nonnegative real numbers, then

1 9
> .
Z 4x2+y2+22 7 4(x%2+ y2+22)+2(xy + yz +2X)
(Vasile C., 2011)

Solution. Write the inequality as f¢(x,y,z) = 0, where
f6(x’ }’,Z) =P 2(4}/2 + Zz + Xz)(422 + Xz + yZ) — 91_[(4)(‘2 + y2 +ZZ)’

P=4(x*+y*+2z%)+2(xy + yz + 2x).
The highest coefficient A of fs(x,y,z) is equal with the highest coefficient of the
product —9[ [(4x? + y? + 2?). Since
4x*+ y? + 2> =3x*+p*—2q,
we have
A=—-9(3)> = —243.

By Theorem 1, we only need to prove the original inequality for y =z =1 and for
x=0.

Case 1: y =z = 1. We need to show that

1 + 2 > 9
4x242 X245 4x244x+10°

which is equivalent to
x(x—1)*>0.
Case 2: x = 0. We need to show that

1 1 1 9
+ + > ,
y2+z2 4y?+z2 422+y? T Ay2+22)+2yz

which is equivalent to

1 N 5(y2 +2?) S 9
Y2422 A(yt+z)+17y222  4(y2422)+2yz’

For yz = 0, the inequality is an equality. For yz # 0, using the substitution

2, .2
+2z

t:y s t>2
Yz

we may write the inequality as follows:

ys_ 5yz(y? + 2> - Oyz
y2+22  4(y2+22)249y222  4(y2+22)+2yz’
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1, 5 9

+ = ’
t 4t2+9  4t+2
(t—2)(2t—1)=>0,

The equality holds for x = y =z, for x = 0 and y = z (or any cyclic permutation),
and for y =z = 0 (or any cyclic permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x,Y,z be nonnegative real numbers. If k > 4, then

5 1 - 9(2k +1)
kx2+y2+22 "~ 9k(x2+y2+22)+2(k—1)2(xy + yz+2x)

with equality for x =y = 2, and for y = 2 = 0 (or any cyclic permutation). If k = 4,
then the equality holds also for x = 0 and y = z (or any cyclic permutation).

For
fo(x,y,2)=P Z:(ky2 +22 + xH)(kz® + x* + y*)—9(2k + 1) l—[(kx2 + y? +22),

P =9k(x*+ y*+2*) + 2(k—1)*(xy + yz +2x),

we have
A=—-9(2k +1)(k—1)°.

Since A < 0, it suffices to show that the original inequality holds for y =z =1 and
for x = 0. In these cases, the inequality respectively reduces to

(k—1*(x—1)*[(2k+1D)x+k—4]>0
and f(t) = 0, where
f(t)=22k+Dt>*—9(k+ Dt +2(k—1)*), t>2.

We have
f)=f(2)=0

because
f(O)=f(2)=(t—2)[2(2k + 1)t —k—5] > (t —2)[4(2k +1)—k—5] >0,
f(2)=2(k—4)(k+1)>0.

Observation 2. Also, the following generalization is valid:

e Let x, Y,z be nonnegative real numbers. If 1 < k < 4, then

Z 1 > 9(k +5)
kx2+y2+22~ (8+11k—k2)(x2+y2+22)+2(k—1)2(xy + yz+2x)
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with equality for x =y =z, and for x = 0 and y = z (or any cyclic permutation). If
k = 4, then the equality holds also for y =z = 0 (or any cyclic permutation).

For
fo(x,y,2)=P Z:(ky2 + 2%+ x?)(kz® + x>+ y*)—9(k + 5) l_[(kx2 + y% +2%),

P=(8+11k—k»)(x*+ y*+2*) + 2(k—1)*(xy + yz + 2x),

we have
A=—-9(k+5)(k—1)3.

Since A < 0, it suffices to show that the original inequality holds for y =z =1 and
for x = 0. In these cases, the inequality respectively reduces to

(k—1)*x(x —1)*[(4—k)x +2k +10]>0

and
(k—1)*(t—=2)[2(4—Kk)t>+18t —(k—1)*] >0,

where t > 2.

P 4.27. If x, y,z are nonnegative real numbers, no two of which are zero, then

2 + 2 + 2 > 45
X2+ y2  y24+22  g2+4x2 4(x24+y2422)+xy+yz+zx

(Vasile C., 2011)

Solution. Write the inequality as fg(x,y,z) = 0, where
folx,y,2) =2P > (x*+ y)(x? +22) —45] |2 +22),

P=4(x*+y*+2*)+xy + yz +zx.

The highest coefficient A of f;(x, y,z) is equal with the highest coefficient of the
product —45 [ [(y? + 22). Since

y?+2%=—x*+p*—2gq,

we have
A=—45(—1)% = 45.
In addition,
fo(x,1,1) = 2(4x? +2x + D[ (x* + 1)* + 4(x* + 1)]—90(x* + 1)?
=4x(x*+1)(2x> +x*—8x +5) =4x(x* +1)(x —1)*(2x +5)>0
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and
f6(OJyJZ) 2 O

The last inequality is true if the original inequality holds for x = 0. Thus, we need

to show that
2 2 2 45

+=+ > ,
y2 o oz2 y24+22 7 4y +z22)+yz

which can be written as

2(y% +22) 2 45
y2z2 yi+z2 T 4(y2422)+yz

2 2
2(y"+2 )Jr 2y 45yz

Yz yi+z2 T 4(y2+22)+yz

Using the notation

2 2

+
=2 1% ,  t=>2,

¥z

the inequality becomes
2 45
2t+—2> ,
t 4t+1

(t—2)(8t+18t—1)=>0.

First Solution. Since the inequality is an equality for x =y =z =1 and for x =0
and y = z, we apply Corollary 1 for

x?(x —1)*

Eap(X) = foa(¥) = =

Since )
il 1,1) =5y 0 = S

where

f(x)=36(x*+1)(2x +5) —5x(x — 1)?
> 36(x —1)?(2x +5) — 5x(x — 1)?
= (x —1)*(67x +180) > 0.

the condition (a) in Corollary 1 is satisfied.

The condition (b) in Corollary 1 is satisfied if fs(x,1,1) > 45x?2 for x > 4. This
is true if
4(x*+1)(x —1)*(2x +5) > 45x.

Since x2 + 1 > 2x, it suffices to show that

8(x —1)*(2x +5) > 45.
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which is clearly true for x > 4.
The condition (c) in Corollary 1 is satisfied because f4(0, y,z) = 0 for y,z > 0.
The equality holds for x = y = 2, and for x = 0 and y = z (or any cyclic

permutation).

Second Solution. Apply Theorem 3. Since the conditions (a) and (c) are satisfied,
we only need to show that

4Ax(x —1)3

1,1)> —=—
fe(x,1,1) = 57

for x > 1. We have

4Ax(x —1)3 _ 4x(x —1)*f (x)

’ ]-) 1)—
fate 1,1 - .

where
F(x)=3(x*+1)(2x +5)—5(x—1)>6(2x +5)—5(x —1) = 7(x +5) > 0.

Observation 1. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers. If 0 < k < 1, then

Z 1 S 9(k +5)

kx2+y24+22 (84 11k—k2)(x2+y2+22)+2(k—1)2(xy + yz +2x)’

with equality for x = y =2, and for x = 0 and y = z (or any cyclic permutation).
As shown in Observation 2 from the preceding P 4.26, for

fe(x,y,2) =P(x,y,%) Z:(ky2 +2%+x*)(kz® +x*+y*)—9(k+5) l—[(kx2 +y2+2%),

P(x,y,2) =(8+ 11k —k*)(x*+ y* +2*) + 2(k — 1)*(xy + yz + zx),

we have
A=9(k+5)(1—k)®>0,
P(x,1,1)=(8+ 11k —k*)x? + 4(k—1)*x + 18(k + 1),
1,1
M =P, 1, 1)[x2 4+ k+ 1+ 2(kx? +2)]— 9(k + 5)(x% + k + 1)(kx? + 2)
x2+k+1
=2(1—k)*x(x —1)*[(4—k)x + 2k +10] > 0,

and

f6(0,y,2) = 0.
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Since the conditions (a) and (c¢) in Theorem 3 are satisfied, it suffices to show that

4Ax(x —1)3
fo(x,1,1) > #

for x > 1. We have

4Ax(x—1) 21 —k)’x(x—1)*f(x)
27 B 3

felx,1,1)—

5

where

F(x)=30x*+k+1D[(4—k)x + 2k +10]—2(k+5)(1—k)(x—1)
>3(k+2)[(4—k)x+2k+10]—2(k+5)(1—k)(x—1)
= (14 + 14k — k?)x + 70 + 34k + 4k>
> (14 + 14k — k?) + 70 + 34k + 4k>
= 3(28 + 16k + k%) > 0.

Observation 2. Having in view Observation 1 above and Observation 2 from the
preceding P 4.26, it follows that the concerned inequality holds for 0 < k < 4.
O

P 4.28. If x, y,z are nonnegative real numbers, no two of which are zero, then

1 18
> .
Z 2y2+yz+222 7 5(x2+y?+22+xy+yz+2x)
(Vasile C., 2009)

Solution. Write the inequality as f¢(x,y,z) = 0, where
fe(x,y,2) = SP(x,y,z)Z(2x2+xy+2y2)(2x2+xz+2zz)—18 l_[(2y2+yz+222),

P(x,y,2) =x*+y*+2*+xy + yz +zx.

Since
2y%+ yz + 222 = —2x*+ yz + 2(p* — 2q),

fo(x, y,2) has the same highest coefficient A as

Py(x,y,z)=—18 l_[(—2x2 + y2),

that is
A=P,(1,1,1) =—-18(—2+1)* =18.

We have
P(x,1,1)=x*+2x+3,



458 Vasile Cirtoaje

x,1,1
Sl L) =5(x%+2x +3)[(2x* + x +2) + 10] —90(2x> + x + 2)
2x24+x+2

= 5x(2x® 4+ 5x%—16x +9) = 5x(x —1)*(2x +9),

fe(x,1,1) = 5x(x —1)*(2x* + x + 2)(2x + 9) > 0.

Also,
f6(05yzz) 2 O

This inequality is true if the original inequality holds for x = 0. Thus, we need to

show that
1 1 1 18

+——> ,
2y2+yz+222 2y2 2227 5(y2+22+yz)

which can be rewritten as

yz N ¥+ 22 - 18yz
2(y2+22)+yz  2yz  5(y2+z2+yz)

Using the substitution

2 2
+
=25 i>o
¥z
the inequality becomes
1 t 18
+—>

2t+1 2 5(t+1)
10t3 4+ 15t2 —57t —26 > 0,
(t—2)(10t? +35t +13) > 0.

First Solution. We apply Corollary 1 for

1)442
Ea,[a’(x) = fo—2(x) = %
Condition (a). Since ‘s
Afy o) = ZEE
fo(x, 1, 1)—Afy_,(x) = ’C(’C%)zfm, f(x) = 45(2x*+x+2)(2x+9)—2x(x—1)?,

we need to show that f(x) > 0 for x € [0,4]. This follows immediately from
2x2 +x+2>2(x—1)?,
45(2x2 +x +2) > x.
Condition (b). Since

fo(x,1,1)—Ax?* = xg(x), g(x)=5(x—1)*(2x*+x +2)(2x +9) — 18x,
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we need to show that g(x) > 0 for x > 4, which is trivial.
Condition (c). This condition is satisfied because f(0, y,z) > 0 for y,z > 0.

The equality holds for x = y = 2, and for x = 0 and y = 2z (or any cyclic
permutation).

Second Solution. Apply Theorem 3. Since the conditions (a) and (c) are satisfied,
we only need to show that the condition (b) is satisfied. Thus, we need to prove

that
4Ax(x —1)3

1,1)=
o, 1,1) = 22

for x > 1. We have

4Ax(x —1)°  x(x—1)*f(x)
27 B 3 ’

f6(x: 15 1)_
where
F(x)=152x*+x+2)(2x +9)—8(x—1) > 75(2x +9)—8(x —1) = 7(x + 5) > 0.

Observation. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers, no two of which are zero. If =1 < k < 2,
then

Z k+2 S 9(2k +5)
y24+kyz+22  22—k)(x2+ y2+22)+ (4k + 1)(xy + yz +2x)’

with equality for x =y =2, and for x = 0 and y = z (or any cyclic permutation).

For

fo(x,y,2) =P(x,y,2) Z(xz+kxy+y2)(x2+kxz+zz)—9(2k+5) l—[(y2+kyz+zz),

p
(]f;_—y;) =2(2—k)(x*+ y* +2*) + (4k + 1)(xy + yz + 2x),
we have
A=—9(2k +5)(k— 1),
P(x,1,1) ,
K+ 2 =2(2—k)x2+2(4k +1)x +9,

fo(x,1,1) = 2(k +2)(x? + kx + Dx(x — 1)*[(2—k)x + (k + 1)(5—Kk)].
Case 1: —1 < k < 1. Since A> 0, we apply Corollary 1 for

(x — 1)*x?

Ea,/j(x) :fo,—z(x) = 31
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Condition (a). We have
(2k +5)(1 — k)3(ox — 1)*x?
9 5

Fo6, 1, 1) = Afy_o(x) = w

F(x)=18(k+2)(x*+kx+1)[(2—k)x +(k+1)(5—k)]—(2k +5)(1—k)*x(x—1)2.

Since

Afo,—z(x) =

2—k)x+k+1)(5—k)=(2—k)x,
it suffices to show that x > 4 involves
18(k +2)(2 —k)(x?* + kx +1) > (2k + 5)(1 — k)*(x — 1)2.
This is true because
xit+kx+1>x*—x+1>(x—1)
3(k+2)>2k+5,
4>(1—k)?

and
3(2—k)>2(1—k).
Condition (b). Since
fo(x,1,1) —Ax? > x*g(x),
g(x) =2(k +2)(2—k)(x* + kx + 1)(x —1)* —9(2k + 5)(1 — k)?,

we need to show that g(x) > 0 for x > 4. It suffices to show that g(4) > 0, which
is true.

Condition (c). For x = 0, the original inequality becomes

k+2 +(k+2)(i+—) 9(2k + 5)
y2+kyz+ 22 y2  z22) 7 22—k)(y2+22)+ (4k+1)yz’

k+2 9(2k +5)

—+(k+2)t > ,

t+k ( ) 22—k)t+4k+1
(t—2)h(t) =0,

where
h(t) =2(4—k>)t2 + (k +2)(9 + 4k — 2kt + 7k*> + 18k — 1,

h(t) > h(2) =67+ 52k —k*> —4k® > 0.
Case 2: 1 < k < 2. Since A < 0, according to Theorem 1, we only need to show

that fy(x,1,1) > 0 and f¢(0, y,2) = 0 for x, y,z = 0, which are true.
O
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P 4.29. If x, y,z are nonnegative real numbers, no two of which are zero, then

Zx—(2+\/§)(J’+z)+ 9(3 +2v2) -0
(y +2)2 4x+y+z)

(Vasile C., 2014)

Solution. Write the inequality as f¢(x,y,z) = 0, where
folx,y,2) = 4(x +y +2)f (x,y,2) + 93 +2v2)| (v +2)%,

flx,y,2)= Z [x —(24+V2)(y —I—z)] (x + ¥)*(x +2)2.

Since
(y +2)*=(p—x)*=x*—2px +p?,

the product [ [(y +2)? has the same highest coefficient A; as x?y?z?, that is

A =1
Therefore, f¢(x, y,z) has the highest coefficient
A=9(34+2v2)=9(1+ v2)%

We have

f(x,1,1)

Ot 1)2 =(x—4—2v2)(x+1)*—8[(2+ V2)x + 1+ V2]

=x>—2(1+ v2)x>—(23+12v2)x —12—-10V2,

fo(x,1,1) =4(x +2)f(x,1,1) +36(3 +2v2)(x + 1)*
= 4(x +1)*g(x),

g(0) =(x +2)[x* —2(1 + v2)x® — (23 + 12v/2)x — 12— 102
+9(3+2vV2)(x + 1)
=x*—2v2x% +2v2x2—2(2—vV2)x +3—2v2
=(x—1)*(x —v2+1)?%,
therefore
fo(x,1,1) =4(x + 1)*(x —1)*(x — V2 +1)%
Thus, we apply Theorem 2 for

4(x —D*x —v/2+1)2
81(1+ v/2)2 '

Eup (x)= Fy,B(X) = fﬁ_L_z(X) =
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The conditions (a) and (b) in Theorem 2 are satisfied if fs(x,1,1) = Af 51 _,(x)
for x > 0. We have

4(x —D*(x—v2+1)?

Afﬁ—l,—z(x) = 9

16(x —1)%(x — V2 4+ 1)*(x +2)(2x + 1) -
5 >

0.

fe(t, 1, 1) =Af 5y 5(x) =

The condition (c) in Theorem 2 is satisfied if f,(0,y,z) > Afﬁ_l’_z(y,z) for
¥,z > 0. We have

£Q0,y,2)=—(2+vV2)(y +2)y%* + (y +2)*[y* +2° — (2 + V2)yz(y +2)],

f—(}(l),j’;) =—(2+V2)y*2? + (y* + 2>+ 2y2) [y* +2° — (3 + V2)yz]

=(y2 4+ 22— (1 +V2)(y* +2%)yz — (8 + 3v2)y?2?,

£6(0,y,2) =4(y +2)f (0,y,2) + 9(3 + 2v2)y*2*(y +2)?,

f(6—}(/0;);,)zz) =4[(y*+22)*— (1 + V2)(y* +2Y)yz — (8 + 3v2)y?2?]

+9(3 +2v2)y?2?
=4(y? +2%)? —4(1 + V2)(y% + 22)yz + (6V2 —5)y?2?

" f (v + 20 [202 +22P = (3+ v2)yz]’
Fmnlre) = 81(1+ v2)2 ,
Af s o(02) = (v +2)*[2(y* + z:)2 —(3+ \/E)_yz]z'
Therefore,
£ol0,3 )= Af s 1 2 2) = 2 +Z§g(y,2)’
where

2(1,2) =4(y* + 222 —(3+4vV2)yz(y* + 22) + (6V2 —7)y %2>
= (y?+22—2y2)[4(y* +2°)— (4V2—5)yz |+ (3—2v2)y*z* > 0.

The equality occurs for x = y = z, and for = y = z (or any cyclic

permutation).
OJ
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P 4.30. If x, y,z are nonnegative real numbers, no two of which are zero, then

bx—y—2 6y—2z—x 6z2—Xx—Y 18
+ > .
y2+22 22 + x2 x2+y? x+y+sz

(Vasile C., 2014)

Solution. Write the inequality as fg(x, y,2) = 0, where
folx,y,2) = (x +y +2)f (x,,2)—18] J(y*+2%),

FOy,2) = D (6x —y —2)(x? + yH)(x? +2).
Since
¥ +2z*=—x*+p*—2q,
the product [ [(y? + 2*) has the highest coefficient A; as (—x?)(—y?)(—z?), that is

A1 == _1.
Therefore, f(x, y,z) has the highest coefficient
A=—18A, =18.

We have

f(x,1,1)

=2Bx—1)(x*+1)+4(5—x)=23x>—x>+x+9),
x2+1

fe(x,1,1) = (x +2)f(x,1,1)—36(x? + 1)*
=2(x*+ 1)[(x +2)(3x* —x? +x +9) —18(x2 +1)]
=2(x%+ 1)x(3x> +5x% — 19x + 11)
=2x(x*+1)(x—1)*(3x +11) > 0.

Also, we have
f6(03 )’,Z) Z 0

for y,z > 0. This is true if the original inequality holds for x = 0. Thus, we need
to show that 6 6 18
Yy —Z n y —z n z2—) > ’
y2+22 22 y? ytz

which is equivalent to

Y-z 6(y2+23)—yz(y +2) __18
y2+ 22 y2z2 T y+zg’

-1 +6(y2+zz)—7yz> 18
y2+2? y?z? T (r+2)?
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—yz +6(y2+zz)—7yz _ _18yz
y2 422 ¥z T (y+2)?

Using the substitution
2 2
+2z
t=L "5 >0
vz

the inequality can be written as follows:

—1 18
—+6t—7>2——,
t t+2

6t3+5t>—33t—2>0,
(t—2)(6t2+17t+1)>0.

First Solution. We apply Theorem 3. The conditions (a) and (c) are clearly satis-
fied. The condition (b) is satisfied if

4Ax(x —1)3

1,1)>
folx,1,1) 2 ——

for x > 1. We have

4Ax(x—1)*  2x(x—1)*f(x)
f6(x5 19 1)_ 27 - 3 5
where
F(x)=3(x*+1)(Bx+11)—4(x—1)>6(3x +11)—4(x —1) = 14(x +5) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. We apply Corollary 1 for

(x —1)*x?

Eqp(x) = foo(x) =05

The condition (a) in Corollary 1 are satisfied if fs(x,1,1) = Af,_,(x) for x €
[0,4]. We have
2(x —1)*x?
9 )
_ 2
2x(x 91) g(x) >0,

Af 0,—2 (x)=

f6(X: 1: 1) _AfO,—Z(X) =

where
g(x)=9(x*+1)(3x +11) — x(x — 1)%

Since x2 + 1 > (x — 1)?, it suffices to show that

9(3x +11) > x,
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which is clearly true.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(x> 15 1) _sz = 2xg(x),

where
g(x)=(x*+1)(x—1)*(3x +11)—9x > x[2(x —1)*(3x +11)—9] > 0.

The condition (c) in Corollary 1, namely f(0, y,z) > 0 for y,z > 0, is satisfied.
Observation 1. Similarly, we can prove the following generalization:
e Let x, Y,z be nonnegative real numbers, no two of which are zero. If

3

—2<k< -,
2

then

Z (6—4k)x + (4k—1)(y +2) S 36(k+1)
y2+kyz+ 22 T (k+2)(x+y+2)

with equality for x = y = 2, and for x = 0 and y = z (or any cyclic permutation).

For
fe(x,y,2) = (k+2)(x+y+2)f(x,y,2)—36(k +1) l_[(y2 +kyz +2),
where
flx,y,2)= Z[(6 —4k)x + (4k — 1) (y +2)1(x* + kxy + y*)(x? + kxz + 22),

we get
A=36(k+1)(1—k)3.
We have
f(x,1,1)
2(x2+kx+1)
=(3—2k)x®—(2k?* =7k + 1)x% + (8k® + 4k + 1)x + 9k + 9,

=[(3—2k)x +4k —1](x* + kx + 1) + (k + 2)[(4k — 1)x + 5]

fe(x,1,1) = (k+2)(x +2)f(x,1,1) —36(k + 1)(k + 2)(x? + kx + 1)?
= 2(k +2)x(x* + kx + 1)g(x),

g2(x) = (3 —2k)x® — (2k? — 3k — 5)x2 + (4k* —19)x + 11 — k — 2k?
= (x—1)*[(3—2k)x + 11—k —2k?],

therefore

fe(x,1,1) = 2(k + 2)x(x? + kx + 1)(x — 1)*[(3 — 2k)x + 11 — k — 2k?].
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Since 3—2k > 0 and 11 —k —2k® > 0 for —2 < k < 3/2, we have f,(x,1,1) >0
for all x > 0. Also, we have
fe(O:y,Z)ZO

for y,z > 0. To show this, we only need to prove the original inequality for x = 0.
Using the substitution

Yz
the original inequality can be written as

(t —2)(Byt*+B,t +B3) >0,
where
B, =(k+2)(6—4k), B,=(k+2)(17—2k—4k*), B;=2+25k+5k*—8k°.
Since B; > 0 and
B; > 2+ 25k — 4k* — 8k® = (k + 2)(1 + 12k — 8k?),
we have
B t*+B,t + By > (2B, + B,)t + B; = (k + 2)(29 — 10k — 4k*)t + B,
> 2(k +2)(29 — 10k — 4k*) + (k + 2)(1 + 12k — 8k?)

= (k+2)(59 — 8k — 16k?) > 8(k + 2)(6 — k — 2k?)
=8(k+2)?(3—2k)>0.

Case 1: k € (—2,—1]U[1,3/2]. Since A< 0, f¢(x,1,1) = 0 and f,(0, y,2) = O for
all x, y,z > 0, the conclusion follows by Theorem 1.

Case 2: k € [—1,1]. Since A> 0, we apply Corollary 1 for

(x —1)*x?

Ea,ﬁ(x) :fo,—z(x) = 381

The condition (a) in Corollary 1, namely fq(x,1,1) = Af, _,(x) for x € [0,4], is
satisfied if

9k +2)(x2+kx+1D[(B3—2k)x +11 —k —2k?]>2(k+ 1)(1 —k)*x(x — 1)>.
Since
9>8>2(1—k)?
k+2>k+1,
X2Hkx+1>2x>—x+1>(x—1)
(3—2k)x +11—k—2k*> (3—2k)x > (1 —k)x,
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the conclusion follows.

The condition (b) in Corollary 1, namely f¢(x,1,1) > Ax? for x > 4, is satisfied
if

(k+2)(c2+kx +1D(x —1)*[(3—2k)x +11 —k—2k*] > 18(k + 1)(1 —k)*x.

Since
k+2>k+1,

P+kx+1>x2—x+1>x,
(x—1)[(3—2k)x +11—k—2k?] > 9[4(3—2k) + 11—k —2k?] = 9(23 — 9k —2k?),

it suffices to show that
23 —9k —2k* > 2(1—k)3.

Indeed,
23 —9k —2k?—2(1—k)®*>23—9k —2k?*—8(1—k) = 15—k —2k*> > 0.

The condition (c) in Corollary 1 is satisfied because f4(0, y,z) > 0 for y,z > 0.

Observation 2. For k = —1, k =0, k = 1/4, k = 1 and k = 3/2, we get the
following particular inequalities from the inequality in Observation 1:

2x—y—z
SEE L,
y2—yz+22
Z6x—y—z> 18
y2+22 T x+y+z

I B
4y2+yz+22  x+y+z

22x+3y+32> 24
Y2+yz+22  x+y+z’

Z y+z > 18
2y2+3yz+222  7(x+y+z)

P 4.31. If x, y,z are nonnegative real numbers, no two of which are zero, then

2x—3y—32z 6
E + >0
y2+4yz+z2 x+y+z

(Vasile C., 2014)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
folx,y,2) = (x +y +2)f (x,,2) + 6] [(¥2+4yz +22),

fly,2)= Z(ZX —3y —3z)(x* +4xy + y*)(x* + 4xz +2%).

Since
Y2 +4yz+22=4yz—x*+p*—2q,

the product [ [(y* + 4yz + z2) has the same highest coefficient as

Py(x,y,2) = [ [(4yz—x),

that is
A, =Py(1,1,1) = 27.

Therefore, fc(x, y,2) has the highest coefficient

A=6A, = 162.
We have
1,1
xé—(;‘4x +)1 =2(x —3)(x*+4x +1)—12(3x + 1) = 2(x> + x* —29x — 9),

fo(x,1,1) = (x +2)f (x,1,1) + 36(x* + 4x + 1)?
=2(x% +4x + 1) [ (x +2)(x® + x? —29x — 9) + 18(x* + 4x + 1) ]
=2(x%+4x + Dx(x®+3x2—9x +5)
=2x(x—1)*(x +5)(x2+4x+1)>0.
Also, we have
f6(0,y,2) =0

for y,z > 0. This is true if the original inequality holds for x = 0. Thus, we need
to show that

—3(y + 2y —3z 2z—3 6
(y Z)+y 5. 223y

>0
y2+4yz+22 22 y? y+z

5

which is equivalent to

—3(y +2) N 2y +2%)—3yz(y +2) N 6

>0
y2+2z2+4yz y222 y+z
-3 2(y +2)*— 6
(v +2F—9yz S0
(y +2)2+2yz y2g2 (y +2)2
-3 2(y +2)*—9 6
yz (y +2) yz, _6yz .

(y +2)2+2yz yz (y +2)2
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Using the substitution
G z)?
="
the inequality can be written as follows:

, t=4,

—3 6
— +2t—9+->0,
t+2 t

2t3 —5t2—15t+12>0,
(t—4)(2t2+3t—3)>0.

First Solution. We apply Theorem 3. The conditions (a) and (c) are satisfied. The
condition (b) is satisfied if

folx,1,1)> %7_”3
for x > 1. We have
f 1, )= D 1),

27

where
F(x) = (x+5)(x*+4x+1)—12(x—1) > 6(x*+4x+1)—12(x—1) = 6(x>+2x+3) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. We apply Corollary 1 for

(x —1)*x?2

Ea,[g’(x) :fo,—z(x) = 81

The condition (a) in Corollary 1 are satisfied if fs(x,1,1) > Af, _,(x) for x €
[0,4]. We have
2(x —1)*x?
Afo (%) = ———;

fo(x,1,1) = Afy () = 2x(x —1)*g(x),
where
g(x)=(x*+4x +1)(x +5)—x(x — 1)
Since x? +4x + 1> (x —1)* and x + 5 > x, it follows that g(x) > 0.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(x, 15 1) _AXZ - zxg(x):
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where

g(x) = (x*+4x +1)(x —1)*(x +5) — 81x > x[x(x — 1)*(x + 5)—81]
>x(4-9-9-81)>0.
The condition (c) in Corollary 1 is satisfied since f4(0, y,2z) > 0 for y,z > 0.
Observation. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers, no two of which are zero. If

-1
k> Y81 o 0ss,
then
Z(4k—6)x+(1—4k)(y +2) 36(k +1)
y2+kyz + 22 (k+2)(x+y+z)

with equality for x =y =2, and for x = 0 and y = z (or any cyclic permutation).

Write the inequality as f(x,y,z) = 0, where

fo(x,y,2) = (k+2)(x+y+2)f(x,y,2)+36(k + l)l_l(y2 +kyz +2%),

flx,y,2)= Z[(4k —6)x +(1—4k)(y +2)](x* + kxy + y*)(x* + kxz + 22).

Since f¢(x, y,2) is the opposite of fs(x, y,z) in Observation 1 from the preceding P
4.30, we have
A=36(k+1)(k—1)°,

fe(x,1,1) = 2(k + 2)x(x? + kx + 1)(x — 1)*[(2k — 3)x + 2k* + k —11].
Since A > 0, we apply Corollary 1 for

(x —1)*x?

Ea,ﬁ(x) :fo,—z(x) = 81

The condition (a) in Corollary 1, namely fq(x,1,1) > Af, ,(x) for x € [0,4], is
satisfied if

9k +2)(x%2+kx+D[(2k—=3)x +2k>+ k—11]> 2(k + 1)(k—1)*x(x — 1)>.
Since
9> (x—1)?
k+2>k+1,
x?+kx +1> kx,
(2k —3)x +2k* + k—11 > 4(2k —3) + 2k* + k — 11 = 2k* + 9k — 23,
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it suffices to show that
k(2k* + 9k —23) > 2(k — 1)°.
Indeed,
k(2k* +9k —23) — 2(k — 1)® = 15k* — 29k + 2 > 15k* — 30k = 15k(k — 2) > 0.

The condition (b) in Corollary 1, namely f¢(x,1,1) > Ax? for x > 4, is satisfied
if

(k+2)(c2+kx +1D(x —1)*[(2k —3)x +2k? + k—11] > 18(k + 1)(k —1)*x.

Since
k+2>k+1,

x®+kx +1>kx,
(x—1)*[(2k—3)x +2k*+k—11]> 9[4(3—2k) + 11—k —2k*] = 9(2k? + 9k —23),

it suffices to show that
k(2k?+9k —23) > 2(k—1)3.
Indeed,

k(2k* +9k —23) — 2(k — 1)® = 15k* — 29k + 2 > 15k* — 30k = 15k(k — 2) > 0.

The condition (c) in Corollary 1, namely f4(0, y,z) = 0 for y,z > 0, is satisfied if
the original inequality holds for x = 0. Thus, we need to show that

(t —2)(B,t*+B,t +B3) >0,

where

yz
B, =(k+2)(4k—6), B,=(k+2)(4k*+2k—17), B;=8k®>—5k*—25k—2.
Since t > 2, B; > 0 and B, > 0, we have

B,t*+B,t + By > 4B, + B, = (8k* — 50) + k(11k — 17) > 0.

P 4.32. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z7x+4y+4z> 27
4x2+yz = x+y+z

(Vasile C., 2014)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
folx,y,2) = (x +y +2)f (x,5,2) + 27| [(4x? + y2),

flx,y,2)= Z(7x +4y +42)(4y? +2x)(42* + xy).
The product
Py(x,y,2) =] [(4x*+yz)
has the highest coefficient
A, =Py(1,1,1) = 125.
Therefore, f(x, y,z) has the highest coefficient

Since A < 0, we only need to show that fs(x,1,1) > 0 and f(0,y,z) = O for
x,Y¥,z = 0. The first inequality is true if the original inequality holds for y =z = 1.
So, we need to show that

7x+8 2(4x+11)> 27
4x2+1 x+4  x+2

which is equivalent to
x(32x% +51x*—198x +115) > 0,

x(x—1)*(32x +115) > 0.

The second inequality is true if the original inequality holds for x = 0. We need to
show that
4(y + 7y +4z 7z+4 2
(y+z) Tyt+dz Tztdy 27

¥z 4y2 422~ y+z’

which can be rewritten as follows:

4(y +2) N 4y3 +23)+ 7yz(y +2) o 27
vz 4y2z2 T y+z’

4  4(y*+2%)+3yz 27
— + > ,
yz 4y 222 (y+2)?

2 _
44 4(y +2)*—5yz S 27yz .
4yz (y +2)?

Substituting
Ot z)?
= —yz

t=>4

3 3
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the inequality becomes
4t—5 _ 2
= )
4 t
(t—4)(4t+27)>0.

4+

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
U

P 4.33. If x, y,z are nonnegative real numbers, then

Z9x—2y—2z< 3
7x2+8yz ~ x+y+z

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where
fo(x,y,2) =3 [(7x*+8yz)— (x +y +2)f (x,¥,7),

flx,y,2)= Z(9x —2y —22)(7y* + 8zx)(72> + 8xy).
The product
Py(x,y,2) = [(7x*+8yz)
has the highest coefficient
A, =P;(1,1,1) =155
Therefore, fi(x, y,z) has the highest coefficient
A=3A,=3-15°
We have

flx,1,1)
8x+7
= —(28x3 —170x2% + x — 84),

(9x —4)(8x + 7))+ 2(2x — 7)(7x% + 8)

fo(x,1,1) =3(7x*+8)(8x +7)* —(x +2)f (x,1,1)
= (8x + 7)[3(7x* +8)(8x + 7) + (x +2)(28x> — 170x> + x —84) |
= 2x(8x + 7)(14x> + 27x* — 96x + 55)
= 2x(x —1)*(8x + 7)(14x + 55) > 0.

Also, we have
f6(05 Y, Z) Z O
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for y,z > 0. This is true if the original inequality holds for x = 0. Thus, we need
to show that N 92— 9 9y —9 3
YTE E Y AR >0
4yz 7y? 722 y+z

which is equivalent to

+z  2(y*+2%)—9 + 3
yz+(y z°) —9yz(y Z)+

>0,
4yz 7y2%z2 y+z
1 2(y*+2%)—11
JATrE) s 3
4yz 7y2z2 (y +2)2
1 2 2-15 3
1,20+2) yz _3yz
7yz (y +2)
Using the substitution
1 )2
_ r+2)  t>a
¥z
the inequality can be written as follows:
1 2t—15 3
- +-2=0,
4 7 t

8t2—53t+84>0,
(t—4)(8t—21)=0.

First Solution. We apply Theorem 3. The conditions (a) and (c) are satisfied. The
condition (b) is satisfied if

4Ax(x —1)3
fo(x,1,1) > #

for x > 1. We have

4Ax(x —1)3

Y = 2x(x —1)*f (x),

f6(xa ]-: 1) -
where

f(x)=(8x+7)(14x +55)—750(x —1) = 112x% —212x + 1135
> 106x2 —212x + 106 = 106(x — 1) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. We apply Corollary 1 for

(x — 1)*x?

Ea,/j(x) :fo,—z(x) = 31
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The condition (a) in Corollary 1 are satisfied if fs(x,1,1) > Af, _,(x) for x €
[0,4]. We have
Afy_5(x) = 125(x — 1)*x%,
fo(x,1,1) = Afy _5(x) = x(x —1)*g(x),

where

g(x) =2(8x + 7)(14x + 55) — 125x(x — 1)?
> 2(8x + 7)(14x + 55) — 500(x — 1)?
> 2(8x + 6)(15x + 50) —500(x — 1)?
= 20 (4x +3)(3x + 10) — 25(x — 1)?]
=20[5 + x(99 —13x)] > 0.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(xs 17 1) _sz = xg(X),

where
g(x)=2(8x + 7)(x —1)*(14x +55)—3 - 15°x.
Since
2(8x +7)(x —1)? > 15x(x — 1) > 135z,
we get

g(x) > 135x(14x +55)—3 - 15°x = 135x(14x + 55— 75) > 0.

The condition (c) in Corollary 1 is satisfied because f,(0,y,z) >0 for y,z > 0.
O

P 4.34. If x, y,z are nonnegative real numbers, then

Z y+z 2
7x24+y2+22  x+y+3z
(Vasile C., 2014)

Solution. Write the inequality as f¢(x,y,z) = 0, where

fo(x,y,2) = (x +y+z)Z(y+z)(7y2+zz+x2)(722+x2+y2)—2 l_[(7x2+y2+zz).

Since

7x*+ y? + 2% = 6x*+p*—2q,
the product [ [(x?+4y2+42%) has the same highest coefficient A, as (6x?)(6y>)(6z2),
that is A; = 216. Therefore, f¢(x, y,2) has the highest coefficient

A= _2A1 - _432.
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According to Theorem 1, we only need to show that f¢(x,1,1) > 0 and f,(0, y,2) >
0 for x,y,z = 0. The first condition is true if the original inequality holds for
y =z = 1. Thus, we need to show that

2 20x+1) 2
7x2+2 x24+48 ~ x+2’

which is equivalent to
(x —1)*(11x +2) > 0.
The second condition is true if the original inequality holds for x = 0. Thus, we
need to show that
+ 2
M T > ,
y2+z2 Ty*+z2 7z2+y? y+gz

which is equivalent to

y+z +7(y3+z3)+yz(y+z)> 2
yi+22 7(y*+24)+50y222 T y+z

1 7(y*+2%)—6yz .2
y2+22 7(y*+24)+50y222  (y +2)*
For yz = 0, the inequality is an equality. For yz # 0, we write the inequality as
vz 7yz(y? +2%) —6y2z? - 2yz
y2+22  7(y2+22)2+36y222  y2422+2yz’

Substituting
2 2
+2z
t=L"2 >3
vz

the inequality becomes as follows:
1 7t=6 > 2

+ > ,
t 7t2+36 t+2
11t>—24t +36> 0.

We have
11t2—24t +36 > 6t2—24t + 24 =6(t —2)*> > 0.

The equality occurs for x = y = z.

P 4.35. If x, y,z are nonnegative real numbers, then

Z 7x—2y—2z S 3
X2+4y24+4z2  x+y+z

(Vasile C., 2014)
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Solution. Write the inequality as f¢(x,y,2) = 0, where
o6, 3,8) = (x + y +2)f (x,7,2) = 3] |+ 4y +429),

flx,y,2)= Z(7x —2y —22)(y? + 422 + 4x*)(2> + 4x2 + 4y?).
Since
x?+4y?+42*> = —3x* + 4(p* — 2q),

the product [ [(x*+4y?+42%) has the same highest coefficient A as (—3x2)(—3y?)(—3z2),
that is A; = —27. Therefore, f;(x, y,2) has the highest coefficient

A=—3A, =81.
We have

f(x,1,1)

4x2+5 =(7x— 4)(43(2 +5)+2(5— 2x)(x2 +8)

= 3(8x% —2x% + x + 20),

fo(x,1,1) = (x +2)f(x,1,1)—3(x? + 8)(4x? + 5)*
=3(4x?+5) [ (x + 2)(8x> — 2x? + x + 20) — (x* + 8)(4x* + 5)]
= 6x(4x%+5)(2x% + 7x% —20x + 11)
= 6x(4x%2+5)(x —1)*(2x +11) > 0.

Also, we have
fé(oa )’:Z) >0

for y,z > 0. This is true if the original inequality holds for x = 0. Thus, we need

to show that
—(y +2) 7y—22+7z—2y S 3

2(y2+22)  y2+4+422 22+4y2 " y+z
which is equivalent to

—(y +2) N 26(y% +2%) — yz(y +2) .3
2(y2+22) 4(y*+z4)+17y2%2 y+z’
-1 N 26(y%+2%)—27yz .3
2(y2+22)  4(y2+22)2+9y222 "~ (y +2)?
If yz = 0, then the inequality is an equality. For yz # 0, write the inequality as

—yz 26yz(y? +2%) — 27y?z> - 3yz
2(y2 +22) 4(y2+22)2+9y222 y2+22+2yz

Using the substitution
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the inequality becomes

-1 26t—27 3
—+ > ,

2t 4t249 T t+2
8t3+14t>—57t—6>0,
(t—2)(8t2+30t+3)>0.

First Solution. We apply Theorem 3. The conditions (a) and (c) are satisfied. The
condition (b) is satisfied if

_ 3
f6(x7 15 1) 2 w
for x > 1. We have
Foe 1,1 = D 61,

27

where

F(xX)=(4x*>+5)(2x +11)—2(x—1)
>9(2x+11)—2(x—1)=16x + 101 > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. We apply Corollary 1 for

(x —1)*x?

Eup(x) = fo o) ="

The condition (a) in Corollary 1 are satisfied if fs(x,1,1) > Af,_,(x) for x €
[0,4]. We have
Afo_o(x) = (x —1)*x2,
fo(x,1,1) —Afy (%) = x(x —1)*g(x),
where
g(x) =6(4x*+5)(2x +11) — x(x —1)%
We have g(x) > 0 since 4x?+5> (x—1)* and 2x + 11 > x.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(x, 15 1) _sz - BXg(x):

where
g(x) =2(4x*+5)(x —1)*(2x + 11) —27x > 0.

The condition (c) in Corollary 1, namely f,(0, y,2z) = 0 for y,z > 0, is satisfied.
O



Highest Coefficient Cancellation Method for Nonnegative Variables 479

P 4.36. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z 2x2 +yz 29 31(x — y)*(y —2)*(z — x)?
¥2+22 2 2(x2+y2)(y2+22)(z2+x2)

(Vasile C., 2014)

Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2) = 22(23(2 +y2)(x® + y*)(x* +2*)—9 l—[(y2 +2%)—31 l_[(y —z).

Since
y*+2>=—x*+p*—-2q,

fo(x, y,2) has the same highest coefficient A as
2 Z(ZXZ +y2)(—2)(=y?) — (=2 (=y*)(—2*) = 31(x — y)*(y —2)*(z — x)?,
that is
A=2(6+3)+9—31(—27)=32-27.
Also,
fo(x,1,1) =2[(2x* + 1)(x* + 1)* + 4(2 + x)(x* + 1)] — 18(x* + 1)?
=4x(x? 4+ 1)(x>—=3x +2) = 4x (x> + 1)(x — 1)*(x + 2).

Thus, we apply Corollary 1 for

(x —1)*x?

Ea,ﬁ(x) :fo,—z(x) = 31

The condition (a) in Corollary 1 are satisfied if fs(x,1,1) = Af,_,(x) for x €
[0,4]. We have

1442
Afy o) = 2D
12
e, 1, 1) = Afy o) = EZ D)

where
g(x) =3(x*+1)(x +2)—8x(x — 1)

For 0 < x <1, we have x + 2 > 3x, hence
g(x) > 9x(x*+1)—8x(x —1)* > 8x(x*+1)—8x(x —1)* = 16x>> 0.
For 1 < x <4, we have

3(x?+1)(x +2) = 3x> + 6x% + 3x + 6 > 3x° + 6x2,
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hence
g(x) > x[3x*+6x —8(x —1)*] = x(5x — 2)(4—x) > 0.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have

fo(x,1,1) —Ax* = 4xg(x),

where
g(x) = (x*+1)(x —1)*(x +2)—216x.

Since 2(x +2) > 3x, we have
2g(x) > 3x(x?+1)(x —1)*—432x

= 3x[(x%+ 1)(x —1)*> — 144]
> 3x(17-9—144] = 27x > 0.

The condition (c) in Corollary 1 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that

2 2 N2
Yz (¥ )2, 31 —e)"
y2+22 22 y? 2 2(y?+2?)

Using the substitution

2 + 2
r=2 1% t>2,
¥z
we may write the inequality as follows:
1 9 31(t—2
—+2(t*=2)> —+¥,
t 2 2t

(t—2)*(t+4)>0.
The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic

permutation).
U

P 4.37. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z 2x*—yz - I(x —y)P(y —2)*(z —x)’
y2—yz+22 = (2—xy+y)(y2—yz+22)(22 —2zx +x2)

(Vasile C., 2014)
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Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2) = Y (2x%—yz)(x*—xy+y?) (P —xz+22)-3] [(r*—yz+2)-9[ [r—2)"

Since
y2—yz+2>=—x*>—yz+p*—2q,

fo(x,y,2) has the same highest coefficient A as
Py(x,¥,2) = 3P3(x, ¥,2) = 9(x — y)*(y —2)*(z — x)?,

where

Py(x,y,2) = Y (2x% —y2)(—2* —xy)(=y*—xz), Py(x,y,2) = [(=x*—y2),
that is

A=P,(1,1,1)-3P5(1,1,1)—9(—27) = 3(2—1)(—=1—1)?>—3(=1—-1)*—9(—27) = 279.
Also,

feolx,1,1) =[(2x* = 1)(x*—x +1)* + 22— x)(x* —x + 1)] —3(x* — x + 1)?
=2x(x*—x+ 1) —x*—x+1)=2x(x*—x+ 1)(x —1)*(x +1).

Thus, we apply Corollary 1 for

(x —1)*x?2

Eap(X) = foa(x) =

The condition (a) in Corollary 1 are satisfied if fs(x,1,1) > Af, _,(x) for x €
[0,4]. We have
31(x —1)*x?
— 9
x(x —1)*g(x)
9 )

Af 0,—2 (x)=

fe(x,1,1) —Afo,—z(x) =

where
g(x)=18(x*—x +1)(x +1)—31x(x —1)%

For 0 < x <1, we have x + 1 > 2x, hence
g(x)>36x(x*—x+1)—31x(x—1)*>31x(x*—x+1)—31x(x—1)* = 31x* > 0.
For 1 < x <4, we have

18(x? —x +1)(x+1) = 18x> + 18 > 18x3,
hence

g(x) > x[18x%—31(x —1)*] > x[18x% —32(x — 1)*] = 2x(7x — 4)(4—x) > 0.
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The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
f6(xs 17 1) _sz = xg(X),

where

g(x)=2(x*—x+1)(x —1)*(x +1)—279x.
Since

4(x>—x+1)—13x=(x—4)(4x—1) >0,
we have

2g(x) > 13x(x —1)*(x + 1) —558x
= x [13(x —1)*(x + 1) — 558]
> x(13-9-5—558) = 27x > 0.

The condition (c) in Corollary 1 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that

— 2 2 9 )2
vz +2(L+%)23+M.

yi—yz+22 22y yi—yz+22
Using the substitution
2,2
+z
t=2 "%, 22
¥z
we may write the inequality as
-1 t—2
—+2(t2—2)23+9( ),
t—1 t—1

(t—2)*(t+3)=0.
The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
Observation 1. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers, no two of which are zero. If

—2<k<2,
then

Z 2x%+ (2k +1)yz - 3(2k+3) (8k%2+30k+31)(x —y)*(y —2)*(z—x)?
yi+kyz+z2 —  k+2 (k+2)[[(y2+kyz +22) '

with equality for x =y = 2, and for x = 0 and y = z (or any cyclic permutation).
For

folx,y,2) =(k+ Z)Z[sz +(2k + Dyz](x* + kxy + y?)(x* + kxz + 2%)
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—3(2k +3) | J(y? +kyz +2%) — (8k> + 30k + 31)(x — ¥)*(y —2)*(z — x)%,

we have
A=9(k + 2)(2k* + 19k + 48),

fo(x,1,1) = 2(k + 2)x(x* + kx + 1)(x — 1)*(x + k + 2).

Observation 2. For k = 0 and k = —1, the inequality in Observation 1 leads to the
particular inequalities in P 4.36 and P 4.37. For k = —1/2 and k = 1, we get to the
particular inequalities

Z x? S 24(x —y)(y —2)’(z —x)°
2y2—yz+2z2 [12y2—yz+222)

Z 2x2%+3yz . 23(x — y)*(y —2)*(z — x)?
y2+yz+z2 [TO2+ yz+22) '

P 4.38. If x, y,z are nonnegative real numbers, no two of which are zero, then

5(x —y)’(y —2)*(z = x)’
202 + y2)(y? +2°)(z* + x2)’

ny—yz+zx

v

3

=+

2
(Vasile C., 2014)

Solution. Write the inequality as f¢(x,y,2) = 0, where

folx,y,2) =2 (xy —yz+ax)(x? + y)(x* +22) =3[ [ +21)—5] [y —2)%

Since
Xy—yz+zx=—2yz+q, y>*+2?=-—x*+p*—2q,

fo(x,y,2) has the same highest coefficient A as
2 Z(—ZyZ)(—zz)(—yz) —3(=x*)(=y*)(—2*) = 5(x =y )*(y —2)*(z — x)?,
that is
A=—12+3—5(=27) = 126.
Also,
folx,1,1) =2[(2x — 1)(x* + 1)* + 4(x* + 1)] — 6(x* + 1)*
=4x(x®+1)(x —1)2

Thus, we may apply Corollary 1 (for E, 5 = f,_,) or Theorem 3. Since the last
method is more simple, we will apply it.
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The condition (a) in Theorem 3, namely f¢(x,1,1) > 0 for 0 < x < 1, is clearly
satisfied.

Ax(x —1)°
The condition (b) in Theorem 3 is satisfied if f¢(x,1,1) > % for x > 1.

We have
4Ax(x—1)°  56x(x—1)°

27 3
4Ax(x—1)°  4x(x—1)*f(x)
27 B 3 ’

b

f6(x7 1: 1)_

where

2
2
f(x)=3(x2+1)—14(x—1)=3x2—14x+17:3(x—§) +§>0.

The condition (c) in Theorem 3 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that

_ 2,2 Ry
yZ +y +z>3+5(y z)

y2+ 32 yz 2 2(y2+2z2)

Using the substitution

vz
we may write the inequality as follows:

5(t—2)
2t

—1 3
—+t==+ ,
t 2

(t—2)*>0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
O

P 4.39. If x, y,z are nonnegative real numbers, no two of which are zero, then

ny—2y2+zx - 3(x — y)*(y —2)*(z — x)?
y2—yz+22 — (x2—xy+y?)(y2—yz+22)(s2—z2x + x2)’

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where

fe(x,y,2) = Z(xy —2yz+zxz)(x®*—xy + y*)(x*—xz +2*)—3 l—[(y —2)2.
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Since
xy—2yz+zxz=-3yz+q, x*—xy+y?’=—2>—xy+p*—-2q,

fo(x,y,2) has the same highest coefficient A as

D (3y2)(—=? —xy)(—y? = xz) = 3(x — )y —2)(z — x)?,
that is
A=3(=3)(—1—-1)*>—3(—27) = 45.
Also,

fo(x,1,1) =[(2x —2)(x*—x +1)* +2(1 — x)(x* —x + 1)]
=2x(x?>—x+1)(x—1)2

Thus, we apply Corollary 1 for

(x — 1)*x?2

Eap(x) = foal) =

The condition (a) in Corollary 1 are satisfied if fq(x,1,1) = Af,_,(x) for x €
[0,4]. We have
5(x —1)*x?
5
x(x —1)%g(x)
9 ,

Af 0,—2 (x)=

f6(x5 15 1) _AfO,—Z(x) =

where
g(x)=18(x*—x+1)—5x(x —1)%

For 0 < x <1, we have 18(x?—x +1) > 18(1 —x) > 5(1 — x), hence
g(x)>5(1—x)—5x(1—x)=5(1—x)*>>0.
For 1 < x <4, we have 18(x?> —x + 1) > 18x(x —1) > 15x(x — 1), hence

g(x)>15x(x —1)—5x(x —1)*> =5x(x —1)(4—x) > 0.

The condition (b) in Corollary 1 is satisfied if fo(x,1,1) > Ax? for x > 4. We
have
fo(x,1,1) —Ax? = xg(x),

where
g(x) =2(x*—x+1)(x —1)*—45x.

We have

g(x) > 2(x* —x)(x —1)* —45x = x[2(x —1)* —45]
> x(54—45) > 0.



486 Vasile Cirtoaje

The condition (c) in Corollary 1 is satisfied if the original inequality holds for
x = 0. Thus, we need to show that
— 2 4 52 )2
2yz LY +z S 3(y —=2) .
yi—yz+22 Yz yi—yz+22

Using the substitution

we may write the inequality as
—2 3(t—2
-2 . 30=2)
t—1 t—1

(t—2)*>>0.

b

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers, no two of which are zero. If
—2<k<2,
then

Z x(y+2)+(k—1)yz - 3(k+1) (kK*+3k+5)(x—y)*(y —2)*(z—x)?
y2+kyz+22 — k+2 (k+2)[[(y2+kyz +22) '

with equality for x =y =z, and for x =0 and y = z (or any cyclic permutation).

For
fo(x,y,2) =(k + Z)Z[x(y +2)+(k—1Dyz](x*+kxy + y*)(x? + kxz +22)
—3(k+ )] [+ kyz +22) — (kK + 3k + 5)(x — ¥)*(y —2)*(z — x)?,

we have
A=9(k+2)(2k+7),

fe(x,1,1) = 2(k + 2)x(x? + kx + 1)(x — 1)2.

Observation 2. For k = 0 and k = —1, the inequality in Observation 1 leads to the
particular inequalities in P 4.38 and P 4.39. For k = 1 and k = 2, we get to the
particular inequalities

Z x(y+2) ., 3(x —y)P(y —2)*(z —x)?

yi+yz+22 " (2 +xy +y2)(y2+ yz +22)(22 +2x + x2)’

— v)\2 —_2\2 — v \2
(xy+yz+zx)Z:—1 22+E(x y) (y Z) (x X) .
(x+y)2 4 4 \x+y y+z Z+X




Highest Coefficient Cancellation Method for Nonnegative Variables 487

P 4.40. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z x+3y+3z S 7(x+y+z2)
(y +22)2y +2)  3(xy +yz+zx)

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,z) = 0, where

fr(x,y,2) =3(xy + yz +2x) Z(x + 3y +32)(2x% 4+ 5xy + 2y*)(2x?* + 5xz + 22°%)
—7(x+y+2) l_[(2y2 +5yz + 222).

Since
2y%+5yz +22% = 5yz — 2x% + 2(p* — 2q),

the product [ [(2y? + 5yz + 22%) has the same highest coefficient A, as

Py(x,y,2) =] [(5yz—2x?),

that is
A, =Py(1,1,1) = 27.

Therefore, f,(x,y,z) > 0 has the highest polynomial
Alp,q)=—7(x+y +2)(27) =—189p < 0.
According to Corollary 2, we only need to show that
f(x,1,1)=0

and

f7(03 Y Z) = 0
for x, y,z = 0. The first inequality is true if the original inequality holds for y =
z = 1. So, we need to show that

x+6+ 2(3x+4) >7(x+2)
9 (x+2)2x+1) ~ 3(2x+1)

which is equivalent to
x(x—1)*>0.

The second inequality is true if the original inequality holds for x = 0. Thus, we
need to prove that

3(y +2) y+32+3y+z>7(y+z)
(y+22)2y +2) 222 2y2 —  3yz ’
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which is equivalent to

3(y +2) +(y +2)° 7y +2)

(y +22)(2y +2) 2y2z2 —  3yz
3 (y +2)? - 7
(y +22)(2y +2) 2y222 ~ 3yz’
3 3(y?+2%)—8yz -0
2(y2+22)+5yz 6y2z2 -7

6(y%+22)? —(y*+23)yz—22y%2> >0,
(y —2)*[6(y*+2*)+11yz]>0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
O]

P 4.41. If x, y,z are nonnegative real numbers, no two of which are zero, then

0.

Z 9x —5y —5z N 3(x+y+2) S
2y2—=3yz+222 xy+yz+zx

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,z) > 0, where

fo(x,y,2) =3(xy + yz + zx)Z(%c —5y —52)(2x%* —3xy + 2y?)(2x* — 3xz + 22%)
+3(x+y+2) l_[(Zy2 —3yz + 222).

Since
2y%—3yz +22% = —3yz—2x*+2(p* — 2q),

the product [ [(2y* —3yz + 22%) has the same highest coefficient A, as
Py(x,y,2) =] [(=3yz—2x?),

that is
A, =P;(1,1,1) =—125.

Therefore, f,(x,y,z) = 0 has the highest polynomial
A(p,q) = 3(x + y +2)(—125) = —375p < 0.

According to Corollary 2, we only need to prove the original inequality fory =z =1
and for x = 0.



Highest Coefficient Cancellation Method for Nonnegative Variables 489

Case 1: y =z = 1. We need to show that

2(4—5x) + 3(x+2) >0

9x — 10+ >
2x2—3x+2 2x +1

2

which is equivalent to
x(x—1)*>>0.

Case 2: x = 0. We need to show that

—5(y + —5 —5y 3(y+
y+2)  9y—5z 92-5y 30y Z)zo,
2y2—3yz+ 222 222 2y? vz

which is equivalent to

—5(y +2) N (y +2)(9y? + 92> — 14yz) N 3(y +2) -0
2y?2—3yz + 222 2y2z2 yz

2

-5 +9y2+922—14yz+i>0
2y2—3yz + 222 2y2z2 yz
-5 9N(y*+2*)—8

L) —syz
2(y2+22)—3yz 2y2z2
18(y2 +2%)? —43(y% +22) + 14y%22 >0,

(y —2)*(18y*+ 182> —7yz) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers, no two of which are zero. If

1—+v1 1++v1
kela,—1]U[1,b], a= T7 ~ —1.56155, b= T7 ~ 2.56155,

then

Z(B—k)x+(k—1)(y+z)>3(k+1) x+y+z
y2+kyz + 22 T k+2 xy+yz+zx’

with equality for x =y = g, and for x = 0 and y = z (or any cyclic permutation).

For
f(x,y,2) = (k+2)(xy +yz+2x)f (x,y,2)—3(k+1)(x +y +2) l_[(y2 +kyz+2?),
where

flx,y,2)= Z[(?) —I)x + (k—1D(y +2)1(x* + kxy + y?)(x? + kxz + 2%),
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we have
A=-3(k+1)(k—1)*p <0,

fr(x,1,1) = 2(k + 2)x(x —1)*(x* + kx + D[(3—k)x —k*+ k +4]> 0,
£(0,y,2) = yz(y +2)(y —2)*[(k +2)(3—k)(y —2)* + (13 + 7Tk —k*—k3)yz] > 0.

Observation 2. For k = 2, the inequality from Observation 1 turns into the well-
known Iran inequality:

1 9
> .
Z (y+2)2  4(xy+yz+zx)

P 4.42. If x, y,z are nonnegative real numbers, no two of which are zero, then

ZBx—y—z S 3(x+y+z2)
y2+22  2(xy+yz+zx)

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,2z) > 0, where
f(x,y,2) = 2xy +yz +2x)f (x,7,5) =3(x +y +2) | Jo* +52),

FG,y,2) =) (3x —y —2)(x* + y2)(x* +22).

Since
¥4z =—x*+p*—2q,

the product [ [(y? + 2?) has the same highest coefficient A; as (—x*)(—y?)(—z?),
that is A; = —1. Therefore, f,(x,y,2) > 0 has the highest polynomial

Alp,q)=—-3pA;=3p=>0, Alx+2,2x+1)=3(x+2).
We have

fr(x,1,1) =2(2x + 1) [(3x —2)(x* + 1)* + 4(2 — x)(x* + 1) ] — 6(x + 2)(x? + 1)?
=4x(x —1)*(x*+ 1)(3x + 4).

On the other hand, for x = 0, the original inequality becomes

—y—z+3y—z+32—y>3(y+z)

y2+22 22 y2 = 2yz '
vz 3(y?+2%)—4yz
y2+2z2 Yz

3
> .
2
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Using the substitution

2 2
+
=25 s
¥z
the inequality becomes

1 3
—+3t—4>—,
t 2

(t—2)(6t+1)=>0.

First Solution. Apply Theorem 6. The conditions (a) and (c) are satisfied. In what
concerns the condition (b), we have
4A(x +2,2x + Dx(x—1)°  4(x +2)x(x —1)°
27 B 9 ’

4A>x +2,2x + Dx(x —1)°  4x(x—1)*g(x)
27 B 9 ’

fr(x,1,1)—

where
g(x)=9(x*+1)(3x +4)—(x +2)(x —1).

For x > 1, we get

g(x)>(x*+1)Bx+4)—(x+2)(x—1)
>70c2+ 1) —(x+2)(x—1)=6x>2—x+3>0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
Second Solution. Apply Corollary 3 for

x*(x—1)*

Eup(x) = foal) ="

Condition (a). It suffices to show that f,(x,1,1) > A(x + 2,2x + 1)f, _,(x) for
0 < x < 4. We have

x2(x—1*(x+2)
27 ’
x(x—1)*f (x)
27 ’
F(x)=108(x?+1)(3x +4) — x(x — 1)*(x + 2).

Since x>+ 1> (x —1)? and 3x + 4 > 3x, we get

Alx +2,2x +1)f, »(x) =

(6,1, 1) =A(x +2,2x + 1)fy _,(x) =

F(x)>108(x —1)*(3x) —x(x —1)*(x +2)
=x(x—1)*322—x)> 0.
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Condition (b). It suffices to show that f,(x,1,1) = A(x + 2, 2x + 1)x? for x > 4.
Since
fr(x,1,1) > 4x(x — 1)*(x?* + 1)(3x),

we get
fr(x,1,1) —A(x +2,2x + 1)x* > 4x(x — 1)*(x* + 1)(3x) — 3(x + 2)x?
=3x%[4(x—1)*(x*+1)—x—2]>0.
Condition (c). This condition is satisfied because the original inequality holds for

x =0.
O

P 4.43. Let x, y,z be nonnegative real numbers, no two of which are zero. If

1— /1 1+ /1
; 7~—1.56155, b= +2 7~2.56155,

kela,b], a=

then

Z(B—k)x+(k—1)(y+z)>3(k+1) x+y+z
y2+kyz + 22 T k+2 xy+yz+zx
(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,2z) > 0, where
206, y,2) = (k+2)(xy +yz+22)f (x,3,2) =3k + D(x+y +2) [ [0 +kyz+22),

flx,y,2)= Z[(?’ —I)x + (k—1D(y +2)1(x* + kxy + y?)(x? + kxz + 2%).

Since
y2+kyz+2*=—x*+kyz+p*—2q,

the product [ [(y?* + kyz + 2*) has the same highest coefficient A; as

Py(x,y,2) = [(=x*+ky2),

that is
A, =Py(x1,1,1) = (k—1)°.

Therefore, f,(x,y,z) has the highest polynomial
A(p,q) = —3(k + 1)pA, = 3(1 + k)(1 —k)p.
We have
f(x,1,1)

pra [(8—=K)x + 2k —2](x® + kx + 1) + 2(k + 2)[(k — 1)x + 2]

=(3—k)x>—(k* =5k +2)x* + (2k* — 3k + 3)x + 2k — 2,
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fr(x,1,1) = (k+2)(2x + 1)f (x,1,1) — 3(k + 1)(k + 2)(x +2)(x?* + kx + 1)?
=(k+2)(x*+ kx +1)g(x),
f(x,1,1)
x2+kx+1
=2x[(3—k)x® — (k* — 3k + 2)x? + (2k* =3k — 5)x —k* + k + 4]

=2x(x —1?[(B—K)x —k*+k+4],

glx)=02x+1) —3(k+1)(x+2)(x*+kx +1)

fr(x,1,1) = 2(k + 2)x(x — 1)*(x* + kx + D) [(3—k)x —k* + k + 4] > 0.

and

£(0,y,2) = (k—1)(y+2)y*2*+(y*+kyz+z2) [ (3 —K)(y° +2°) + (k — Dyz(y +2)],

f—(}(l)’f’;) =(k—1)y**+(y*+22 +kyz)[B—K)(y? +22) + (2k —4)yz]

= (3—k)(y* +5°)* — (k* =5k + 4)(y* + 2°)yz + (2k* — 3k — 1) y*2?,
f(0,5,2) =(k + Z)f—(o’ Y.2) _ 3(k+1Dyz(y*+2*+kyz)
vz(y +2) y+z

=(k+2)(3—k)(y*+2*)*—(k+2)(k* — 5k + 4)(y* + 2%)yz

+ (k +2)(2k* — 3k — 1) y?2* — 3(k + D)yz(y* + 2% + kyz)
=(k+2)(3—k)(y*+2*)*— (k> —3k* =3k +11)(y* +2*)yz

+ 2(k® — k* — 5k — 1) y?2>
=(y*+2*>—2yz2) [(k +2)(3—k)(y*+2%)— (k®—k*—5k — 1)yzzz]
=(y —2)*[(k+2)3—K)(y —2)*+ (13 + 7k — k> —Kk*)yz ] > 0.

Case 1: k € [a,—1]U[1,b]. Since A(p,q) < 0, it suffices to show that f,(x,1,1) >0
and f,(0,y,z) > 0 for x, y,z > 0 (see Corollary 2). These condition are satisfied.

Case 2: k € [—1,1]. Since A(p,q) = 0, we apply Corollary 3 for

x?(x—1)*

Ea,[g’(x) :fo,—z(x) = 81

Condition (a). It suffices to show that f,(x,1,1) = A(x + 2,2x + 1)f, _,(x) for
0 < x <4, where

Alx+2,2x +1) =3(1 + k)(1 —k)3(x + 2).

We have

(1+Kk)(1—k)x2(x — 1)*(x + 2)

Alx +2,2x +1)fo _o(x) = 7
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x(x—1)*f (x)
27 ’

f(x)=54(k+2)(x*+kx+D[(3—k)x—k*+k+4]—(1+k)(1—k)*x(x—1)*(x+2).

f7(x,1,1) = A(x + 2,2x + 1) fy _o(x) =

Since
k+2>k+1,

xi+kx+1>(x—1)>%
(B3—k)x —k*+k+4>(3—k)x,
6=>x+2,

it suffices to show that
9> (1—k).

Actually, we have 8 > (1 —k)?, which is equivalent to 2 > 1 —k.

Condition (b). It suffices to show that f,(x,1,1) = A(x + 2, 2x + 1)x? for x > 4.
Since

Alx+2,2x + Dx?2 =3(1 + k)(1 —k)3(x + 2)x2,

we need to prove that
2k +2)(2+ kx + 1D(x =1 [(B—=k)x —k*+ k+4]>3(1 + k)(1 —k)*(x + 2)x.

Since
k+2>k+1,

xP4kx+1>x+2,
(x—1)*=>09,
(3—k)x —k*+k+4>(3—k)x,

it suffices to show that
6(3—k) > (1—k)>.

Indeed, we have
6(3—k)>6(3—1)=12>8>(1—k)°.

Condition (c). This condition is satisfied because f,(0, y,z) > 0 for all y,z > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).
O
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P 4.44. If x, y,z are nonnegative real numbers, no two of which are zero, then

Zx+13y+132 S 27(x+y +2)
¥2+4yz+22 ~ 2(xy+yz+2zx)

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,z) = 0, where
Fr(,y,2) = 20xy + yz +2x)f (x,5,2) = 27(x + y +2) | |(r? +4yz +22),

flx,y,2)= Z(x + 13y +132)(x* + 4xy + y*)(x* + 4xz + 22).

Since
yi+4yz+z* =—x*>+4yz+p*—2q,

the product [ [(y? + 4yz + 2°) has the same highest coefficient A; as

Py(x,y,2) =] [(—x*+4yz),
that is
A, =Py(1,1,1) = 27.
Therefore, f,(x,y,z) has the highest polynomial

A(p,q) = —27pA; =—729p.

Since A(p, q) < 0, according to Corollary 2, we only need to show that the original
inequality holds for y =z = 1, and for x = 0. For y = z = 1, the original inequality

becomes
x+26  2(13x+14) _ 27(x +2)

6 x2+4x+1 ~ 22x+1)
x*—10x3+33x2—40x+16>0,
(x—1)P2(x—4)?*=>0.

Also, for x = 0, the original inequality becomes

13(y +2) +y+132+z+13y>27(y+z)
y2+4yz+ 22 22 y2  — 2yz

13(y +2) N ¥y +22+13yz(y +2) - 27(y +2)

y24+4yz+22 y2z2 — 2yz

13yz N ¥y +z2+12yz
y2+22+4yz Yz

27
= P
2

13 27
— tt+12>=,
t+4 2

2t2+5t+14>0,
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where
- yZ +ZZ
==,
The equality occurs for x = y = g, and for x/4 = y = z (or any cyclic permutation).

]

P 4.45. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z—x+y+z> xX+y+z
2x2+yz  xy+yz+zx

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,z) = 0, where

f(x,y,2) = qZ(—x +y+2)2y% +2x)(222 + xy)—(x +y +2) l_[(Zx2 + y2).

Since
Py(x,y,2) =] [(@x*+y2)

has the highest coefficient
A, =P;(1,1,1) =27,
f7(x,y,2) has the highest polynomial
Alp,q)=—-A(x+y+2)=—27p <O.

According to Corollary 2, we only need to show that f,(x,1,1) > 0 and f,(0, y,z) >
0 for x,y,z > 0. The first condition is true if the original inequality holds for
y =2z = 1. Thus, we need to show that

—x+2 2x x+2
+ = .
2x24+1 x+2 2x+1

which is equivalent to
x(x+1(x—1)>)>0.

The second condition is true if the original inequality holds for x = 0. Thus, we

need to show that by 2 5 s
Y I Y n Y > Y
yz 2y? 2z2 yz

>

which is equivalent to
(y +2)(y —2)*>0.

The equality occurs for x = y = 2, and for x = 0 and y = 2z (or any cyclic
permutation).
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Observation. Similarly, we can prove the following generalization:

e Let x,y,z be nonnegative real numbers, no two of which are zero. If k > 1, then

Z(k2—4k+1)x+(2k—1)(y+z) S 3(k—1)(x+y+2)
kx2+yz T xy+yz+zx

with equality for x =y =2, and for x = 0 and y = z (or any cyclic permutation).

For k = 1, the following particular inequality holds:

2X—y—2z 2y—z—x 28—Xx—
X—y—z 2y—z—x 22-x ySO.
x24+yz y2+zx 22+ xy

P 4.46. If x, y,z are nonnegative real numbers, no two of which are zero, then

Z 11x —3y —32 < 3(x+y+2)
2x24+3yz ~ xy+yz+zx

(Vasile C., 2014)

Solution. Write the inequality as f,(x, y,2z) > 0, where
Frlx,y,2) =30 +y +2) [ [(2x* +3y2)— (xy + yz +2x)f (x,,2),

flx,y,2)= Z(llx —3y —32)(2y? + 32x)(22% + 3xy).
The product
Py(x,y,2) = l_[(2x2 +3yz)
has the highest coefficient
A, =P4(1,1,1) = 125.
Therefore, f(x,y,z) has the highest polynomial
A(p,q) =3A,(x+y+2)=375p, A(x+2,2x+1)=375(x+2).
We have

f(x,1,1)
3x+2
= —(12x® — 65x% + 14x — 36),

= (11x —6)(3x +2) +2(8 —3x)(2x* + 3)
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f5(x,1,1) = 3(x + 2)(2x* + 3)(3x + 2)* — (2x + 1)f (x,1,1)
= (3x +2)[3(x +2)(2x% + 3)(3x + 2) + (2x + 1)(12x> — 65x% + 14x — 36) |
=14x(3x +2)(3x> —=5x2+ x +1)
= 14x(3x +2)(x — 1)*(3x + 1).

For x = 0, the original inequality becomes

-y — 11y —3 11z —3 3(y +
y—z Wy-3z 1z-3y 30 Z)’
vz 2y? 222 yz

which is equivalent to

3(y3 H-11
4(y+Z)+ (y"+2°) yZ(y+Z)ZO
vz 2y2z2

2

(y +2)(y —2)*=>0.
First Solution. Apply Theorem 6. The conditions (a) and (c) are satisfied. In what
concerns the condition (b), we have
4A(x +2,2x + 1)x(x —1)°> _ 500(x + 2)x(x —1)°
27 B 9 ’
4A>x +2,2x + Dx(x—1)>  2x(x—1)°g(x)
27 B 9 ’

f7(X, 1: 1)_

where
g(x)=63(3x+2)(3x +1)—250(x +2)(x —1).

For x > 1, we get

g(x)>50(3x+2)(3x+1)—250(x +2)(x—1)
=50(4x? + 4x + 12) > 0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. Apply Corollary 3 for

(x —1)*x?

Ea,[g’(x) :fo,—z(x) = 81

The condition (a) in Corollary 3 are satisfied if f,(x,1,1) > A(x+2, 2x+1)f, _,(x)
for x € [0,4]. We have

125(x + 2)x%(x — 1)?
27

Alx +2,2x +1)fy_o(x) = < 5(x +2)x?(x—1)?,
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f7(,1,1) —A(x +2,2x + 1)fp 5(x) < x(x —1)*g(x),

where
g(x) =14(3x +2)(3x + 1) — 5x(x + 2)(x — 1)*.
Since
(Bx+2)(Bx+1)>5x(x+2),
we get

g(x) > 70x(x +2)—5x(x +2)(x —1)* = 5x(x + 2)[14 — (x — 1)?]
>5x(x +2)[9—(x—1)?]=5x(x +2)*(4—x)>0.

The condition (b) in Corollary 3 is satisfied if f,(x,1,1) > A(x + 2,2x + 1)x? for
x > 4. We have
fo(x,1,1)—A(x +2,2x + 1)x* = xg(x),

where
g(x) =14(3x +2)(x —1)*(3x + 1) — 375x(x + 2).
Since
3x+2>x+2, 3x+1> 3x,
we get

g(x) > 3x(x +2)[14(x —1)*—125] > 3x(x +2)(14- 9 —125) > 0.

The condition (c) in Corollary 3 is satisfied if f,(0,y,2z) > 0 for y,z > 0. This is
true because the original inequality holds for x = 0.

Observation 1. Similarly, we can prove the following generalization:

) . 1
e Let x, y, 2 be nonnegative real numbers, no two of which are zero. If 2 <k<1,

then

Z(k2—4k+1)x+(2k D(y —+-z) 3(k—1)(x+y+2)
kx2+ yz T xy+yz+zx
with equality for x = y = 2, and for x = 0 and y = z (or any cyclic permutation).

For k = 1/2, the following particular inequality holds (see P 1.101 in Volume 2):

X n y n b4 < XxX+y+z
x2+2yz  y2+2zx 22+2xy  xy+yz+zx

Observation 2. Having in view Observation 1 above and Observation from the

1
preceding P 4.45, it follows that the concerned inequality holds for k > 5
O
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P 4.47. If x, y,z are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + :
2x2+yz  2y?+4+zx  222+xy xy+yz+zx x2+y2+22

Solution. Write the inequality as fg(x,y,2) = 0, where

folx,y,2) = q(p* —29) D (2y* +2x)(22% + xy) — p?| [(@x* +y2).
The polynomial of degree eight f5(x, y,2) has the highest polynomial

A(p,q) =—A,p>,

where A; is the highest coefficient of the polynomial of degree six

Py(x,y,2) = l_[(2x2 + y2).

Since
A, =P5(1,1,1) =27,
we have
A(p,q) =—27p* <O0.
According to Corollary 2, we only need to prove the original inequality fory =z =1
and for x = 0. For y =z = 1, the original inequality becomes

1 + 2 S 1 + 2
2x2+1 x+2 2x+1 x2+42’

which is equivalent to

2x(x—1) S 2x(x—1)
(x+2)(x2+2) ~ (2x+1)(2x2+1)’

x(x*+x+1)(x—1)*>0.
For x = 0, the original inequality becomes

1, 1.2
2y2 22 y2432’
which is equivalent to
(y2—2z%*)?>0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Observation 1. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers, no two of which are zero.
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(a) Ifk =2, then

k(k+1)z 1 > 4(k+1) + 5k—4 :
x2+kyz xy+yz+zx x2+y2+22

1
(b) IfgSkSZ,then

2 _ —972 —
k(k+1)Z 1 > 4k* —3k + 2 +2( 2k* + 6k 1).
x2+kyz  xy+yz+zx X2+ y2+22

Observation 2. From the inequalities in Observation 1, we get the following par-
ticular inequalities:

2 2 2 1 1
+ + > + ,
x24+8yz y?+4+8zx 224+8xy xy+yz+zx x2+y2+3z2
1 1 1 2 1
+ + > + ,
x24+2yz  y2+2zx 2242xy xy+yz+zx x2+y?+2z2
2 2 2 3 6
+ + = + ,
x24+yz y?+zx 224xy xy+yz+zx x2+y2+3z?
1 1 1 1 2
+ + > + ,
2x2+yz 2y24zx  2224+xy  xy+yz+zx x24+y2+4+22
5 5 5 6 3
>

+ + > + :
4x2+yz  4y?+zx  422+xy " xy+yz+azx  x2+y?+z?

P 4.48. If x, y,z are nonnegative real numbers, no two of which are zero, then

x(y+z) y(z+x) z(x+y)< x4+ y? + 22
x2+5yz  y2+5zx 22+5xy  xy+yz+zx

(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,z) = 0, where

folx, y,2) = (x*+y*+2%) l_[(x2+5yz)—(xy+yz+zx) Z x(y+2)(y2+52x)(z%+5xy).

Since x(y +2) = —yz +q, the polynomial of degree eight f;(x, y,z) has the highest
polynomial
Alp,q) = A,(p* —29) +Ayq,

where A; and A, are the highest coefficients of the polynomials of degree six

Py(x,y,2) =] [(x? +5y2)
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and
Py(x,y,2) = ¥ ya(y? + 52x)(z* + 5x),

respectively. Therefore, we have
Alp,q) = P;(1,1,1)(p*—2q) + P,(1,1,1)q = 6°(p> —2q) + 3 - 6°q = 108(2p” —3q).
On the other hand,

folx,1,1) =(x* +2)(x* + 5)(5x + 1)
—x+D2x(5x +1)*+2(x + 1)(x2+5)(5x +1)]
=x(5x + 1)(5x* —3x3 + 9x? — 29x + 18)
=x(5x + 1)(x —1)*(5x%+ 7x + 18).

Since A(p,q) > 0, we apply Corollary 3 for
x%(x —1)*
81

Condition (a). It suffices to show that fg(x,1,1)(x) = A(x +2,2x +1)f, ,(x) for
0 < x <4, where

Eqp(x) = foo(x) =

A(x +2,2x +1) =108(2x? + 2x + 5).

We have 2 o
AQx +2,2x +1)fy _5(x) = 4x*(x—1) (;x + 2x + 5)’
fe(x, 1, 1)(x) —A(x + 2, 2x + 1)fy _,(x) = ’C("+)2fm
where

f(x)=3(5x+1)(5x*+ 7x + 18) — 4x(2x* + 2x + 5)(x — 1)
Since 5x +1 > 5x and 2(5x% + 7x + 18) > 5(2x? + 2x + 5), we get

2f (x) > 75x(2x%+ 2x +5) — 8x(2x? + 2x + 5)(x — 1)?
= x(2x% 4+ 2x 4+ 5)[75—8(x —1)*] > x(2x> + 2x + 5)(75—72) > 0.

Condition (b). It suffices to show that fg(x,1,1)(x) = A(x + 2,2x + 1)x? for
X = 4. The inequality is equivalent to

(5x +1)(x —1)*(5x2 + 7x + 18) > 108(2x? + 2x + 5)x,
which can be obtained by multiplying the inequalities

5x+1> 5x,

5
5x24+7x +18 > E(2x2 +2x +5),
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25(x —1)* > 216.

Condition (c). It suffices to show that f4(0, y,z) = 0 for y,z > 0. This is true if
the original inequality holds for x = 0. Thus, we need to show that

<

2 2

Z
Eyle T
y 27 yz

which is an identity.
The equality occurs for x = y = g, and also for x = 0 (or any cyclic permutation).

Observation 1. Similarly, we can prove the following generalization:

) . 1
e Let x,y,2 be nonnegative real numbers, no two of which are zero. If P <k<5,

then
+ + + 5—k 24 y2 422
x(y+2) | yE+x) zle+y) 5=k x+y*+s

x2+kyz y2+kzx 22+kxy ” 1+k xy+yz+szx

Observation 2. From the inequalities in Observation 1, we get the following par-
ticular inequalities:

2x(y +2)  2y(z +x) 22(x+y)<3+ x2+y?+22
2x2+yz  2y?2+zx  222+xy Xy +yz+zx’

x(y +2) N y(z +x) +z(x+y) - (x+y+2)?
x2+yz  y2+zx 22+xy ~ xy+yz+szx’

x+e) Y+ slety) | Paytha
x24+2yz  y?4+2zx 224+2xy Xy +yz+2zx

x(y+2)  y(z+x) z(x+y)<1+ x*+ y* + 22
x2+4yz  y2+4zx  22+4xy 5 xy+yz+zx’

x(y +2) +y(z+x) +z(x+y) < x4+ y? + 22
x2+5yz  y2+5zx 22+5xy ~ xy+yz+zx

P 4.49. If x, y,z are nonnegative real numbers, no two of which are zero, then

x(y +2) N y(z+x) +z(x +y) 42> 15(xy + yz +2x)
x2+yz  y?+zx  22+xy T (x+y+2)2

(Vasile C., 2012)
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Solution. Write the inequality as fg(x,y,2) = 0, where

folx,y,2) = p? D x(y +2)(y? +2x)(z* + xy) — (15¢ — 2pH) | J(x?+ y2).
Consider further the nontrivial case
15 —2p* > 0.

Since x(y +2) = —yz +q, the polynomial of degree eight f;(x, y,z) has the highest
polynomial
A(P: q) = _A1p2 _A2(15q - zpz)z

where A; and A, are the highest coefficients of the polynomials of degree six

Py(x,y,2) =) ya(y? +2x)(z* + x¥)

and
Py(x,y,2) =] [(x*+y2),

respectively. Therefore, we have
Alp,q) =—Py(1,1,1)p* — P5(1,1,1)(15g — 2p*) = —12p* — 8(15¢ — 2p*) < 0.

According to Theorem 4, it suffices to prove the original inequality for y =2z =1
and for x = 0.
Case 1: y =z = 1. We need to show that
2x > 15(2x + 1)
x2+1 T o(x+2)2 7

which is equivalent to
(x —1)*(2x—1)?>0.

Case 2: x = 0. We need to show that

15
Eidygy 22X

y 2 (y +2)?’

which is equivalent to
(y +2)* > 15y%2?,

(y +2)*—16y%2%* + y?22 > 0,
(y —2)[(y +2)* +4yz]+ y*z*> > 0.

The equality occurs for x = y = g, and for g = y = z (or any cyclic permutation).
O
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P 4.50. If x, y,z are nonnegative real numbers, no two of which are zero, then

x(y+z)  y(E+x) Z(X+y)>1+xy+yz+zx
x24+2yz  y24+2zx 22+2xy x2+y2+22°

Solution. Write the inequality as fg(x,y,z) = 0, where

fo(x,y,2) = (P 4y +22) D x(y +2)(y 4+ 220)(&+2xy)—(p* =) [ [(x*+2y2).

Since x(y +2) = —yz +q, the polynomial of degree eight f;(x, y,z) has the highest
polynomial
Alp,q) =—A,(p* —29) —A;(p* — ),

where A; and A, are the highest coefficients of the polynomials of degree six

Py(x,y,2) = Y ya(y? +22x)(z% + 2x¥)

and
Py(x,y,2) =] [(x?+2y2),

respectively. Therefore, we have

A(p,q) =—Py(1,1,1)(p* —2q) — P5(1,1,1)(p* —q)
=—27(p*>—2q)—27(p*—q) < 0.

According to Theorem 4, we only need to prove the original inequality fory =z =1
and for x = 0.
Case 1: y =z = 1. We need to show that

2x 2(x+1) 2x +1
+ >1+ ,
X242 2x +1 X242

which is equivalent to
(x—1)>>0.

Case 2: x = 0. We need to show that

CRP A L

y 2 Y2422

which is equivalent to
(y*+22—y2z)* + yz(y —2)* > 0.

The equality occurs for x = y = z.

Observation 1. Similarly, we can prove the following generalization:

e Let x, y,z be nonnegative real numbers, no two of which are zero.
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(@) If0 <k <2, then

EZ x(y +2) S 2k —1 +xy+yz—+—zx;
2 x2+kyz  k+1 X2 4 y2 4 22

(b) If k = 2, then

_Zx(y+z) +2k—1 Xy +yz+zx
x2+kyz ~ k+1 x2+y2+322°

Observation 2. From the inequalities in Observation 1, we get the following par-

ticular inequalities:

x(y+z)+y(z+x)+z(x+y)>1+l Xy +yz+zx
x2+4yz  y2+4zx  224+4xy 2 10 xZ+y2+3z2°

x(y+2z) | y(E+x) Z(x+y)>1+xy+yz+zx

xX2+2yz  y24+2zx  2242xy x2+y2+22"°
x(y +2) +y(z+x) +z(x+y) - (x +y +2)?
x2+yz  yr+zx  z2+xy  x2+y2+3%

x(y+2) ylz+x) z(x+y)>2(xy+yz+zx)
2x2+yz  2y2+zx  222+xy  x2+y2+22

P 4.51. If x, y,z are nonnegative real numbers such that xy + yz +zx = 3, then

X Z .

(Vasile C., 2012)

Solution. Write the inequality in the homogeneous form

1 1 5(x?+ y? + 22
)+ CTHY ) S,

2 +yz+2zx +
(xy +ysts )(x2+y2 y2+z2 22+ x2

Xy +yz+zx
which is equivalent to fg(x,y,2) = 0, where
Fo(x,7,2) = 262 D (x> + y2)(x +52) + (5p* — 24)(x> + y2) (> +22)(&* + ).

Since y? + 2% = —x? + p? — 2q, the polynomial of degree eight f;(x,y,z) has the
same highest polynomial A(p, q) as

(5p* —24q)(—=*)(—x*)(—y?),



Highest Coefficient Cancellation Method for Nonnegative Variables 507

that is
A(p,q) = —5p* + 24q.

We have
folx,1,1) = 2(2x + 1)?[(x* + 1)* + 4(x* + 1)] + 2(5x* — 28x — 4)(x? + 1)?

=2(x*+ 1)(9x* — 24x% + 22x% —8x + 1)
=2(x*+1)(x —1)*(3x —1)?,

f3(0,y,2) = 2y*2°[y*2* + (y* + 2°)°]1 + [5(y* + 2°) — 14y z]y?2*(y* + 2°)
=7y%2%(y* + 2*)(y —2)* + 2y*z*.

Case 1: —5p% 4+ 24q < 0. Since A(p,q) < 0, it suffices to show that fg(x,1,1) >0
and f4(0,y,2) = 0 for x,y,z > 0 (see Corollary 2). These conditions are clearly
satisfied.

Case 2: —5p? + 24q > 0. Since A(p,q) = 0, we apply Corollary 3 for

4(x —1)*(3x — 1)

E = =
a,[j(x) f1/3,—2(x) 3969

The condition (a) in Corollary 3 are satisfied if fg(x,1,1) = A(x+2, 2x+1)f; /3 _»(x)
for x € [0,4], where

A(x +2,2x +1) = —5x2% + 28x + 4.

We have

2(x —1)*(3x —1)?g(x)
3969 ’

fe(x,1,1) —A(x +2,2x + 1)f; 5 _o(x) =

where

g(x) =3969(x? + 1) — 2(—5x2 +28x + 4)(x — 1)?
> 3969(x —1)? — 2(—5x% + 28x + 4)(x — 1)?
> 98(x — 1)* — 2(—=5x2 + 30x + 4)(x — 1)?
=10(x —1)*(x —3)? > 0.

The condition (b) in Corollary 3 is satisfied if fg(x,1,1) > A(x + 2, 2x + 1)x? for
X > 4. The inequality is equivalent to

2(x*+1)(x —1)*(3x — 1)* > (—5x2 + 28x + 4)x>.

For the nontrivial case —5x2 + 28x +4 > 0, since x>+ 1 > x? and 2(x —1)*> > 1, it
suffices to show that
(3x —1)* > —5x* + 28x + 4.
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Indeed,
(3x —1)?> —(—5x2+28x +4) = 14x* —34x —3 > 56x —34x —3 =22x —3 > 0.

The condition (c) in Corollary 3 is satisfied because f5(0, y,z) > 0 for y,z > 0.

1 3
The equality occurs for x =y =z =1, and for x = — and y =z = — (or any

V5 V5
cyclic permutation).
O
P 4.52. If x, y,z are nonnegative real numbers, then
2xy 2yz 2zx 30(xy + yz +2x)
+ + >
x2+y2 y2+22 z2+4x2 (x+y+2)?

(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,z) = 0, where
fe(x,y,2) = 2p* ZyZ(xz +y2)(x? +2%) + (7p* —30q) (x* + y*)(y* + 2°)(z° + x?).

Since y? + 2% = —x? + p? — 2q, the polynomial of degree eight f;(x,y,z) has the
same highest polynomial A(p, q) as
2p? ) ya(—=*)(—y?) + (7p* — 30)(—=*)(—x*)(—y?),
that is
Ap,q) = 6p* — (7p* —30q) = 30q — p*.
We have
folx,1,1) = 2(x + 2)*[(x* + 1)* + 4x(x* + 1)] + 2(7x? — 32x — 2)(x? + 1)?
=4(x*>+1)(4x* —12x3 4+ 13x2 —6x + 1)
=4(x2+ 1D)(x—1)*(2x —1)?,

f5(0,y,2) =2(y +2)*y°2> + [7(y* + 2°) — 16yz]y*z*(y* + 2%)
= 7)/222()/2 + 22)(y —2)* + 4y4z4.

Case 1: 30q — p? < 0. Since A(p,q) < 0, it suffices to show that fy(x,1,1) > 0 and
f5(0,y,2) > 0 for x,y,z > 0 (see Corollary 2). These conditions are satisfied.

Case 2: 30q — p? > 0. Since A(p,q) > 0, we apply Corollary 3 for

4(x —1)*(2x —1)?

E = =
a,ﬁ(x) f1/2,—2(x) 2025
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The condition (a) in Corollary 3 are satisfied if fg(x,1,1) = A(x+2, 2x+1)f; /5 _»(x)
for x € [0,4], where

A(x+2,2x +1) = —x? + 56x + 26.

We have

4(x —1)*(2x —1)*g(x)
2025

>

fe(x,1,1) —A(x +2,2x + 1)f )5 _o(x) =

where
g(x) =2025(x*+ 1) — (—x? + 56x + 26)(x — 1)*
> 2025(x — 1)? — (—x2 + 56x + 26)(x — 1)?
> 234(x —1)* — (—x? + 56x + 26)(x — 1)?
=(x—1)*(4—x)(52—x)>0.

The condition (b) in Corollary 3 is satisfied if fg(x,1,1) > A(x +2,2x + 1)x? for
X > 4. The inequality is equivalent to

4(x*+1)(x —1)*(2x —1)* > (—x? 4+ 56x + 26)x>.

For the nontrivial case —x? + 56x + 26 > 0, since x?+1 > x? and (x —1)*> > 2, it
suffices to show that
8(2x —1)* > —x? 4+ 56x + 26.

Indeed,

8(2x —1)?> —(—x2+56x +26) =33x2—88x —18 > 32x —88x — 24
=8(x—3)(4x+1)>0.

The condition (c) in Corollary 3 is satisfied because f5(0,y,z) = 0 for y,z > 0.
The equality occurs for x = y = g, and for 2x = y = z (or any cyclic permutation).

Observation. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers. If —2 < k < 1, then

(4—k>(k+2) (x2+ Xy 3 )+1_3(xy+yz+zx)2

8(5—2k) kxy+y? k+2 (x + y +2)? ’
. . (4—k)x .
with equality for x = y = g, and also for ok = y = g (or any cyclic permuta-

tion).

For k = —1 and k = 1, we get the inequalities:

Z Xy N 47 S 56(xy +yz+2zx)
x?2—xy+y?> 3 (x+y-+2z)?
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8(xy +yz +
Z Xy 47> (xy +yz zx)'
x2+xy+y? (x+y+2)?

P 4.53. If x, y,z are nonnegative real numbers, then

2xy 2yz 2zx x?+ y?+22
+ + +
(x+y)2 (+2)2 ((E+x)? xy+yz+zx

S5
= —.
2

(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,2) = 0, where
Folx,y,2) =4 Y ya(x +y)X(x +2)* + (202 = 9)(x + ¥)X(y +2)2(z + x)*.

Since (y +2)* = (p—x)? = x*+ p(p—2x), the polynomial of degree eight f;(x, y,2)
has the same highest polynomial A(p, q) as

49> yz(=3)(y?) + (2p* — 99)E)(x*)(y2),
that is
A(p,q) =129 —(2p* —9q) = 21q — 2p>.
We have

fs(x,1,1) =4(2x + 1) [ (x + 1)* + 8x(x + 1)*] + 4(2x* — 10x — 1)(x + 1)*
= 8x2(x +1)*(x — 1),

£3(0,y,2) = 4y*z* + [2(y +2)* —9yz] y*2*(y* +2%)
= y*2*(y —2)*(2y* + 22* + 3y=2).

Case 1: 21q —2p? < 0. Since A(p,q) < 0, it suffices to show that fg(x,1,1) = 0
and f4(0,y,2) = 0 for x,y,z > 0 (see Corollary 2). These conditions are clearly
satisfied.

Case 2: 21q —2p* > 0. Since A(p,q) = 0, we may apply Corollary 3 for

(x — 1)*x?2

Eup(x) = foalx) =

The condition (a) in Corollary 3 are satisfied if fg(x,1,1) > A(x+2,2x+1)f, _,(x)
for x €[0,4], where

Alx+2,2x +1) = —2x? + 34x + 13.
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We have
(x —1)*x*g(x)

fe(x,1,1) —A(x +2,2x + 1) f, _»(x) = a1

where

g(x) = 648(x +1)> — (—2x% + 34x + 13)(x — 1)?
> 648(x —1)* — (—2x* + 34x + 13)(x — 1)*
>117(x —1)* — (—2x2% 4+ 34x + 13)(x — 1)?
=2(x—1)*(4—x)(13—x)>0.

The condition (b) in Corollary 3 is satisfied if fg(x,1,1) > A(x +2,2x + 1)x? for
X = 4. The inequality is true if

8(x +1)*(x —1)* > —2x* + 34x + 13.

For the nontrivial case —2x2 + 34x + 13 > 0, since (x —1)? > 1, it suffices to show
that

8(x +1)% > —2x%+ 34x +13.
Indeed,

8(x +1)*—(—2x*+34x +13) = 10x*—18x — 5> 40x — 18x — 5
=22x—5>0.

The condition (c) in Corollary 3 is satisfied since f5(0, y,2z) > 0 for all y,z > 0.

The equality occurs for x = y = z, and for x = 0 andy = gz (or any cyclic
permutation).

Observation 1. In the case 2, we can give a more simple solution based on The-
orem 6. The conditions (a) and (c) are satisfied. Thus, it suffices to show that

—-1)3
fo(x,1,1) = A(x +2,2x + 1)M for x > 1. We have
4x(x—1)°  4x(x—1)*g(x)

LD —A(x+2,2x+ 1
fa(x,1,1) —A(x x+1) 5 5

where

g(x) =54x(x + 1) — (—2x%+34x + 13)(x — 1)
>13(x —1)(x +1)?> = (—2x2+34x + 13)(x — 1)
=x(x—1)(15x —8) > 0.

Observation 2. Similarly, we can prove the following generalization:
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e Let x,y,z be nonnegative real numbers. If —2 < k < 2, then

(k+2)(k—1+\/5—2k)2( Xy —ki2)+4(M—1)20,

x2+kxy+y2 Xy +yz+zx
with equality for x = y = z, and also for X y = z (or any cyclic
’ V5—2k—

permutation).

Fork=—1,k=0,k=1/2, k=1 and k = 2, we get the inequalities:

+2 24 y2 432
ZL—“‘W? )(X Y T2 —1)20;

xX2—xy+y? 3 Xy +yz+zx

S By _3+(@+1)(u_1)20;

x2+4 y? xXy+yz+zx
5 8( x*+y*+
DL P (. e
2x2+xy +2y? 3\ xy+yz+zx
Z3x—y_3 A4 (xXryiret
X2+ xy+y? V3\xy+yz+zx

Z 4xy x? +y + 22 _1)>o0
(x+y)2 Xy +yz+zx -

v

0;

v

0;

P 4.54. If x, y,z are nonnegative real numbers, no two of which are zero, then

2 2 2 8 1
+ + > - :
x2+y2 y2+22 224+x2 x2+y2+22 xy+yz+zx

(Vasile C., 2012)

Solution. Write the inequality as fg(x,y,z) = 0, where

fo(x,3,2) =2q(p* —29) ) (x* + y)(x? +2%) — (p* + 6)| [(x*+y2)

Since x? + y? = —z? + p? — 2q, the polynomial of degree eight f;(x,y,z) has the
same highest polynomial A(p, q) as

—(p* +69)(—=*)(—x*)(—y*),

that is
Alp,Q)=p*+6q, A(x+22x+1)=x*+16x+10.
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We have

fo(x,1,1) = 2(2x + 1)x* + 2)[(x® + 1) + 4(x* + 1) | — 2(x* + 16x + 10)(x* + 1)?
=4x(x®>+1)(x*—x?—2x+2)
= 4x(x%+ 1)(x — 1)*(x* + 2x + 2).

On the other hand, for x = 0, the desired inequality becomes

2 2 2 8 1
>

+—= = >

which is equivalent to

(y —2)*(2y*+22* +3yz) > 0.
First Solution. Apply Theorem 6. The conditions (a) and (c) are satisfied. In what
concerns the condition (b), we have

4A(x +2,2x + Dx(x —1)°  4(x* 4+ 16x +10)x(x —1)°
27 B 27

4A(x +2,2x + Dx(x —1)° _ 4x(x —1)%g(x)
27 - 27 ’

>

f7(X, 1: 1)_

where
g(x)=27(x*+ 1)(x* +2x +2) — (x* + 16x + 10)(x — 1).

For x = 1, we get
g(x)>27(x —1)(x*+ 2x +2) — (x*+ 16x + 10)(x — 1)
>6(x —1)(x2+2x +2)—(x?+16x +10)(x —1)
=(x—1)(5x*—4x +2)>0.

The equality occurs for x = y = 2, and for x = 0 and y = z (or any cyclic
permutation).

Second Solution. Apply Corollary 3 for

(x — 1)*x?

Ea,/j(x) :fo,—z(x) = 31

The condition (a) in Corollary 3 is satisfied if fg(x,1,1) > A(x+2,2x+1)f; _,(x)
for x €[0,4]. We have

x(x —1)°g(x)

fo(x,1,1) —A(x +2,2x + 1)y o(x) = 81

where
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g(x) =324(x? + 1)(x? + 2x + 2) — x(x* + 16x + 10)(x — 1)?
> 324(x — 1)*(x* 4+ 2x +2) —4(x?* + 16x + 10)(x — 1)?
=4(x —1)*[81(x* + 2x +2) — (x* + 16x + 10)]
> 4(x —1)*[6(x* + 2x +2) — (x* + 16x + 10)]
=4(x —1)*[3x* +2(x—1)*] > 0.

The condition (b) in Corollary 3 is satisfied if fg(x,1,1) > A(x + 2, 2x + 1)x? for
x > 4. This is true if

4(x%+1)(x —1)*(x? + 2x + 2) > x(x* + 16x + 10).
Since 4 > x and (x2 + 1)(x —1)? > 5, it suffices to show that
5(x% +2x +2) > x* + 16x + 10,

which is equivalent to
2x(2x—3)=0.

The condition (c) in Corollary 3 is satisfied since the original inequality holds for
x=0.

Observation. Similarly, we can prove the following generalization:

e Let x, Y,z be nonnegative real numbers. If

10+ 1
1—«/53ks0+T36,

then

Z k+2 S 8 —4k + 4k +1
x2+kxy+y2  x24+y24+22 xy+yz+szx’

with equality for x = y = 2z, and also for x = 0 and y = z (or any cyclic permutation).

For k =—1/4, k=0, k=1 and k = 2, we get the inequalities:

1 9
>
Z4x2—xy+4y2 T 7(x24y2422)°

Z 2 > 8 + 1
x2+y2 x2+y2+2z2 xy+yz+zx’

3 5
= + ,
Zx2+xy+y2 x2+y2+22 xy+yz+zx

Z 4 S 9
(x+y)2 xy+yz+zx
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P 4.55. If x, y,z are nonnegative real numbers, then

2x 2 2 +yz+
y N vz 4 28 1> 4(xy +yz zx)'
x2+y2 y2+z2 22+4+x2 X2+ y?+ 22

(Vasile C., 2014)

Solution. Write the inequality as fg(x,y,z) = 0, where

folx,y,2) = 2(p*=29) > | yz(x®+y?)(x*+2%)+(p?—6q)(x*+y*)(y* +2°) (2% + x?).

Since
y*+2%2=—x*+p*—-2q,

the polynomial of degree eight f;(x, y,2) has the same highest polynomial A(p, q)
as

2(p* —29) Y ya(=22)(—y?) + (p> — 6q)(—=*)(—x*)(—y?),
that is
A(p,q) = 6(p* —2q) — (p* — 6q) = 5p* — 69 = 2(p* — 3q) + 3p* > 0,
A(x+2,2x +1)=5x*+8x + 14> 0.

For x = 0, the original inequality becomes

2 4
Y2 1y ,
y2+3z2 y2+3z2

which is equivalent to
(y—2)*>0.

Also, we have

fo(x,1,1) = 2(x* +2) [ (® + 1)* + 4x(x® + 1) | + 2(x* — 8x — 2)(x? + 1)?
= 4x%(x% 4+ 1)(x —1)%

First Solution. Apply Theorem 6. The conditions (a) and (c) are satisfied. In what
concerns the condition (b), we have

4A(x +2,2x + Dx(x —1)°  4x(x —1)*(5x* + 8x + 14)
27 B 27 ’

4A>x +2,2x + Dx(x—1)°  4x(x—1)*g(x)
27 B 9 ’

f8(x: 17 1)_

where
g(x) =27x(x?+1)—(x —1)(5x% + 8x + 14).
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For x > 1, we get
g(x)>27(x — 1D (x*+1)—(x — 1)(5x* + 8x + 14)
=(x—1)(27x*—8x +13)>0.

The equality holds for x = y = z, and also for x = 0 and y = z (or any cyclic
permutation).

Second Solution. Apply Corollary 3 for
x%(x—1)*
81 '

Condition (a). It suffices to show that fg(x,1,1) > A(x + 2,2x + 1)f, _,(x) for
0 < x < 4. We have

Eqp(x) = foo(x) =

x%(x —1)*(5x% + 8x + 14)
81 ’
x?(x —1)f (x)
81 ’
f(x)=324(x*+ 1) — (x — 1)*(5x* + 8x + 14).
Since x%2+1 > (x —1)?, we get

F(x)>324(x —1)*> —(x — 1)*(5x> + 8x + 14)
=(x—1)*(310—5x2—8x) > 0.

Alx +2,2x +1)fy _5(x) =

fe(x,1,1)—A(x +2,2x + 1)fy _,(x) =

Condition (b). It suffices to show that fy(x,1,1) > A(x + 2, 2x + 1)x? for x > 4.
We have

fo(x,1,1) —A(x +2,2x + 1)x* = x*[4(x* + 1)(x — 1)* — 5x* — 8x — 14]
> x?[36(x*+ 1) —5x% —8x — 14]
= x?(31x*—8x +22) > 0.

Condition (c). This condition is satisfied because the original inequality holds for
x=0.

Observation. Similarly, we can prove the following generalization:

e Let x,y,2z be real numbers. If =2 < k <0, then

Z (k+2)yz 34 8 (1_xy+yz+zx)>o
y2+kyz+z2 3—v2k2+1 x2+y2422 )77
k
with equality for x = y = g, and also for X - y = g (or any cyclic
. 1—v2k2+1
permutation).

]



Chapter 5

On Popoviciu’s Inequality

5.1 Theoretical Basis

In 1965, the Romanian mathematician T. Popoviciu proved the following inequality:

f@y+fO)+5@+37 (2T )z 2r (20 ) 2r (10 ) w2 (10),

where f is a convex function on a real interval I, and a, b, c € 1.

In 2002, we gave the following proof for the variant below of Popoviciu’s in-
equality for n variables:

Theorem 1. If f is a convex function on a real interval I and a;,a,,...,a, €1, then

fla) +flap)+---+ fla,) +n(n—2)f (a) = (n=1)[f (by) + f (by) + -+ f(b)],

1& 1 )
where a = - Z a; and b; = le_ajfor all i.
j=1 J#i
Proof. Assume thatn > 3 and a; < a, < --- < a,. There exists an integer m,

1 <m < n-—1, such that

< <0, <a<ay<--<a

b=--->2b,=2a=b,,,;,=---=b,.
We can get the desired inequality by summing the inequalities
fla))+-+fla)+n(n—m—1)f(a) = (n—1D)[f (bys1) + -+ f(b,)],
flapi) +--+ fla) +n(m—1)f(a) = (n—1)[f (by) + -+ f(b,)]-

Let

b a+---+a,+(n—m—1)a Apiq +-+a, +(m—1)a
= , CcC = .
n—1

n—1

517
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Using Jensen’s inequalities
fla)+---+f(a,)+(n—m—1)f(a) = (n—1)f (b),
flapp) +---+ fla)+(m—1)f(a) = (n—1)f (o),

it suffices to show that

(n—m—1)f(a)+ f(b) = f(bys1) +--+ f(b,), *)
fl)+m—=1)f(a) = f(by)+--+ f(by). )
Since
a>b,,,=>--=2b,, M—m—1)a+b=>b, .4+ +Db,
it follows that the decreasingly ordered sequence A,_,, = (a,--- , a, b) majorizes the
decreasingly ordered sequence B,,_,, = (b,,41, bjya -+ » b,). Similarly, since
by>:--->2b,=>a, c+(m—1)a=>b;+---+b,,
the decreasingly ordered sequence C,, = (c,a,---,a) majorizes the decreasingly
ordered sequence D,, = (b, b,---,b,,). Therefore, the inequalities (x) and ()

are consequences of Karamata’s inequality.
Another variant of Popoviciu’s inequality for n variables is the following:
Theorem 2. If f is a convex function on a real interval I and a,,a,,...,a, €1, then

(n—2)[f(a1)+f(a2)+...+f(an)]+nf(a1+a2+...+an) S 9 Z f(ai+aj)'

n 1<i<j<n 2

Proof. We use the induction method. For n = 2, the equality occurs. Suppose that
the inequality holds for n — 1 numbers, n > 3, and show that it also holds for n
numbers. Let

_ al +Cl2+"'+an

a= , b
n n—1

:a1+a2+"'+an_1

By the induction hypothesis,

i T4
(n=3)[f(a))+ f(lay)+ -+ f(a,_)]+(n—1)f(b) = 2 Z f(a al).

1<i<j<n—1 2
Thus, it suffices to show that

ai+an)

F@)Hf @)+ +f (@, ) +Hn=2)f (@)+nf (@) = (i=Df (0) +2 3 F (5.

Since

fla))+ flap)+---+ fa,—1) = (n—1)f(b)
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(by Jensen’s inequality), it suffices to show that

(n—2)f(a, )+nf(a)>zzf(a +a, ) -
Since
< a; +a,
(n—2)an+na=ZZT,

i=1
we will apply Karamata’s inequality.

Casel: a; <a, <---<a, 2a<a;+a,. Since

a+a, a,+a a_,+a a_,+a
an2max{ 1 n, 2 n’”-, n—1 n}: n—1 n
2 2 2 2
and
asmin{a1+a”,a2+a”,...,a"_1+a”}=a1+a”,
2 2 2 2
the inequality (***) follows from Karamata’s inequality.
Case 2: a; > a, > --->a,, 2a=a;+a,. Since
a2max{a1+an’a2+an"”’an_1+an}:al—i—an,
2 2 2 2
. (a;+a, a,+a, a,_, +a, a,_, +a,
aHSmln{ s R }: s
2 2 2 2

JOROR0S

the inequality (***) follows from Karamata’s inequality.

For n = 4, the inequality in Theorem 2 has the elegant form

f(a)+f(b)+f(c)+f(d)+2f(a+b+c+d) Zf(a+b)

sym

Actually, the following generalization holds:

Popoviciu’s Theorem. If f is a convex function on a real interval I, a;,a,,...,a, €1
and 2 < k <n—1, then

e (] 2 (15

i=1 1<ip<--<ix<n j=1

Note. We can rewrite Popoviciu’s inequality in Theorem 1 as
E.(ay,a,,...,a,)=>n—1,

where

fla)+f(a)+--+ f(a,)—nf(a)
f(b)+ f(by)+---+ f(b,)—nf(a)

E (a,a,,...,a,)=
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For some convex functions, the minimum (greatest lower bound) of E, is just n—1,
but it is greater for other functions. Thus, for f(x) = x?, we have

2 2 2 2
a1+a2+ +an na

=(n—1)%,
b2+ b3 +---+ b2 —na?
12 1 . 3 .
where a = = > a; and b; = —— > q; for all i. Also, for f(x) = x?, x > 0, if
nj= n—1jz
a,,da,,...,a, are nonnegative numbers, then

a+a+---+a—nd’ - 2n—1)(n—1)°
b2+ b3+---+b3—na®>~ 3n2-5n+1

3

with equality for a; = 0 and a, = a; = --- = q,, (or any cyclic permutation). On
the assumption that a, +a, + - - - + a,, = n, this inequality can be rewritten as

(n—1)(@+a+--+a)+n*>2n—1)(a}+a; + - +a).
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5.2 Applications

5.1. If a,a,,...,a, are positive real numbers such that

a,ay---a, =1,

then
n—1 n—1 n—1 1 1 1
a " +a; +ot+a +n(n=2)2n—-1)| —+—+--+—|.
a; @ a,
5.2. If a,a,,...,aqa, are positive real numbers such that
a,ay---a, =1,
then

n—1 1 1 1
ai a4 a T +n(n—2) > (al +a,+-ta,+—+ —+---+—).
2 a; a a
1 2 n
5.3. If a,a,,...,qa, are positive real numbers such that
a,ay---a, =1,

then
(n—1)(@+a+--+a)+n>(a,+a,+--+a,)*

5.4. If a, b, c, d are positive real numbers such that

ab+ bc+cd+da=4,

then . q
(1+g)(1+—)(1+£)(1+—)2(a+b+c+d)2.
b c d a
5.5. If a,a,,...,a, are positive real numbers such that
a1+a2+"'+an:n,
then

n— n— n—1

1— 1— 1—
(1+ all)(l+—c;2)---(1+ a")z "V a0y Ay
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5.6. If a;,a,,...,a, (n > 3) are positive real numbers such that

a,ta,+---+a,=1,

then
1 1 1 1 "
a+——2)a+=—2]|a,+=—-2]|=(n+=—-2].
a; a, a, n
5.7. If a;,a,,...,a, are positive real numbers, then
b, b b a
_1+_2+...+_”2_1+_2+. _|__”’
a; a a, by by b,
where 1
bl:n—lzaj
J#i
for all i.
5.8. If ay,a,,...,a, (n > 3) are positive real numbers such that
1 1 1
G tay+ta,=—+—+-+—,
a, a an
then
(a) L + L ot ! > 1;
1+(n—1)a; 1+(n—1a, 1+(n—1)a,
1 1 1
(b) + +oot——— <1
n—1+a, n—1+a, n—1+a,
5.9. If ay,a,,...,a, are positive real numbers such that
1 1 1
G +ay+ta,=—+—+--+— =ns,
a; dp a,
then
1 1 1 1 1 1
>

- 4ot > + o
a;+n—1 a,+n—1 a,+n—1 1+ns—a; l+ns—a, 1+ns—a,
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5.10. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then
+b b+ +
4(«/E+\/3+\/E)+1539(\Ja2 +\J zc+\/cza).

5.11. If a, b, c,d, e are positive real numbers such that abcde = 1, then

1 1 1 1 1
+ + + + <1.
2+v/4+5a 2++4+5b 2+v/4+5c 2+v4+5d 2+4+5e

5.12. Let a;,a,,...,a, (n = 3) be positive real numbers such that a;a,---a, = 1.
If
0<p< 2n—1
P=m—1e
then
1 1 1 n
+ + < .

v1+pa; 14pa, +1l+pa, +/1+p

5.13. Let f be a convex function on a real interval I. If a;,a,,...,a, €1, then

2 (@) + 2 @)+ + 2 (a,) + nln—2)f (@) = 1> (a+ E=21),

n
where
1
a=—(a;+ay,+---+a,).
n
5.14. If a;,a,,...,a, (n = 3) are positive real numbers such that
a,a,---a, =1,
then
a, a a
2(a’f+a§+---+a2)+n(n—2)2n(—1+—2+---+—”).
a, ds a;
5.15. If a;, a,,...,a, (n > 3) are positive real numbers such that
a,+a,+---+a,=n,
then
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5.16. If a;,a,,...,a, (n > 3) are positive real numbers such that

a,+a,+---+a,=n,

then

21 1 1 1 1 1

=+—+-+=|+n—2> + ot

n\a;, a, a, 1+a1—a2 1+a2—a3 1+an_a1
n n n

5.17. Let f be a convex function on (0, 00). If a;,a,,...,a, are positive real num-

bers, then
1 1 1
f(a1+—)+f(a2+—)+---+f(an+—)2

Zf(a1+all)+f(a2+alz)+---+f(an+aln).
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5.3 Solutions

P 5.1. Ifa;,a,,...,a, are positive real numbers such that

a,ay---a, =1,

then
n—1 n—1 n—1 1 1 1
a  +a; +ot+a +n(n—=2)2n—-1)| —+—+--+—|.
a; a a,
Solution. Let xq, X,,...,X, be real numbers such that

x;+xy+--+x,=0.
Applying Popoviciu’s inequality from Theorem 1 to the convex function
f(x)=¢", xe€R,

we get

—x1
n—1

el+e2+--+em+n(n—2)=> (n—l)(e +emt +---+em).
Using the substitution
x;=(Mn—-1lna,, x,=(Mn—-—1)Ina,, ..., x,=(Mn—1)lna,,
gives the desired inequality. For n > 3, the equality holds if and only if
ag=a,=---=a,=1.
Remark. For n = 3, using the substitution
a,=x> a,=y>, a;=2°,
we get the known homogeneous inequality
x®+y°+2°+3x%y%2? > 2(x3y + y32 + 23xP),

which holds for any real numbers x, y, z.

P 5.2. Ifa,,a,,...,a, are positive real numbers such that
a,a,---a, =1,

then

n—1

an—l +a;l_1 +.. .+aZ_1+n(Tl—2) =

1 1 1
" atay+tota,+—+—++— .

a a a,

(Bin Zhao, 2005)
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Solution. We can get this inequality by adding the inequality in P 5.1 and the
inequality

G+t +d T Hn(n—2) = (n—1)(ay +ay + -+ ay).
This inequality follows by adding the AM-GM inequalities
at+n—2>nm-1a, i=12,...,n

For n > 3, the equality holds if and only if a; = a, =---=aqa, = 1.

P 5.3. Ifa;,a,,...,a, are positive real numbers such that
a,a,---a, =1,

then
(n—1)(a+a+--+a)+n>(a,+a,+--+a,)*

(E Shleifer; 1979)

Solution. Let xq, x,,...,Xx, be real numbers such that
Xl +X2+"'+Xn:0.

Applying the inequality from Theorem 2 to the convex function f(x) = e*, we get

(n—2)(e+e24---+e")+n=>2 Z e 7.
1<i<j<n
Using the substitution
x; =2lna;, x,=2Ina,, ..., x,=2Ina,,

this inequality becomes

(n—2)(a?+a’+---+a’)+n=>2 Z a;a;.

1<i<j<n

Since
2 Z aiaj=(a1+a2+---+an)2—(af+a§+---+ai),

1<i<j<n

the conclusion follows. For n > 3, the equality holds if and only if

a,=a,=---=a,=1.
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P 5.4. Ifa, b,c,d are positive real numbers such that

ab+ bc+cd+da=4,

1+ 2 1+9 1+< 1+é >(a+b+c+d)
(+3)(+2)0+2)+2)

Solution. Applying the inequality from Theorem 2 to the convex function

then

f(x)=—Inx, x>0,
we get
(a+b)(b+c)c+d)d+a)a+c)(b+d)>4abcd(a+b+c+d)>

Since
(a+c)(b+d)=ab+ bc+cd+da=4,

the inequality is equivalent to

(a+Db)b+c)c+d)d+a)>4abcd(a+b+c+d)?,

(1+%)(1+§)(1+2)(1+%)2(a+b+c+d)2.

The equality holds fora=b=c=d =1.

P 5.5. Ifa,,a,,...,a, are positive real numbers such that

a1+a2+"'+an:n,

1—aqa, 1—a, 1—aqa, -
1+ 1+ el 1T+ > "Va,ay--a,.
n—1 n—1 n—1

Solution. Applying Popoviciu’s inequality from Theorem 1 to the convex function

then

f(x)=—Inx, x>0,

gives
(n—1) lnn_al+lnn_a2 --+lnn_a >Ina, +lna, +---+1na,,
n—1 n—1 ! > 8
(=G (=) vae
) a1a2 “Qp,
n—1 n—1
1—a 1—a 1-—
(1+n—11)(1+n—12) --(1 1) "V a,ay - a,.
For n > 3, the equality holds if and onlylfalzazz---zanzl.
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P 5.6. If a;,a,,...,a, (n > 3) are positive real numbers such that

a,ta,+---+a,=1,

1 1 1 1 !
(a1+——2)(a2+——2)~~(an+——2)2(n+——2) .
a, a, a, n

Solution. Write the inequality as
(1-a,)’(1—ay)*---(1—a,)? > (n—1)*"
a1a2 .« an - nn ’

(1—a)(A—ay)-(1—a,)= (nn_n/i)n a,a,---a, .

Applying Popoviciu’s inequality from Theorem 1 to the convex function

then

f(x)=—Inx, x>0,

gives
a; +a,+ - +a, "2
(bibye+-b, )" = (@yay+-a,) (R
n
where 1
bi:n_lzaj’ i=1,2,...,n.
J#i
Under the hypothesis a, + a, + - - -+ a, = 1, this inequality becomes
3 3 B (Tl— 1)n(n—1)
(1 _al)n 1(1 _az)n 1 ,..(1_an)n 1 > Walaz'”an’
(n—1)"
(1_a1)(1_a2)”'(1_an)2 — n—l/alaz...an .
n ot
Thus, it suffices to show that
n(n—3)
n—l/ala2 e an 2 n2(-1) /a1a2 e an 5
which is equivalent to
1 n—3
) > (ayay---a,)".

This inequality is valid if
_n 2 alaz . .an,
n

which is just the AM-GM inequality

tay+eeta,)
(al = a") > a,a, - a,.
n
The equality holds if and only if a; =a, =+ =a, = —.
n
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P5.7. Ifa,a,,...,a, are positive real numbers, then

b b b a a a
1+_2+...+_”2_1+_2+... n
a a a, b; b, b,
where

j#i
for all i.
Solution. Let

Since .
. a:
m-D2x=2_1 “_2%_ .41 i=12...n,
a q b, b,
the inequality becomes

1 1 1 n-—-2 1 1 1
—+— 4+ —+ >n—-D(—+—+-+—],
a; a, a, a b, b, b,

which is just Popoviciu’s inequality from Theorem 1 applied to the convex function

f =1,

X
For n > 3, the equality holds if and only if a; = a, =--- =a,,.

x> 0.

Remark. We can also prove this inequality using the Cauchy-Schwarz inequality
-1 1 1
oo >~ ie{L,2,...,n}.
da;  n-—1 a

J#

Setting
1 1 1
a=a+a,+---+a,, -

we can write this inequalities as

Therefore,
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P5.8. Ifa;,a,,...,a, (n > 3) are positive real numbers such that

1 1 1
G +ay+ta,=—+— -+t —,
a; a ay
then
1 1 1
a + fob—————>1;
(@) 1+(n—1)a; 1+(n—1)a, 1+(n—1)a,
1 1 1
(b)

+ +ood————<
n—1+a, n—1+a, n—1+a,
(Vasile C., 1996)

Solution. (a) We use the contradiction method. For the sake of contradiction, as-
sume that
1 1 1

+ Foot————— <1,
1+(n—1)a; 1+(n—1)a, 1+(n—1)a,

Using the substitution

we get

which is equivalent to

where 1
yl:n_lzxjs 1_1:27 >N
J#
Therefore, we have
n 1—X n y
a;+a,+--+a — > l
12 " Z(n—l)xl x
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we have
1 1 1
GAa+ta,>—+—+-+—,
a; a a,
which contradicts the hypothesis
1 1 1
GAa+ta,=—+— -+t —.
a; a a,
For n > 3, the equality holds if and only if a; = a, =---=a, = 1.

(b) Replacing a4, a,,...,a, respectively with 1/a,,1/a,,...,1/a,, the inequal-
ity in (a) becomes

a a, a,

+ fob——>1,
n—1+a, n—1+a, n—1+a,
which is equivalent to the desired inequality.
O
P5.9. Ifa,a,,...,a, are positive real numbers such that
1 1 1
a+ay+-+a,=—+—+-+—=ns,
a; @ an
then
1 1 1 S 1 1 1
a;+n—1 a,+n—1 a,+n—1" 1+ns—a; l+ns—a, 1+ns—a,

(Gabriel Dospinescu, 2004)

Solution. By the Cauchy-Schwarz inequality, we have

1 1 1
(al+a2+---+an)(—+—+---+—)an,
a a ay

which leads to
s=>1.

Applying Popoviciu’s inequality from Theorem 1 to the convex function

1

fo= 1+(n—1)x’

x>0,

we get
n

1 n(n—2) < 1
Zl+(n—1)ai * 1+(n—1)s 2(n_l)l;:1+ns—ai'

i=1
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Thus, it suffices to show that

n

- 1 1 n(n—2)
(n_l);ai+n—1 Zz:1+(n—1)ai * 1+(n—1)s’

i=1

which is equivalent to

n

1 1
> .
i—1 (ai+n—1)(ali+n—1) 1+(n—1)s

Write this inequality as
—+— =
where

1 1
Ai=(ai+n—1)(—+n—1):(n—l)(ai+—)+n2—2n+2,
a; a:

1 L

By the AM-HM inequality, we have

1 1 1 n? n
A A A, A HAA+-+A, 2(n—1)s+n2—2n+2

Consequently, it is enough to prove the inequality

n 1
>
2n—1)s+n2—2n+2 1+(n—1)s’
which reduces tos > 1. For n > 3, the equality holds if and only ifa; =---=aqa, = 1.
O

P 5.10. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
+b b+ +
4(\/E+\/3+1/E)+1539(\Ja2 +\J 2C+\/C2a).

Solution. Applying Popoviciu’s inequality from Theorem 1 to the convex function

fO)=—vx, x>0,

we get the inequality

Ja+Vb+4/c +3§2(\Ja+b+\lb+c+ C+a),

2 2 2
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which is weaker that the desired inequality. To prove the desired inequality, con-
sider the nontrivial case where at least two of a, b, ¢ are positive, and write it in the
homogeneous form

10[v/3(a+b+c)—va—vVb—vc|<9> [v2a+b)—va—vb],

or, equivalently,

10 2 (1/5—\/3)2
—+vb .
\/3(a+b+c)+\/a+ﬁ+1/z2(ﬁ \/_) SQZ:\/Z(a+b)+\/E+«/E

This is true if
10 < 9
V3@+b+o)+va+vb+vc 2a+b)+Ja+vb

which is equivalent to

(9\]7;—10) V2(@+b)=va+Vb.

This inequality is true because

9\]7%—10> 1, +/2(a+b)>va+vb.

The equality holds fora=b =c=1.

Remark. We can rewrite the inequality as

9 a+b b+c c+a
+vVb+4/c—3<= + +4/ —3.
va \/_ ve _4(\l 2 \l 2 2 )

As shown in P 1.47 from Volume 4, the best inequality of the form

\/E+\/3+«/E—BSk(\JaJ2rb+\J b—2|-c+‘/c-|2—a_3)’ k>0,

k=(v3-1)(V3+v2)~ 2.303.

is for

P 5.11. Ifa,b,c,d,e are positive real numbers such that abcde = 1, then

1 1 1 1 1
+ + + + <1
24+v/4+5a 2++V4+5b 2++/4+5c 2+vV4+5d 2+ 4+ 5e
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Solution. Use the contradiction method. Assume that

1 1 1 1 1
- + - + >
2++/4+5a 2++v/4+5b 2++4+5c 2++/4+5d 2++/4+5e

and show that

1,

abcde < 1.
Using the substitution
1 5—x 1 5—y 1 5—3
2+vAd+5a 30 2+4+5b 30 2++v4+5c 30
1 S—1u 1 S5—v

2++v4+5d 30 2+44+5e 30°

which involves
a= 16x 16y c— 16z _ 16u o= 16v
CG-x T G=y»2 T (5-22 T (5-w?  (5—v)?

and
0<x<5, 0<y<5, 0<z<)5 0<u<), 0<v<y,

we need to show that
xX+y+z+ut+v<5>5

CRISRICRICIICY]

xyzuy < .

4 4 4 4 4

It is easy to see that if x increases, then the left side of this inequality increases,
while the right side decreases. Therefore, it suffices to show that

implies

xt+y+z+u+v=>5

() () C) () () 2o

Popoviciu’s inequality from Theorem 1 applied to the convex function

implies

f(x)=—Inx, x>0,

gives

(5—x)4(5—y)4(5—z)4(5—u)4(5—v)4 x+y+z+u+vy®
nyzuv( ) ,
4 4 4 4 4 5
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() () (57) (5) (57) o

Thus, it suffices to show that x yzuv < 1. By the AM-GM inequality, we have

x+y+z+u+vf

X zqu(
Y 5

The equality holds fora=b=c=d=e=1.
Remark. In the same manner, we can prove the following generalization:

e Ifa,,a,,...,a, (n=> 3) are positive real numbers such that

a,ay---a, =1,

then
- 1
< )
—'n— 1+\/(n— )2+4na;, 2
with equality fora; =a, =---=a, =1.
O
P 5.12. Let ay,a,,...,a, (n = 3) be positive real numbers such that a,a,---a, = 1.
If
0<p< 2n—1
P>tz
then

1 1 1 n
+ + < .
V1+pa, +/1+pa, +/1+pa, +/1+p

(Vasile Cirtoaje and Gabriel Dospinescu, 2006)

Solution. We will apply the contradiction method. Assume that the reverse in-
equality holds, namely

1 1 1 n
+ + > ,
V1+pa, +/1+pa, +/1+pa, +/1+p

and show that
a,a,---a, <1.

Using the substitution

Vv1+
vV1+pa, = p, O0<x;<+p+1, i=1,2,...,n,
b'e

i
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we need to show that x; +x, +--- + x, > n yields

1+ 1+ 1+
X7 X5 x2

It suffices to prove that

x1+x2+"'+xn=n

1+ 1+ 1+
() () ()=
X7 X3 x5

vV1+p=q, 1<an—i1,

involves

Denoting

we need to show that
(q2 — x%)(qz — xg) e (qz _ xi) < (q2 —1)"(xyxy- xn)z *)

for all x; € (0, q) satisfying x; + x5, + - - - + x, = n. Applying Popoviciu’s inequality
to the convex function

£ =—In(

n

—x), O0<x<1,
n—1

we get
Gerxyx,)" 2 [n—(n—=Dx; [n = (n=1)x,]---[n—(n—D)x,]. ()
On the other hand, Jensen’s inequality applied to the convex function

4 n—(n—1)x
fe =it

yields
[n—(n—Dxlin—(n-1)x,]---[n-(n—-Dx,] 1

(q—x1)(g—x5)-+-(q—x,) ENCERY
Multiplying this inequality and (**) gives

(q—x,)(q—x,)---(q—x,)
(@—1)" '

Therefore, in order to prove (*), we still have to show that

(x1x5- "xn)n_l =

(eyxy++x,)" (g +x0)(q +x0) -+ (g + x,) < (g + )™

This is true because, by the AM-GM inequality, we have

x1+x2+---+xn)"_1

xle"'an( n
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and
Xq X+

(@+x)@+x) (@ +x) < g+ T5) =g+

The equality occurs for a; =a, =---=a, =1.

2n —
Remark. For p = n we get the following inequality

2n-1
(n—1)%

n

>, ! <1
'/ (n—1)2+(2n—1)q;

which holds for all positive numbers a,, a,, ..., a, (n = 3) satisfying a,a,---a, =

P 5.13. Let f be a convex function on a real interval 1. If a,a,,...,a, €1, then

2f (a)) +2f (@) +--- + 2f (a,) + n(n—2)f (a) = nif (a + ﬂ)
i=1

n

where
1
a=—(a;+a,+---+a,).
n

(Darij Grinberg and Vasile Cirtoaje, 2006)

Solution. Let

By Jensen’s inequality, we have

f(a+ ai_nai+1):f(ai+(n_

n

1)bi+1) < %f(ai) + (1 — %)f(bwl)’

hence
Zf(a+ I E Zf(a)+(n—1)2f(b)

Therefore, it suffices to show that
2f (@) +2f(a;) + - +2f (a,) + n(n—2)f (@ = D f(a)+(n—1) > f(by),
i=1 i=1

which is just Popoviciu’s inequality from Theorem 1:

fla)+f(a)+-+fa) +n(n—2)f (@) = (n—1) > f(by).
i=1
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P 5.14. If a;,qa,,...,a, (n > 3) are positive real numbers such that

a,a,---a, =1,

then
a; a a
2(a;‘+ag+---+a§)+n(n—2)2n(—1+—2+--~+—”).
a ds a;
Solution. Let xq, x,,...,Xx, be real numbers such that

x;1+xy+---+x,=0.
Applying the inequality in the preceding P 5.13 to the convex function
f(x)=e', xE€R,

we get

2e*1 +2e*2+ - +2e* "+ n(n—2) > n(e¥ te T +~--+exn;X1).
Using the substitution
x, =nlna;, x,=nlna,, ..., x,=nlna,,
we get the desired inequality. The equality occurs if and only if

a1:a2:"':a

P 5.15. If aj,a,,...,a, (n = 3) are positive real numbers such that

a1+a2+"'+an:n,

a,—a a,—a a4, —d
(1+ 1 2)(1+u)...(1+ n 1)Z(alaz---an)%-
n n n

Solution. Applying the inequality in P 5.13 to the convex function

then

f(x)=—Inx, x>0,

n[ln(1+ al_a2)+ln(1+ az_a3)+---+ln(1+—a”_a1)]2
n n n

>2(Ilna, +Ina, +---+1Ina,),

we get

which is equivalent to the desired inequality. The equality occurs if and only if
a,=a,=---=a,=1.
OJ
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P 5.16. If a;,a,,...,a, (n > 3) are positive real numbers such that

a1+a2+"'+an:n,

then

21 1 1 1 1 1

=+—++—|+n—2> + foep———

n\a, a, a, 1+a1—a2 1+a2—a3 1+an_a1
n n n

Solution. Apply the inequality in P 5.13 to the convex function
1
flx)=—, x>0.
x

The equality occurs if and only if a; =a, =---=a,=1.

P 5.17. Let f be a convex function on (0, 00). If a,,a,,...,a, are positive real num-

bers, then
1 1 1
f(a1+—)+f(a2+—)+---+f(an+—)2
a as a

Zf(a1+all)+f(a2+alz)+---+f(an+aln).

(Vasile C., 2009)

Solution. For n = 2, the inequality is

Hlevg)es(og)zor(ong)orled)

Assume that a; > a,. Since
1 1 1 1
a1+_ + a2+_ == a1+_ + a2+_
as a; a; as

1 1 1
a,+—=maxja, +—, a,+—,
as a; a,

and

the inequality for n = 2 follows from Lemma below (which is a consequence of
Karamata’s inequality). To prove the original inequality, consider that

Ant1 < mln{al: as, ..., an})
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and use the induction method. Based on the induction hypothesis, we only need
to show that

f(an+a:+1)+f(an+1+all)>f(a + )+f( ”+1+$+1)'

This inequality follows also by Lemma below, since

1 1 1 1
a,+ +lap+— |=(a,+— |+ |au. +
an+1 a; a, an+1

1
an n+1 + .
] apia

The equality occurs for a; =a, =--- =
Lemma. Let f be a convexfunctlon ona real interval 1. If a, b, c,d € 1 such that

a+b=c+d, a=>max{c,d},

and

then
fl@)+ )= f(e)+f(d).
Proof. Without loss of generality, assume that ¢ > d; then,
a=>c>d=>b.

If a =c, then b = d, and the inequality is an equality. Consider now that a > c,
when
a>c>d>b.

First proof. The desired inequality follows by adding the following Jensen’s inequal-
ities
(c=Db)f(a)+(a—c)f (b) = (a—D)f (),
(a—c)f(a)+(c=b)f(b) = (a—Db)f(d).

Second Proof. Since c,d € (b, a), there are p,q € (0, 1) such that
c=pa+(1—p)b, d=gqga+(1—q)b.
From a+ b =c+d, we get
a+b=(p+qla+(2—p—q)b,
(a—b)(p+q—1)=0,
p+q=1.

Using Jensen’s inequalities

fle)<pfla)+(1—p)f(b),

fld)<qf(a)+(1—q)f (b),

we get

fO+f(d)<p+af(@)+2—p—q)f(b)=f(a)+f(b).
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1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a;,a,,...,a, are nonnegative real numbers, then
a;+a,+---+a, =ny/a,a,---a,,
with equality if and only if a; = a, =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY
Let p1,ps,--., P, be positive real numbers satisfying
pi+pyt--tp, =1
If a;,a,,...,a, are nonnegative real numbers, then
p

1402, 4P
p1ay +pya,+---+p,a,=a;a, ar,

with equality if and only if a; = a, =--- = a,,.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a;,a,,...,a, are positive real numbers, then

1 1 1
SRPIRVRY £ W B  FF)
a; a, a

with equality if and only if a; = a, =--- =a,,.

541
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4. POWER MEAN INEQUALITY
The power mean of order k of positive real numbers a;,a,,...,a,,

1
ky -k k
(a1+a2+~~+a

: )E, k#0

Mk = >
Jaja, - a,, k=0

is an increasing function with respect to k € R. For instant, M, > M; > M, > M_,
is equivalent to

> 4/a.ay,0-a

\Ja§+a§+---+a§>a1+a2+---+an n
" - = =T 1

5. BERNOULLI’'S INEQUALITY

For any real number x > —1, we have
a) (1+x) >1+4+rxforr>1andr <0;
b) (1+x) <1l+rxfor0<r<1.

If a;,a,,...,a, are real numbers such that either a,,a,,...,a, >0 or
—-1<a;,a,,...,a,<0,

then
(1+a)(1+ay)-(1+a,)>1+a,+a,+-+a,.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality
holds
a“(a—b)a—c)+ b (b—c)b—a)+c(c—a)(c—Db) =0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows
a®+b*>+c®+3abc > ab(a+ b)+ be(b +c¢)+calc+a),
(a+b+c)*+9abc>4(a+b+c)ab+ bc+ca),
9abc

a’?+b%>+c2+ ——"">2(ab+ bc+ca),
a+b+c
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(b—c)Y*(b+c—a)+(c—a)*(c+a—Db)+(a—Db)*(a+b—c)>0.

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, ¢, and can be rewritten as follows

a*+b*+c*+abc(a+ b +c)>ab(a®+ b*) + be(b® + c?) + ca(c? + a?),
a*+ b*+c*—a?b?>—b%c?—c%a®> > (ab + bc +ca)(a® + b? + 2 —ab—bc —ca),
(b—c)*(b+c—a)P+(c—a) (c+a—b)+(a—b)Y(a+b—c)*>0,
6abcp > (p*—q)(4q—p?), p=a+b+c, g=ab+ bc+ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a—mc)(a—b)(a—c)=>0,

with equality for a = b = ¢, and also for a/m = b = ¢ (or any cyclic permutation).
This inequality is equivalent to

Za4+ m(m+2)Z:a2b2 +(1 —mz)acha >(m+ 1)Z:ab(a2 + b?),

Z(b—c)z(b +c—a—ma)*>0.

7. CAUCHY-SCHWARZ INEQUALITY

If a;,a,,...,a, and by, b,,..., b, are real numbers, then
(@+a+---+a)(bi+b2+---+b2) > (a;by +ayby + -+ +a,b, ),

with equality for

Q

al_az_ n
by by b,

Notice that the equality conditions are also valid for a; = b; =0, where 1 <i < n.

8. HOLDER’S INEQUALITY

If Xij (i=1,2,---,m;j=1,2,---n) are nonnegative real numbers, then

(1(En)=(£40-)

i=1 \j=1 j=1 i=1
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9. CHEBYSHEV’S INEQUALITY

Leta; > a, > --- > a, be real numbers.

a)If b, >b,>---b,, then

Soe(2)(5)
i=1 i= i=1

b) Ifb] S bz S cte S bn, then
Zab <( al)( bl-).
i=1 i=1 i=1

10. REARRANGEMENT INEQUALITY

[y

(1) 1f (ay,ay,...,a,)and (bq, by, ..., b,) are two increasing (or decreasing) real
sequences, and (i,, i, ,1,) is an arbitrary permutation of (1,2,---,n), then

a;b, +ayby +---+a,b, = a;b; +a,b;, +---+a,b;
and
n(a,b, +ayby +---+a,b,) > (a; +ay+---+a,)(by + by +---+b,).
(2) If (a3, a,,...,a,) is decreasing and (b, b,, ..., b,) is increasing, then
a;b; +ayby +---+a,b, <a;b; +ayb;, +---+a,b;
and
n(a,b; +a,by +---+a,b,) <(a;+ay,+---+a,)(b; +by+---+Db,).
(3) Let by, b,,...,b,) and (c4,c¢,,...,c,) be two real sequences such that
by+--+bj=c;++-+¢c, 1=1,2,---,n
Ifa,>a,>--->a, >0, then
a;by+a,by+---+a,b, > a;c; +a,c, +--- +a,c,.

Notice that all these inequalities follow immediately from the identity

Zn:ai(bi_ci)zzn:(ai_aiﬂ)(zl: bj_zlzcj)’ apyy = 0.
i=1 i=1 j=1 j=1
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11. SQUARE PRODUCT INEQUALITY
Let a, b, ¢ be real numbers, and let
p=a+b+c, g=ab+bc+ca, r=abc,

s=4/p%2—3q= Va2 +b2+c2—ab—bc—ca.

From the identity

(a—Db)*(b—c)*(c —a)* =—27r*+2(9pq — 2p*)r + p°q*> — 44>,
it follows that

—2p* +9pq —2(p* —3q)+/p2—3q . —2p° +9pq + 2(p* —3q)+/p2—3q
27 27 ’

which is equivalent to

IA
IA

p®—3ps?—2s° <, p®—3ps? +2s°
27 B 27 '
Therefore, for constant p and ¢, the product r is minimum and maximum when
two of a, b, ¢ are equal.
On the other hand, the identity

IA

27(a—b)*(b—c)*(c —a)* = 4(p*>—3q)* — (2p® — 9pq + 27r)?,
leads to the inequality
27(a—b)*(b—c)*(c —a)* < 4(p*>—3q)°,

with equality for 2p® —9pq + 27r = 0.

12. KARAMATA'S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence
A=(ay,a,,...,a,), a; €I,

majorizes a decreasingly ordered sequence
B=(by,by,...,b,), b;€l,

then
fla) +f(ag)+--+fa) = f(b)+ f(by)+ -+ f(by).
We say that a sequence A= (a,,da,,...,a,) with a; > a, > --+ > a, majorizes a
sequence B = (by, by, ..., b,) with b; > b, > --- > b,, and write it as

A> B,
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if
a, = by,
a, +a, > b, +b,,

a1+a2+"'+an_12b1+b2+"'+bn_1,
Cl1+a2+"'+an:b1+b2+"'+bn.

13. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

flax+py) <af(x)+pf(¥)

forall x, y €l and any a, # > 0 with a + 8 = 1. If the inequality is reversed, then
f is said to be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f’
is (strictly) increasing. If f” > 0 on I, then f is convex on I. Also, if f” > 0 on (a,
b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p,,p,,...,p, be positive real numbers. If f is a convex
function on a real interval 1, then for any a,, a,, ..., a, € L, the inequality holds

pif(a;) +pof(ay) +---+p.f(a,) > f (plal +Pzaz+“‘+Pnan)
p1+pyt--+p, - p1+pyt---+tp,

For p, = p, =--- = p,, Jensen’s inequality becomes

F(@) + flag)+ -+ £(a) = nf (

a1+a2+"'+an)
n .

Right Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real
function defined on an interval I and convex on I, where s € int(I). The inequality

f(a1)+f(a2)+...+f(an)2nf(a1+a2+...+an)

holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

if and only if
fO)+(n—=Df(y) = nf(s)
forall x,y € Isuch that x <s <y and x +(n—1)y = ns.

Left Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real function
defined on an interval I and convex on I, where s € int(I). The inequality

fla)+ @)+ +fla) = nf

a1+a2+"'+an)
n
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holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

if and only if
fG)+(n=Df(y) = nf(s)

forall x,y € Lsuch that x >s>y and x + (n—1)y = ns.
Right Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real

function defined on an interval T and convex on [s,s,], where s,s, € I, s < s,. In
addition, f is decreasing on I, and f(u) = f(s,) for u € 1. The inequality

a1+a2+"'+an)
n

fla) + fla)+-+ fla) = nf
holds for all a,,a,,...,a, €I satisfying
a1+a2+"'+an:ns

if and only if
f)+(=1f(y)=nf(s)

forall x,y € Lsuch that x <s <y and x +(n—1)y =ns.
Left Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real

function defined on an interval T and convex on [s,,s], where sy,s € I, s, < s. In
addition, f is increasing on I, and f(u) = f(so) for u € I. The inequality

a1+a2+"‘+an)
n

fla)+ )+ +fla)=nf
holds for all a,,a,,...,a, € I satisfying
a,t+a,+---+a,=ns

if and only if
fO)+(—=1)f(y)=nf(s)
forall x,y € Lsuch that x >s >y and x + (n— 1)y = ns.

Equal Variables Theorem for Nonnegative Variables (Vasile Cirtoaje, 2005). Let
a,a,,...,a, (n > 3) be fixed nonnegative real numbers, and let

0<x;<x,<---<x

_— n

such that

k

n,

X1 +x,+-+x,=a;+a,+---+a,, x’f+x§+---+x§=a’1‘+a;‘+---+a
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where k is a real number (k # 1); for k = 0, assume that
xle"‘xn :alaz"'an.

Let f be a real-valued function, continuous on [0, ©0) and differentiable on (0, c0),
such that the associated function

g(x)=f(x=)
is strictly convex on (0, 00). Then, the sum

Sy =fla)+flx)+-+ f(x,)

is maximum for

Xy =Xy =+ =Xp 1 = Xp,
and is minimum for
0<x;<xy,=x3=+--=Xx,
or
O=x;="=Xx;SXj11SXjp=""=X,, JE€{1,2,...,n—1}L

Equal Variables Theorem for Real Variables (Vasile Cirtoaje, 2010). Let a;, a,,...,a,
(n = 3) be fixed real numbers, and let

OSX1§X2<"'SX

= n
such that

— k k k _ k k k
Xl+X2+"'+Xn—a1+a2+"'+an, Xl +X2+"'+Xn—a1+a2+"'+an,

where k is an even positive integer. If f is a differentiable function on R such that the
associated function g : R — R defined by

g(x)=f"("Vx)
is strictly convex on R, then the sum
Sp=fx)+flx)+- -+ f(x,)
is minimum for X, = X5 =+ -+ = X,,, and is maximum for x; =X, =+ = X,_;.

Best Upper Bound of Jensen’s Difference Theorem (Vasile Cirtoaje, 1990). Let
DP1,P3,- -+, P, (n = 3) be fixed positive real numbers, and let f be a convex function
onl=[a,b] Ifay,a,,...,a, €1, then Jensen’s difference

pif(a)) +poflay)+---+pafla,) _f (P1a1 +P2a2+"'+Pnan)
p1tpyt--+py p1+tpyt--+py

is maximum when all a; € {a, b}.
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14. ARITHMETIC MEAN METHOD
Arithmetic Mean Theorem. Let

F(a;,ay,...,a,):A—>R, AeR"

be a symmetric continuous function satisfying

a, +a, a; +a,
F(al,az,...,an_l,an)ZF(T,aZ,...,an_l, 2 )

forall a;,a,,...,a, € A such thata; < a, <---<a,ora; >a,=-2>a, Then,
forall aj,a,,...,a, €A, the following inequality holds:

a+a,+---+a
F(ay,a,,...,a,)>F(a,a,...,a), a=—=> n
n

Arithmetic Mean Corollary (Vasile Cirtoaje, 2005). Let
F(a,,a,,...,a,):A—>R, AeR"
be a symmetric continuous function satisfying

a, +a, a, +a,
F(a;,a,,...,a, 5,4, 1,a,) = F (—2 e PO TP —

forall ay,a,,...,a, € A such thata; <a, <---<a, (ora, >a,>--->a,). Then,
for all a,a,,...,a, € A such thata; < a, <---<a, (ora; = a, = --- = a,), the
following inequality holds:

a,+a,+---+a,_
F(al’az""’an—l)an)ZF(ts t)-.-;t:an)) t= : - 1 =
n—

15. ARITHMETIC COMPENSATION METHOD

Arithmetic Compensation Theorem (Vasile Cirtoaje, 2005). Let s > 0 and let F be
a symmetric continuous function on the compact set in R"

S={(ay,a,,...,a,):a;+a,+---+a,=s,a,=20,i=1,2,...,n}.

If
F(a,,a,,as,...,a,) =
a,+a, a;+a
Zmin{F( 12 2 12 2,a3,...,an ,F(O,a1+a2,a3,...,an)} )

for all (ay,a,,...,a,) €S, then

. s s
F(ay,..., 0y j>qp_g415--->d,) = min F(O""’O’E""’E)

1<k<n

forall (ay,a,,...,a,) €S.
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Arithmetic Compensation Corollary (Vasile Cirtoaje, 2005). Let s > 0 and let F be
a symmetric continuous function on the compact set in R"

S={(ay,a,,...,a,):a;+a,+--+a,=s,a,=>0,i=1,2,...,n}.

If

F(a,,a,,as,...,a,) = F(0,a; +a,y,as,...,a,)

forall (ay,a,,...,a,) €S satisfying

a; +a, a;+a,
F(a;,a,,as,...,a,) < F( 7 5 ,As,...,4, |,  ay #ay,
then F(ay,a,,...,a,) is minimum when n— k of the variables a,,a,,...,a, are zero
: s
and the other k variables are equal to o where k € {1,2,...,n}.

16. pqr METHOD

Theorem 1. If a > b > c are real numbers such that
a+b+c=p, ab+bc+ca=q,

where p and q are fixed real numbers satisfying p*> > 3q, then the product r = abc is
minimal only when a = b, and maximal only when b = c.

Theorem 2. If a, b, c are real numbers such that
a+b+c=p, abc=r,

where p and r are fixed real numbers, then the sum q = ab + bc + ca is maximal only
when two of a, b, c are equal.

Theorem 3. If a > b > c are real numbers such that
ab+bc+ca=gq, abc=r#0,

where q and r are fixed real numbers, then the product p, = abc(a+b+-c) is maximal
only when two of a, b, ¢ are equal.

Theorem 4. If a > b > ¢ > 0 are nonnegative real numbers such that
a+b+c=p, ab+bc+ca=q,

where p and q are fixed nonnegative real numbers satisfying p> > 3q, then the product
r = abc is minimal only when a = b or ¢ = 0, and maximal only when b = c.

Theorem 5. Ifa > b > ¢ > 0 are positive real numbers such that

a+b+c=p, abc=r,
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where p and r are fixed positive real numbers satisfying p> > 27r, then ¢ = ab+ bc +
ca is minimal only when b = ¢, and maximal only when a = b.

Theorem 6. If a > b > ¢ > 0 are positive real numbers such that
ab+bc+ca=q, abc=r,

where q and r are fixed positive real numbers satisfying p> > 27r, then the sum
p = a+ b+ c is minimal only when a = b, and maximal only when b = c.

pqr Theorem. Let a, b, c be real numbers and
p=a+b+c, q=ab+bc+ca, r=abc.

For any real 3, the following inequality holds

27pr +I(a—b)(b— e —a) < 9ppa—26p°+2\ 5=+ (*=30)"",

with equality for
1
2(p° —39)°* =\ 5 + B2 (2p° —9pq +277).

17. SYMMETRIC INEQUALITIES OF DEGREE THREE, FOUR, FIVE AND SIX

Theorem 1. Let f,(a, b, c) be a symmetric homogeneous polynomial of degree n.

(a) The inequality f,(a, b,c) > 0 holds for all real numbers a, b, c if and only if
fa(a,1,1) > 0 for all real a;

(b) For n € {3,4,5}, the inequality f,(a, b,c) = 0 holds for all a,b,c > 0 if and
only if f,(a,1,1) >0 and f,(0,b,c) =0 for all a, b,c = 0.

A symmetric and homogeneous polynomial of degree six can be written in the
form

f6(a7 b7 C) :Arz + gl(p’ Q)r + g2(p) q):

where
p=a+b+c, gq=ab+bc+ca, r=abc,

A is the highest coefficient of f¢(a, b,c), and g,(p,q) and g,(p,q) are polynomial
functions.

Theorem 2 (Vasile Cirtoaje, 2008). Let f¢(a,b,c) be a symmetric homogeneous
polynomial of degree six which has the highest coefficient A < 0. The inequality
fela,b,c) = 0 holds for all real numbers a, b, c if and only if

fe(a,1,1)>0
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for all real a.

Theorem 3 (Vasile Cirtoaje, 2008). Let f¢(a, b,c) be a sixth degree symmetric homo-
geneous polynomial having the highest coefficient A < 0. The inequality f¢(a,b,c) =
0 holds for all nonnegative real numbers a,b,c if and only if f¢(a,1,1) > 0 and
f6(0,b,c) = 0 for all nonnegative real numbers a, b, c.

k3 3k ok ok

Consider the inequality
f6(a7 b; C) > 05

where a, b, c are real numbers and fy(a, b,c) is a symmetric homogeneous poly-
nomial of degree six with the highest coefficient A > 0. The highest coefficient
cancellation method for proving such an inequality uses the above Theorem 2 and
the following three ideas:

1) finding a nonnegative symmetric homogeneous function f(a, b, ¢) of the form

2 2
fela,b,c) = (r +A;pq +A2p3 +A3%) , (A.1)

where A;,A,,A; are real numbers chosen such that
fo(a, b,c) > Afs(a,b,c) >0

for all real numbers a, b, c;

2) seeing that the difference fi(a, b,c) —Af¢(a, b, c) has the highest coefficient
equal to zero, therefore the inequality

f6(a) b: C) 2 Af6(a: b: C)
holds if and only if it holds for b = ¢ =1 (see Theorem 2);
3) choosing a suitable real number

£ e(—00,0)U(3,00)

and treating successively the cases p? < £q and p? > &£q.

k3 3k sk ok

Consider the inequality
fe(a,b,c) =0,

where a, b, ¢ are nonnegative numbers and f4(a, b, c) is a symmetric homogeneous
polynomial of degree six with the highest coefficient A > 0. The highest coefficient
cancellation method for proving such an inequality uses the above Theorem 3 and
the following three ideas:
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1) finding a nonnegative symmetric homogeneous function f¢(a, b,c) of the

form

2 2
f_6(a,b,c)=(r+A1pq+A2p3 +A3q_) b
p

where A;,A,,A; are real numbers chosen such that
fo(a, b,c) > Afs(a,b,c) >0

for all nonnegative real numbers a, b, c;

(A.2)

2) seeing that the the difference f¢(a, b, c)—Afs(a, b, ¢) has the highest coeffi-

cient equal to zero, therefore the inequality

fs(a,b,c) > Afs(a,b,c)

holds for all nonnegative real numbers a, b, ¢ if and only if it holds for b =c =1

and for a = 0 (see Theorem 3);
3) treating successively the cases p*> < 4q and p? > 4q.

18. POPOVICIU’S INEQUALITY

If f is a convex function on a real interval I and a,, a,,...,a, €I, then

Cl1+a2+"'+an

f(@) + @)+ +fla)+nn—2)f

n

2 (n=1)[f (b)) + f(b) +---+ f(b,)],

1
bi: Zaj, i:1,2,"',n.

n—14z

where

In the same conditions, the following similar inequality holds:

a1+a2+"'+an

fl@)+fla)+-+fla)+—=F (
n—2

_niz Z f(ai;aj)'

>
1<i<j<n

n

)

>

=
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